linux/net/ipv4/tcp_input.c
<<
>>
Prefs
   1/*
   2 * INET         An implementation of the TCP/IP protocol suite for the LINUX
   3 *              operating system.  INET is implemented using the  BSD Socket
   4 *              interface as the means of communication with the user level.
   5 *
   6 *              Implementation of the Transmission Control Protocol(TCP).
   7 *
   8 * Authors:     Ross Biro
   9 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *              Mark Evans, <evansmp@uhura.aston.ac.uk>
  11 *              Corey Minyard <wf-rch!minyard@relay.EU.net>
  12 *              Florian La Roche, <flla@stud.uni-sb.de>
  13 *              Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14 *              Linus Torvalds, <torvalds@cs.helsinki.fi>
  15 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
  16 *              Matthew Dillon, <dillon@apollo.west.oic.com>
  17 *              Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18 *              Jorge Cwik, <jorge@laser.satlink.net>
  19 */
  20
  21/*
  22 * Changes:
  23 *              Pedro Roque     :       Fast Retransmit/Recovery.
  24 *                                      Two receive queues.
  25 *                                      Retransmit queue handled by TCP.
  26 *                                      Better retransmit timer handling.
  27 *                                      New congestion avoidance.
  28 *                                      Header prediction.
  29 *                                      Variable renaming.
  30 *
  31 *              Eric            :       Fast Retransmit.
  32 *              Randy Scott     :       MSS option defines.
  33 *              Eric Schenk     :       Fixes to slow start algorithm.
  34 *              Eric Schenk     :       Yet another double ACK bug.
  35 *              Eric Schenk     :       Delayed ACK bug fixes.
  36 *              Eric Schenk     :       Floyd style fast retrans war avoidance.
  37 *              David S. Miller :       Don't allow zero congestion window.
  38 *              Eric Schenk     :       Fix retransmitter so that it sends
  39 *                                      next packet on ack of previous packet.
  40 *              Andi Kleen      :       Moved open_request checking here
  41 *                                      and process RSTs for open_requests.
  42 *              Andi Kleen      :       Better prune_queue, and other fixes.
  43 *              Andrey Savochkin:       Fix RTT measurements in the presence of
  44 *                                      timestamps.
  45 *              Andrey Savochkin:       Check sequence numbers correctly when
  46 *                                      removing SACKs due to in sequence incoming
  47 *                                      data segments.
  48 *              Andi Kleen:             Make sure we never ack data there is not
  49 *                                      enough room for. Also make this condition
  50 *                                      a fatal error if it might still happen.
  51 *              Andi Kleen:             Add tcp_measure_rcv_mss to make
  52 *                                      connections with MSS<min(MTU,ann. MSS)
  53 *                                      work without delayed acks.
  54 *              Andi Kleen:             Process packets with PSH set in the
  55 *                                      fast path.
  56 *              J Hadi Salim:           ECN support
  57 *              Andrei Gurtov,
  58 *              Pasi Sarolahti,
  59 *              Panu Kuhlberg:          Experimental audit of TCP (re)transmission
  60 *                                      engine. Lots of bugs are found.
  61 *              Pasi Sarolahti:         F-RTO for dealing with spurious RTOs
  62 */
  63
  64#define pr_fmt(fmt) "TCP: " fmt
  65
  66#include <linux/mm.h>
  67#include <linux/slab.h>
  68#include <linux/module.h>
  69#include <linux/sysctl.h>
  70#include <linux/kernel.h>
  71#include <linux/prefetch.h>
  72#include <net/dst.h>
  73#include <net/tcp.h>
  74#include <net/inet_common.h>
  75#include <linux/ipsec.h>
  76#include <asm/unaligned.h>
  77#include <linux/errqueue.h>
  78
  79int sysctl_tcp_timestamps __read_mostly = 1;
  80int sysctl_tcp_window_scaling __read_mostly = 1;
  81int sysctl_tcp_sack __read_mostly = 1;
  82int sysctl_tcp_fack __read_mostly = 1;
  83int sysctl_tcp_max_reordering __read_mostly = 300;
  84int sysctl_tcp_dsack __read_mostly = 1;
  85int sysctl_tcp_app_win __read_mostly = 31;
  86int sysctl_tcp_adv_win_scale __read_mostly = 1;
  87EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  88
  89/* rfc5961 challenge ack rate limiting */
  90int sysctl_tcp_challenge_ack_limit = 1000;
  91
  92int sysctl_tcp_stdurg __read_mostly;
  93int sysctl_tcp_rfc1337 __read_mostly;
  94int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  95int sysctl_tcp_frto __read_mostly = 2;
  96int sysctl_tcp_min_rtt_wlen __read_mostly = 300;
  97
  98int sysctl_tcp_thin_dupack __read_mostly;
  99
 100int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
 101int sysctl_tcp_early_retrans __read_mostly = 3;
 102int sysctl_tcp_invalid_ratelimit __read_mostly = HZ/2;
 103
 104#define FLAG_DATA               0x01 /* Incoming frame contained data.          */
 105#define FLAG_WIN_UPDATE         0x02 /* Incoming ACK was a window update.       */
 106#define FLAG_DATA_ACKED         0x04 /* This ACK acknowledged new data.         */
 107#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted.  */
 108#define FLAG_SYN_ACKED          0x10 /* This ACK acknowledged SYN.              */
 109#define FLAG_DATA_SACKED        0x20 /* New SACK.                               */
 110#define FLAG_ECE                0x40 /* ECE in this ACK                         */
 111#define FLAG_LOST_RETRANS       0x80 /* This ACK marks some retransmission lost */
 112#define FLAG_SLOWPATH           0x100 /* Do not skip RFC checks for window update.*/
 113#define FLAG_ORIG_SACK_ACKED    0x200 /* Never retransmitted data are (s)acked  */
 114#define FLAG_SND_UNA_ADVANCED   0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
 115#define FLAG_DSACKING_ACK       0x800 /* SACK blocks contained D-SACK info */
 116#define FLAG_SACK_RENEGING      0x2000 /* snd_una advanced to a sacked seq */
 117#define FLAG_UPDATE_TS_RECENT   0x4000 /* tcp_replace_ts_recent() */
 118
 119#define FLAG_ACKED              (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
 120#define FLAG_NOT_DUP            (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
 121#define FLAG_CA_ALERT           (FLAG_DATA_SACKED|FLAG_ECE)
 122#define FLAG_FORWARD_PROGRESS   (FLAG_ACKED|FLAG_DATA_SACKED)
 123
 124#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
 125#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
 126
 127#define REXMIT_NONE     0 /* no loss recovery to do */
 128#define REXMIT_LOST     1 /* retransmit packets marked lost */
 129#define REXMIT_NEW      2 /* FRTO-style transmit of unsent/new packets */
 130
 131/* Adapt the MSS value used to make delayed ack decision to the
 132 * real world.
 133 */
 134static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
 135{
 136        struct inet_connection_sock *icsk = inet_csk(sk);
 137        const unsigned int lss = icsk->icsk_ack.last_seg_size;
 138        unsigned int len;
 139
 140        icsk->icsk_ack.last_seg_size = 0;
 141
 142        /* skb->len may jitter because of SACKs, even if peer
 143         * sends good full-sized frames.
 144         */
 145        len = skb_shinfo(skb)->gso_size ? : skb->len;
 146        if (len >= icsk->icsk_ack.rcv_mss) {
 147                icsk->icsk_ack.rcv_mss = len;
 148        } else {
 149                /* Otherwise, we make more careful check taking into account,
 150                 * that SACKs block is variable.
 151                 *
 152                 * "len" is invariant segment length, including TCP header.
 153                 */
 154                len += skb->data - skb_transport_header(skb);
 155                if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
 156                    /* If PSH is not set, packet should be
 157                     * full sized, provided peer TCP is not badly broken.
 158                     * This observation (if it is correct 8)) allows
 159                     * to handle super-low mtu links fairly.
 160                     */
 161                    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
 162                     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
 163                        /* Subtract also invariant (if peer is RFC compliant),
 164                         * tcp header plus fixed timestamp option length.
 165                         * Resulting "len" is MSS free of SACK jitter.
 166                         */
 167                        len -= tcp_sk(sk)->tcp_header_len;
 168                        icsk->icsk_ack.last_seg_size = len;
 169                        if (len == lss) {
 170                                icsk->icsk_ack.rcv_mss = len;
 171                                return;
 172                        }
 173                }
 174                if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
 175                        icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
 176                icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
 177        }
 178}
 179
 180static void tcp_incr_quickack(struct sock *sk)
 181{
 182        struct inet_connection_sock *icsk = inet_csk(sk);
 183        unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
 184
 185        if (quickacks == 0)
 186                quickacks = 2;
 187        if (quickacks > icsk->icsk_ack.quick)
 188                icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
 189}
 190
 191static void tcp_enter_quickack_mode(struct sock *sk)
 192{
 193        struct inet_connection_sock *icsk = inet_csk(sk);
 194        tcp_incr_quickack(sk);
 195        icsk->icsk_ack.pingpong = 0;
 196        icsk->icsk_ack.ato = TCP_ATO_MIN;
 197}
 198
 199/* Send ACKs quickly, if "quick" count is not exhausted
 200 * and the session is not interactive.
 201 */
 202
 203static bool tcp_in_quickack_mode(struct sock *sk)
 204{
 205        const struct inet_connection_sock *icsk = inet_csk(sk);
 206        const struct dst_entry *dst = __sk_dst_get(sk);
 207
 208        return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
 209                (icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong);
 210}
 211
 212static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
 213{
 214        if (tp->ecn_flags & TCP_ECN_OK)
 215                tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
 216}
 217
 218static void tcp_ecn_accept_cwr(struct tcp_sock *tp, const struct sk_buff *skb)
 219{
 220        if (tcp_hdr(skb)->cwr)
 221                tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 222}
 223
 224static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
 225{
 226        tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
 227}
 228
 229static void __tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 230{
 231        switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
 232        case INET_ECN_NOT_ECT:
 233                /* Funny extension: if ECT is not set on a segment,
 234                 * and we already seen ECT on a previous segment,
 235                 * it is probably a retransmit.
 236                 */
 237                if (tp->ecn_flags & TCP_ECN_SEEN)
 238                        tcp_enter_quickack_mode((struct sock *)tp);
 239                break;
 240        case INET_ECN_CE:
 241                if (tcp_ca_needs_ecn((struct sock *)tp))
 242                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_IS_CE);
 243
 244                if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
 245                        /* Better not delay acks, sender can have a very low cwnd */
 246                        tcp_enter_quickack_mode((struct sock *)tp);
 247                        tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
 248                }
 249                tp->ecn_flags |= TCP_ECN_SEEN;
 250                break;
 251        default:
 252                if (tcp_ca_needs_ecn((struct sock *)tp))
 253                        tcp_ca_event((struct sock *)tp, CA_EVENT_ECN_NO_CE);
 254                tp->ecn_flags |= TCP_ECN_SEEN;
 255                break;
 256        }
 257}
 258
 259static void tcp_ecn_check_ce(struct tcp_sock *tp, const struct sk_buff *skb)
 260{
 261        if (tp->ecn_flags & TCP_ECN_OK)
 262                __tcp_ecn_check_ce(tp, skb);
 263}
 264
 265static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
 266{
 267        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
 268                tp->ecn_flags &= ~TCP_ECN_OK;
 269}
 270
 271static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
 272{
 273        if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
 274                tp->ecn_flags &= ~TCP_ECN_OK;
 275}
 276
 277static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
 278{
 279        if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
 280                return true;
 281        return false;
 282}
 283
 284/* Buffer size and advertised window tuning.
 285 *
 286 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
 287 */
 288
 289static void tcp_sndbuf_expand(struct sock *sk)
 290{
 291        const struct tcp_sock *tp = tcp_sk(sk);
 292        int sndmem, per_mss;
 293        u32 nr_segs;
 294
 295        /* Worst case is non GSO/TSO : each frame consumes one skb
 296         * and skb->head is kmalloced using power of two area of memory
 297         */
 298        per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
 299                  MAX_TCP_HEADER +
 300                  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 301
 302        per_mss = roundup_pow_of_two(per_mss) +
 303                  SKB_DATA_ALIGN(sizeof(struct sk_buff));
 304
 305        nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
 306        nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
 307
 308        /* Fast Recovery (RFC 5681 3.2) :
 309         * Cubic needs 1.7 factor, rounded to 2 to include
 310         * extra cushion (application might react slowly to POLLOUT)
 311         */
 312        sndmem = 2 * nr_segs * per_mss;
 313
 314        if (sk->sk_sndbuf < sndmem)
 315                sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
 316}
 317
 318/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
 319 *
 320 * All tcp_full_space() is split to two parts: "network" buffer, allocated
 321 * forward and advertised in receiver window (tp->rcv_wnd) and
 322 * "application buffer", required to isolate scheduling/application
 323 * latencies from network.
 324 * window_clamp is maximal advertised window. It can be less than
 325 * tcp_full_space(), in this case tcp_full_space() - window_clamp
 326 * is reserved for "application" buffer. The less window_clamp is
 327 * the smoother our behaviour from viewpoint of network, but the lower
 328 * throughput and the higher sensitivity of the connection to losses. 8)
 329 *
 330 * rcv_ssthresh is more strict window_clamp used at "slow start"
 331 * phase to predict further behaviour of this connection.
 332 * It is used for two goals:
 333 * - to enforce header prediction at sender, even when application
 334 *   requires some significant "application buffer". It is check #1.
 335 * - to prevent pruning of receive queue because of misprediction
 336 *   of receiver window. Check #2.
 337 *
 338 * The scheme does not work when sender sends good segments opening
 339 * window and then starts to feed us spaghetti. But it should work
 340 * in common situations. Otherwise, we have to rely on queue collapsing.
 341 */
 342
 343/* Slow part of check#2. */
 344static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
 345{
 346        struct tcp_sock *tp = tcp_sk(sk);
 347        /* Optimize this! */
 348        int truesize = tcp_win_from_space(skb->truesize) >> 1;
 349        int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
 350
 351        while (tp->rcv_ssthresh <= window) {
 352                if (truesize <= skb->len)
 353                        return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
 354
 355                truesize >>= 1;
 356                window >>= 1;
 357        }
 358        return 0;
 359}
 360
 361static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb)
 362{
 363        struct tcp_sock *tp = tcp_sk(sk);
 364
 365        /* Check #1 */
 366        if (tp->rcv_ssthresh < tp->window_clamp &&
 367            (int)tp->rcv_ssthresh < tcp_space(sk) &&
 368            !tcp_under_memory_pressure(sk)) {
 369                int incr;
 370
 371                /* Check #2. Increase window, if skb with such overhead
 372                 * will fit to rcvbuf in future.
 373                 */
 374                if (tcp_win_from_space(skb->truesize) <= skb->len)
 375                        incr = 2 * tp->advmss;
 376                else
 377                        incr = __tcp_grow_window(sk, skb);
 378
 379                if (incr) {
 380                        incr = max_t(int, incr, 2 * skb->len);
 381                        tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
 382                                               tp->window_clamp);
 383                        inet_csk(sk)->icsk_ack.quick |= 1;
 384                }
 385        }
 386}
 387
 388/* 3. Tuning rcvbuf, when connection enters established state. */
 389static void tcp_fixup_rcvbuf(struct sock *sk)
 390{
 391        u32 mss = tcp_sk(sk)->advmss;
 392        int rcvmem;
 393
 394        rcvmem = 2 * SKB_TRUESIZE(mss + MAX_TCP_HEADER) *
 395                 tcp_default_init_rwnd(mss);
 396
 397        /* Dynamic Right Sizing (DRS) has 2 to 3 RTT latency
 398         * Allow enough cushion so that sender is not limited by our window
 399         */
 400        if (sysctl_tcp_moderate_rcvbuf)
 401                rcvmem <<= 2;
 402
 403        if (sk->sk_rcvbuf < rcvmem)
 404                sk->sk_rcvbuf = min(rcvmem, sysctl_tcp_rmem[2]);
 405}
 406
 407/* 4. Try to fixup all. It is made immediately after connection enters
 408 *    established state.
 409 */
 410void tcp_init_buffer_space(struct sock *sk)
 411{
 412        struct tcp_sock *tp = tcp_sk(sk);
 413        int maxwin;
 414
 415        if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
 416                tcp_fixup_rcvbuf(sk);
 417        if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
 418                tcp_sndbuf_expand(sk);
 419
 420        tp->rcvq_space.space = tp->rcv_wnd;
 421        tp->rcvq_space.time = tcp_time_stamp;
 422        tp->rcvq_space.seq = tp->copied_seq;
 423
 424        maxwin = tcp_full_space(sk);
 425
 426        if (tp->window_clamp >= maxwin) {
 427                tp->window_clamp = maxwin;
 428
 429                if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
 430                        tp->window_clamp = max(maxwin -
 431                                               (maxwin >> sysctl_tcp_app_win),
 432                                               4 * tp->advmss);
 433        }
 434
 435        /* Force reservation of one segment. */
 436        if (sysctl_tcp_app_win &&
 437            tp->window_clamp > 2 * tp->advmss &&
 438            tp->window_clamp + tp->advmss > maxwin)
 439                tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
 440
 441        tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
 442        tp->snd_cwnd_stamp = tcp_time_stamp;
 443}
 444
 445/* 5. Recalculate window clamp after socket hit its memory bounds. */
 446static void tcp_clamp_window(struct sock *sk)
 447{
 448        struct tcp_sock *tp = tcp_sk(sk);
 449        struct inet_connection_sock *icsk = inet_csk(sk);
 450
 451        icsk->icsk_ack.quick = 0;
 452
 453        if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
 454            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
 455            !tcp_under_memory_pressure(sk) &&
 456            sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
 457                sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
 458                                    sysctl_tcp_rmem[2]);
 459        }
 460        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
 461                tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
 462}
 463
 464/* Initialize RCV_MSS value.
 465 * RCV_MSS is an our guess about MSS used by the peer.
 466 * We haven't any direct information about the MSS.
 467 * It's better to underestimate the RCV_MSS rather than overestimate.
 468 * Overestimations make us ACKing less frequently than needed.
 469 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
 470 */
 471void tcp_initialize_rcv_mss(struct sock *sk)
 472{
 473        const struct tcp_sock *tp = tcp_sk(sk);
 474        unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
 475
 476        hint = min(hint, tp->rcv_wnd / 2);
 477        hint = min(hint, TCP_MSS_DEFAULT);
 478        hint = max(hint, TCP_MIN_MSS);
 479
 480        inet_csk(sk)->icsk_ack.rcv_mss = hint;
 481}
 482EXPORT_SYMBOL(tcp_initialize_rcv_mss);
 483
 484/* Receiver "autotuning" code.
 485 *
 486 * The algorithm for RTT estimation w/o timestamps is based on
 487 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
 488 * <http://public.lanl.gov/radiant/pubs.html#DRS>
 489 *
 490 * More detail on this code can be found at
 491 * <http://staff.psc.edu/jheffner/>,
 492 * though this reference is out of date.  A new paper
 493 * is pending.
 494 */
 495static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
 496{
 497        u32 new_sample = tp->rcv_rtt_est.rtt;
 498        long m = sample;
 499
 500        if (m == 0)
 501                m = 1;
 502
 503        if (new_sample != 0) {
 504                /* If we sample in larger samples in the non-timestamp
 505                 * case, we could grossly overestimate the RTT especially
 506                 * with chatty applications or bulk transfer apps which
 507                 * are stalled on filesystem I/O.
 508                 *
 509                 * Also, since we are only going for a minimum in the
 510                 * non-timestamp case, we do not smooth things out
 511                 * else with timestamps disabled convergence takes too
 512                 * long.
 513                 */
 514                if (!win_dep) {
 515                        m -= (new_sample >> 3);
 516                        new_sample += m;
 517                } else {
 518                        m <<= 3;
 519                        if (m < new_sample)
 520                                new_sample = m;
 521                }
 522        } else {
 523                /* No previous measure. */
 524                new_sample = m << 3;
 525        }
 526
 527        if (tp->rcv_rtt_est.rtt != new_sample)
 528                tp->rcv_rtt_est.rtt = new_sample;
 529}
 530
 531static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
 532{
 533        if (tp->rcv_rtt_est.time == 0)
 534                goto new_measure;
 535        if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
 536                return;
 537        tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rcv_rtt_est.time, 1);
 538
 539new_measure:
 540        tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
 541        tp->rcv_rtt_est.time = tcp_time_stamp;
 542}
 543
 544static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
 545                                          const struct sk_buff *skb)
 546{
 547        struct tcp_sock *tp = tcp_sk(sk);
 548        if (tp->rx_opt.rcv_tsecr &&
 549            (TCP_SKB_CB(skb)->end_seq -
 550             TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
 551                tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
 552}
 553
 554/*
 555 * This function should be called every time data is copied to user space.
 556 * It calculates the appropriate TCP receive buffer space.
 557 */
 558void tcp_rcv_space_adjust(struct sock *sk)
 559{
 560        struct tcp_sock *tp = tcp_sk(sk);
 561        int time;
 562        int copied;
 563
 564        time = tcp_time_stamp - tp->rcvq_space.time;
 565        if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
 566                return;
 567
 568        /* Number of bytes copied to user in last RTT */
 569        copied = tp->copied_seq - tp->rcvq_space.seq;
 570        if (copied <= tp->rcvq_space.space)
 571                goto new_measure;
 572
 573        /* A bit of theory :
 574         * copied = bytes received in previous RTT, our base window
 575         * To cope with packet losses, we need a 2x factor
 576         * To cope with slow start, and sender growing its cwin by 100 %
 577         * every RTT, we need a 4x factor, because the ACK we are sending
 578         * now is for the next RTT, not the current one :
 579         * <prev RTT . ><current RTT .. ><next RTT .... >
 580         */
 581
 582        if (sysctl_tcp_moderate_rcvbuf &&
 583            !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
 584                int rcvwin, rcvmem, rcvbuf;
 585
 586                /* minimal window to cope with packet losses, assuming
 587                 * steady state. Add some cushion because of small variations.
 588                 */
 589                rcvwin = (copied << 1) + 16 * tp->advmss;
 590
 591                /* If rate increased by 25%,
 592                 *      assume slow start, rcvwin = 3 * copied
 593                 * If rate increased by 50%,
 594                 *      assume sender can use 2x growth, rcvwin = 4 * copied
 595                 */
 596                if (copied >=
 597                    tp->rcvq_space.space + (tp->rcvq_space.space >> 2)) {
 598                        if (copied >=
 599                            tp->rcvq_space.space + (tp->rcvq_space.space >> 1))
 600                                rcvwin <<= 1;
 601                        else
 602                                rcvwin += (rcvwin >> 1);
 603                }
 604
 605                rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
 606                while (tcp_win_from_space(rcvmem) < tp->advmss)
 607                        rcvmem += 128;
 608
 609                rcvbuf = min(rcvwin / tp->advmss * rcvmem, sysctl_tcp_rmem[2]);
 610                if (rcvbuf > sk->sk_rcvbuf) {
 611                        sk->sk_rcvbuf = rcvbuf;
 612
 613                        /* Make the window clamp follow along.  */
 614                        tp->window_clamp = rcvwin;
 615                }
 616        }
 617        tp->rcvq_space.space = copied;
 618
 619new_measure:
 620        tp->rcvq_space.seq = tp->copied_seq;
 621        tp->rcvq_space.time = tcp_time_stamp;
 622}
 623
 624/* There is something which you must keep in mind when you analyze the
 625 * behavior of the tp->ato delayed ack timeout interval.  When a
 626 * connection starts up, we want to ack as quickly as possible.  The
 627 * problem is that "good" TCP's do slow start at the beginning of data
 628 * transmission.  The means that until we send the first few ACK's the
 629 * sender will sit on his end and only queue most of his data, because
 630 * he can only send snd_cwnd unacked packets at any given time.  For
 631 * each ACK we send, he increments snd_cwnd and transmits more of his
 632 * queue.  -DaveM
 633 */
 634static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
 635{
 636        struct tcp_sock *tp = tcp_sk(sk);
 637        struct inet_connection_sock *icsk = inet_csk(sk);
 638        u32 now;
 639
 640        inet_csk_schedule_ack(sk);
 641
 642        tcp_measure_rcv_mss(sk, skb);
 643
 644        tcp_rcv_rtt_measure(tp);
 645
 646        now = tcp_time_stamp;
 647
 648        if (!icsk->icsk_ack.ato) {
 649                /* The _first_ data packet received, initialize
 650                 * delayed ACK engine.
 651                 */
 652                tcp_incr_quickack(sk);
 653                icsk->icsk_ack.ato = TCP_ATO_MIN;
 654        } else {
 655                int m = now - icsk->icsk_ack.lrcvtime;
 656
 657                if (m <= TCP_ATO_MIN / 2) {
 658                        /* The fastest case is the first. */
 659                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
 660                } else if (m < icsk->icsk_ack.ato) {
 661                        icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
 662                        if (icsk->icsk_ack.ato > icsk->icsk_rto)
 663                                icsk->icsk_ack.ato = icsk->icsk_rto;
 664                } else if (m > icsk->icsk_rto) {
 665                        /* Too long gap. Apparently sender failed to
 666                         * restart window, so that we send ACKs quickly.
 667                         */
 668                        tcp_incr_quickack(sk);
 669                        sk_mem_reclaim(sk);
 670                }
 671        }
 672        icsk->icsk_ack.lrcvtime = now;
 673
 674        tcp_ecn_check_ce(tp, skb);
 675
 676        if (skb->len >= 128)
 677                tcp_grow_window(sk, skb);
 678}
 679
 680/* Called to compute a smoothed rtt estimate. The data fed to this
 681 * routine either comes from timestamps, or from segments that were
 682 * known _not_ to have been retransmitted [see Karn/Partridge
 683 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
 684 * piece by Van Jacobson.
 685 * NOTE: the next three routines used to be one big routine.
 686 * To save cycles in the RFC 1323 implementation it was better to break
 687 * it up into three procedures. -- erics
 688 */
 689static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
 690{
 691        struct tcp_sock *tp = tcp_sk(sk);
 692        long m = mrtt_us; /* RTT */
 693        u32 srtt = tp->srtt_us;
 694
 695        /*      The following amusing code comes from Jacobson's
 696         *      article in SIGCOMM '88.  Note that rtt and mdev
 697         *      are scaled versions of rtt and mean deviation.
 698         *      This is designed to be as fast as possible
 699         *      m stands for "measurement".
 700         *
 701         *      On a 1990 paper the rto value is changed to:
 702         *      RTO = rtt + 4 * mdev
 703         *
 704         * Funny. This algorithm seems to be very broken.
 705         * These formulae increase RTO, when it should be decreased, increase
 706         * too slowly, when it should be increased quickly, decrease too quickly
 707         * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
 708         * does not matter how to _calculate_ it. Seems, it was trap
 709         * that VJ failed to avoid. 8)
 710         */
 711        if (srtt != 0) {
 712                m -= (srtt >> 3);       /* m is now error in rtt est */
 713                srtt += m;              /* rtt = 7/8 rtt + 1/8 new */
 714                if (m < 0) {
 715                        m = -m;         /* m is now abs(error) */
 716                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 717                        /* This is similar to one of Eifel findings.
 718                         * Eifel blocks mdev updates when rtt decreases.
 719                         * This solution is a bit different: we use finer gain
 720                         * for mdev in this case (alpha*beta).
 721                         * Like Eifel it also prevents growth of rto,
 722                         * but also it limits too fast rto decreases,
 723                         * happening in pure Eifel.
 724                         */
 725                        if (m > 0)
 726                                m >>= 3;
 727                } else {
 728                        m -= (tp->mdev_us >> 2);   /* similar update on mdev */
 729                }
 730                tp->mdev_us += m;               /* mdev = 3/4 mdev + 1/4 new */
 731                if (tp->mdev_us > tp->mdev_max_us) {
 732                        tp->mdev_max_us = tp->mdev_us;
 733                        if (tp->mdev_max_us > tp->rttvar_us)
 734                                tp->rttvar_us = tp->mdev_max_us;
 735                }
 736                if (after(tp->snd_una, tp->rtt_seq)) {
 737                        if (tp->mdev_max_us < tp->rttvar_us)
 738                                tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
 739                        tp->rtt_seq = tp->snd_nxt;
 740                        tp->mdev_max_us = tcp_rto_min_us(sk);
 741                }
 742        } else {
 743                /* no previous measure. */
 744                srtt = m << 3;          /* take the measured time to be rtt */
 745                tp->mdev_us = m << 1;   /* make sure rto = 3*rtt */
 746                tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
 747                tp->mdev_max_us = tp->rttvar_us;
 748                tp->rtt_seq = tp->snd_nxt;
 749        }
 750        tp->srtt_us = max(1U, srtt);
 751}
 752
 753/* Set the sk_pacing_rate to allow proper sizing of TSO packets.
 754 * Note: TCP stack does not yet implement pacing.
 755 * FQ packet scheduler can be used to implement cheap but effective
 756 * TCP pacing, to smooth the burst on large writes when packets
 757 * in flight is significantly lower than cwnd (or rwin)
 758 */
 759int sysctl_tcp_pacing_ss_ratio __read_mostly = 200;
 760int sysctl_tcp_pacing_ca_ratio __read_mostly = 120;
 761
 762static void tcp_update_pacing_rate(struct sock *sk)
 763{
 764        const struct tcp_sock *tp = tcp_sk(sk);
 765        u64 rate;
 766
 767        /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
 768        rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
 769
 770        /* current rate is (cwnd * mss) / srtt
 771         * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
 772         * In Congestion Avoidance phase, set it to 120 % the current rate.
 773         *
 774         * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
 775         *       If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
 776         *       end of slow start and should slow down.
 777         */
 778        if (tp->snd_cwnd < tp->snd_ssthresh / 2)
 779                rate *= sysctl_tcp_pacing_ss_ratio;
 780        else
 781                rate *= sysctl_tcp_pacing_ca_ratio;
 782
 783        rate *= max(tp->snd_cwnd, tp->packets_out);
 784
 785        if (likely(tp->srtt_us))
 786                do_div(rate, tp->srtt_us);
 787
 788        /* ACCESS_ONCE() is needed because sch_fq fetches sk_pacing_rate
 789         * without any lock. We want to make sure compiler wont store
 790         * intermediate values in this location.
 791         */
 792        ACCESS_ONCE(sk->sk_pacing_rate) = min_t(u64, rate,
 793                                                sk->sk_max_pacing_rate);
 794}
 795
 796/* Calculate rto without backoff.  This is the second half of Van Jacobson's
 797 * routine referred to above.
 798 */
 799static void tcp_set_rto(struct sock *sk)
 800{
 801        const struct tcp_sock *tp = tcp_sk(sk);
 802        /* Old crap is replaced with new one. 8)
 803         *
 804         * More seriously:
 805         * 1. If rtt variance happened to be less 50msec, it is hallucination.
 806         *    It cannot be less due to utterly erratic ACK generation made
 807         *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
 808         *    to do with delayed acks, because at cwnd>2 true delack timeout
 809         *    is invisible. Actually, Linux-2.4 also generates erratic
 810         *    ACKs in some circumstances.
 811         */
 812        inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
 813
 814        /* 2. Fixups made earlier cannot be right.
 815         *    If we do not estimate RTO correctly without them,
 816         *    all the algo is pure shit and should be replaced
 817         *    with correct one. It is exactly, which we pretend to do.
 818         */
 819
 820        /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
 821         * guarantees that rto is higher.
 822         */
 823        tcp_bound_rto(sk);
 824}
 825
 826__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
 827{
 828        __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
 829
 830        if (!cwnd)
 831                cwnd = TCP_INIT_CWND;
 832        return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
 833}
 834
 835/*
 836 * Packet counting of FACK is based on in-order assumptions, therefore TCP
 837 * disables it when reordering is detected
 838 */
 839void tcp_disable_fack(struct tcp_sock *tp)
 840{
 841        /* RFC3517 uses different metric in lost marker => reset on change */
 842        if (tcp_is_fack(tp))
 843                tp->lost_skb_hint = NULL;
 844        tp->rx_opt.sack_ok &= ~TCP_FACK_ENABLED;
 845}
 846
 847/* Take a notice that peer is sending D-SACKs */
 848static void tcp_dsack_seen(struct tcp_sock *tp)
 849{
 850        tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
 851}
 852
 853static void tcp_update_reordering(struct sock *sk, const int metric,
 854                                  const int ts)
 855{
 856        struct tcp_sock *tp = tcp_sk(sk);
 857        if (metric > tp->reordering) {
 858                int mib_idx;
 859
 860                tp->reordering = min(sysctl_tcp_max_reordering, metric);
 861
 862                /* This exciting event is worth to be remembered. 8) */
 863                if (ts)
 864                        mib_idx = LINUX_MIB_TCPTSREORDER;
 865                else if (tcp_is_reno(tp))
 866                        mib_idx = LINUX_MIB_TCPRENOREORDER;
 867                else if (tcp_is_fack(tp))
 868                        mib_idx = LINUX_MIB_TCPFACKREORDER;
 869                else
 870                        mib_idx = LINUX_MIB_TCPSACKREORDER;
 871
 872                NET_INC_STATS(sock_net(sk), mib_idx);
 873#if FASTRETRANS_DEBUG > 1
 874                pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
 875                         tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
 876                         tp->reordering,
 877                         tp->fackets_out,
 878                         tp->sacked_out,
 879                         tp->undo_marker ? tp->undo_retrans : 0);
 880#endif
 881                tcp_disable_fack(tp);
 882        }
 883
 884        if (metric > 0)
 885                tcp_disable_early_retrans(tp);
 886        tp->rack.reord = 1;
 887}
 888
 889/* This must be called before lost_out is incremented */
 890static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
 891{
 892        if (!tp->retransmit_skb_hint ||
 893            before(TCP_SKB_CB(skb)->seq,
 894                   TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
 895                tp->retransmit_skb_hint = skb;
 896
 897        if (!tp->lost_out ||
 898            after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
 899                tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
 900}
 901
 902static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
 903{
 904        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 905                tcp_verify_retransmit_hint(tp, skb);
 906
 907                tp->lost_out += tcp_skb_pcount(skb);
 908                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 909        }
 910}
 911
 912void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb)
 913{
 914        tcp_verify_retransmit_hint(tp, skb);
 915
 916        if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
 917                tp->lost_out += tcp_skb_pcount(skb);
 918                TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
 919        }
 920}
 921
 922/* This procedure tags the retransmission queue when SACKs arrive.
 923 *
 924 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
 925 * Packets in queue with these bits set are counted in variables
 926 * sacked_out, retrans_out and lost_out, correspondingly.
 927 *
 928 * Valid combinations are:
 929 * Tag  InFlight        Description
 930 * 0    1               - orig segment is in flight.
 931 * S    0               - nothing flies, orig reached receiver.
 932 * L    0               - nothing flies, orig lost by net.
 933 * R    2               - both orig and retransmit are in flight.
 934 * L|R  1               - orig is lost, retransmit is in flight.
 935 * S|R  1               - orig reached receiver, retrans is still in flight.
 936 * (L|S|R is logically valid, it could occur when L|R is sacked,
 937 *  but it is equivalent to plain S and code short-curcuits it to S.
 938 *  L|S is logically invalid, it would mean -1 packet in flight 8))
 939 *
 940 * These 6 states form finite state machine, controlled by the following events:
 941 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
 942 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
 943 * 3. Loss detection event of two flavors:
 944 *      A. Scoreboard estimator decided the packet is lost.
 945 *         A'. Reno "three dupacks" marks head of queue lost.
 946 *         A''. Its FACK modification, head until snd.fack is lost.
 947 *      B. SACK arrives sacking SND.NXT at the moment, when the
 948 *         segment was retransmitted.
 949 * 4. D-SACK added new rule: D-SACK changes any tag to S.
 950 *
 951 * It is pleasant to note, that state diagram turns out to be commutative,
 952 * so that we are allowed not to be bothered by order of our actions,
 953 * when multiple events arrive simultaneously. (see the function below).
 954 *
 955 * Reordering detection.
 956 * --------------------
 957 * Reordering metric is maximal distance, which a packet can be displaced
 958 * in packet stream. With SACKs we can estimate it:
 959 *
 960 * 1. SACK fills old hole and the corresponding segment was not
 961 *    ever retransmitted -> reordering. Alas, we cannot use it
 962 *    when segment was retransmitted.
 963 * 2. The last flaw is solved with D-SACK. D-SACK arrives
 964 *    for retransmitted and already SACKed segment -> reordering..
 965 * Both of these heuristics are not used in Loss state, when we cannot
 966 * account for retransmits accurately.
 967 *
 968 * SACK block validation.
 969 * ----------------------
 970 *
 971 * SACK block range validation checks that the received SACK block fits to
 972 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
 973 * Note that SND.UNA is not included to the range though being valid because
 974 * it means that the receiver is rather inconsistent with itself reporting
 975 * SACK reneging when it should advance SND.UNA. Such SACK block this is
 976 * perfectly valid, however, in light of RFC2018 which explicitly states
 977 * that "SACK block MUST reflect the newest segment.  Even if the newest
 978 * segment is going to be discarded ...", not that it looks very clever
 979 * in case of head skb. Due to potentional receiver driven attacks, we
 980 * choose to avoid immediate execution of a walk in write queue due to
 981 * reneging and defer head skb's loss recovery to standard loss recovery
 982 * procedure that will eventually trigger (nothing forbids us doing this).
 983 *
 984 * Implements also blockage to start_seq wrap-around. Problem lies in the
 985 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
 986 * there's no guarantee that it will be before snd_nxt (n). The problem
 987 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
 988 * wrap (s_w):
 989 *
 990 *         <- outs wnd ->                          <- wrapzone ->
 991 *         u     e      n                         u_w   e_w  s n_w
 992 *         |     |      |                          |     |   |  |
 993 * |<------------+------+----- TCP seqno space --------------+---------->|
 994 * ...-- <2^31 ->|                                           |<--------...
 995 * ...---- >2^31 ------>|                                    |<--------...
 996 *
 997 * Current code wouldn't be vulnerable but it's better still to discard such
 998 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
 999 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1000 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1001 * equal to the ideal case (infinite seqno space without wrap caused issues).
1002 *
1003 * With D-SACK the lower bound is extended to cover sequence space below
1004 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1005 * again, D-SACK block must not to go across snd_una (for the same reason as
1006 * for the normal SACK blocks, explained above). But there all simplicity
1007 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1008 * fully below undo_marker they do not affect behavior in anyway and can
1009 * therefore be safely ignored. In rare cases (which are more or less
1010 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1011 * fragmentation and packet reordering past skb's retransmission. To consider
1012 * them correctly, the acceptable range must be extended even more though
1013 * the exact amount is rather hard to quantify. However, tp->max_window can
1014 * be used as an exaggerated estimate.
1015 */
1016static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1017                                   u32 start_seq, u32 end_seq)
1018{
1019        /* Too far in future, or reversed (interpretation is ambiguous) */
1020        if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1021                return false;
1022
1023        /* Nasty start_seq wrap-around check (see comments above) */
1024        if (!before(start_seq, tp->snd_nxt))
1025                return false;
1026
1027        /* In outstanding window? ...This is valid exit for D-SACKs too.
1028         * start_seq == snd_una is non-sensical (see comments above)
1029         */
1030        if (after(start_seq, tp->snd_una))
1031                return true;
1032
1033        if (!is_dsack || !tp->undo_marker)
1034                return false;
1035
1036        /* ...Then it's D-SACK, and must reside below snd_una completely */
1037        if (after(end_seq, tp->snd_una))
1038                return false;
1039
1040        if (!before(start_seq, tp->undo_marker))
1041                return true;
1042
1043        /* Too old */
1044        if (!after(end_seq, tp->undo_marker))
1045                return false;
1046
1047        /* Undo_marker boundary crossing (overestimates a lot). Known already:
1048         *   start_seq < undo_marker and end_seq >= undo_marker.
1049         */
1050        return !before(start_seq, end_seq - tp->max_window);
1051}
1052
1053static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1054                            struct tcp_sack_block_wire *sp, int num_sacks,
1055                            u32 prior_snd_una)
1056{
1057        struct tcp_sock *tp = tcp_sk(sk);
1058        u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1059        u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1060        bool dup_sack = false;
1061
1062        if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1063                dup_sack = true;
1064                tcp_dsack_seen(tp);
1065                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1066        } else if (num_sacks > 1) {
1067                u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1068                u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1069
1070                if (!after(end_seq_0, end_seq_1) &&
1071                    !before(start_seq_0, start_seq_1)) {
1072                        dup_sack = true;
1073                        tcp_dsack_seen(tp);
1074                        NET_INC_STATS(sock_net(sk),
1075                                        LINUX_MIB_TCPDSACKOFORECV);
1076                }
1077        }
1078
1079        /* D-SACK for already forgotten data... Do dumb counting. */
1080        if (dup_sack && tp->undo_marker && tp->undo_retrans > 0 &&
1081            !after(end_seq_0, prior_snd_una) &&
1082            after(end_seq_0, tp->undo_marker))
1083                tp->undo_retrans--;
1084
1085        return dup_sack;
1086}
1087
1088struct tcp_sacktag_state {
1089        int     reord;
1090        int     fack_count;
1091        /* Timestamps for earliest and latest never-retransmitted segment
1092         * that was SACKed. RTO needs the earliest RTT to stay conservative,
1093         * but congestion control should still get an accurate delay signal.
1094         */
1095        struct skb_mstamp first_sackt;
1096        struct skb_mstamp last_sackt;
1097        int     flag;
1098};
1099
1100/* Check if skb is fully within the SACK block. In presence of GSO skbs,
1101 * the incoming SACK may not exactly match but we can find smaller MSS
1102 * aligned portion of it that matches. Therefore we might need to fragment
1103 * which may fail and creates some hassle (caller must handle error case
1104 * returns).
1105 *
1106 * FIXME: this could be merged to shift decision code
1107 */
1108static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1109                                  u32 start_seq, u32 end_seq)
1110{
1111        int err;
1112        bool in_sack;
1113        unsigned int pkt_len;
1114        unsigned int mss;
1115
1116        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1117                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1118
1119        if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1120            after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1121                mss = tcp_skb_mss(skb);
1122                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1123
1124                if (!in_sack) {
1125                        pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1126                        if (pkt_len < mss)
1127                                pkt_len = mss;
1128                } else {
1129                        pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1130                        if (pkt_len < mss)
1131                                return -EINVAL;
1132                }
1133
1134                /* Round if necessary so that SACKs cover only full MSSes
1135                 * and/or the remaining small portion (if present)
1136                 */
1137                if (pkt_len > mss) {
1138                        unsigned int new_len = (pkt_len / mss) * mss;
1139                        if (!in_sack && new_len < pkt_len) {
1140                                new_len += mss;
1141                                if (new_len >= skb->len)
1142                                        return 0;
1143                        }
1144                        pkt_len = new_len;
1145                }
1146                err = tcp_fragment(sk, skb, pkt_len, mss, GFP_ATOMIC);
1147                if (err < 0)
1148                        return err;
1149        }
1150
1151        return in_sack;
1152}
1153
1154/* Mark the given newly-SACKed range as such, adjusting counters and hints. */
1155static u8 tcp_sacktag_one(struct sock *sk,
1156                          struct tcp_sacktag_state *state, u8 sacked,
1157                          u32 start_seq, u32 end_seq,
1158                          int dup_sack, int pcount,
1159                          const struct skb_mstamp *xmit_time)
1160{
1161        struct tcp_sock *tp = tcp_sk(sk);
1162        int fack_count = state->fack_count;
1163
1164        /* Account D-SACK for retransmitted packet. */
1165        if (dup_sack && (sacked & TCPCB_RETRANS)) {
1166                if (tp->undo_marker && tp->undo_retrans > 0 &&
1167                    after(end_seq, tp->undo_marker))
1168                        tp->undo_retrans--;
1169                if (sacked & TCPCB_SACKED_ACKED)
1170                        state->reord = min(fack_count, state->reord);
1171        }
1172
1173        /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1174        if (!after(end_seq, tp->snd_una))
1175                return sacked;
1176
1177        if (!(sacked & TCPCB_SACKED_ACKED)) {
1178                tcp_rack_advance(tp, xmit_time, sacked);
1179
1180                if (sacked & TCPCB_SACKED_RETRANS) {
1181                        /* If the segment is not tagged as lost,
1182                         * we do not clear RETRANS, believing
1183                         * that retransmission is still in flight.
1184                         */
1185                        if (sacked & TCPCB_LOST) {
1186                                sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1187                                tp->lost_out -= pcount;
1188                                tp->retrans_out -= pcount;
1189                        }
1190                } else {
1191                        if (!(sacked & TCPCB_RETRANS)) {
1192                                /* New sack for not retransmitted frame,
1193                                 * which was in hole. It is reordering.
1194                                 */
1195                                if (before(start_seq,
1196                                           tcp_highest_sack_seq(tp)))
1197                                        state->reord = min(fack_count,
1198                                                           state->reord);
1199                                if (!after(end_seq, tp->high_seq))
1200                                        state->flag |= FLAG_ORIG_SACK_ACKED;
1201                                if (state->first_sackt.v64 == 0)
1202                                        state->first_sackt = *xmit_time;
1203                                state->last_sackt = *xmit_time;
1204                        }
1205
1206                        if (sacked & TCPCB_LOST) {
1207                                sacked &= ~TCPCB_LOST;
1208                                tp->lost_out -= pcount;
1209                        }
1210                }
1211
1212                sacked |= TCPCB_SACKED_ACKED;
1213                state->flag |= FLAG_DATA_SACKED;
1214                tp->sacked_out += pcount;
1215                tp->delivered += pcount;  /* Out-of-order packets delivered */
1216
1217                fack_count += pcount;
1218
1219                /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1220                if (!tcp_is_fack(tp) && tp->lost_skb_hint &&
1221                    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1222                        tp->lost_cnt_hint += pcount;
1223
1224                if (fack_count > tp->fackets_out)
1225                        tp->fackets_out = fack_count;
1226        }
1227
1228        /* D-SACK. We can detect redundant retransmission in S|R and plain R
1229         * frames and clear it. undo_retrans is decreased above, L|R frames
1230         * are accounted above as well.
1231         */
1232        if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1233                sacked &= ~TCPCB_SACKED_RETRANS;
1234                tp->retrans_out -= pcount;
1235        }
1236
1237        return sacked;
1238}
1239
1240/* Shift newly-SACKed bytes from this skb to the immediately previous
1241 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1242 */
1243static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1244                            struct tcp_sacktag_state *state,
1245                            unsigned int pcount, int shifted, int mss,
1246                            bool dup_sack)
1247{
1248        struct tcp_sock *tp = tcp_sk(sk);
1249        struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1250        u32 start_seq = TCP_SKB_CB(skb)->seq;   /* start of newly-SACKed */
1251        u32 end_seq = start_seq + shifted;      /* end of newly-SACKed */
1252
1253        BUG_ON(!pcount);
1254
1255        /* Adjust counters and hints for the newly sacked sequence
1256         * range but discard the return value since prev is already
1257         * marked. We must tag the range first because the seq
1258         * advancement below implicitly advances
1259         * tcp_highest_sack_seq() when skb is highest_sack.
1260         */
1261        tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1262                        start_seq, end_seq, dup_sack, pcount,
1263                        &skb->skb_mstamp);
1264
1265        if (skb == tp->lost_skb_hint)
1266                tp->lost_cnt_hint += pcount;
1267
1268        TCP_SKB_CB(prev)->end_seq += shifted;
1269        TCP_SKB_CB(skb)->seq += shifted;
1270
1271        tcp_skb_pcount_add(prev, pcount);
1272        BUG_ON(tcp_skb_pcount(skb) < pcount);
1273        tcp_skb_pcount_add(skb, -pcount);
1274
1275        /* When we're adding to gso_segs == 1, gso_size will be zero,
1276         * in theory this shouldn't be necessary but as long as DSACK
1277         * code can come after this skb later on it's better to keep
1278         * setting gso_size to something.
1279         */
1280        if (!TCP_SKB_CB(prev)->tcp_gso_size)
1281                TCP_SKB_CB(prev)->tcp_gso_size = mss;
1282
1283        /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1284        if (tcp_skb_pcount(skb) <= 1)
1285                TCP_SKB_CB(skb)->tcp_gso_size = 0;
1286
1287        /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1288        TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1289
1290        if (skb->len > 0) {
1291                BUG_ON(!tcp_skb_pcount(skb));
1292                NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1293                return false;
1294        }
1295
1296        /* Whole SKB was eaten :-) */
1297
1298        if (skb == tp->retransmit_skb_hint)
1299                tp->retransmit_skb_hint = prev;
1300        if (skb == tp->lost_skb_hint) {
1301                tp->lost_skb_hint = prev;
1302                tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1303        }
1304
1305        TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1306        TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1307        if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1308                TCP_SKB_CB(prev)->end_seq++;
1309
1310        if (skb == tcp_highest_sack(sk))
1311                tcp_advance_highest_sack(sk, skb);
1312
1313        tcp_skb_collapse_tstamp(prev, skb);
1314        tcp_unlink_write_queue(skb, sk);
1315        sk_wmem_free_skb(sk, skb);
1316
1317        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1318
1319        return true;
1320}
1321
1322/* I wish gso_size would have a bit more sane initialization than
1323 * something-or-zero which complicates things
1324 */
1325static int tcp_skb_seglen(const struct sk_buff *skb)
1326{
1327        return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1328}
1329
1330/* Shifting pages past head area doesn't work */
1331static int skb_can_shift(const struct sk_buff *skb)
1332{
1333        return !skb_headlen(skb) && skb_is_nonlinear(skb);
1334}
1335
1336/* Try collapsing SACK blocks spanning across multiple skbs to a single
1337 * skb.
1338 */
1339static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1340                                          struct tcp_sacktag_state *state,
1341                                          u32 start_seq, u32 end_seq,
1342                                          bool dup_sack)
1343{
1344        struct tcp_sock *tp = tcp_sk(sk);
1345        struct sk_buff *prev;
1346        int mss;
1347        int pcount = 0;
1348        int len;
1349        int in_sack;
1350
1351        if (!sk_can_gso(sk))
1352                goto fallback;
1353
1354        /* Normally R but no L won't result in plain S */
1355        if (!dup_sack &&
1356            (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1357                goto fallback;
1358        if (!skb_can_shift(skb))
1359                goto fallback;
1360        /* This frame is about to be dropped (was ACKed). */
1361        if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1362                goto fallback;
1363
1364        /* Can only happen with delayed DSACK + discard craziness */
1365        if (unlikely(skb == tcp_write_queue_head(sk)))
1366                goto fallback;
1367        prev = tcp_write_queue_prev(sk, skb);
1368
1369        if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1370                goto fallback;
1371
1372        if (!tcp_skb_can_collapse_to(prev))
1373                goto fallback;
1374
1375        in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1376                  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1377
1378        if (in_sack) {
1379                len = skb->len;
1380                pcount = tcp_skb_pcount(skb);
1381                mss = tcp_skb_seglen(skb);
1382
1383                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1384                 * drop this restriction as unnecessary
1385                 */
1386                if (mss != tcp_skb_seglen(prev))
1387                        goto fallback;
1388        } else {
1389                if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1390                        goto noop;
1391                /* CHECKME: This is non-MSS split case only?, this will
1392                 * cause skipped skbs due to advancing loop btw, original
1393                 * has that feature too
1394                 */
1395                if (tcp_skb_pcount(skb) <= 1)
1396                        goto noop;
1397
1398                in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1399                if (!in_sack) {
1400                        /* TODO: head merge to next could be attempted here
1401                         * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1402                         * though it might not be worth of the additional hassle
1403                         *
1404                         * ...we can probably just fallback to what was done
1405                         * previously. We could try merging non-SACKed ones
1406                         * as well but it probably isn't going to buy off
1407                         * because later SACKs might again split them, and
1408                         * it would make skb timestamp tracking considerably
1409                         * harder problem.
1410                         */
1411                        goto fallback;
1412                }
1413
1414                len = end_seq - TCP_SKB_CB(skb)->seq;
1415                BUG_ON(len < 0);
1416                BUG_ON(len > skb->len);
1417
1418                /* MSS boundaries should be honoured or else pcount will
1419                 * severely break even though it makes things bit trickier.
1420                 * Optimize common case to avoid most of the divides
1421                 */
1422                mss = tcp_skb_mss(skb);
1423
1424                /* TODO: Fix DSACKs to not fragment already SACKed and we can
1425                 * drop this restriction as unnecessary
1426                 */
1427                if (mss != tcp_skb_seglen(prev))
1428                        goto fallback;
1429
1430                if (len == mss) {
1431                        pcount = 1;
1432                } else if (len < mss) {
1433                        goto noop;
1434                } else {
1435                        pcount = len / mss;
1436                        len = pcount * mss;
1437                }
1438        }
1439
1440        /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1441        if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1442                goto fallback;
1443
1444        if (!skb_shift(prev, skb, len))
1445                goto fallback;
1446        if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1447                goto out;
1448
1449        /* Hole filled allows collapsing with the next as well, this is very
1450         * useful when hole on every nth skb pattern happens
1451         */
1452        if (prev == tcp_write_queue_tail(sk))
1453                goto out;
1454        skb = tcp_write_queue_next(sk, prev);
1455
1456        if (!skb_can_shift(skb) ||
1457            (skb == tcp_send_head(sk)) ||
1458            ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1459            (mss != tcp_skb_seglen(skb)))
1460                goto out;
1461
1462        len = skb->len;
1463        if (skb_shift(prev, skb, len)) {
1464                pcount += tcp_skb_pcount(skb);
1465                tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1466        }
1467
1468out:
1469        state->fack_count += pcount;
1470        return prev;
1471
1472noop:
1473        return skb;
1474
1475fallback:
1476        NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1477        return NULL;
1478}
1479
1480static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1481                                        struct tcp_sack_block *next_dup,
1482                                        struct tcp_sacktag_state *state,
1483                                        u32 start_seq, u32 end_seq,
1484                                        bool dup_sack_in)
1485{
1486        struct tcp_sock *tp = tcp_sk(sk);
1487        struct sk_buff *tmp;
1488
1489        tcp_for_write_queue_from(skb, sk) {
1490                int in_sack = 0;
1491                bool dup_sack = dup_sack_in;
1492
1493                if (skb == tcp_send_head(sk))
1494                        break;
1495
1496                /* queue is in-order => we can short-circuit the walk early */
1497                if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1498                        break;
1499
1500                if (next_dup  &&
1501                    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1502                        in_sack = tcp_match_skb_to_sack(sk, skb,
1503                                                        next_dup->start_seq,
1504                                                        next_dup->end_seq);
1505                        if (in_sack > 0)
1506                                dup_sack = true;
1507                }
1508
1509                /* skb reference here is a bit tricky to get right, since
1510                 * shifting can eat and free both this skb and the next,
1511                 * so not even _safe variant of the loop is enough.
1512                 */
1513                if (in_sack <= 0) {
1514                        tmp = tcp_shift_skb_data(sk, skb, state,
1515                                                 start_seq, end_seq, dup_sack);
1516                        if (tmp) {
1517                                if (tmp != skb) {
1518                                        skb = tmp;
1519                                        continue;
1520                                }
1521
1522                                in_sack = 0;
1523                        } else {
1524                                in_sack = tcp_match_skb_to_sack(sk, skb,
1525                                                                start_seq,
1526                                                                end_seq);
1527                        }
1528                }
1529
1530                if (unlikely(in_sack < 0))
1531                        break;
1532
1533                if (in_sack) {
1534                        TCP_SKB_CB(skb)->sacked =
1535                                tcp_sacktag_one(sk,
1536                                                state,
1537                                                TCP_SKB_CB(skb)->sacked,
1538                                                TCP_SKB_CB(skb)->seq,
1539                                                TCP_SKB_CB(skb)->end_seq,
1540                                                dup_sack,
1541                                                tcp_skb_pcount(skb),
1542                                                &skb->skb_mstamp);
1543
1544                        if (!before(TCP_SKB_CB(skb)->seq,
1545                                    tcp_highest_sack_seq(tp)))
1546                                tcp_advance_highest_sack(sk, skb);
1547                }
1548
1549                state->fack_count += tcp_skb_pcount(skb);
1550        }
1551        return skb;
1552}
1553
1554/* Avoid all extra work that is being done by sacktag while walking in
1555 * a normal way
1556 */
1557static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1558                                        struct tcp_sacktag_state *state,
1559                                        u32 skip_to_seq)
1560{
1561        tcp_for_write_queue_from(skb, sk) {
1562                if (skb == tcp_send_head(sk))
1563                        break;
1564
1565                if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1566                        break;
1567
1568                state->fack_count += tcp_skb_pcount(skb);
1569        }
1570        return skb;
1571}
1572
1573static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1574                                                struct sock *sk,
1575                                                struct tcp_sack_block *next_dup,
1576                                                struct tcp_sacktag_state *state,
1577                                                u32 skip_to_seq)
1578{
1579        if (!next_dup)
1580                return skb;
1581
1582        if (before(next_dup->start_seq, skip_to_seq)) {
1583                skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1584                skb = tcp_sacktag_walk(skb, sk, NULL, state,
1585                                       next_dup->start_seq, next_dup->end_seq,
1586                                       1);
1587        }
1588
1589        return skb;
1590}
1591
1592static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1593{
1594        return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1595}
1596
1597static int
1598tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1599                        u32 prior_snd_una, struct tcp_sacktag_state *state)
1600{
1601        struct tcp_sock *tp = tcp_sk(sk);
1602        const unsigned char *ptr = (skb_transport_header(ack_skb) +
1603                                    TCP_SKB_CB(ack_skb)->sacked);
1604        struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1605        struct tcp_sack_block sp[TCP_NUM_SACKS];
1606        struct tcp_sack_block *cache;
1607        struct sk_buff *skb;
1608        int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1609        int used_sacks;
1610        bool found_dup_sack = false;
1611        int i, j;
1612        int first_sack_index;
1613
1614        state->flag = 0;
1615        state->reord = tp->packets_out;
1616
1617        if (!tp->sacked_out) {
1618                if (WARN_ON(tp->fackets_out))
1619                        tp->fackets_out = 0;
1620                tcp_highest_sack_reset(sk);
1621        }
1622
1623        found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1624                                         num_sacks, prior_snd_una);
1625        if (found_dup_sack)
1626                state->flag |= FLAG_DSACKING_ACK;
1627
1628        /* Eliminate too old ACKs, but take into
1629         * account more or less fresh ones, they can
1630         * contain valid SACK info.
1631         */
1632        if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1633                return 0;
1634
1635        if (!tp->packets_out)
1636                goto out;
1637
1638        used_sacks = 0;
1639        first_sack_index = 0;
1640        for (i = 0; i < num_sacks; i++) {
1641                bool dup_sack = !i && found_dup_sack;
1642
1643                sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1644                sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1645
1646                if (!tcp_is_sackblock_valid(tp, dup_sack,
1647                                            sp[used_sacks].start_seq,
1648                                            sp[used_sacks].end_seq)) {
1649                        int mib_idx;
1650
1651                        if (dup_sack) {
1652                                if (!tp->undo_marker)
1653                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1654                                else
1655                                        mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1656                        } else {
1657                                /* Don't count olds caused by ACK reordering */
1658                                if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1659                                    !after(sp[used_sacks].end_seq, tp->snd_una))
1660                                        continue;
1661                                mib_idx = LINUX_MIB_TCPSACKDISCARD;
1662                        }
1663
1664                        NET_INC_STATS(sock_net(sk), mib_idx);
1665                        if (i == 0)
1666                                first_sack_index = -1;
1667                        continue;
1668                }
1669
1670                /* Ignore very old stuff early */
1671                if (!after(sp[used_sacks].end_seq, prior_snd_una))
1672                        continue;
1673
1674                used_sacks++;
1675        }
1676
1677        /* order SACK blocks to allow in order walk of the retrans queue */
1678        for (i = used_sacks - 1; i > 0; i--) {
1679                for (j = 0; j < i; j++) {
1680                        if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1681                                swap(sp[j], sp[j + 1]);
1682
1683                                /* Track where the first SACK block goes to */
1684                                if (j == first_sack_index)
1685                                        first_sack_index = j + 1;
1686                        }
1687                }
1688        }
1689
1690        skb = tcp_write_queue_head(sk);
1691        state->fack_count = 0;
1692        i = 0;
1693
1694        if (!tp->sacked_out) {
1695                /* It's already past, so skip checking against it */
1696                cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1697        } else {
1698                cache = tp->recv_sack_cache;
1699                /* Skip empty blocks in at head of the cache */
1700                while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1701                       !cache->end_seq)
1702                        cache++;
1703        }
1704
1705        while (i < used_sacks) {
1706                u32 start_seq = sp[i].start_seq;
1707                u32 end_seq = sp[i].end_seq;
1708                bool dup_sack = (found_dup_sack && (i == first_sack_index));
1709                struct tcp_sack_block *next_dup = NULL;
1710
1711                if (found_dup_sack && ((i + 1) == first_sack_index))
1712                        next_dup = &sp[i + 1];
1713
1714                /* Skip too early cached blocks */
1715                while (tcp_sack_cache_ok(tp, cache) &&
1716                       !before(start_seq, cache->end_seq))
1717                        cache++;
1718
1719                /* Can skip some work by looking recv_sack_cache? */
1720                if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1721                    after(end_seq, cache->start_seq)) {
1722
1723                        /* Head todo? */
1724                        if (before(start_seq, cache->start_seq)) {
1725                                skb = tcp_sacktag_skip(skb, sk, state,
1726                                                       start_seq);
1727                                skb = tcp_sacktag_walk(skb, sk, next_dup,
1728                                                       state,
1729                                                       start_seq,
1730                                                       cache->start_seq,
1731                                                       dup_sack);
1732                        }
1733
1734                        /* Rest of the block already fully processed? */
1735                        if (!after(end_seq, cache->end_seq))
1736                                goto advance_sp;
1737
1738                        skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1739                                                       state,
1740                                                       cache->end_seq);
1741
1742                        /* ...tail remains todo... */
1743                        if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1744                                /* ...but better entrypoint exists! */
1745                                skb = tcp_highest_sack(sk);
1746                                if (!skb)
1747                                        break;
1748                                state->fack_count = tp->fackets_out;
1749                                cache++;
1750                                goto walk;
1751                        }
1752
1753                        skb = tcp_sacktag_skip(skb, sk, state, cache->end_seq);
1754                        /* Check overlap against next cached too (past this one already) */
1755                        cache++;
1756                        continue;
1757                }
1758
1759                if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1760                        skb = tcp_highest_sack(sk);
1761                        if (!skb)
1762                                break;
1763                        state->fack_count = tp->fackets_out;
1764                }
1765                skb = tcp_sacktag_skip(skb, sk, state, start_seq);
1766
1767walk:
1768                skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1769                                       start_seq, end_seq, dup_sack);
1770
1771advance_sp:
1772                i++;
1773        }
1774
1775        /* Clear the head of the cache sack blocks so we can skip it next time */
1776        for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1777                tp->recv_sack_cache[i].start_seq = 0;
1778                tp->recv_sack_cache[i].end_seq = 0;
1779        }
1780        for (j = 0; j < used_sacks; j++)
1781                tp->recv_sack_cache[i++] = sp[j];
1782
1783        if ((state->reord < tp->fackets_out) &&
1784            ((inet_csk(sk)->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker))
1785                tcp_update_reordering(sk, tp->fackets_out - state->reord, 0);
1786
1787        tcp_verify_left_out(tp);
1788out:
1789
1790#if FASTRETRANS_DEBUG > 0
1791        WARN_ON((int)tp->sacked_out < 0);
1792        WARN_ON((int)tp->lost_out < 0);
1793        WARN_ON((int)tp->retrans_out < 0);
1794        WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1795#endif
1796        return state->flag;
1797}
1798
1799/* Limits sacked_out so that sum with lost_out isn't ever larger than
1800 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1801 */
1802static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1803{
1804        u32 holes;
1805
1806        holes = max(tp->lost_out, 1U);
1807        holes = min(holes, tp->packets_out);
1808
1809        if ((tp->sacked_out + holes) > tp->packets_out) {
1810                tp->sacked_out = tp->packets_out - holes;
1811                return true;
1812        }
1813        return false;
1814}
1815
1816/* If we receive more dupacks than we expected counting segments
1817 * in assumption of absent reordering, interpret this as reordering.
1818 * The only another reason could be bug in receiver TCP.
1819 */
1820static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1821{
1822        struct tcp_sock *tp = tcp_sk(sk);
1823        if (tcp_limit_reno_sacked(tp))
1824                tcp_update_reordering(sk, tp->packets_out + addend, 0);
1825}
1826
1827/* Emulate SACKs for SACKless connection: account for a new dupack. */
1828
1829static void tcp_add_reno_sack(struct sock *sk)
1830{
1831        struct tcp_sock *tp = tcp_sk(sk);
1832        u32 prior_sacked = tp->sacked_out;
1833
1834        tp->sacked_out++;
1835        tcp_check_reno_reordering(sk, 0);
1836        if (tp->sacked_out > prior_sacked)
1837                tp->delivered++; /* Some out-of-order packet is delivered */
1838        tcp_verify_left_out(tp);
1839}
1840
1841/* Account for ACK, ACKing some data in Reno Recovery phase. */
1842
1843static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1844{
1845        struct tcp_sock *tp = tcp_sk(sk);
1846
1847        if (acked > 0) {
1848                /* One ACK acked hole. The rest eat duplicate ACKs. */
1849                tp->delivered += max_t(int, acked - tp->sacked_out, 1);
1850                if (acked - 1 >= tp->sacked_out)
1851                        tp->sacked_out = 0;
1852                else
1853                        tp->sacked_out -= acked - 1;
1854        }
1855        tcp_check_reno_reordering(sk, acked);
1856        tcp_verify_left_out(tp);
1857}
1858
1859static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1860{
1861        tp->sacked_out = 0;
1862}
1863
1864void tcp_clear_retrans(struct tcp_sock *tp)
1865{
1866        tp->retrans_out = 0;
1867        tp->lost_out = 0;
1868        tp->undo_marker = 0;
1869        tp->undo_retrans = -1;
1870        tp->fackets_out = 0;
1871        tp->sacked_out = 0;
1872}
1873
1874static inline void tcp_init_undo(struct tcp_sock *tp)
1875{
1876        tp->undo_marker = tp->snd_una;
1877        /* Retransmission still in flight may cause DSACKs later. */
1878        tp->undo_retrans = tp->retrans_out ? : -1;
1879}
1880
1881/* Enter Loss state. If we detect SACK reneging, forget all SACK information
1882 * and reset tags completely, otherwise preserve SACKs. If receiver
1883 * dropped its ofo queue, we will know this due to reneging detection.
1884 */
1885void tcp_enter_loss(struct sock *sk)
1886{
1887        const struct inet_connection_sock *icsk = inet_csk(sk);
1888        struct tcp_sock *tp = tcp_sk(sk);
1889        struct net *net = sock_net(sk);
1890        struct sk_buff *skb;
1891        bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
1892        bool is_reneg;                  /* is receiver reneging on SACKs? */
1893
1894        /* Reduce ssthresh if it has not yet been made inside this window. */
1895        if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
1896            !after(tp->high_seq, tp->snd_una) ||
1897            (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1898                tp->prior_ssthresh = tcp_current_ssthresh(sk);
1899                tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1900                tcp_ca_event(sk, CA_EVENT_LOSS);
1901                tcp_init_undo(tp);
1902        }
1903        tp->snd_cwnd       = 1;
1904        tp->snd_cwnd_cnt   = 0;
1905        tp->snd_cwnd_stamp = tcp_time_stamp;
1906
1907        tp->retrans_out = 0;
1908        tp->lost_out = 0;
1909
1910        if (tcp_is_reno(tp))
1911                tcp_reset_reno_sack(tp);
1912
1913        skb = tcp_write_queue_head(sk);
1914        is_reneg = skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED);
1915        if (is_reneg) {
1916                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
1917                tp->sacked_out = 0;
1918                tp->fackets_out = 0;
1919        }
1920        tcp_clear_all_retrans_hints(tp);
1921
1922        tcp_for_write_queue(skb, sk) {
1923                if (skb == tcp_send_head(sk))
1924                        break;
1925
1926                TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1927                if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || is_reneg) {
1928                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1929                        TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1930                        tp->lost_out += tcp_skb_pcount(skb);
1931                        tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
1932                }
1933        }
1934        tcp_verify_left_out(tp);
1935
1936        /* Timeout in disordered state after receiving substantial DUPACKs
1937         * suggests that the degree of reordering is over-estimated.
1938         */
1939        if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
1940            tp->sacked_out >= net->ipv4.sysctl_tcp_reordering)
1941                tp->reordering = min_t(unsigned int, tp->reordering,
1942                                       net->ipv4.sysctl_tcp_reordering);
1943        tcp_set_ca_state(sk, TCP_CA_Loss);
1944        tp->high_seq = tp->snd_nxt;
1945        tcp_ecn_queue_cwr(tp);
1946
1947        /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
1948         * loss recovery is underway except recurring timeout(s) on
1949         * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
1950         */
1951        tp->frto = sysctl_tcp_frto &&
1952                   (new_recovery || icsk->icsk_retransmits) &&
1953                   !inet_csk(sk)->icsk_mtup.probe_size;
1954}
1955
1956/* If ACK arrived pointing to a remembered SACK, it means that our
1957 * remembered SACKs do not reflect real state of receiver i.e.
1958 * receiver _host_ is heavily congested (or buggy).
1959 *
1960 * To avoid big spurious retransmission bursts due to transient SACK
1961 * scoreboard oddities that look like reneging, we give the receiver a
1962 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
1963 * restore sanity to the SACK scoreboard. If the apparent reneging
1964 * persists until this RTO then we'll clear the SACK scoreboard.
1965 */
1966static bool tcp_check_sack_reneging(struct sock *sk, int flag)
1967{
1968        if (flag & FLAG_SACK_RENEGING) {
1969                struct tcp_sock *tp = tcp_sk(sk);
1970                unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
1971                                          msecs_to_jiffies(10));
1972
1973                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
1974                                          delay, TCP_RTO_MAX);
1975                return true;
1976        }
1977        return false;
1978}
1979
1980static inline int tcp_fackets_out(const struct tcp_sock *tp)
1981{
1982        return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
1983}
1984
1985/* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
1986 * counter when SACK is enabled (without SACK, sacked_out is used for
1987 * that purpose).
1988 *
1989 * Instead, with FACK TCP uses fackets_out that includes both SACKed
1990 * segments up to the highest received SACK block so far and holes in
1991 * between them.
1992 *
1993 * With reordering, holes may still be in flight, so RFC3517 recovery
1994 * uses pure sacked_out (total number of SACKed segments) even though
1995 * it violates the RFC that uses duplicate ACKs, often these are equal
1996 * but when e.g. out-of-window ACKs or packet duplication occurs,
1997 * they differ. Since neither occurs due to loss, TCP should really
1998 * ignore them.
1999 */
2000static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2001{
2002        return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2003}
2004
2005static bool tcp_pause_early_retransmit(struct sock *sk, int flag)
2006{
2007        struct tcp_sock *tp = tcp_sk(sk);
2008        unsigned long delay;
2009
2010        /* Delay early retransmit and entering fast recovery for
2011         * max(RTT/4, 2msec) unless ack has ECE mark, no RTT samples
2012         * available, or RTO is scheduled to fire first.
2013         */
2014        if (sysctl_tcp_early_retrans < 2 || sysctl_tcp_early_retrans > 3 ||
2015            (flag & FLAG_ECE) || !tp->srtt_us)
2016                return false;
2017
2018        delay = max(usecs_to_jiffies(tp->srtt_us >> 5),
2019                    msecs_to_jiffies(2));
2020
2021        if (!time_after(inet_csk(sk)->icsk_timeout, (jiffies + delay)))
2022                return false;
2023
2024        inet_csk_reset_xmit_timer(sk, ICSK_TIME_EARLY_RETRANS, delay,
2025                                  TCP_RTO_MAX);
2026        return true;
2027}
2028
2029/* Linux NewReno/SACK/FACK/ECN state machine.
2030 * --------------------------------------
2031 *
2032 * "Open"       Normal state, no dubious events, fast path.
2033 * "Disorder"   In all the respects it is "Open",
2034 *              but requires a bit more attention. It is entered when
2035 *              we see some SACKs or dupacks. It is split of "Open"
2036 *              mainly to move some processing from fast path to slow one.
2037 * "CWR"        CWND was reduced due to some Congestion Notification event.
2038 *              It can be ECN, ICMP source quench, local device congestion.
2039 * "Recovery"   CWND was reduced, we are fast-retransmitting.
2040 * "Loss"       CWND was reduced due to RTO timeout or SACK reneging.
2041 *
2042 * tcp_fastretrans_alert() is entered:
2043 * - each incoming ACK, if state is not "Open"
2044 * - when arrived ACK is unusual, namely:
2045 *      * SACK
2046 *      * Duplicate ACK.
2047 *      * ECN ECE.
2048 *
2049 * Counting packets in flight is pretty simple.
2050 *
2051 *      in_flight = packets_out - left_out + retrans_out
2052 *
2053 *      packets_out is SND.NXT-SND.UNA counted in packets.
2054 *
2055 *      retrans_out is number of retransmitted segments.
2056 *
2057 *      left_out is number of segments left network, but not ACKed yet.
2058 *
2059 *              left_out = sacked_out + lost_out
2060 *
2061 *     sacked_out: Packets, which arrived to receiver out of order
2062 *                 and hence not ACKed. With SACKs this number is simply
2063 *                 amount of SACKed data. Even without SACKs
2064 *                 it is easy to give pretty reliable estimate of this number,
2065 *                 counting duplicate ACKs.
2066 *
2067 *       lost_out: Packets lost by network. TCP has no explicit
2068 *                 "loss notification" feedback from network (for now).
2069 *                 It means that this number can be only _guessed_.
2070 *                 Actually, it is the heuristics to predict lossage that
2071 *                 distinguishes different algorithms.
2072 *
2073 *      F.e. after RTO, when all the queue is considered as lost,
2074 *      lost_out = packets_out and in_flight = retrans_out.
2075 *
2076 *              Essentially, we have now two algorithms counting
2077 *              lost packets.
2078 *
2079 *              FACK: It is the simplest heuristics. As soon as we decided
2080 *              that something is lost, we decide that _all_ not SACKed
2081 *              packets until the most forward SACK are lost. I.e.
2082 *              lost_out = fackets_out - sacked_out and left_out = fackets_out.
2083 *              It is absolutely correct estimate, if network does not reorder
2084 *              packets. And it loses any connection to reality when reordering
2085 *              takes place. We use FACK by default until reordering
2086 *              is suspected on the path to this destination.
2087 *
2088 *              NewReno: when Recovery is entered, we assume that one segment
2089 *              is lost (classic Reno). While we are in Recovery and
2090 *              a partial ACK arrives, we assume that one more packet
2091 *              is lost (NewReno). This heuristics are the same in NewReno
2092 *              and SACK.
2093 *
2094 *  Imagine, that's all! Forget about all this shamanism about CWND inflation
2095 *  deflation etc. CWND is real congestion window, never inflated, changes
2096 *  only according to classic VJ rules.
2097 *
2098 * Really tricky (and requiring careful tuning) part of algorithm
2099 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2100 * The first determines the moment _when_ we should reduce CWND and,
2101 * hence, slow down forward transmission. In fact, it determines the moment
2102 * when we decide that hole is caused by loss, rather than by a reorder.
2103 *
2104 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2105 * holes, caused by lost packets.
2106 *
2107 * And the most logically complicated part of algorithm is undo
2108 * heuristics. We detect false retransmits due to both too early
2109 * fast retransmit (reordering) and underestimated RTO, analyzing
2110 * timestamps and D-SACKs. When we detect that some segments were
2111 * retransmitted by mistake and CWND reduction was wrong, we undo
2112 * window reduction and abort recovery phase. This logic is hidden
2113 * inside several functions named tcp_try_undo_<something>.
2114 */
2115
2116/* This function decides, when we should leave Disordered state
2117 * and enter Recovery phase, reducing congestion window.
2118 *
2119 * Main question: may we further continue forward transmission
2120 * with the same cwnd?
2121 */
2122static bool tcp_time_to_recover(struct sock *sk, int flag)
2123{
2124        struct tcp_sock *tp = tcp_sk(sk);
2125        __u32 packets_out;
2126        int tcp_reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
2127
2128        /* Trick#1: The loss is proven. */
2129        if (tp->lost_out)
2130                return true;
2131
2132        /* Not-A-Trick#2 : Classic rule... */
2133        if (tcp_dupack_heuristics(tp) > tp->reordering)
2134                return true;
2135
2136        /* Trick#4: It is still not OK... But will it be useful to delay
2137         * recovery more?
2138         */
2139        packets_out = tp->packets_out;
2140        if (packets_out <= tp->reordering &&
2141            tp->sacked_out >= max_t(__u32, packets_out/2, tcp_reordering) &&
2142            !tcp_may_send_now(sk)) {
2143                /* We have nothing to send. This connection is limited
2144                 * either by receiver window or by application.
2145                 */
2146                return true;
2147        }
2148
2149        /* If a thin stream is detected, retransmit after first
2150         * received dupack. Employ only if SACK is supported in order
2151         * to avoid possible corner-case series of spurious retransmissions
2152         * Use only if there are no unsent data.
2153         */
2154        if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
2155            tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
2156            tcp_is_sack(tp) && !tcp_send_head(sk))
2157                return true;
2158
2159        /* Trick#6: TCP early retransmit, per RFC5827.  To avoid spurious
2160         * retransmissions due to small network reorderings, we implement
2161         * Mitigation A.3 in the RFC and delay the retransmission for a short
2162         * interval if appropriate.
2163         */
2164        if (tp->do_early_retrans && !tp->retrans_out && tp->sacked_out &&
2165            (tp->packets_out >= (tp->sacked_out + 1) && tp->packets_out < 4) &&
2166            !tcp_may_send_now(sk))
2167                return !tcp_pause_early_retransmit(sk, flag);
2168
2169        return false;
2170}
2171
2172/* Detect loss in event "A" above by marking head of queue up as lost.
2173 * For FACK or non-SACK(Reno) senders, the first "packets" number of segments
2174 * are considered lost. For RFC3517 SACK, a segment is considered lost if it
2175 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2176 * the maximum SACKed segments to pass before reaching this limit.
2177 */
2178static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2179{
2180        struct tcp_sock *tp = tcp_sk(sk);
2181        struct sk_buff *skb;
2182        int cnt, oldcnt, lost;
2183        unsigned int mss;
2184        /* Use SACK to deduce losses of new sequences sent during recovery */
2185        const u32 loss_high = tcp_is_sack(tp) ?  tp->snd_nxt : tp->high_seq;
2186
2187        WARN_ON(packets > tp->packets_out);
2188        if (tp->lost_skb_hint) {
2189                skb = tp->lost_skb_hint;
2190                cnt = tp->lost_cnt_hint;
2191                /* Head already handled? */
2192                if (mark_head && skb != tcp_write_queue_head(sk))
2193                        return;
2194        } else {
2195                skb = tcp_write_queue_head(sk);
2196                cnt = 0;
2197        }
2198
2199        tcp_for_write_queue_from(skb, sk) {
2200                if (skb == tcp_send_head(sk))
2201                        break;
2202                /* TODO: do this better */
2203                /* this is not the most efficient way to do this... */
2204                tp->lost_skb_hint = skb;
2205                tp->lost_cnt_hint = cnt;
2206
2207                if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2208                        break;
2209
2210                oldcnt = cnt;
2211                if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2212                    (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2213                        cnt += tcp_skb_pcount(skb);
2214
2215                if (cnt > packets) {
2216                        if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
2217                            (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) ||
2218                            (oldcnt >= packets))
2219                                break;
2220
2221                        mss = tcp_skb_mss(skb);
2222                        /* If needed, chop off the prefix to mark as lost. */
2223                        lost = (packets - oldcnt) * mss;
2224                        if (lost < skb->len &&
2225                            tcp_fragment(sk, skb, lost, mss, GFP_ATOMIC) < 0)
2226                                break;
2227                        cnt = packets;
2228                }
2229
2230                tcp_skb_mark_lost(tp, skb);
2231
2232                if (mark_head)
2233                        break;
2234        }
2235        tcp_verify_left_out(tp);
2236}
2237
2238/* Account newly detected lost packet(s) */
2239
2240static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2241{
2242        struct tcp_sock *tp = tcp_sk(sk);
2243
2244        if (tcp_is_reno(tp)) {
2245                tcp_mark_head_lost(sk, 1, 1);
2246        } else if (tcp_is_fack(tp)) {
2247                int lost = tp->fackets_out - tp->reordering;
2248                if (lost <= 0)
2249                        lost = 1;
2250                tcp_mark_head_lost(sk, lost, 0);
2251        } else {
2252                int sacked_upto = tp->sacked_out - tp->reordering;
2253                if (sacked_upto >= 0)
2254                        tcp_mark_head_lost(sk, sacked_upto, 0);
2255                else if (fast_rexmit)
2256                        tcp_mark_head_lost(sk, 1, 1);
2257        }
2258}
2259
2260static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2261{
2262        return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2263               before(tp->rx_opt.rcv_tsecr, when);
2264}
2265
2266/* skb is spurious retransmitted if the returned timestamp echo
2267 * reply is prior to the skb transmission time
2268 */
2269static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2270                                     const struct sk_buff *skb)
2271{
2272        return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2273               tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2274}
2275
2276/* Nothing was retransmitted or returned timestamp is less
2277 * than timestamp of the first retransmission.
2278 */
2279static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2280{
2281        return !tp->retrans_stamp ||
2282               tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2283}
2284
2285/* Undo procedures. */
2286
2287/* We can clear retrans_stamp when there are no retransmissions in the
2288 * window. It would seem that it is trivially available for us in
2289 * tp->retrans_out, however, that kind of assumptions doesn't consider
2290 * what will happen if errors occur when sending retransmission for the
2291 * second time. ...It could the that such segment has only
2292 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2293 * the head skb is enough except for some reneging corner cases that
2294 * are not worth the effort.
2295 *
2296 * Main reason for all this complexity is the fact that connection dying
2297 * time now depends on the validity of the retrans_stamp, in particular,
2298 * that successive retransmissions of a segment must not advance
2299 * retrans_stamp under any conditions.
2300 */
2301static bool tcp_any_retrans_done(const struct sock *sk)
2302{
2303        const struct tcp_sock *tp = tcp_sk(sk);
2304        struct sk_buff *skb;
2305
2306        if (tp->retrans_out)
2307                return true;
2308
2309        skb = tcp_write_queue_head(sk);
2310        if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2311                return true;
2312
2313        return false;
2314}
2315
2316#if FASTRETRANS_DEBUG > 1
2317static void DBGUNDO(struct sock *sk, const char *msg)
2318{
2319        struct tcp_sock *tp = tcp_sk(sk);
2320        struct inet_sock *inet = inet_sk(sk);
2321
2322        if (sk->sk_family == AF_INET) {
2323                pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2324                         msg,
2325                         &inet->inet_daddr, ntohs(inet->inet_dport),
2326                         tp->snd_cwnd, tcp_left_out(tp),
2327                         tp->snd_ssthresh, tp->prior_ssthresh,
2328                         tp->packets_out);
2329        }
2330#if IS_ENABLED(CONFIG_IPV6)
2331        else if (sk->sk_family == AF_INET6) {
2332                struct ipv6_pinfo *np = inet6_sk(sk);
2333                pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2334                         msg,
2335                         &np->daddr, ntohs(inet->inet_dport),
2336                         tp->snd_cwnd, tcp_left_out(tp),
2337                         tp->snd_ssthresh, tp->prior_ssthresh,
2338                         tp->packets_out);
2339        }
2340#endif
2341}
2342#else
2343#define DBGUNDO(x...) do { } while (0)
2344#endif
2345
2346static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2347{
2348        struct tcp_sock *tp = tcp_sk(sk);
2349
2350        if (unmark_loss) {
2351                struct sk_buff *skb;
2352
2353                tcp_for_write_queue(skb, sk) {
2354                        if (skb == tcp_send_head(sk))
2355                                break;
2356                        TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2357                }
2358                tp->lost_out = 0;
2359                tcp_clear_all_retrans_hints(tp);
2360        }
2361
2362        if (tp->prior_ssthresh) {
2363                const struct inet_connection_sock *icsk = inet_csk(sk);
2364
2365                if (icsk->icsk_ca_ops->undo_cwnd)
2366                        tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2367                else
2368                        tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2369
2370                if (tp->prior_ssthresh > tp->snd_ssthresh) {
2371                        tp->snd_ssthresh = tp->prior_ssthresh;
2372                        tcp_ecn_withdraw_cwr(tp);
2373                }
2374        }
2375        tp->snd_cwnd_stamp = tcp_time_stamp;
2376        tp->undo_marker = 0;
2377}
2378
2379static inline bool tcp_may_undo(const struct tcp_sock *tp)
2380{
2381        return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2382}
2383
2384/* People celebrate: "We love our President!" */
2385static bool tcp_try_undo_recovery(struct sock *sk)
2386{
2387        struct tcp_sock *tp = tcp_sk(sk);
2388
2389        if (tcp_may_undo(tp)) {
2390                int mib_idx;
2391
2392                /* Happy end! We did not retransmit anything
2393                 * or our original transmission succeeded.
2394                 */
2395                DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2396                tcp_undo_cwnd_reduction(sk, false);
2397                if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2398                        mib_idx = LINUX_MIB_TCPLOSSUNDO;
2399                else
2400                        mib_idx = LINUX_MIB_TCPFULLUNDO;
2401
2402                NET_INC_STATS(sock_net(sk), mib_idx);
2403        }
2404        if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2405                /* Hold old state until something *above* high_seq
2406                 * is ACKed. For Reno it is MUST to prevent false
2407                 * fast retransmits (RFC2582). SACK TCP is safe. */
2408                if (!tcp_any_retrans_done(sk))
2409                        tp->retrans_stamp = 0;
2410                return true;
2411        }
2412        tcp_set_ca_state(sk, TCP_CA_Open);
2413        return false;
2414}
2415
2416/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2417static bool tcp_try_undo_dsack(struct sock *sk)
2418{
2419        struct tcp_sock *tp = tcp_sk(sk);
2420
2421        if (tp->undo_marker && !tp->undo_retrans) {
2422                DBGUNDO(sk, "D-SACK");
2423                tcp_undo_cwnd_reduction(sk, false);
2424                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2425                return true;
2426        }
2427        return false;
2428}
2429
2430/* Undo during loss recovery after partial ACK or using F-RTO. */
2431static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2432{
2433        struct tcp_sock *tp = tcp_sk(sk);
2434
2435        if (frto_undo || tcp_may_undo(tp)) {
2436                tcp_undo_cwnd_reduction(sk, true);
2437
2438                DBGUNDO(sk, "partial loss");
2439                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2440                if (frto_undo)
2441                        NET_INC_STATS(sock_net(sk),
2442                                        LINUX_MIB_TCPSPURIOUSRTOS);
2443                inet_csk(sk)->icsk_retransmits = 0;
2444                if (frto_undo || tcp_is_sack(tp))
2445                        tcp_set_ca_state(sk, TCP_CA_Open);
2446                return true;
2447        }
2448        return false;
2449}
2450
2451/* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2452 * It computes the number of packets to send (sndcnt) based on packets newly
2453 * delivered:
2454 *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2455 *      cwnd reductions across a full RTT.
2456 *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2457 *      But when the retransmits are acked without further losses, PRR
2458 *      slow starts cwnd up to ssthresh to speed up the recovery.
2459 */
2460static void tcp_init_cwnd_reduction(struct sock *sk)
2461{
2462        struct tcp_sock *tp = tcp_sk(sk);
2463
2464        tp->high_seq = tp->snd_nxt;
2465        tp->tlp_high_seq = 0;
2466        tp->snd_cwnd_cnt = 0;
2467        tp->prior_cwnd = tp->snd_cwnd;
2468        tp->prr_delivered = 0;
2469        tp->prr_out = 0;
2470        tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2471        tcp_ecn_queue_cwr(tp);
2472}
2473
2474static void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked,
2475                               int flag)
2476{
2477        struct tcp_sock *tp = tcp_sk(sk);
2478        int sndcnt = 0;
2479        int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2480
2481        if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2482                return;
2483
2484        tp->prr_delivered += newly_acked_sacked;
2485        if (delta < 0) {
2486                u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2487                               tp->prior_cwnd - 1;
2488                sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2489        } else if ((flag & FLAG_RETRANS_DATA_ACKED) &&
2490                   !(flag & FLAG_LOST_RETRANS)) {
2491                sndcnt = min_t(int, delta,
2492                               max_t(int, tp->prr_delivered - tp->prr_out,
2493                                     newly_acked_sacked) + 1);
2494        } else {
2495                sndcnt = min(delta, newly_acked_sacked);
2496        }
2497        /* Force a fast retransmit upon entering fast recovery */
2498        sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2499        tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2500}
2501
2502static inline void tcp_end_cwnd_reduction(struct sock *sk)
2503{
2504        struct tcp_sock *tp = tcp_sk(sk);
2505
2506        /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2507        if (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR ||
2508            (tp->undo_marker && tp->snd_ssthresh < TCP_INFINITE_SSTHRESH)) {
2509                tp->snd_cwnd = tp->snd_ssthresh;
2510                tp->snd_cwnd_stamp = tcp_time_stamp;
2511        }
2512        tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2513}
2514
2515/* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
2516void tcp_enter_cwr(struct sock *sk)
2517{
2518        struct tcp_sock *tp = tcp_sk(sk);
2519
2520        tp->prior_ssthresh = 0;
2521        if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2522                tp->undo_marker = 0;
2523                tcp_init_cwnd_reduction(sk);
2524                tcp_set_ca_state(sk, TCP_CA_CWR);
2525        }
2526}
2527EXPORT_SYMBOL(tcp_enter_cwr);
2528
2529static void tcp_try_keep_open(struct sock *sk)
2530{
2531        struct tcp_sock *tp = tcp_sk(sk);
2532        int state = TCP_CA_Open;
2533
2534        if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2535                state = TCP_CA_Disorder;
2536
2537        if (inet_csk(sk)->icsk_ca_state != state) {
2538                tcp_set_ca_state(sk, state);
2539                tp->high_seq = tp->snd_nxt;
2540        }
2541}
2542
2543static void tcp_try_to_open(struct sock *sk, int flag)
2544{
2545        struct tcp_sock *tp = tcp_sk(sk);
2546
2547        tcp_verify_left_out(tp);
2548
2549        if (!tcp_any_retrans_done(sk))
2550                tp->retrans_stamp = 0;
2551
2552        if (flag & FLAG_ECE)
2553                tcp_enter_cwr(sk);
2554
2555        if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2556                tcp_try_keep_open(sk);
2557        }
2558}
2559
2560static void tcp_mtup_probe_failed(struct sock *sk)
2561{
2562        struct inet_connection_sock *icsk = inet_csk(sk);
2563
2564        icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2565        icsk->icsk_mtup.probe_size = 0;
2566        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2567}
2568
2569static void tcp_mtup_probe_success(struct sock *sk)
2570{
2571        struct tcp_sock *tp = tcp_sk(sk);
2572        struct inet_connection_sock *icsk = inet_csk(sk);
2573
2574        /* FIXME: breaks with very large cwnd */
2575        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2576        tp->snd_cwnd = tp->snd_cwnd *
2577                       tcp_mss_to_mtu(sk, tp->mss_cache) /
2578                       icsk->icsk_mtup.probe_size;
2579        tp->snd_cwnd_cnt = 0;
2580        tp->snd_cwnd_stamp = tcp_time_stamp;
2581        tp->snd_ssthresh = tcp_current_ssthresh(sk);
2582
2583        icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2584        icsk->icsk_mtup.probe_size = 0;
2585        tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2586        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2587}
2588
2589/* Do a simple retransmit without using the backoff mechanisms in
2590 * tcp_timer. This is used for path mtu discovery.
2591 * The socket is already locked here.
2592 */
2593void tcp_simple_retransmit(struct sock *sk)
2594{
2595        const struct inet_connection_sock *icsk = inet_csk(sk);
2596        struct tcp_sock *tp = tcp_sk(sk);
2597        struct sk_buff *skb;
2598        unsigned int mss = tcp_current_mss(sk);
2599        u32 prior_lost = tp->lost_out;
2600
2601        tcp_for_write_queue(skb, sk) {
2602                if (skb == tcp_send_head(sk))
2603                        break;
2604                if (tcp_skb_seglen(skb) > mss &&
2605                    !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2606                        if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2607                                TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2608                                tp->retrans_out -= tcp_skb_pcount(skb);
2609                        }
2610                        tcp_skb_mark_lost_uncond_verify(tp, skb);
2611                }
2612        }
2613
2614        tcp_clear_retrans_hints_partial(tp);
2615
2616        if (prior_lost == tp->lost_out)
2617                return;
2618
2619        if (tcp_is_reno(tp))
2620                tcp_limit_reno_sacked(tp);
2621
2622        tcp_verify_left_out(tp);
2623
2624        /* Don't muck with the congestion window here.
2625         * Reason is that we do not increase amount of _data_
2626         * in network, but units changed and effective
2627         * cwnd/ssthresh really reduced now.
2628         */
2629        if (icsk->icsk_ca_state != TCP_CA_Loss) {
2630                tp->high_seq = tp->snd_nxt;
2631                tp->snd_ssthresh = tcp_current_ssthresh(sk);
2632                tp->prior_ssthresh = 0;
2633                tp->undo_marker = 0;
2634                tcp_set_ca_state(sk, TCP_CA_Loss);
2635        }
2636        tcp_xmit_retransmit_queue(sk);
2637}
2638EXPORT_SYMBOL(tcp_simple_retransmit);
2639
2640static void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2641{
2642        struct tcp_sock *tp = tcp_sk(sk);
2643        int mib_idx;
2644
2645        if (tcp_is_reno(tp))
2646                mib_idx = LINUX_MIB_TCPRENORECOVERY;
2647        else
2648                mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2649
2650        NET_INC_STATS(sock_net(sk), mib_idx);
2651
2652        tp->prior_ssthresh = 0;
2653        tcp_init_undo(tp);
2654
2655        if (!tcp_in_cwnd_reduction(sk)) {
2656                if (!ece_ack)
2657                        tp->prior_ssthresh = tcp_current_ssthresh(sk);
2658                tcp_init_cwnd_reduction(sk);
2659        }
2660        tcp_set_ca_state(sk, TCP_CA_Recovery);
2661}
2662
2663/* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2664 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2665 */
2666static void tcp_process_loss(struct sock *sk, int flag, bool is_dupack,
2667                             int *rexmit)
2668{
2669        struct tcp_sock *tp = tcp_sk(sk);
2670        bool recovered = !before(tp->snd_una, tp->high_seq);
2671
2672        if ((flag & FLAG_SND_UNA_ADVANCED) &&
2673            tcp_try_undo_loss(sk, false))
2674                return;
2675
2676        if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2677                /* Step 3.b. A timeout is spurious if not all data are
2678                 * lost, i.e., never-retransmitted data are (s)acked.
2679                 */
2680                if ((flag & FLAG_ORIG_SACK_ACKED) &&
2681                    tcp_try_undo_loss(sk, true))
2682                        return;
2683
2684                if (after(tp->snd_nxt, tp->high_seq)) {
2685                        if (flag & FLAG_DATA_SACKED || is_dupack)
2686                                tp->frto = 0; /* Step 3.a. loss was real */
2687                } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2688                        tp->high_seq = tp->snd_nxt;
2689                        /* Step 2.b. Try send new data (but deferred until cwnd
2690                         * is updated in tcp_ack()). Otherwise fall back to
2691                         * the conventional recovery.
2692                         */
2693                        if (tcp_send_head(sk) &&
2694                            after(tcp_wnd_end(tp), tp->snd_nxt)) {
2695                                *rexmit = REXMIT_NEW;
2696                                return;
2697                        }
2698                        tp->frto = 0;
2699                }
2700        }
2701
2702        if (recovered) {
2703                /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2704                tcp_try_undo_recovery(sk);
2705                return;
2706        }
2707        if (tcp_is_reno(tp)) {
2708                /* A Reno DUPACK means new data in F-RTO step 2.b above are
2709                 * delivered. Lower inflight to clock out (re)tranmissions.
2710                 */
2711                if (after(tp->snd_nxt, tp->high_seq) && is_dupack)
2712                        tcp_add_reno_sack(sk);
2713                else if (flag & FLAG_SND_UNA_ADVANCED)
2714                        tcp_reset_reno_sack(tp);
2715        }
2716        *rexmit = REXMIT_LOST;
2717}
2718
2719/* Undo during fast recovery after partial ACK. */
2720static bool tcp_try_undo_partial(struct sock *sk, const int acked)
2721{
2722        struct tcp_sock *tp = tcp_sk(sk);
2723
2724        if (tp->undo_marker && tcp_packet_delayed(tp)) {
2725                /* Plain luck! Hole if filled with delayed
2726                 * packet, rather than with a retransmit.
2727                 */
2728                tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2729
2730                /* We are getting evidence that the reordering degree is higher
2731                 * than we realized. If there are no retransmits out then we
2732                 * can undo. Otherwise we clock out new packets but do not
2733                 * mark more packets lost or retransmit more.
2734                 */
2735                if (tp->retrans_out)
2736                        return true;
2737
2738                if (!tcp_any_retrans_done(sk))
2739                        tp->retrans_stamp = 0;
2740
2741                DBGUNDO(sk, "partial recovery");
2742                tcp_undo_cwnd_reduction(sk, true);
2743                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2744                tcp_try_keep_open(sk);
2745                return true;
2746        }
2747        return false;
2748}
2749
2750/* Process an event, which can update packets-in-flight not trivially.
2751 * Main goal of this function is to calculate new estimate for left_out,
2752 * taking into account both packets sitting in receiver's buffer and
2753 * packets lost by network.
2754 *
2755 * Besides that it updates the congestion state when packet loss or ECN
2756 * is detected. But it does not reduce the cwnd, it is done by the
2757 * congestion control later.
2758 *
2759 * It does _not_ decide what to send, it is made in function
2760 * tcp_xmit_retransmit_queue().
2761 */
2762static void tcp_fastretrans_alert(struct sock *sk, const int acked,
2763                                  bool is_dupack, int *ack_flag, int *rexmit)
2764{
2765        struct inet_connection_sock *icsk = inet_csk(sk);
2766        struct tcp_sock *tp = tcp_sk(sk);
2767        int fast_rexmit = 0, flag = *ack_flag;
2768        bool do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2769                                    (tcp_fackets_out(tp) > tp->reordering));
2770
2771        if (WARN_ON(!tp->packets_out && tp->sacked_out))
2772                tp->sacked_out = 0;
2773        if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2774                tp->fackets_out = 0;
2775
2776        /* Now state machine starts.
2777         * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2778        if (flag & FLAG_ECE)
2779                tp->prior_ssthresh = 0;
2780
2781        /* B. In all the states check for reneging SACKs. */
2782        if (tcp_check_sack_reneging(sk, flag))
2783                return;
2784
2785        /* C. Check consistency of the current state. */
2786        tcp_verify_left_out(tp);
2787
2788        /* D. Check state exit conditions. State can be terminated
2789         *    when high_seq is ACKed. */
2790        if (icsk->icsk_ca_state == TCP_CA_Open) {
2791                WARN_ON(tp->retrans_out != 0);
2792                tp->retrans_stamp = 0;
2793        } else if (!before(tp->snd_una, tp->high_seq)) {
2794                switch (icsk->icsk_ca_state) {
2795                case TCP_CA_CWR:
2796                        /* CWR is to be held something *above* high_seq
2797                         * is ACKed for CWR bit to reach receiver. */
2798                        if (tp->snd_una != tp->high_seq) {
2799                                tcp_end_cwnd_reduction(sk);
2800                                tcp_set_ca_state(sk, TCP_CA_Open);
2801                        }
2802                        break;
2803
2804                case TCP_CA_Recovery:
2805                        if (tcp_is_reno(tp))
2806                                tcp_reset_reno_sack(tp);
2807                        if (tcp_try_undo_recovery(sk))
2808                                return;
2809                        tcp_end_cwnd_reduction(sk);
2810                        break;
2811                }
2812        }
2813
2814        /* Use RACK to detect loss */
2815        if (sysctl_tcp_recovery & TCP_RACK_LOST_RETRANS &&
2816            tcp_rack_mark_lost(sk)) {
2817                flag |= FLAG_LOST_RETRANS;
2818                *ack_flag |= FLAG_LOST_RETRANS;
2819        }
2820
2821        /* E. Process state. */
2822        switch (icsk->icsk_ca_state) {
2823        case TCP_CA_Recovery:
2824                if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2825                        if (tcp_is_reno(tp) && is_dupack)
2826                                tcp_add_reno_sack(sk);
2827                } else {
2828                        if (tcp_try_undo_partial(sk, acked))
2829                                return;
2830                        /* Partial ACK arrived. Force fast retransmit. */
2831                        do_lost = tcp_is_reno(tp) ||
2832                                  tcp_fackets_out(tp) > tp->reordering;
2833                }
2834                if (tcp_try_undo_dsack(sk)) {
2835                        tcp_try_keep_open(sk);
2836                        return;
2837                }
2838                break;
2839        case TCP_CA_Loss:
2840                tcp_process_loss(sk, flag, is_dupack, rexmit);
2841                if (icsk->icsk_ca_state != TCP_CA_Open &&
2842                    !(flag & FLAG_LOST_RETRANS))
2843                        return;
2844                /* Change state if cwnd is undone or retransmits are lost */
2845        default:
2846                if (tcp_is_reno(tp)) {
2847                        if (flag & FLAG_SND_UNA_ADVANCED)
2848                                tcp_reset_reno_sack(tp);
2849                        if (is_dupack)
2850                                tcp_add_reno_sack(sk);
2851                }
2852
2853                if (icsk->icsk_ca_state <= TCP_CA_Disorder)
2854                        tcp_try_undo_dsack(sk);
2855
2856                if (!tcp_time_to_recover(sk, flag)) {
2857                        tcp_try_to_open(sk, flag);
2858                        return;
2859                }
2860
2861                /* MTU probe failure: don't reduce cwnd */
2862                if (icsk->icsk_ca_state < TCP_CA_CWR &&
2863                    icsk->icsk_mtup.probe_size &&
2864                    tp->snd_una == tp->mtu_probe.probe_seq_start) {
2865                        tcp_mtup_probe_failed(sk);
2866                        /* Restores the reduction we did in tcp_mtup_probe() */
2867                        tp->snd_cwnd++;
2868                        tcp_simple_retransmit(sk);
2869                        return;
2870                }
2871
2872                /* Otherwise enter Recovery state */
2873                tcp_enter_recovery(sk, (flag & FLAG_ECE));
2874                fast_rexmit = 1;
2875        }
2876
2877        if (do_lost)
2878                tcp_update_scoreboard(sk, fast_rexmit);
2879        *rexmit = REXMIT_LOST;
2880}
2881
2882/* Kathleen Nichols' algorithm for tracking the minimum value of
2883 * a data stream over some fixed time interval. (E.g., the minimum
2884 * RTT over the past five minutes.) It uses constant space and constant
2885 * time per update yet almost always delivers the same minimum as an
2886 * implementation that has to keep all the data in the window.
2887 *
2888 * The algorithm keeps track of the best, 2nd best & 3rd best min
2889 * values, maintaining an invariant that the measurement time of the
2890 * n'th best >= n-1'th best. It also makes sure that the three values
2891 * are widely separated in the time window since that bounds the worse
2892 * case error when that data is monotonically increasing over the window.
2893 *
2894 * Upon getting a new min, we can forget everything earlier because it
2895 * has no value - the new min is <= everything else in the window by
2896 * definition and it's the most recent. So we restart fresh on every new min
2897 * and overwrites 2nd & 3rd choices. The same property holds for 2nd & 3rd
2898 * best.
2899 */
2900static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us)
2901{
2902        const u32 now = tcp_time_stamp, wlen = sysctl_tcp_min_rtt_wlen * HZ;
2903        struct rtt_meas *m = tcp_sk(sk)->rtt_min;
2904        struct rtt_meas rttm = {
2905                .rtt = likely(rtt_us) ? rtt_us : jiffies_to_usecs(1),
2906                .ts = now,
2907        };
2908        u32 elapsed;
2909
2910        /* Check if the new measurement updates the 1st, 2nd, or 3rd choices */
2911        if (unlikely(rttm.rtt <= m[0].rtt))
2912                m[0] = m[1] = m[2] = rttm;
2913        else if (rttm.rtt <= m[1].rtt)
2914                m[1] = m[2] = rttm;
2915        else if (rttm.rtt <= m[2].rtt)
2916                m[2] = rttm;
2917
2918        elapsed = now - m[0].ts;
2919        if (unlikely(elapsed > wlen)) {
2920                /* Passed entire window without a new min so make 2nd choice
2921                 * the new min & 3rd choice the new 2nd. So forth and so on.
2922                 */
2923                m[0] = m[1];
2924                m[1] = m[2];
2925                m[2] = rttm;
2926                if (now - m[0].ts > wlen) {
2927                        m[0] = m[1];
2928                        m[1] = rttm;
2929                        if (now - m[0].ts > wlen)
2930                                m[0] = rttm;
2931                }
2932        } else if (m[1].ts == m[0].ts && elapsed > wlen / 4) {
2933                /* Passed a quarter of the window without a new min so
2934                 * take 2nd choice from the 2nd quarter of the window.
2935                 */
2936                m[2] = m[1] = rttm;
2937        } else if (m[2].ts == m[1].ts && elapsed > wlen / 2) {
2938                /* Passed half the window without a new min so take the 3rd
2939                 * choice from the last half of the window.
2940                 */
2941                m[2] = rttm;
2942        }
2943}
2944
2945static inline bool tcp_ack_update_rtt(struct sock *sk, const int flag,
2946                                      long seq_rtt_us, long sack_rtt_us,
2947                                      long ca_rtt_us)
2948{
2949        const struct tcp_sock *tp = tcp_sk(sk);
2950
2951        /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
2952         * broken middle-boxes or peers may corrupt TS-ECR fields. But
2953         * Karn's algorithm forbids taking RTT if some retransmitted data
2954         * is acked (RFC6298).
2955         */
2956        if (seq_rtt_us < 0)
2957                seq_rtt_us = sack_rtt_us;
2958
2959        /* RTTM Rule: A TSecr value received in a segment is used to
2960         * update the averaged RTT measurement only if the segment
2961         * acknowledges some new data, i.e., only if it advances the
2962         * left edge of the send window.
2963         * See draft-ietf-tcplw-high-performance-00, section 3.3.
2964         */
2965        if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2966            flag & FLAG_ACKED)
2967                seq_rtt_us = ca_rtt_us = jiffies_to_usecs(tcp_time_stamp -
2968                                                          tp->rx_opt.rcv_tsecr);
2969        if (seq_rtt_us < 0)
2970                return false;
2971
2972        /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
2973         * always taken together with ACK, SACK, or TS-opts. Any negative
2974         * values will be skipped with the seq_rtt_us < 0 check above.
2975         */
2976        tcp_update_rtt_min(sk, ca_rtt_us);
2977        tcp_rtt_estimator(sk, seq_rtt_us);
2978        tcp_set_rto(sk);
2979
2980        /* RFC6298: only reset backoff on valid RTT measurement. */
2981        inet_csk(sk)->icsk_backoff = 0;
2982        return true;
2983}
2984
2985/* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
2986void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
2987{
2988        long rtt_us = -1L;
2989
2990        if (req && !req->num_retrans && tcp_rsk(req)->snt_synack.v64) {
2991                struct skb_mstamp now;
2992
2993                skb_mstamp_get(&now);
2994                rtt_us = skb_mstamp_us_delta(&now, &tcp_rsk(req)->snt_synack);
2995        }
2996
2997        tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us);
2998}
2999
3000
3001static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3002{
3003        const struct inet_connection_sock *icsk = inet_csk(sk);
3004
3005        icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3006        tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3007}
3008
3009/* Restart timer after forward progress on connection.
3010 * RFC2988 recommends to restart timer to now+rto.
3011 */
3012void tcp_rearm_rto(struct sock *sk)
3013{
3014        const struct inet_connection_sock *icsk = inet_csk(sk);
3015        struct tcp_sock *tp = tcp_sk(sk);
3016
3017        /* If the retrans timer is currently being used by Fast Open
3018         * for SYN-ACK retrans purpose, stay put.
3019         */
3020        if (tp->fastopen_rsk)
3021                return;
3022
3023        if (!tp->packets_out) {
3024                inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3025        } else {
3026                u32 rto = inet_csk(sk)->icsk_rto;
3027                /* Offset the time elapsed after installing regular RTO */
3028                if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3029                    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3030                        struct sk_buff *skb = tcp_write_queue_head(sk);
3031                        const u32 rto_time_stamp =
3032                                tcp_skb_timestamp(skb) + rto;
3033                        s32 delta = (s32)(rto_time_stamp - tcp_time_stamp);
3034                        /* delta may not be positive if the socket is locked
3035                         * when the retrans timer fires and is rescheduled.
3036                         */
3037                        if (delta > 0)
3038                                rto = delta;
3039                }
3040                inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3041                                          TCP_RTO_MAX);
3042        }
3043}
3044
3045/* This function is called when the delayed ER timer fires. TCP enters
3046 * fast recovery and performs fast-retransmit.
3047 */
3048void tcp_resume_early_retransmit(struct sock *sk)
3049{
3050        struct tcp_sock *tp = tcp_sk(sk);
3051
3052        tcp_rearm_rto(sk);
3053
3054        /* Stop if ER is disabled after the delayed ER timer is scheduled */
3055        if (!tp->do_early_retrans)
3056                return;
3057
3058        tcp_enter_recovery(sk, false);
3059        tcp_update_scoreboard(sk, 1);
3060        tcp_xmit_retransmit_queue(sk);
3061}
3062
3063/* If we get here, the whole TSO packet has not been acked. */
3064static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3065{
3066        struct tcp_sock *tp = tcp_sk(sk);
3067        u32 packets_acked;
3068
3069        BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3070
3071        packets_acked = tcp_skb_pcount(skb);
3072        if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3073                return 0;
3074        packets_acked -= tcp_skb_pcount(skb);
3075
3076        if (packets_acked) {
3077                BUG_ON(tcp_skb_pcount(skb) == 0);
3078                BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3079        }
3080
3081        return packets_acked;
3082}
3083
3084static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3085                           u32 prior_snd_una)
3086{
3087        const struct skb_shared_info *shinfo;
3088
3089        /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3090        if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3091                return;
3092
3093        shinfo = skb_shinfo(skb);
3094        if (!before(shinfo->tskey, prior_snd_una) &&
3095            before(shinfo->tskey, tcp_sk(sk)->snd_una))
3096                __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3097}
3098
3099/* Remove acknowledged frames from the retransmission queue. If our packet
3100 * is before the ack sequence we can discard it as it's confirmed to have
3101 * arrived at the other end.
3102 */
3103static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3104                               u32 prior_snd_una, int *acked,
3105                               struct tcp_sacktag_state *sack)
3106{
3107        const struct inet_connection_sock *icsk = inet_csk(sk);
3108        struct skb_mstamp first_ackt, last_ackt, now;
3109        struct tcp_sock *tp = tcp_sk(sk);
3110        u32 prior_sacked = tp->sacked_out;
3111        u32 reord = tp->packets_out;
3112        bool fully_acked = true;
3113        long sack_rtt_us = -1L;
3114        long seq_rtt_us = -1L;
3115        long ca_rtt_us = -1L;
3116        struct sk_buff *skb;
3117        u32 pkts_acked = 0;
3118        bool rtt_update;
3119        int flag = 0;
3120
3121        first_ackt.v64 = 0;
3122
3123        while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3124                struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3125                u8 sacked = scb->sacked;
3126                u32 acked_pcount;
3127
3128                tcp_ack_tstamp(sk, skb, prior_snd_una);
3129
3130                /* Determine how many packets and what bytes were acked, tso and else */
3131                if (after(scb->end_seq, tp->snd_una)) {
3132                        if (tcp_skb_pcount(skb) == 1 ||
3133                            !after(tp->snd_una, scb->seq))
3134                                break;
3135
3136                        acked_pcount = tcp_tso_acked(sk, skb);
3137                        if (!acked_pcount)
3138                                break;
3139
3140                        fully_acked = false;
3141                } else {
3142                        /* Speedup tcp_unlink_write_queue() and next loop */
3143                        prefetchw(skb->next);
3144                        acked_pcount = tcp_skb_pcount(skb);
3145                }
3146
3147                if (unlikely(sacked & TCPCB_RETRANS)) {
3148                        if (sacked & TCPCB_SACKED_RETRANS)
3149                                tp->retrans_out -= acked_pcount;
3150                        flag |= FLAG_RETRANS_DATA_ACKED;
3151                } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3152                        last_ackt = skb->skb_mstamp;
3153                        WARN_ON_ONCE(last_ackt.v64 == 0);
3154                        if (!first_ackt.v64)
3155                                first_ackt = last_ackt;
3156
3157                        reord = min(pkts_acked, reord);
3158                        if (!after(scb->end_seq, tp->high_seq))
3159                                flag |= FLAG_ORIG_SACK_ACKED;
3160                }
3161
3162                if (sacked & TCPCB_SACKED_ACKED) {
3163                        tp->sacked_out -= acked_pcount;
3164                } else if (tcp_is_sack(tp)) {
3165                        tp->delivered += acked_pcount;
3166                        if (!tcp_skb_spurious_retrans(tp, skb))
3167                                tcp_rack_advance(tp, &skb->skb_mstamp, sacked);
3168                }
3169                if (sacked & TCPCB_LOST)
3170                        tp->lost_out -= acked_pcount;
3171
3172                tp->packets_out -= acked_pcount;
3173                pkts_acked += acked_pcount;
3174
3175                /* Initial outgoing SYN's get put onto the write_queue
3176                 * just like anything else we transmit.  It is not
3177                 * true data, and if we misinform our callers that
3178                 * this ACK acks real data, we will erroneously exit
3179                 * connection startup slow start one packet too
3180                 * quickly.  This is severely frowned upon behavior.
3181                 */
3182                if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3183                        flag |= FLAG_DATA_ACKED;
3184                } else {
3185                        flag |= FLAG_SYN_ACKED;
3186                        tp->retrans_stamp = 0;
3187                }
3188
3189                if (!fully_acked)
3190                        break;
3191
3192                tcp_unlink_write_queue(skb, sk);
3193                sk_wmem_free_skb(sk, skb);
3194                if (unlikely(skb == tp->retransmit_skb_hint))
3195                        tp->retransmit_skb_hint = NULL;
3196                if (unlikely(skb == tp->lost_skb_hint))
3197                        tp->lost_skb_hint = NULL;
3198        }
3199
3200        if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3201                tp->snd_up = tp->snd_una;
3202
3203        if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3204                flag |= FLAG_SACK_RENEGING;
3205
3206        skb_mstamp_get(&now);
3207        if (likely(first_ackt.v64) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3208                seq_rtt_us = skb_mstamp_us_delta(&now, &first_ackt);
3209                ca_rtt_us = skb_mstamp_us_delta(&now, &last_ackt);
3210        }
3211        if (sack->first_sackt.v64) {
3212                sack_rtt_us = skb_mstamp_us_delta(&now, &sack->first_sackt);
3213                ca_rtt_us = skb_mstamp_us_delta(&now, &sack->last_sackt);
3214        }
3215
3216        rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3217                                        ca_rtt_us);
3218
3219        if (flag & FLAG_ACKED) {
3220                tcp_rearm_rto(sk);
3221                if (unlikely(icsk->icsk_mtup.probe_size &&
3222                             !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3223                        tcp_mtup_probe_success(sk);
3224                }
3225
3226                if (tcp_is_reno(tp)) {
3227                        tcp_remove_reno_sacks(sk, pkts_acked);
3228                } else {
3229                        int delta;
3230
3231                        /* Non-retransmitted hole got filled? That's reordering */
3232                        if (reord < prior_fackets)
3233                                tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3234
3235                        delta = tcp_is_fack(tp) ? pkts_acked :
3236                                                  prior_sacked - tp->sacked_out;
3237                        tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3238                }
3239
3240                tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3241
3242        } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3243                   sack_rtt_us > skb_mstamp_us_delta(&now, &skb->skb_mstamp)) {
3244                /* Do not re-arm RTO if the sack RTT is measured from data sent
3245                 * after when the head was last (re)transmitted. Otherwise the
3246                 * timeout may continue to extend in loss recovery.
3247                 */
3248                tcp_rearm_rto(sk);
3249        }
3250
3251        if (icsk->icsk_ca_ops->pkts_acked) {
3252                struct ack_sample sample = { .pkts_acked = pkts_acked,
3253                                             .rtt_us = ca_rtt_us };
3254
3255                icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3256        }
3257
3258#if FASTRETRANS_DEBUG > 0
3259        WARN_ON((int)tp->sacked_out < 0);
3260        WARN_ON((int)tp->lost_out < 0);
3261        WARN_ON((int)tp->retrans_out < 0);
3262        if (!tp->packets_out && tcp_is_sack(tp)) {
3263                icsk = inet_csk(sk);
3264                if (tp->lost_out) {
3265                        pr_debug("Leak l=%u %d\n",
3266                                 tp->lost_out, icsk->icsk_ca_state);
3267                        tp->lost_out = 0;
3268                }
3269                if (tp->sacked_out) {
3270                        pr_debug("Leak s=%u %d\n",
3271                                 tp->sacked_out, icsk->icsk_ca_state);
3272                        tp->sacked_out = 0;
3273                }
3274                if (tp->retrans_out) {
3275                        pr_debug("Leak r=%u %d\n",
3276                                 tp->retrans_out, icsk->icsk_ca_state);
3277                        tp->retrans_out = 0;
3278                }
3279        }
3280#endif
3281        *acked = pkts_acked;
3282        return flag;
3283}
3284
3285static void tcp_ack_probe(struct sock *sk)
3286{
3287        const struct tcp_sock *tp = tcp_sk(sk);
3288        struct inet_connection_sock *icsk = inet_csk(sk);
3289
3290        /* Was it a usable window open? */
3291
3292        if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3293                icsk->icsk_backoff = 0;
3294                inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3295                /* Socket must be waked up by subsequent tcp_data_snd_check().
3296                 * This function is not for random using!
3297                 */
3298        } else {
3299                unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3300
3301                inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3302                                          when, TCP_RTO_MAX);
3303        }
3304}
3305
3306static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3307{
3308        return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3309                inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3310}
3311
3312/* Decide wheather to run the increase function of congestion control. */
3313static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3314{
3315        /* If reordering is high then always grow cwnd whenever data is
3316         * delivered regardless of its ordering. Otherwise stay conservative
3317         * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3318         * new SACK or ECE mark may first advance cwnd here and later reduce
3319         * cwnd in tcp_fastretrans_alert() based on more states.
3320         */
3321        if (tcp_sk(sk)->reordering > sock_net(sk)->ipv4.sysctl_tcp_reordering)
3322                return flag & FLAG_FORWARD_PROGRESS;
3323
3324        return flag & FLAG_DATA_ACKED;
3325}
3326
3327/* The "ultimate" congestion control function that aims to replace the rigid
3328 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3329 * It's called toward the end of processing an ACK with precise rate
3330 * information. All transmission or retransmission are delayed afterwards.
3331 */
3332static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3333                             int flag)
3334{
3335        if (tcp_in_cwnd_reduction(sk)) {
3336                /* Reduce cwnd if state mandates */
3337                tcp_cwnd_reduction(sk, acked_sacked, flag);
3338        } else if (tcp_may_raise_cwnd(sk, flag)) {
3339                /* Advance cwnd if state allows */
3340                tcp_cong_avoid(sk, ack, acked_sacked);
3341        }
3342        tcp_update_pacing_rate(sk);
3343}
3344
3345/* Check that window update is acceptable.
3346 * The function assumes that snd_una<=ack<=snd_next.
3347 */
3348static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3349                                        const u32 ack, const u32 ack_seq,
3350                                        const u32 nwin)
3351{
3352        return  after(ack, tp->snd_una) ||
3353                after(ack_seq, tp->snd_wl1) ||
3354                (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3355}
3356
3357/* If we update tp->snd_una, also update tp->bytes_acked */
3358static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3359{
3360        u32 delta = ack - tp->snd_una;
3361
3362        sock_owned_by_me((struct sock *)tp);
3363        u64_stats_update_begin_raw(&tp->syncp);
3364        tp->bytes_acked += delta;
3365        u64_stats_update_end_raw(&tp->syncp);
3366        tp->snd_una = ack;
3367}
3368
3369/* If we update tp->rcv_nxt, also update tp->bytes_received */
3370static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3371{
3372        u32 delta = seq - tp->rcv_nxt;
3373
3374        sock_owned_by_me((struct sock *)tp);
3375        u64_stats_update_begin_raw(&tp->syncp);
3376        tp->bytes_received += delta;
3377        u64_stats_update_end_raw(&tp->syncp);
3378        tp->rcv_nxt = seq;
3379}
3380
3381/* Update our send window.
3382 *
3383 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3384 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3385 */
3386static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3387                                 u32 ack_seq)
3388{
3389        struct tcp_sock *tp = tcp_sk(sk);
3390        int flag = 0;
3391        u32 nwin = ntohs(tcp_hdr(skb)->window);
3392
3393        if (likely(!tcp_hdr(skb)->syn))
3394                nwin <<= tp->rx_opt.snd_wscale;
3395
3396        if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3397                flag |= FLAG_WIN_UPDATE;
3398                tcp_update_wl(tp, ack_seq);
3399
3400                if (tp->snd_wnd != nwin) {
3401                        tp->snd_wnd = nwin;
3402
3403                        /* Note, it is the only place, where
3404                         * fast path is recovered for sending TCP.
3405                         */
3406                        tp->pred_flags = 0;
3407                        tcp_fast_path_check(sk);
3408
3409                        if (tcp_send_head(sk))
3410                                tcp_slow_start_after_idle_check(sk);
3411
3412                        if (nwin > tp->max_window) {
3413                                tp->max_window = nwin;
3414                                tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3415                        }
3416                }
3417        }
3418
3419        tcp_snd_una_update(tp, ack);
3420
3421        return flag;
3422}
3423
3424static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3425                                   u32 *last_oow_ack_time)
3426{
3427        if (*last_oow_ack_time) {
3428                s32 elapsed = (s32)(tcp_time_stamp - *last_oow_ack_time);
3429
3430                if (0 <= elapsed && elapsed < sysctl_tcp_invalid_ratelimit) {
3431                        NET_INC_STATS(net, mib_idx);
3432                        return true;    /* rate-limited: don't send yet! */
3433                }
3434        }
3435
3436        *last_oow_ack_time = tcp_time_stamp;
3437
3438        return false;   /* not rate-limited: go ahead, send dupack now! */
3439}
3440
3441/* Return true if we're currently rate-limiting out-of-window ACKs and
3442 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3443 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3444 * attacks that send repeated SYNs or ACKs for the same connection. To
3445 * do this, we do not send a duplicate SYNACK or ACK if the remote
3446 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3447 */
3448bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3449                          int mib_idx, u32 *last_oow_ack_time)
3450{
3451        /* Data packets without SYNs are not likely part of an ACK loop. */
3452        if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3453            !tcp_hdr(skb)->syn)
3454                return false;
3455
3456        return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3457}
3458
3459/* RFC 5961 7 [ACK Throttling] */
3460static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3461{
3462        /* unprotected vars, we dont care of overwrites */
3463        static u32 challenge_timestamp;
3464        static unsigned int challenge_count;
3465        struct tcp_sock *tp = tcp_sk(sk);
3466        u32 count, now;
3467
3468        /* First check our per-socket dupack rate limit. */
3469        if (__tcp_oow_rate_limited(sock_net(sk),
3470                                   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3471                                   &tp->last_oow_ack_time))
3472                return;
3473
3474        /* Then check host-wide RFC 5961 rate limit. */
3475        now = jiffies / HZ;
3476        if (now != challenge_timestamp) {
3477                u32 half = (sysctl_tcp_challenge_ack_limit + 1) >> 1;
3478
3479                challenge_timestamp = now;
3480                WRITE_ONCE(challenge_count, half +
3481                           prandom_u32_max(sysctl_tcp_challenge_ack_limit));
3482        }
3483        count = READ_ONCE(challenge_count);
3484        if (count > 0) {
3485                WRITE_ONCE(challenge_count, count - 1);
3486                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPCHALLENGEACK);
3487                tcp_send_ack(sk);
3488        }
3489}
3490
3491static void tcp_store_ts_recent(struct tcp_sock *tp)
3492{
3493        tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3494        tp->rx_opt.ts_recent_stamp = get_seconds();
3495}
3496
3497static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3498{
3499        if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3500                /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3501                 * extra check below makes sure this can only happen
3502                 * for pure ACK frames.  -DaveM
3503                 *
3504                 * Not only, also it occurs for expired timestamps.
3505                 */
3506
3507                if (tcp_paws_check(&tp->rx_opt, 0))
3508                        tcp_store_ts_recent(tp);
3509        }
3510}
3511
3512/* This routine deals with acks during a TLP episode.
3513 * We mark the end of a TLP episode on receiving TLP dupack or when
3514 * ack is after tlp_high_seq.
3515 * Ref: loss detection algorithm in draft-dukkipati-tcpm-tcp-loss-probe.
3516 */
3517static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3518{
3519        struct tcp_sock *tp = tcp_sk(sk);
3520
3521        if (before(ack, tp->tlp_high_seq))
3522                return;
3523
3524        if (flag & FLAG_DSACKING_ACK) {
3525                /* This DSACK means original and TLP probe arrived; no loss */
3526                tp->tlp_high_seq = 0;
3527        } else if (after(ack, tp->tlp_high_seq)) {
3528                /* ACK advances: there was a loss, so reduce cwnd. Reset
3529                 * tlp_high_seq in tcp_init_cwnd_reduction()
3530                 */
3531                tcp_init_cwnd_reduction(sk);
3532                tcp_set_ca_state(sk, TCP_CA_CWR);
3533                tcp_end_cwnd_reduction(sk);
3534                tcp_try_keep_open(sk);
3535                NET_INC_STATS(sock_net(sk),
3536                                LINUX_MIB_TCPLOSSPROBERECOVERY);
3537        } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3538                             FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3539                /* Pure dupack: original and TLP probe arrived; no loss */
3540                tp->tlp_high_seq = 0;
3541        }
3542}
3543
3544static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3545{
3546        const struct inet_connection_sock *icsk = inet_csk(sk);
3547
3548        if (icsk->icsk_ca_ops->in_ack_event)
3549                icsk->icsk_ca_ops->in_ack_event(sk, flags);
3550}
3551
3552/* Congestion control has updated the cwnd already. So if we're in
3553 * loss recovery then now we do any new sends (for FRTO) or
3554 * retransmits (for CA_Loss or CA_recovery) that make sense.
3555 */
3556static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3557{
3558        struct tcp_sock *tp = tcp_sk(sk);
3559
3560        if (rexmit == REXMIT_NONE)
3561                return;
3562
3563        if (unlikely(rexmit == 2)) {
3564                __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3565                                          TCP_NAGLE_OFF);
3566                if (after(tp->snd_nxt, tp->high_seq))
3567                        return;
3568                tp->frto = 0;
3569        }
3570        tcp_xmit_retransmit_queue(sk);
3571}
3572
3573/* This routine deals with incoming acks, but not outgoing ones. */
3574static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3575{
3576        struct inet_connection_sock *icsk = inet_csk(sk);
3577        struct tcp_sock *tp = tcp_sk(sk);
3578        struct tcp_sacktag_state sack_state;
3579        u32 prior_snd_una = tp->snd_una;
3580        u32 ack_seq = TCP_SKB_CB(skb)->seq;
3581        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3582        bool is_dupack = false;
3583        u32 prior_fackets;
3584        int prior_packets = tp->packets_out;
3585        u32 prior_delivered = tp->delivered;
3586        int acked = 0; /* Number of packets newly acked */
3587        int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3588
3589        sack_state.first_sackt.v64 = 0;
3590
3591        /* We very likely will need to access write queue head. */
3592        prefetchw(sk->sk_write_queue.next);
3593
3594        /* If the ack is older than previous acks
3595         * then we can probably ignore it.
3596         */
3597        if (before(ack, prior_snd_una)) {
3598                /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3599                if (before(ack, prior_snd_una - tp->max_window)) {
3600                        tcp_send_challenge_ack(sk, skb);
3601                        return -1;
3602                }
3603                goto old_ack;
3604        }
3605
3606        /* If the ack includes data we haven't sent yet, discard
3607         * this segment (RFC793 Section 3.9).
3608         */
3609        if (after(ack, tp->snd_nxt))
3610                goto invalid_ack;
3611
3612        if (icsk->icsk_pending == ICSK_TIME_EARLY_RETRANS ||
3613            icsk->icsk_pending == ICSK_TIME_LOSS_PROBE)
3614                tcp_rearm_rto(sk);
3615
3616        if (after(ack, prior_snd_una)) {
3617                flag |= FLAG_SND_UNA_ADVANCED;
3618                icsk->icsk_retransmits = 0;
3619        }
3620
3621        prior_fackets = tp->fackets_out;
3622
3623        /* ts_recent update must be made after we are sure that the packet
3624         * is in window.
3625         */
3626        if (flag & FLAG_UPDATE_TS_RECENT)
3627                tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3628
3629        if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3630                /* Window is constant, pure forward advance.
3631                 * No more checks are required.
3632                 * Note, we use the fact that SND.UNA>=SND.WL2.
3633                 */
3634                tcp_update_wl(tp, ack_seq);
3635                tcp_snd_una_update(tp, ack);
3636                flag |= FLAG_WIN_UPDATE;
3637
3638                tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3639
3640                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3641        } else {
3642                u32 ack_ev_flags = CA_ACK_SLOWPATH;
3643
3644                if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3645                        flag |= FLAG_DATA;
3646                else
3647                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3648
3649                flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3650
3651                if (TCP_SKB_CB(skb)->sacked)
3652                        flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3653                                                        &sack_state);
3654
3655                if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3656                        flag |= FLAG_ECE;
3657                        ack_ev_flags |= CA_ACK_ECE;
3658                }
3659
3660                if (flag & FLAG_WIN_UPDATE)
3661                        ack_ev_flags |= CA_ACK_WIN_UPDATE;
3662
3663                tcp_in_ack_event(sk, ack_ev_flags);
3664        }
3665
3666        /* We passed data and got it acked, remove any soft error
3667         * log. Something worked...
3668         */
3669        sk->sk_err_soft = 0;
3670        icsk->icsk_probes_out = 0;
3671        tp->rcv_tstamp = tcp_time_stamp;
3672        if (!prior_packets)
3673                goto no_queue;
3674
3675        /* See if we can take anything off of the retransmit queue. */
3676        flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una, &acked,
3677                                    &sack_state);
3678
3679        if (tcp_ack_is_dubious(sk, flag)) {
3680                is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
3681                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3682        }
3683        if (tp->tlp_high_seq)
3684                tcp_process_tlp_ack(sk, ack, flag);
3685
3686        if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP)) {
3687                struct dst_entry *dst = __sk_dst_get(sk);
3688                if (dst)
3689                        dst_confirm(dst);
3690        }
3691
3692        if (icsk->icsk_pending == ICSK_TIME_RETRANS)
3693                tcp_schedule_loss_probe(sk);
3694        tcp_cong_control(sk, ack, tp->delivered - prior_delivered, flag);
3695        tcp_xmit_recovery(sk, rexmit);
3696        return 1;
3697
3698no_queue:
3699        /* If data was DSACKed, see if we can undo a cwnd reduction. */
3700        if (flag & FLAG_DSACKING_ACK)
3701                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3702        /* If this ack opens up a zero window, clear backoff.  It was
3703         * being used to time the probes, and is probably far higher than
3704         * it needs to be for normal retransmission.
3705         */
3706        if (tcp_send_head(sk))
3707                tcp_ack_probe(sk);
3708
3709        if (tp->tlp_high_seq)
3710                tcp_process_tlp_ack(sk, ack, flag);
3711        return 1;
3712
3713invalid_ack:
3714        SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3715        return -1;
3716
3717old_ack:
3718        /* If data was SACKed, tag it and see if we should send more data.
3719         * If data was DSACKed, see if we can undo a cwnd reduction.
3720         */
3721        if (TCP_SKB_CB(skb)->sacked) {
3722                flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3723                                                &sack_state);
3724                tcp_fastretrans_alert(sk, acked, is_dupack, &flag, &rexmit);
3725                tcp_xmit_recovery(sk, rexmit);
3726        }
3727
3728        SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3729        return 0;
3730}
3731
3732static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3733                                      bool syn, struct tcp_fastopen_cookie *foc,
3734                                      bool exp_opt)
3735{
3736        /* Valid only in SYN or SYN-ACK with an even length.  */
3737        if (!foc || !syn || len < 0 || (len & 1))
3738                return;
3739
3740        if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3741            len <= TCP_FASTOPEN_COOKIE_MAX)
3742                memcpy(foc->val, cookie, len);
3743        else if (len != 0)
3744                len = -1;
3745        foc->len = len;
3746        foc->exp = exp_opt;
3747}
3748
3749/* Look for tcp options. Normally only called on SYN and SYNACK packets.
3750 * But, this can also be called on packets in the established flow when
3751 * the fast version below fails.
3752 */
3753void tcp_parse_options(const struct sk_buff *skb,
3754                       struct tcp_options_received *opt_rx, int estab,
3755                       struct tcp_fastopen_cookie *foc)
3756{
3757        const unsigned char *ptr;
3758        const struct tcphdr *th = tcp_hdr(skb);
3759        int length = (th->doff * 4) - sizeof(struct tcphdr);
3760
3761        ptr = (const unsigned char *)(th + 1);
3762        opt_rx->saw_tstamp = 0;
3763
3764        while (length > 0) {
3765                int opcode = *ptr++;
3766                int opsize;
3767
3768                switch (opcode) {
3769                case TCPOPT_EOL:
3770                        return;
3771                case TCPOPT_NOP:        /* Ref: RFC 793 section 3.1 */
3772                        length--;
3773                        continue;
3774                default:
3775                        opsize = *ptr++;
3776                        if (opsize < 2) /* "silly options" */
3777                                return;
3778                        if (opsize > length)
3779                                return; /* don't parse partial options */
3780                        switch (opcode) {
3781                        case TCPOPT_MSS:
3782                                if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3783                                        u16 in_mss = get_unaligned_be16(ptr);
3784                                        if (in_mss) {
3785                                                if (opt_rx->user_mss &&
3786                                                    opt_rx->user_mss < in_mss)
3787                                                        in_mss = opt_rx->user_mss;
3788                                                opt_rx->mss_clamp = in_mss;
3789                                        }
3790                                }
3791                                break;
3792                        case TCPOPT_WINDOW:
3793                                if (opsize == TCPOLEN_WINDOW && th->syn &&
3794                                    !estab && sysctl_tcp_window_scaling) {
3795                                        __u8 snd_wscale = *(__u8 *)ptr;
3796                                        opt_rx->wscale_ok = 1;
3797                                        if (snd_wscale > 14) {
3798                                                net_info_ratelimited("%s: Illegal window scaling value %d >14 received\n",
3799                                                                     __func__,
3800                                                                     snd_wscale);
3801                                                snd_wscale = 14;
3802                                        }
3803                                        opt_rx->snd_wscale = snd_wscale;
3804                                }
3805                                break;
3806                        case TCPOPT_TIMESTAMP:
3807                                if ((opsize == TCPOLEN_TIMESTAMP) &&
3808                                    ((estab && opt_rx->tstamp_ok) ||
3809                                     (!estab && sysctl_tcp_timestamps))) {
3810                                        opt_rx->saw_tstamp = 1;
3811                                        opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3812                                        opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3813                                }
3814                                break;
3815                        case TCPOPT_SACK_PERM:
3816                                if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3817                                    !estab && sysctl_tcp_sack) {
3818                                        opt_rx->sack_ok = TCP_SACK_SEEN;
3819                                        tcp_sack_reset(opt_rx);
3820                                }
3821                                break;
3822
3823                        case TCPOPT_SACK:
3824                                if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3825                                   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3826                                   opt_rx->sack_ok) {
3827                                        TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3828                                }
3829                                break;
3830#ifdef CONFIG_TCP_MD5SIG
3831                        case TCPOPT_MD5SIG:
3832                                /*
3833                                 * The MD5 Hash has already been
3834                                 * checked (see tcp_v{4,6}_do_rcv()).
3835                                 */
3836                                break;
3837#endif
3838                        case TCPOPT_FASTOPEN:
3839                                tcp_parse_fastopen_option(
3840                                        opsize - TCPOLEN_FASTOPEN_BASE,
3841                                        ptr, th->syn, foc, false);
3842                                break;
3843
3844                        case TCPOPT_EXP:
3845                                /* Fast Open option shares code 254 using a
3846                                 * 16 bits magic number.
3847                                 */
3848                                if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
3849                                    get_unaligned_be16(ptr) ==
3850                                    TCPOPT_FASTOPEN_MAGIC)
3851                                        tcp_parse_fastopen_option(opsize -
3852                                                TCPOLEN_EXP_FASTOPEN_BASE,
3853                                                ptr + 2, th->syn, foc, true);
3854                                break;
3855
3856                        }
3857                        ptr += opsize-2;
3858                        length -= opsize;
3859                }
3860        }
3861}
3862EXPORT_SYMBOL(tcp_parse_options);
3863
3864static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
3865{
3866        const __be32 *ptr = (const __be32 *)(th + 1);
3867
3868        if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3869                          | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3870                tp->rx_opt.saw_tstamp = 1;
3871                ++ptr;
3872                tp->rx_opt.rcv_tsval = ntohl(*ptr);
3873                ++ptr;
3874                if (*ptr)
3875                        tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
3876                else
3877                        tp->rx_opt.rcv_tsecr = 0;
3878                return true;
3879        }
3880        return false;
3881}
3882
3883/* Fast parse options. This hopes to only see timestamps.
3884 * If it is wrong it falls back on tcp_parse_options().
3885 */
3886static bool tcp_fast_parse_options(const struct sk_buff *skb,
3887                                   const struct tcphdr *th, struct tcp_sock *tp)
3888{
3889        /* In the spirit of fast parsing, compare doff directly to constant
3890         * values.  Because equality is used, short doff can be ignored here.
3891         */
3892        if (th->doff == (sizeof(*th) / 4)) {
3893                tp->rx_opt.saw_tstamp = 0;
3894                return false;
3895        } else if (tp->rx_opt.tstamp_ok &&
3896                   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
3897                if (tcp_parse_aligned_timestamp(tp, th))
3898                        return true;
3899        }
3900
3901        tcp_parse_options(skb, &tp->rx_opt, 1, NULL);
3902        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3903                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
3904
3905        return true;
3906}
3907
3908#ifdef CONFIG_TCP_MD5SIG
3909/*
3910 * Parse MD5 Signature option
3911 */
3912const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
3913{
3914        int length = (th->doff << 2) - sizeof(*th);
3915        const u8 *ptr = (const u8 *)(th + 1);
3916
3917        /* If the TCP option is too short, we can short cut */
3918        if (length < TCPOLEN_MD5SIG)
3919                return NULL;
3920
3921        while (length > 0) {
3922                int opcode = *ptr++;
3923                int opsize;
3924
3925                switch (opcode) {
3926                case TCPOPT_EOL:
3927                        return NULL;
3928                case TCPOPT_NOP:
3929                        length--;
3930                        continue;
3931                default:
3932                        opsize = *ptr++;
3933                        if (opsize < 2 || opsize > length)
3934                                return NULL;
3935                        if (opcode == TCPOPT_MD5SIG)
3936                                return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
3937                }
3938                ptr += opsize - 2;
3939                length -= opsize;
3940        }
3941        return NULL;
3942}
3943EXPORT_SYMBOL(tcp_parse_md5sig_option);
3944#endif
3945
3946/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3947 *
3948 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3949 * it can pass through stack. So, the following predicate verifies that
3950 * this segment is not used for anything but congestion avoidance or
3951 * fast retransmit. Moreover, we even are able to eliminate most of such
3952 * second order effects, if we apply some small "replay" window (~RTO)
3953 * to timestamp space.
3954 *
3955 * All these measures still do not guarantee that we reject wrapped ACKs
3956 * on networks with high bandwidth, when sequence space is recycled fastly,
3957 * but it guarantees that such events will be very rare and do not affect
3958 * connection seriously. This doesn't look nice, but alas, PAWS is really
3959 * buggy extension.
3960 *
3961 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3962 * states that events when retransmit arrives after original data are rare.
3963 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3964 * the biggest problem on large power networks even with minor reordering.
3965 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3966 * up to bandwidth of 18Gigabit/sec. 8) ]
3967 */
3968
3969static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3970{
3971        const struct tcp_sock *tp = tcp_sk(sk);
3972        const struct tcphdr *th = tcp_hdr(skb);
3973        u32 seq = TCP_SKB_CB(skb)->seq;
3974        u32 ack = TCP_SKB_CB(skb)->ack_seq;
3975
3976        return (/* 1. Pure ACK with correct sequence number. */
3977                (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3978
3979                /* 2. ... and duplicate ACK. */
3980                ack == tp->snd_una &&
3981
3982                /* 3. ... and does not update window. */
3983                !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3984
3985                /* 4. ... and sits in replay window. */
3986                (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3987}
3988
3989static inline bool tcp_paws_discard(const struct sock *sk,
3990                                   const struct sk_buff *skb)
3991{
3992        const struct tcp_sock *tp = tcp_sk(sk);
3993
3994        return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3995               !tcp_disordered_ack(sk, skb);
3996}
3997
3998/* Check segment sequence number for validity.
3999 *
4000 * Segment controls are considered valid, if the segment
4001 * fits to the window after truncation to the window. Acceptability
4002 * of data (and SYN, FIN, of course) is checked separately.
4003 * See tcp_data_queue(), for example.
4004 *
4005 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4006 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4007 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4008 * (borrowed from freebsd)
4009 */
4010
4011static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4012{
4013        return  !before(end_seq, tp->rcv_wup) &&
4014                !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4015}
4016
4017/* When we get a reset we do this. */
4018void tcp_reset(struct sock *sk)
4019{
4020        /* We want the right error as BSD sees it (and indeed as we do). */
4021        switch (sk->sk_state) {
4022        case TCP_SYN_SENT:
4023                sk->sk_err = ECONNREFUSED;
4024                break;
4025        case TCP_CLOSE_WAIT:
4026                sk->sk_err = EPIPE;
4027                break;
4028        case TCP_CLOSE:
4029                return;
4030        default:
4031                sk->sk_err = ECONNRESET;
4032        }
4033        /* This barrier is coupled with smp_rmb() in tcp_poll() */
4034        smp_wmb();
4035
4036        if (!sock_flag(sk, SOCK_DEAD))
4037                sk->sk_error_report(sk);
4038
4039        tcp_done(sk);
4040}
4041
4042/*
4043 *      Process the FIN bit. This now behaves as it is supposed to work
4044 *      and the FIN takes effect when it is validly part of sequence
4045 *      space. Not before when we get holes.
4046 *
4047 *      If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4048 *      (and thence onto LAST-ACK and finally, CLOSE, we never enter
4049 *      TIME-WAIT)
4050 *
4051 *      If we are in FINWAIT-1, a received FIN indicates simultaneous
4052 *      close and we go into CLOSING (and later onto TIME-WAIT)
4053 *
4054 *      If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4055 */
4056void tcp_fin(struct sock *sk)
4057{
4058        struct tcp_sock *tp = tcp_sk(sk);
4059
4060        inet_csk_schedule_ack(sk);
4061
4062        sk->sk_shutdown |= RCV_SHUTDOWN;
4063        sock_set_flag(sk, SOCK_DONE);
4064
4065        switch (sk->sk_state) {
4066        case TCP_SYN_RECV:
4067        case TCP_ESTABLISHED:
4068                /* Move to CLOSE_WAIT */
4069                tcp_set_state(sk, TCP_CLOSE_WAIT);
4070                inet_csk(sk)->icsk_ack.pingpong = 1;
4071                break;
4072
4073        case TCP_CLOSE_WAIT:
4074        case TCP_CLOSING:
4075                /* Received a retransmission of the FIN, do
4076                 * nothing.
4077                 */
4078                break;
4079        case TCP_LAST_ACK:
4080                /* RFC793: Remain in the LAST-ACK state. */
4081                break;
4082
4083        case TCP_FIN_WAIT1:
4084                /* This case occurs when a simultaneous close
4085                 * happens, we must ack the received FIN and
4086                 * enter the CLOSING state.
4087                 */
4088                tcp_send_ack(sk);
4089                tcp_set_state(sk, TCP_CLOSING);
4090                break;
4091        case TCP_FIN_WAIT2:
4092                /* Received a FIN -- send ACK and enter TIME_WAIT. */
4093                tcp_send_ack(sk);
4094                tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4095                break;
4096        default:
4097                /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4098                 * cases we should never reach this piece of code.
4099                 */
4100                pr_err("%s: Impossible, sk->sk_state=%d\n",
4101                       __func__, sk->sk_state);
4102                break;
4103        }
4104
4105        /* It _is_ possible, that we have something out-of-order _after_ FIN.
4106         * Probably, we should reset in this case. For now drop them.
4107         */
4108        __skb_queue_purge(&tp->out_of_order_queue);
4109        if (tcp_is_sack(tp))
4110                tcp_sack_reset(&tp->rx_opt);
4111        sk_mem_reclaim(sk);
4112
4113        if (!sock_flag(sk, SOCK_DEAD)) {
4114                sk->sk_state_change(sk);
4115
4116                /* Do not send POLL_HUP for half duplex close. */
4117                if (sk->sk_shutdown == SHUTDOWN_MASK ||
4118                    sk->sk_state == TCP_CLOSE)
4119                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4120                else
4121                        sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4122        }
4123}
4124
4125static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4126                                  u32 end_seq)
4127{
4128        if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4129                if (before(seq, sp->start_seq))
4130                        sp->start_seq = seq;
4131                if (after(end_seq, sp->end_seq))
4132                        sp->end_seq = end_seq;
4133                return true;
4134        }
4135        return false;
4136}
4137
4138static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4139{
4140        struct tcp_sock *tp = tcp_sk(sk);
4141
4142        if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4143                int mib_idx;
4144
4145                if (before(seq, tp->rcv_nxt))
4146                        mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4147                else
4148                        mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4149
4150                NET_INC_STATS(sock_net(sk), mib_idx);
4151
4152                tp->rx_opt.dsack = 1;
4153                tp->duplicate_sack[0].start_seq = seq;
4154                tp->duplicate_sack[0].end_seq = end_seq;
4155        }
4156}
4157
4158static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4159{
4160        struct tcp_sock *tp = tcp_sk(sk);
4161
4162        if (!tp->rx_opt.dsack)
4163                tcp_dsack_set(sk, seq, end_seq);
4164        else
4165                tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4166}
4167
4168static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4169{
4170        struct tcp_sock *tp = tcp_sk(sk);
4171
4172        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4173            before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4174                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4175                tcp_enter_quickack_mode(sk);
4176
4177                if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4178                        u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4179
4180                        if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4181                                end_seq = tp->rcv_nxt;
4182                        tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4183                }
4184        }
4185
4186        tcp_send_ack(sk);
4187}
4188
4189/* These routines update the SACK block as out-of-order packets arrive or
4190 * in-order packets close up the sequence space.
4191 */
4192static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4193{
4194        int this_sack;
4195        struct tcp_sack_block *sp = &tp->selective_acks[0];
4196        struct tcp_sack_block *swalk = sp + 1;
4197
4198        /* See if the recent change to the first SACK eats into
4199         * or hits the sequence space of other SACK blocks, if so coalesce.
4200         */
4201        for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4202                if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4203                        int i;
4204
4205                        /* Zap SWALK, by moving every further SACK up by one slot.
4206                         * Decrease num_sacks.
4207                         */
4208                        tp->rx_opt.num_sacks--;
4209                        for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4210                                sp[i] = sp[i + 1];
4211                        continue;
4212                }
4213                this_sack++, swalk++;
4214        }
4215}
4216
4217static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4218{
4219        struct tcp_sock *tp = tcp_sk(sk);
4220        struct tcp_sack_block *sp = &tp->selective_acks[0];
4221        int cur_sacks = tp->rx_opt.num_sacks;
4222        int this_sack;
4223
4224        if (!cur_sacks)
4225                goto new_sack;
4226
4227        for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4228                if (tcp_sack_extend(sp, seq, end_seq)) {
4229                        /* Rotate this_sack to the first one. */
4230                        for (; this_sack > 0; this_sack--, sp--)
4231                                swap(*sp, *(sp - 1));
4232                        if (cur_sacks > 1)
4233                                tcp_sack_maybe_coalesce(tp);
4234                        return;
4235                }
4236        }
4237
4238        /* Could not find an adjacent existing SACK, build a new one,
4239         * put it at the front, and shift everyone else down.  We
4240         * always know there is at least one SACK present already here.
4241         *
4242         * If the sack array is full, forget about the last one.
4243         */
4244        if (this_sack >= TCP_NUM_SACKS) {
4245                this_sack--;
4246                tp->rx_opt.num_sacks--;
4247                sp--;
4248        }
4249        for (; this_sack > 0; this_sack--, sp--)
4250                *sp = *(sp - 1);
4251
4252new_sack:
4253        /* Build the new head SACK, and we're done. */
4254        sp->start_seq = seq;
4255        sp->end_seq = end_seq;
4256        tp->rx_opt.num_sacks++;
4257}
4258
4259/* RCV.NXT advances, some SACKs should be eaten. */
4260
4261static void tcp_sack_remove(struct tcp_sock *tp)
4262{
4263        struct tcp_sack_block *sp = &tp->selective_acks[0];
4264        int num_sacks = tp->rx_opt.num_sacks;
4265        int this_sack;
4266
4267        /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4268        if (skb_queue_empty(&tp->out_of_order_queue)) {
4269                tp->rx_opt.num_sacks = 0;
4270                return;
4271        }
4272
4273        for (this_sack = 0; this_sack < num_sacks;) {
4274                /* Check if the start of the sack is covered by RCV.NXT. */
4275                if (!before(tp->rcv_nxt, sp->start_seq)) {
4276                        int i;
4277
4278                        /* RCV.NXT must cover all the block! */
4279                        WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4280
4281                        /* Zap this SACK, by moving forward any other SACKS. */
4282                        for (i = this_sack+1; i < num_sacks; i++)
4283                                tp->selective_acks[i-1] = tp->selective_acks[i];
4284                        num_sacks--;
4285                        continue;
4286                }
4287                this_sack++;
4288                sp++;
4289        }
4290        tp->rx_opt.num_sacks = num_sacks;
4291}
4292
4293/**
4294 * tcp_try_coalesce - try to merge skb to prior one
4295 * @sk: socket
4296 * @to: prior buffer
4297 * @from: buffer to add in queue
4298 * @fragstolen: pointer to boolean
4299 *
4300 * Before queueing skb @from after @to, try to merge them
4301 * to reduce overall memory use and queue lengths, if cost is small.
4302 * Packets in ofo or receive queues can stay a long time.
4303 * Better try to coalesce them right now to avoid future collapses.
4304 * Returns true if caller should free @from instead of queueing it
4305 */
4306static bool tcp_try_coalesce(struct sock *sk,
4307                             struct sk_buff *to,
4308                             struct sk_buff *from,
4309                             bool *fragstolen)
4310{
4311        int delta;
4312
4313        *fragstolen = false;
4314
4315        /* Its possible this segment overlaps with prior segment in queue */
4316        if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4317                return false;
4318
4319        if (!skb_try_coalesce(to, from, fragstolen, &delta))
4320                return false;
4321
4322        atomic_add(delta, &sk->sk_rmem_alloc);
4323        sk_mem_charge(sk, delta);
4324        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4325        TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4326        TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4327        TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4328        return true;
4329}
4330
4331static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4332{
4333        sk_drops_add(sk, skb);
4334        __kfree_skb(skb);
4335}
4336
4337/* This one checks to see if we can put data from the
4338 * out_of_order queue into the receive_queue.
4339 */
4340static void tcp_ofo_queue(struct sock *sk)
4341{
4342        struct tcp_sock *tp = tcp_sk(sk);
4343        __u32 dsack_high = tp->rcv_nxt;
4344        struct sk_buff *skb, *tail;
4345        bool fragstolen, eaten;
4346
4347        while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4348                if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4349                        break;
4350
4351                if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4352                        __u32 dsack = dsack_high;
4353                        if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4354                                dsack_high = TCP_SKB_CB(skb)->end_seq;
4355                        tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4356                }
4357
4358                __skb_unlink(skb, &tp->out_of_order_queue);
4359                if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4360                        SOCK_DEBUG(sk, "ofo packet was already received\n");
4361                        tcp_drop(sk, skb);
4362                        continue;
4363                }
4364                SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4365                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4366                           TCP_SKB_CB(skb)->end_seq);
4367
4368                tail = skb_peek_tail(&sk->sk_receive_queue);
4369                eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4370                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4371                if (!eaten)
4372                        __skb_queue_tail(&sk->sk_receive_queue, skb);
4373                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4374                        tcp_fin(sk);
4375                if (eaten)
4376                        kfree_skb_partial(skb, fragstolen);
4377        }
4378}
4379
4380static bool tcp_prune_ofo_queue(struct sock *sk);
4381static int tcp_prune_queue(struct sock *sk);
4382
4383static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4384                                 unsigned int size)
4385{
4386        if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4387            !sk_rmem_schedule(sk, skb, size)) {
4388
4389                if (tcp_prune_queue(sk) < 0)
4390                        return -1;
4391
4392                if (!sk_rmem_schedule(sk, skb, size)) {
4393                        if (!tcp_prune_ofo_queue(sk))
4394                                return -1;
4395
4396                        if (!sk_rmem_schedule(sk, skb, size))
4397                                return -1;
4398                }
4399        }
4400        return 0;
4401}
4402
4403static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4404{
4405        struct tcp_sock *tp = tcp_sk(sk);
4406        struct sk_buff *skb1;
4407        u32 seq, end_seq;
4408
4409        tcp_ecn_check_ce(tp, skb);
4410
4411        if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4412                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4413                tcp_drop(sk, skb);
4414                return;
4415        }
4416
4417        /* Disable header prediction. */
4418        tp->pred_flags = 0;
4419        inet_csk_schedule_ack(sk);
4420
4421        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4422        SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4423                   tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4424
4425        skb1 = skb_peek_tail(&tp->out_of_order_queue);
4426        if (!skb1) {
4427                /* Initial out of order segment, build 1 SACK. */
4428                if (tcp_is_sack(tp)) {
4429                        tp->rx_opt.num_sacks = 1;
4430                        tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4431                        tp->selective_acks[0].end_seq =
4432                                                TCP_SKB_CB(skb)->end_seq;
4433                }
4434                __skb_queue_head(&tp->out_of_order_queue, skb);
4435                goto end;
4436        }
4437
4438        seq = TCP_SKB_CB(skb)->seq;
4439        end_seq = TCP_SKB_CB(skb)->end_seq;
4440
4441        if (seq == TCP_SKB_CB(skb1)->end_seq) {
4442                bool fragstolen;
4443
4444                if (!tcp_try_coalesce(sk, skb1, skb, &fragstolen)) {
4445                        __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4446                } else {
4447                        tcp_grow_window(sk, skb);
4448                        kfree_skb_partial(skb, fragstolen);
4449                        skb = NULL;
4450                }
4451
4452                if (!tp->rx_opt.num_sacks ||
4453                    tp->selective_acks[0].end_seq != seq)
4454                        goto add_sack;
4455
4456                /* Common case: data arrive in order after hole. */
4457                tp->selective_acks[0].end_seq = end_seq;
4458                goto end;
4459        }
4460
4461        /* Find place to insert this segment. */
4462        while (1) {
4463                if (!after(TCP_SKB_CB(skb1)->seq, seq))
4464                        break;
4465                if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4466                        skb1 = NULL;
4467                        break;
4468                }
4469                skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4470        }
4471
4472        /* Do skb overlap to previous one? */
4473        if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4474                if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4475                        /* All the bits are present. Drop. */
4476                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4477                        tcp_drop(sk, skb);
4478                        skb = NULL;
4479                        tcp_dsack_set(sk, seq, end_seq);
4480                        goto add_sack;
4481                }
4482                if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4483                        /* Partial overlap. */
4484                        tcp_dsack_set(sk, seq,
4485                                      TCP_SKB_CB(skb1)->end_seq);
4486                } else {
4487                        if (skb_queue_is_first(&tp->out_of_order_queue,
4488                                               skb1))
4489                                skb1 = NULL;
4490                        else
4491                                skb1 = skb_queue_prev(
4492                                        &tp->out_of_order_queue,
4493                                        skb1);
4494                }
4495        }
4496        if (!skb1)
4497                __skb_queue_head(&tp->out_of_order_queue, skb);
4498        else
4499                __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4500
4501        /* And clean segments covered by new one as whole. */
4502        while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4503                skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4504
4505                if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4506                        break;
4507                if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4508                        tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4509                                         end_seq);
4510                        break;
4511                }
4512                __skb_unlink(skb1, &tp->out_of_order_queue);
4513                tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4514                                 TCP_SKB_CB(skb1)->end_seq);
4515                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4516                tcp_drop(sk, skb1);
4517        }
4518
4519add_sack:
4520        if (tcp_is_sack(tp))
4521                tcp_sack_new_ofo_skb(sk, seq, end_seq);
4522end:
4523        if (skb) {
4524                tcp_grow_window(sk, skb);
4525                skb_set_owner_r(skb, sk);
4526        }
4527}
4528
4529static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb, int hdrlen,
4530                  bool *fragstolen)
4531{
4532        int eaten;
4533        struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4534
4535        __skb_pull(skb, hdrlen);
4536        eaten = (tail &&
4537                 tcp_try_coalesce(sk, tail, skb, fragstolen)) ? 1 : 0;
4538        tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4539        if (!eaten) {
4540                __skb_queue_tail(&sk->sk_receive_queue, skb);
4541                skb_set_owner_r(skb, sk);
4542        }
4543        return eaten;
4544}
4545
4546int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4547{
4548        struct sk_buff *skb;
4549        int err = -ENOMEM;
4550        int data_len = 0;
4551        bool fragstolen;
4552
4553        if (size == 0)
4554                return 0;
4555
4556        if (size > PAGE_SIZE) {
4557                int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4558
4559                data_len = npages << PAGE_SHIFT;
4560                size = data_len + (size & ~PAGE_MASK);
4561        }
4562        skb = alloc_skb_with_frags(size - data_len, data_len,
4563                                   PAGE_ALLOC_COSTLY_ORDER,
4564                                   &err, sk->sk_allocation);
4565        if (!skb)
4566                goto err;
4567
4568        skb_put(skb, size - data_len);
4569        skb->data_len = data_len;
4570        skb->len = size;
4571
4572        if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4573                goto err_free;
4574
4575        err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4576        if (err)
4577                goto err_free;
4578
4579        TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4580        TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4581        TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4582
4583        if (tcp_queue_rcv(sk, skb, 0, &fragstolen)) {
4584                WARN_ON_ONCE(fragstolen); /* should not happen */
4585                __kfree_skb(skb);
4586        }
4587        return size;
4588
4589err_free:
4590        kfree_skb(skb);
4591err:
4592        return err;
4593
4594}
4595
4596static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4597{
4598        struct tcp_sock *tp = tcp_sk(sk);
4599        bool fragstolen = false;
4600        int eaten = -1;
4601
4602        if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4603                __kfree_skb(skb);
4604                return;
4605        }
4606        skb_dst_drop(skb);
4607        __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4608
4609        tcp_ecn_accept_cwr(tp, skb);
4610
4611        tp->rx_opt.dsack = 0;
4612
4613        /*  Queue data for delivery to the user.
4614         *  Packets in sequence go to the receive queue.
4615         *  Out of sequence packets to the out_of_order_queue.
4616         */
4617        if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4618                if (tcp_receive_window(tp) == 0)
4619                        goto out_of_window;
4620
4621                /* Ok. In sequence. In window. */
4622                if (tp->ucopy.task == current &&
4623                    tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4624                    sock_owned_by_user(sk) && !tp->urg_data) {
4625                        int chunk = min_t(unsigned int, skb->len,
4626                                          tp->ucopy.len);
4627
4628                        __set_current_state(TASK_RUNNING);
4629
4630                        if (!skb_copy_datagram_msg(skb, 0, tp->ucopy.msg, chunk)) {
4631                                tp->ucopy.len -= chunk;
4632                                tp->copied_seq += chunk;
4633                                eaten = (chunk == skb->len);
4634                                tcp_rcv_space_adjust(sk);
4635                        }
4636                }
4637
4638                if (eaten <= 0) {
4639queue_and_out:
4640                        if (eaten < 0) {
4641                                if (skb_queue_len(&sk->sk_receive_queue) == 0)
4642                                        sk_forced_mem_schedule(sk, skb->truesize);
4643                                else if (tcp_try_rmem_schedule(sk, skb, skb->truesize))
4644                                        goto drop;
4645                        }
4646                        eaten = tcp_queue_rcv(sk, skb, 0, &fragstolen);
4647                }
4648                tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4649                if (skb->len)
4650                        tcp_event_data_recv(sk, skb);
4651                if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
4652                        tcp_fin(sk);
4653
4654                if (!skb_queue_empty(&tp->out_of_order_queue)) {
4655                        tcp_ofo_queue(sk);
4656
4657                        /* RFC2581. 4.2. SHOULD send immediate ACK, when
4658                         * gap in queue is filled.
4659                         */
4660                        if (skb_queue_empty(&tp->out_of_order_queue))
4661                                inet_csk(sk)->icsk_ack.pingpong = 0;
4662                }
4663
4664                if (tp->rx_opt.num_sacks)
4665                        tcp_sack_remove(tp);
4666
4667                tcp_fast_path_check(sk);
4668
4669                if (eaten > 0)
4670                        kfree_skb_partial(skb, fragstolen);
4671                if (!sock_flag(sk, SOCK_DEAD))
4672                        sk->sk_data_ready(sk);
4673                return;
4674        }
4675
4676        if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4677                /* A retransmit, 2nd most common case.  Force an immediate ack. */
4678                NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4679                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4680
4681out_of_window:
4682                tcp_enter_quickack_mode(sk);
4683                inet_csk_schedule_ack(sk);
4684drop:
4685                tcp_drop(sk, skb);
4686                return;
4687        }
4688
4689        /* Out of window. F.e. zero window probe. */
4690        if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4691                goto out_of_window;
4692
4693        tcp_enter_quickack_mode(sk);
4694
4695        if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4696                /* Partial packet, seq < rcv_next < end_seq */
4697                SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4698                           tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4699                           TCP_SKB_CB(skb)->end_seq);
4700
4701                tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4702
4703                /* If window is closed, drop tail of packet. But after
4704                 * remembering D-SACK for its head made in previous line.
4705                 */
4706                if (!tcp_receive_window(tp))
4707                        goto out_of_window;
4708                goto queue_and_out;
4709        }
4710
4711        tcp_data_queue_ofo(sk, skb);
4712}
4713
4714static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4715                                        struct sk_buff_head *list)
4716{
4717        struct sk_buff *next = NULL;
4718
4719        if (!skb_queue_is_last(list, skb))
4720                next = skb_queue_next(list, skb);
4721
4722        __skb_unlink(skb, list);
4723        __kfree_skb(skb);
4724        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4725
4726        return next;
4727}
4728
4729/* Collapse contiguous sequence of skbs head..tail with
4730 * sequence numbers start..end.
4731 *
4732 * If tail is NULL, this means until the end of the list.
4733 *
4734 * Segments with FIN/SYN are not collapsed (only because this
4735 * simplifies code)
4736 */
4737static void
4738tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4739             struct sk_buff *head, struct sk_buff *tail,
4740             u32 start, u32 end)
4741{
4742        struct sk_buff *skb, *n;
4743        bool end_of_skbs;
4744
4745        /* First, check that queue is collapsible and find
4746         * the point where collapsing can be useful. */
4747        skb = head;
4748restart:
4749        end_of_skbs = true;
4750        skb_queue_walk_from_safe(list, skb, n) {
4751                if (skb == tail)
4752                        break;
4753                /* No new bits? It is possible on ofo queue. */
4754                if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4755                        skb = tcp_collapse_one(sk, skb, list);
4756                        if (!skb)
4757                                break;
4758                        goto restart;
4759                }
4760
4761                /* The first skb to collapse is:
4762                 * - not SYN/FIN and
4763                 * - bloated or contains data before "start" or
4764                 *   overlaps to the next one.
4765                 */
4766                if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
4767                    (tcp_win_from_space(skb->truesize) > skb->len ||
4768                     before(TCP_SKB_CB(skb)->seq, start))) {
4769                        end_of_skbs = false;
4770                        break;
4771                }
4772
4773                if (!skb_queue_is_last(list, skb)) {
4774                        struct sk_buff *next = skb_queue_next(list, skb);
4775                        if (next != tail &&
4776                            TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4777                                end_of_skbs = false;
4778                                break;
4779                        }
4780                }
4781
4782                /* Decided to skip this, advance start seq. */
4783                start = TCP_SKB_CB(skb)->end_seq;
4784        }
4785        if (end_of_skbs ||
4786            (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4787                return;
4788
4789        while (before(start, end)) {
4790                int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
4791                struct sk_buff *nskb;
4792
4793                nskb = alloc_skb(copy, GFP_ATOMIC);
4794                if (!nskb)
4795                        return;
4796
4797                memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4798                TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4799                __skb_queue_before(list, skb, nskb);
4800                skb_set_owner_r(nskb, sk);
4801
4802                /* Copy data, releasing collapsed skbs. */
4803                while (copy > 0) {
4804                        int offset = start - TCP_SKB_CB(skb)->seq;
4805                        int size = TCP_SKB_CB(skb)->end_seq - start;
4806
4807                        BUG_ON(offset < 0);
4808                        if (size > 0) {
4809                                size = min(copy, size);
4810                                if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4811                                        BUG();
4812                                TCP_SKB_CB(nskb)->end_seq += size;
4813                                copy -= size;
4814                                start += size;
4815                        }
4816                        if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4817                                skb = tcp_collapse_one(sk, skb, list);
4818                                if (!skb ||
4819                                    skb == tail ||
4820                                    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
4821                                        return;
4822                        }
4823                }
4824        }
4825}
4826
4827/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4828 * and tcp_collapse() them until all the queue is collapsed.
4829 */
4830static void tcp_collapse_ofo_queue(struct sock *sk)
4831{
4832        struct tcp_sock *tp = tcp_sk(sk);
4833        struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4834        struct sk_buff *head;
4835        u32 start, end;
4836
4837        if (!skb)
4838                return;
4839
4840        start = TCP_SKB_CB(skb)->seq;
4841        end = TCP_SKB_CB(skb)->end_seq;
4842        head = skb;
4843
4844        for (;;) {
4845                struct sk_buff *next = NULL;
4846
4847                if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4848                        next = skb_queue_next(&tp->out_of_order_queue, skb);
4849                skb = next;
4850
4851                /* Segment is terminated when we see gap or when
4852                 * we are at the end of all the queue. */
4853                if (!skb ||
4854                    after(TCP_SKB_CB(skb)->seq, end) ||
4855                    before(TCP_SKB_CB(skb)->end_seq, start)) {
4856                        tcp_collapse(sk, &tp->out_of_order_queue,
4857                                     head, skb, start, end);
4858                        head = skb;
4859                        if (!skb)
4860                                break;
4861                        /* Start new segment */
4862                        start = TCP_SKB_CB(skb)->seq;
4863                        end = TCP_SKB_CB(skb)->end_seq;
4864                } else {
4865                        if (before(TCP_SKB_CB(skb)->seq, start))
4866                                start = TCP_SKB_CB(skb)->seq;
4867                        if (after(TCP_SKB_CB(skb)->end_seq, end))
4868                                end = TCP_SKB_CB(skb)->end_seq;
4869                }
4870        }
4871}
4872
4873/*
4874 * Purge the out-of-order queue.
4875 * Return true if queue was pruned.
4876 */
4877static bool tcp_prune_ofo_queue(struct sock *sk)
4878{
4879        struct tcp_sock *tp = tcp_sk(sk);
4880        bool res = false;
4881
4882        if (!skb_queue_empty(&tp->out_of_order_queue)) {
4883                NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
4884                __skb_queue_purge(&tp->out_of_order_queue);
4885
4886                /* Reset SACK state.  A conforming SACK implementation will
4887                 * do the same at a timeout based retransmit.  When a connection
4888                 * is in a sad state like this, we care only about integrity
4889                 * of the connection not performance.
4890                 */
4891                if (tp->rx_opt.sack_ok)
4892                        tcp_sack_reset(&tp->rx_opt);
4893                sk_mem_reclaim(sk);
4894                res = true;
4895        }
4896        return res;
4897}
4898
4899/* Reduce allocated memory if we can, trying to get
4900 * the socket within its memory limits again.
4901 *
4902 * Return less than zero if we should start dropping frames
4903 * until the socket owning process reads some of the data
4904 * to stabilize the situation.
4905 */
4906static int tcp_prune_queue(struct sock *sk)
4907{
4908        struct tcp_sock *tp = tcp_sk(sk);
4909
4910        SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4911
4912        NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
4913
4914        if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4915                tcp_clamp_window(sk);
4916        else if (tcp_under_memory_pressure(sk))
4917                tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4918
4919        tcp_collapse_ofo_queue(sk);
4920        if (!skb_queue_empty(&sk->sk_receive_queue))
4921                tcp_collapse(sk, &sk->sk_receive_queue,
4922                             skb_peek(&sk->sk_receive_queue),
4923                             NULL,
4924                             tp->copied_seq, tp->rcv_nxt);
4925        sk_mem_reclaim(sk);
4926
4927        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4928                return 0;
4929
4930        /* Collapsing did not help, destructive actions follow.
4931         * This must not ever occur. */
4932
4933        tcp_prune_ofo_queue(sk);
4934
4935        if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4936                return 0;
4937
4938        /* If we are really being abused, tell the caller to silently
4939         * drop receive data on the floor.  It will get retransmitted
4940         * and hopefully then we'll have sufficient space.
4941         */
4942        NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
4943
4944        /* Massive buffer overcommit. */
4945        tp->pred_flags = 0;
4946        return -1;
4947}
4948
4949static bool tcp_should_expand_sndbuf(const struct sock *sk)
4950{
4951        const struct tcp_sock *tp = tcp_sk(sk);
4952
4953        /* If the user specified a specific send buffer setting, do
4954         * not modify it.
4955         */
4956        if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4957                return false;
4958
4959        /* If we are under global TCP memory pressure, do not expand.  */
4960        if (tcp_under_memory_pressure(sk))
4961                return false;
4962
4963        /* If we are under soft global TCP memory pressure, do not expand.  */
4964        if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
4965                return false;
4966
4967        /* If we filled the congestion window, do not expand.  */
4968        if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
4969                return false;
4970
4971        return true;
4972}
4973
4974/* When incoming ACK allowed to free some skb from write_queue,
4975 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4976 * on the exit from tcp input handler.
4977 *
4978 * PROBLEM: sndbuf expansion does not work well with largesend.
4979 */
4980static void tcp_new_space(struct sock *sk)
4981{
4982        struct tcp_sock *tp = tcp_sk(sk);
4983
4984        if (tcp_should_expand_sndbuf(sk)) {
4985                tcp_sndbuf_expand(sk);
4986                tp->snd_cwnd_stamp = tcp_time_stamp;
4987        }
4988
4989        sk->sk_write_space(sk);
4990}
4991
4992static void tcp_check_space(struct sock *sk)
4993{
4994        if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4995                sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4996                /* pairs with tcp_poll() */
4997                smp_mb__after_atomic();
4998                if (sk->sk_socket &&
4999                    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5000                        tcp_new_space(sk);
5001        }
5002}
5003
5004static inline void tcp_data_snd_check(struct sock *sk)
5005{
5006        tcp_push_pending_frames(sk);
5007        tcp_check_space(sk);
5008}
5009
5010/*
5011 * Check if sending an ack is needed.
5012 */
5013static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5014{
5015        struct tcp_sock *tp = tcp_sk(sk);
5016
5017            /* More than one full frame received... */
5018        if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
5019             /* ... and right edge of window advances far enough.
5020              * (tcp_recvmsg() will send ACK otherwise). Or...
5021              */
5022             __tcp_select_window(sk) >= tp->rcv_wnd) ||
5023            /* We ACK each frame or... */
5024            tcp_in_quickack_mode(sk) ||
5025            /* We have out of order data. */
5026            (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
5027                /* Then ack it now */
5028                tcp_send_ack(sk);
5029        } else {
5030                /* Else, send delayed ack. */
5031                tcp_send_delayed_ack(sk);
5032        }
5033}
5034
5035static inline void tcp_ack_snd_check(struct sock *sk)
5036{
5037        if (!inet_csk_ack_scheduled(sk)) {
5038                /* We sent a data segment already. */
5039                return;
5040        }
5041        __tcp_ack_snd_check(sk, 1);
5042}
5043
5044/*
5045 *      This routine is only called when we have urgent data
5046 *      signaled. Its the 'slow' part of tcp_urg. It could be
5047 *      moved inline now as tcp_urg is only called from one
5048 *      place. We handle URGent data wrong. We have to - as
5049 *      BSD still doesn't use the correction from RFC961.
5050 *      For 1003.1g we should support a new option TCP_STDURG to permit
5051 *      either form (or just set the sysctl tcp_stdurg).
5052 */
5053
5054static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5055{
5056        struct tcp_sock *tp = tcp_sk(sk);
5057        u32 ptr = ntohs(th->urg_ptr);
5058
5059        if (ptr && !sysctl_tcp_stdurg)
5060                ptr--;
5061        ptr += ntohl(th->seq);
5062
5063        /* Ignore urgent data that we've already seen and read. */
5064        if (after(tp->copied_seq, ptr))
5065                return;
5066
5067        /* Do not replay urg ptr.
5068         *
5069         * NOTE: interesting situation not covered by specs.
5070         * Misbehaving sender may send urg ptr, pointing to segment,
5071         * which we already have in ofo queue. We are not able to fetch
5072         * such data and will stay in TCP_URG_NOTYET until will be eaten
5073         * by recvmsg(). Seems, we are not obliged to handle such wicked
5074         * situations. But it is worth to think about possibility of some
5075         * DoSes using some hypothetical application level deadlock.
5076         */
5077        if (before(ptr, tp->rcv_nxt))
5078                return;
5079
5080        /* Do we already have a newer (or duplicate) urgent pointer? */
5081        if (tp->urg_data && !after(ptr, tp->urg_seq))
5082                return;
5083
5084        /* Tell the world about our new urgent pointer. */
5085        sk_send_sigurg(sk);
5086
5087        /* We may be adding urgent data when the last byte read was
5088         * urgent. To do this requires some care. We cannot just ignore
5089         * tp->copied_seq since we would read the last urgent byte again
5090         * as data, nor can we alter copied_seq until this data arrives
5091         * or we break the semantics of SIOCATMARK (and thus sockatmark())
5092         *
5093         * NOTE. Double Dutch. Rendering to plain English: author of comment
5094         * above did something sort of  send("A", MSG_OOB); send("B", MSG_OOB);
5095         * and expect that both A and B disappear from stream. This is _wrong_.
5096         * Though this happens in BSD with high probability, this is occasional.
5097         * Any application relying on this is buggy. Note also, that fix "works"
5098         * only in this artificial test. Insert some normal data between A and B and we will
5099         * decline of BSD again. Verdict: it is better to remove to trap
5100         * buggy users.
5101         */
5102        if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5103            !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5104                struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5105                tp->copied_seq++;
5106                if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5107                        __skb_unlink(skb, &sk->sk_receive_queue);
5108                        __kfree_skb(skb);
5109                }
5110        }
5111
5112        tp->urg_data = TCP_URG_NOTYET;
5113        tp->urg_seq = ptr;
5114
5115        /* Disable header prediction. */
5116        tp->pred_flags = 0;
5117}
5118
5119/* This is the 'fast' part of urgent handling. */
5120static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5121{
5122        struct tcp_sock *tp = tcp_sk(sk);
5123
5124        /* Check if we get a new urgent pointer - normally not. */
5125        if (th->urg)
5126                tcp_check_urg(sk, th);
5127
5128        /* Do we wait for any urgent data? - normally not... */
5129        if (tp->urg_data == TCP_URG_NOTYET) {
5130                u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5131                          th->syn;
5132
5133                /* Is the urgent pointer pointing into this packet? */
5134                if (ptr < skb->len) {
5135                        u8 tmp;
5136                        if (skb_copy_bits(skb, ptr, &tmp, 1))
5137                                BUG();
5138                        tp->urg_data = TCP_URG_VALID | tmp;
5139                        if (!sock_flag(sk, SOCK_DEAD))
5140                                sk->sk_data_ready(sk);
5141                }
5142        }
5143}
5144
5145static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
5146{
5147        struct tcp_sock *tp = tcp_sk(sk);
5148        int chunk = skb->len - hlen;
5149        int err;
5150
5151        if (skb_csum_unnecessary(skb))
5152                err = skb_copy_datagram_msg(skb, hlen, tp->ucopy.msg, chunk);
5153        else
5154                err = skb_copy_and_csum_datagram_msg(skb, hlen, tp->ucopy.msg);
5155
5156        if (!err) {
5157                tp->ucopy.len -= chunk;
5158                tp->copied_seq += chunk;
5159                tcp_rcv_space_adjust(sk);
5160        }
5161
5162        return err;
5163}
5164
5165/* Does PAWS and seqno based validation of an incoming segment, flags will
5166 * play significant role here.
5167 */
5168static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5169                                  const struct tcphdr *th, int syn_inerr)
5170{
5171        struct tcp_sock *tp = tcp_sk(sk);
5172
5173        /* RFC1323: H1. Apply PAWS check first. */
5174        if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5175            tcp_paws_discard(sk, skb)) {
5176                if (!th->rst) {
5177                        NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5178                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5179                                                  LINUX_MIB_TCPACKSKIPPEDPAWS,
5180                                                  &tp->last_oow_ack_time))
5181                                tcp_send_dupack(sk, skb);
5182                        goto discard;
5183                }
5184                /* Reset is accepted even if it did not pass PAWS. */
5185        }
5186
5187        /* Step 1: check sequence number */
5188        if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5189                /* RFC793, page 37: "In all states except SYN-SENT, all reset
5190                 * (RST) segments are validated by checking their SEQ-fields."
5191                 * And page 69: "If an incoming segment is not acceptable,
5192                 * an acknowledgment should be sent in reply (unless the RST
5193                 * bit is set, if so drop the segment and return)".
5194                 */
5195                if (!th->rst) {
5196                        if (th->syn)
5197                                goto syn_challenge;
5198                        if (!tcp_oow_rate_limited(sock_net(sk), skb,
5199                                                  LINUX_MIB_TCPACKSKIPPEDSEQ,
5200                                                  &tp->last_oow_ack_time))
5201                                tcp_send_dupack(sk, skb);
5202                }
5203                goto discard;
5204        }
5205
5206        /* Step 2: check RST bit */
5207        if (th->rst) {
5208                /* RFC 5961 3.2 :
5209                 * If sequence number exactly matches RCV.NXT, then
5210                 *     RESET the connection
5211                 * else
5212                 *     Send a challenge ACK
5213                 */
5214                if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt)
5215                        tcp_reset(sk);
5216                else
5217                        tcp_send_challenge_ack(sk, skb);
5218                goto discard;
5219        }
5220
5221        /* step 3: check security and precedence [ignored] */
5222
5223        /* step 4: Check for a SYN
5224         * RFC 5961 4.2 : Send a challenge ack
5225         */
5226        if (th->syn) {
5227syn_challenge:
5228                if (syn_inerr)
5229                        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5230                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5231                tcp_send_challenge_ack(sk, skb);
5232                goto discard;
5233        }
5234
5235        return true;
5236
5237discard:
5238        tcp_drop(sk, skb);
5239        return false;
5240}
5241
5242/*
5243 *      TCP receive function for the ESTABLISHED state.
5244 *
5245 *      It is split into a fast path and a slow path. The fast path is
5246 *      disabled when:
5247 *      - A zero window was announced from us - zero window probing
5248 *        is only handled properly in the slow path.
5249 *      - Out of order segments arrived.
5250 *      - Urgent data is expected.
5251 *      - There is no buffer space left
5252 *      - Unexpected TCP flags/window values/header lengths are received
5253 *        (detected by checking the TCP header against pred_flags)
5254 *      - Data is sent in both directions. Fast path only supports pure senders
5255 *        or pure receivers (this means either the sequence number or the ack
5256 *        value must stay constant)
5257 *      - Unexpected TCP option.
5258 *
5259 *      When these conditions are not satisfied it drops into a standard
5260 *      receive procedure patterned after RFC793 to handle all cases.
5261 *      The first three cases are guaranteed by proper pred_flags setting,
5262 *      the rest is checked inline. Fast processing is turned on in
5263 *      tcp_data_queue when everything is OK.
5264 */
5265void tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5266                         const struct tcphdr *th, unsigned int len)
5267{
5268        struct tcp_sock *tp = tcp_sk(sk);
5269
5270        if (unlikely(!sk->sk_rx_dst))
5271                inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5272        /*
5273         *      Header prediction.
5274         *      The code loosely follows the one in the famous
5275         *      "30 instruction TCP receive" Van Jacobson mail.
5276         *
5277         *      Van's trick is to deposit buffers into socket queue
5278         *      on a device interrupt, to call tcp_recv function
5279         *      on the receive process context and checksum and copy
5280         *      the buffer to user space. smart...
5281         *
5282         *      Our current scheme is not silly either but we take the
5283         *      extra cost of the net_bh soft interrupt processing...
5284         *      We do checksum and copy also but from device to kernel.
5285         */
5286
5287        tp->rx_opt.saw_tstamp = 0;
5288
5289        /*      pred_flags is 0xS?10 << 16 + snd_wnd
5290         *      if header_prediction is to be made
5291         *      'S' will always be tp->tcp_header_len >> 2
5292         *      '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5293         *  turn it off (when there are holes in the receive
5294         *       space for instance)
5295         *      PSH flag is ignored.
5296         */
5297
5298        if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5299            TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5300            !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5301                int tcp_header_len = tp->tcp_header_len;
5302
5303                /* Timestamp header prediction: tcp_header_len
5304                 * is automatically equal to th->doff*4 due to pred_flags
5305                 * match.
5306                 */
5307
5308                /* Check timestamp */
5309                if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5310                        /* No? Slow path! */
5311                        if (!tcp_parse_aligned_timestamp(tp, th))
5312                                goto slow_path;
5313
5314                        /* If PAWS failed, check it more carefully in slow path */
5315                        if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5316                                goto slow_path;
5317
5318                        /* DO NOT update ts_recent here, if checksum fails
5319                         * and timestamp was corrupted part, it will result
5320                         * in a hung connection since we will drop all
5321                         * future packets due to the PAWS test.
5322                         */
5323                }
5324
5325                if (len <= tcp_header_len) {
5326                        /* Bulk data transfer: sender */
5327                        if (len == tcp_header_len) {
5328                                /* Predicted packet is in window by definition.
5329                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5330                                 * Hence, check seq<=rcv_wup reduces to:
5331                                 */
5332                                if (tcp_header_len ==
5333                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5334                                    tp->rcv_nxt == tp->rcv_wup)
5335                                        tcp_store_ts_recent(tp);
5336
5337                                /* We know that such packets are checksummed
5338                                 * on entry.
5339                                 */
5340                                tcp_ack(sk, skb, 0);
5341                                __kfree_skb(skb);
5342                                tcp_data_snd_check(sk);
5343                                return;
5344                        } else { /* Header too small */
5345                                TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5346                                goto discard;
5347                        }
5348                } else {
5349                        int eaten = 0;
5350                        bool fragstolen = false;
5351
5352                        if (tp->ucopy.task == current &&
5353                            tp->copied_seq == tp->rcv_nxt &&
5354                            len - tcp_header_len <= tp->ucopy.len &&
5355                            sock_owned_by_user(sk)) {
5356                                __set_current_state(TASK_RUNNING);
5357
5358                                if (!tcp_copy_to_iovec(sk, skb, tcp_header_len)) {
5359                                        /* Predicted packet is in window by definition.
5360                                         * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5361                                         * Hence, check seq<=rcv_wup reduces to:
5362                                         */
5363                                        if (tcp_header_len ==
5364                                            (sizeof(struct tcphdr) +
5365                                             TCPOLEN_TSTAMP_ALIGNED) &&
5366                                            tp->rcv_nxt == tp->rcv_wup)
5367                                                tcp_store_ts_recent(tp);
5368
5369                                        tcp_rcv_rtt_measure_ts(sk, skb);
5370
5371                                        __skb_pull(skb, tcp_header_len);
5372                                        tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
5373                                        NET_INC_STATS(sock_net(sk),
5374                                                        LINUX_MIB_TCPHPHITSTOUSER);
5375                                        eaten = 1;
5376                                }
5377                        }
5378                        if (!eaten) {
5379                                if (tcp_checksum_complete(skb))
5380                                        goto csum_error;
5381
5382                                if ((int)skb->truesize > sk->sk_forward_alloc)
5383                                        goto step5;
5384
5385                                /* Predicted packet is in window by definition.
5386                                 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5387                                 * Hence, check seq<=rcv_wup reduces to:
5388                                 */
5389                                if (tcp_header_len ==
5390                                    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5391                                    tp->rcv_nxt == tp->rcv_wup)
5392                                        tcp_store_ts_recent(tp);
5393
5394                                tcp_rcv_rtt_measure_ts(sk, skb);
5395
5396                                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5397
5398                                /* Bulk data transfer: receiver */
5399                                eaten = tcp_queue_rcv(sk, skb, tcp_header_len,
5400                                                      &fragstolen);
5401                        }
5402
5403                        tcp_event_data_recv(sk, skb);
5404
5405                        if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5406                                /* Well, only one small jumplet in fast path... */
5407                                tcp_ack(sk, skb, FLAG_DATA);
5408                                tcp_data_snd_check(sk);
5409                                if (!inet_csk_ack_scheduled(sk))
5410                                        goto no_ack;
5411                        }
5412
5413                        __tcp_ack_snd_check(sk, 0);
5414no_ack:
5415                        if (eaten)
5416                                kfree_skb_partial(skb, fragstolen);
5417                        sk->sk_data_ready(sk);
5418                        return;
5419                }
5420        }
5421
5422slow_path:
5423        if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5424                goto csum_error;
5425
5426        if (!th->ack && !th->rst && !th->syn)
5427                goto discard;
5428
5429        /*
5430         *      Standard slow path.
5431         */
5432
5433        if (!tcp_validate_incoming(sk, skb, th, 1))
5434                return;
5435
5436step5:
5437        if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5438                goto discard;
5439
5440        tcp_rcv_rtt_measure_ts(sk, skb);
5441
5442        /* Process urgent data. */
5443        tcp_urg(sk, skb, th);
5444
5445        /* step 7: process the segment text */
5446        tcp_data_queue(sk, skb);
5447
5448        tcp_data_snd_check(sk);
5449        tcp_ack_snd_check(sk);
5450        return;
5451
5452csum_error:
5453        TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5454        TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5455
5456discard:
5457        tcp_drop(sk, skb);
5458}
5459EXPORT_SYMBOL(tcp_rcv_established);
5460
5461void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5462{
5463        struct tcp_sock *tp = tcp_sk(sk);
5464        struct inet_connection_sock *icsk = inet_csk(sk);
5465
5466        tcp_set_state(sk, TCP_ESTABLISHED);
5467
5468        if (skb) {
5469                icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
5470                security_inet_conn_established(sk, skb);
5471        }
5472
5473        /* Make sure socket is routed, for correct metrics.  */
5474        icsk->icsk_af_ops->rebuild_header(sk);
5475
5476        tcp_init_metrics(sk);
5477
5478        tcp_init_congestion_control(sk);
5479
5480        /* Prevent spurious tcp_cwnd_restart() on first data
5481         * packet.
5482         */
5483        tp->lsndtime = tcp_time_stamp;
5484
5485        tcp_init_buffer_space(sk);
5486
5487        if (sock_flag(sk, SOCK_KEEPOPEN))
5488                inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5489
5490        if (!tp->rx_opt.snd_wscale)
5491                __tcp_fast_path_on(tp, tp->snd_wnd);
5492        else
5493                tp->pred_flags = 0;
5494
5495        if (!sock_flag(sk, SOCK_DEAD)) {
5496                sk->sk_state_change(sk);
5497                sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5498        }
5499}
5500
5501static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
5502                                    struct tcp_fastopen_cookie *cookie)
5503{
5504        struct tcp_sock *tp = tcp_sk(sk);
5505        struct sk_buff *data = tp->syn_data ? tcp_write_queue_head(sk) : NULL;
5506        u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
5507        bool syn_drop = false;
5508
5509        if (mss == tp->rx_opt.user_mss) {
5510                struct tcp_options_received opt;
5511
5512                /* Get original SYNACK MSS value if user MSS sets mss_clamp */
5513                tcp_clear_options(&opt);
5514                opt.user_mss = opt.mss_clamp = 0;
5515                tcp_parse_options(synack, &opt, 0, NULL);
5516                mss = opt.mss_clamp;
5517        }
5518
5519        if (!tp->syn_fastopen) {
5520                /* Ignore an unsolicited cookie */
5521                cookie->len = -1;
5522        } else if (tp->total_retrans) {
5523                /* SYN timed out and the SYN-ACK neither has a cookie nor
5524                 * acknowledges data. Presumably the remote received only
5525                 * the retransmitted (regular) SYNs: either the original
5526                 * SYN-data or the corresponding SYN-ACK was dropped.
5527                 */
5528                syn_drop = (cookie->len < 0 && data);
5529        } else if (cookie->len < 0 && !tp->syn_data) {
5530                /* We requested a cookie but didn't get it. If we did not use
5531                 * the (old) exp opt format then try so next time (try_exp=1).
5532                 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
5533                 */
5534                try_exp = tp->syn_fastopen_exp ? 2 : 1;
5535        }
5536
5537        tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
5538
5539        if (data) { /* Retransmit unacked data in SYN */
5540                tcp_for_write_queue_from(data, sk) {
5541                        if (data == tcp_send_head(sk) ||
5542                            __tcp_retransmit_skb(sk, data, 1))
5543                                break;
5544                }
5545                tcp_rearm_rto(sk);
5546                NET_INC_STATS(sock_net(sk),
5547                                LINUX_MIB_TCPFASTOPENACTIVEFAIL);
5548                return true;
5549        }
5550        tp->syn_data_acked = tp->syn_data;
5551        if (tp->syn_data_acked)
5552                NET_INC_STATS(sock_net(sk),
5553                                LINUX_MIB_TCPFASTOPENACTIVE);
5554
5555        tcp_fastopen_add_skb(sk, synack);
5556
5557        return false;
5558}
5559
5560static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5561                                         const struct tcphdr *th)
5562{
5563        struct inet_connection_sock *icsk = inet_csk(sk);
5564        struct tcp_sock *tp = tcp_sk(sk);
5565        struct tcp_fastopen_cookie foc = { .len = -1 };
5566        int saved_clamp = tp->rx_opt.mss_clamp;
5567
5568        tcp_parse_options(skb, &tp->rx_opt, 0, &foc);
5569        if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
5570                tp->rx_opt.rcv_tsecr -= tp->tsoffset;
5571
5572        if (th->ack) {
5573                /* rfc793:
5574                 * "If the state is SYN-SENT then
5575                 *    first check the ACK bit
5576                 *      If the ACK bit is set
5577                 *        If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5578                 *        a reset (unless the RST bit is set, if so drop
5579                 *        the segment and return)"
5580                 */
5581                if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
5582                    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt))
5583                        goto reset_and_undo;
5584
5585                if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5586                    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5587                             tcp_time_stamp)) {
5588                        NET_INC_STATS(sock_net(sk),
5589                                        LINUX_MIB_PAWSACTIVEREJECTED);
5590                        goto reset_and_undo;
5591                }
5592
5593                /* Now ACK is acceptable.
5594                 *
5595                 * "If the RST bit is set
5596                 *    If the ACK was acceptable then signal the user "error:
5597                 *    connection reset", drop the segment, enter CLOSED state,
5598                 *    delete TCB, and return."
5599                 */
5600
5601                if (th->rst) {
5602                        tcp_reset(sk);
5603                        goto discard;
5604                }
5605
5606                /* rfc793:
5607                 *   "fifth, if neither of the SYN or RST bits is set then
5608                 *    drop the segment and return."
5609                 *
5610                 *    See note below!
5611                 *                                        --ANK(990513)
5612                 */
5613                if (!th->syn)
5614                        goto discard_and_undo;
5615
5616                /* rfc793:
5617                 *   "If the SYN bit is on ...
5618                 *    are acceptable then ...
5619                 *    (our SYN has been ACKed), change the connection
5620                 *    state to ESTABLISHED..."
5621                 */
5622
5623                tcp_ecn_rcv_synack(tp, th);
5624
5625                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5626                tcp_ack(sk, skb, FLAG_SLOWPATH);
5627
5628                /* Ok.. it's good. Set up sequence numbers and
5629                 * move to established.
5630                 */
5631                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5632                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5633
5634                /* RFC1323: The window in SYN & SYN/ACK segments is
5635                 * never scaled.
5636                 */
5637                tp->snd_wnd = ntohs(th->window);
5638
5639                if (!tp->rx_opt.wscale_ok) {
5640                        tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5641                        tp->window_clamp = min(tp->window_clamp, 65535U);
5642                }
5643
5644                if (tp->rx_opt.saw_tstamp) {
5645                        tp->rx_opt.tstamp_ok       = 1;
5646                        tp->tcp_header_len =
5647                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5648                        tp->advmss          -= TCPOLEN_TSTAMP_ALIGNED;
5649                        tcp_store_ts_recent(tp);
5650                } else {
5651                        tp->tcp_header_len = sizeof(struct tcphdr);
5652                }
5653
5654                if (tcp_is_sack(tp) && sysctl_tcp_fack)
5655                        tcp_enable_fack(tp);
5656
5657                tcp_mtup_init(sk);
5658                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5659                tcp_initialize_rcv_mss(sk);
5660
5661                /* Remember, tcp_poll() does not lock socket!
5662                 * Change state from SYN-SENT only after copied_seq
5663                 * is initialized. */
5664                tp->copied_seq = tp->rcv_nxt;
5665
5666                smp_mb();
5667
5668                tcp_finish_connect(sk, skb);
5669
5670                if ((tp->syn_fastopen || tp->syn_data) &&
5671                    tcp_rcv_fastopen_synack(sk, skb, &foc))
5672                        return -1;
5673
5674                if (sk->sk_write_pending ||
5675                    icsk->icsk_accept_queue.rskq_defer_accept ||
5676                    icsk->icsk_ack.pingpong) {
5677                        /* Save one ACK. Data will be ready after
5678                         * several ticks, if write_pending is set.
5679                         *
5680                         * It may be deleted, but with this feature tcpdumps
5681                         * look so _wonderfully_ clever, that I was not able
5682                         * to stand against the temptation 8)     --ANK
5683                         */
5684                        inet_csk_schedule_ack(sk);
5685                        icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5686                        tcp_enter_quickack_mode(sk);
5687                        inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5688                                                  TCP_DELACK_MAX, TCP_RTO_MAX);
5689
5690discard:
5691                        tcp_drop(sk, skb);
5692                        return 0;
5693                } else {
5694                        tcp_send_ack(sk);
5695                }
5696                return -1;
5697        }
5698
5699        /* No ACK in the segment */
5700
5701        if (th->rst) {
5702                /* rfc793:
5703                 * "If the RST bit is set
5704                 *
5705                 *      Otherwise (no ACK) drop the segment and return."
5706                 */
5707
5708                goto discard_and_undo;
5709        }
5710
5711        /* PAWS check. */
5712        if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5713            tcp_paws_reject(&tp->rx_opt, 0))
5714                goto discard_and_undo;
5715
5716        if (th->syn) {
5717                /* We see SYN without ACK. It is attempt of
5718                 * simultaneous connect with crossed SYNs.
5719                 * Particularly, it can be connect to self.
5720                 */
5721                tcp_set_state(sk, TCP_SYN_RECV);
5722
5723                if (tp->rx_opt.saw_tstamp) {
5724                        tp->rx_opt.tstamp_ok = 1;
5725                        tcp_store_ts_recent(tp);
5726                        tp->tcp_header_len =
5727                                sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5728                } else {
5729                        tp->tcp_header_len = sizeof(struct tcphdr);
5730                }
5731
5732                tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5733                tp->copied_seq = tp->rcv_nxt;
5734                tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5735
5736                /* RFC1323: The window in SYN & SYN/ACK segments is
5737                 * never scaled.
5738                 */
5739                tp->snd_wnd    = ntohs(th->window);
5740                tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
5741                tp->max_window = tp->snd_wnd;
5742
5743                tcp_ecn_rcv_syn(tp, th);
5744
5745                tcp_mtup_init(sk);
5746                tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5747                tcp_initialize_rcv_mss(sk);
5748
5749                tcp_send_synack(sk);
5750#if 0
5751                /* Note, we could accept data and URG from this segment.
5752                 * There are no obstacles to make this (except that we must
5753                 * either change tcp_recvmsg() to prevent it from returning data
5754                 * before 3WHS completes per RFC793, or employ TCP Fast Open).
5755                 *
5756                 * However, if we ignore data in ACKless segments sometimes,
5757                 * we have no reasons to accept it sometimes.
5758                 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5759                 * is not flawless. So, discard packet for sanity.
5760                 * Uncomment this return to process the data.
5761                 */
5762                return -1;
5763#else
5764                goto discard;
5765#endif
5766        }
5767        /* "fifth, if neither of the SYN or RST bits is set then
5768         * drop the segment and return."
5769         */
5770
5771discard_and_undo:
5772        tcp_clear_options(&tp->rx_opt);
5773        tp->rx_opt.mss_clamp = saved_clamp;
5774        goto discard;
5775
5776reset_and_undo:
5777        tcp_clear_options(&tp->rx_opt);
5778        tp->rx_opt.mss_clamp = saved_clamp;
5779        return 1;
5780}
5781
5782/*
5783 *      This function implements the receiving procedure of RFC 793 for
5784 *      all states except ESTABLISHED and TIME_WAIT.
5785 *      It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5786 *      address independent.
5787 */
5788
5789int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
5790{
5791        struct tcp_sock *tp = tcp_sk(sk);
5792        struct inet_connection_sock *icsk = inet_csk(sk);
5793        const struct tcphdr *th = tcp_hdr(skb);
5794        struct request_sock *req;
5795        int queued = 0;
5796        bool acceptable;
5797
5798        switch (sk->sk_state) {
5799        case TCP_CLOSE:
5800                goto discard;
5801
5802        case TCP_LISTEN:
5803                if (th->ack)
5804                        return 1;
5805
5806                if (th->rst)
5807                        goto discard;
5808
5809                if (th->syn) {
5810                        if (th->fin)
5811                                goto discard;
5812                        if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5813                                return 1;
5814
5815                        consume_skb(skb);
5816                        return 0;
5817                }
5818                goto discard;
5819
5820        case TCP_SYN_SENT:
5821                tp->rx_opt.saw_tstamp = 0;
5822                queued = tcp_rcv_synsent_state_process(sk, skb, th);
5823                if (queued >= 0)
5824                        return queued;
5825
5826                /* Do step6 onward by hand. */
5827                tcp_urg(sk, skb, th);
5828                __kfree_skb(skb);
5829                tcp_data_snd_check(sk);
5830                return 0;
5831        }
5832
5833        tp->rx_opt.saw_tstamp = 0;
5834        req = tp->fastopen_rsk;
5835        if (req) {
5836                WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
5837                    sk->sk_state != TCP_FIN_WAIT1);
5838
5839                if (!tcp_check_req(sk, skb, req, true))
5840                        goto discard;
5841        }
5842
5843        if (!th->ack && !th->rst && !th->syn)
5844                goto discard;
5845
5846        if (!tcp_validate_incoming(sk, skb, th, 0))
5847                return 0;
5848
5849        /* step 5: check the ACK field */
5850        acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
5851                                      FLAG_UPDATE_TS_RECENT) > 0;
5852
5853        switch (sk->sk_state) {
5854        case TCP_SYN_RECV:
5855                if (!acceptable)
5856                        return 1;
5857
5858                if (!tp->srtt_us)
5859                        tcp_synack_rtt_meas(sk, req);
5860
5861                /* Once we leave TCP_SYN_RECV, we no longer need req
5862                 * so release it.
5863                 */
5864                if (req) {
5865                        tp->total_retrans = req->num_retrans;
5866                        reqsk_fastopen_remove(sk, req, false);
5867                } else {
5868                        /* Make sure socket is routed, for correct metrics. */
5869                        icsk->icsk_af_ops->rebuild_header(sk);
5870                        tcp_init_congestion_control(sk);
5871
5872                        tcp_mtup_init(sk);
5873                        tp->copied_seq = tp->rcv_nxt;
5874                        tcp_init_buffer_space(sk);
5875                }
5876                smp_mb();
5877                tcp_set_state(sk, TCP_ESTABLISHED);
5878                sk->sk_state_change(sk);
5879
5880                /* Note, that this wakeup is only for marginal crossed SYN case.
5881                 * Passively open sockets are not waked up, because
5882                 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
5883                 */
5884                if (sk->sk_socket)
5885                        sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5886
5887                tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5888                tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
5889                tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5890
5891                if (tp->rx_opt.tstamp_ok)
5892                        tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5893
5894                if (req) {
5895                        /* Re-arm the timer because data may have been sent out.
5896                         * This is similar to the regular data transmission case
5897                         * when new data has just been ack'ed.
5898                         *
5899                         * (TFO) - we could try to be more aggressive and
5900                         * retransmitting any data sooner based on when they
5901                         * are sent out.
5902                         */
5903                        tcp_rearm_rto(sk);
5904                } else
5905                        tcp_init_metrics(sk);
5906
5907                tcp_update_pacing_rate(sk);
5908
5909                /* Prevent spurious tcp_cwnd_restart() on first data packet */
5910                tp->lsndtime = tcp_time_stamp;
5911
5912                tcp_initialize_rcv_mss(sk);
5913                tcp_fast_path_on(tp);
5914                break;
5915
5916        case TCP_FIN_WAIT1: {
5917                struct dst_entry *dst;
5918                int tmo;
5919
5920                /* If we enter the TCP_FIN_WAIT1 state and we are a
5921                 * Fast Open socket and this is the first acceptable
5922                 * ACK we have received, this would have acknowledged
5923                 * our SYNACK so stop the SYNACK timer.
5924                 */
5925                if (req) {
5926                        /* Return RST if ack_seq is invalid.
5927                         * Note that RFC793 only says to generate a
5928                         * DUPACK for it but for TCP Fast Open it seems
5929                         * better to treat this case like TCP_SYN_RECV
5930                         * above.
5931                         */
5932                        if (!acceptable)
5933                                return 1;
5934                        /* We no longer need the request sock. */
5935                        reqsk_fastopen_remove(sk, req, false);
5936                        tcp_rearm_rto(sk);
5937                }
5938                if (tp->snd_una != tp->write_seq)
5939                        break;
5940
5941                tcp_set_state(sk, TCP_FIN_WAIT2);
5942                sk->sk_shutdown |= SEND_SHUTDOWN;
5943
5944                dst = __sk_dst_get(sk);
5945                if (dst)
5946                        dst_confirm(dst);
5947
5948                if (!sock_flag(sk, SOCK_DEAD)) {
5949                        /* Wake up lingering close() */
5950                        sk->sk_state_change(sk);
5951                        break;
5952                }
5953
5954                if (tp->linger2 < 0 ||
5955                    (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5956                     after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5957                        tcp_done(sk);
5958                        NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5959                        return 1;
5960                }
5961
5962                tmo = tcp_fin_time(sk);
5963                if (tmo > TCP_TIMEWAIT_LEN) {
5964                        inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5965                } else if (th->fin || sock_owned_by_user(sk)) {
5966                        /* Bad case. We could lose such FIN otherwise.
5967                         * It is not a big problem, but it looks confusing
5968                         * and not so rare event. We still can lose it now,
5969                         * if it spins in bh_lock_sock(), but it is really
5970                         * marginal case.
5971                         */
5972                        inet_csk_reset_keepalive_timer(sk, tmo);
5973                } else {
5974                        tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5975                        goto discard;
5976                }
5977                break;
5978        }
5979
5980        case TCP_CLOSING:
5981                if (tp->snd_una == tp->write_seq) {
5982                        tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5983                        goto discard;
5984                }
5985                break;
5986
5987        case TCP_LAST_ACK:
5988                if (tp->snd_una == tp->write_seq) {
5989                        tcp_update_metrics(sk);
5990                        tcp_done(sk);
5991                        goto discard;
5992                }
5993                break;
5994        }
5995
5996        /* step 6: check the URG bit */
5997        tcp_urg(sk, skb, th);
5998
5999        /* step 7: process the segment text */
6000        switch (sk->sk_state) {
6001        case TCP_CLOSE_WAIT:
6002        case TCP_CLOSING:
6003        case TCP_LAST_ACK:
6004                if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
6005                        break;
6006        case TCP_FIN_WAIT1:
6007        case TCP_FIN_WAIT2:
6008                /* RFC 793 says to queue data in these states,
6009                 * RFC 1122 says we MUST send a reset.
6010                 * BSD 4.4 also does reset.
6011                 */
6012                if (sk->sk_shutdown & RCV_SHUTDOWN) {
6013                        if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6014                            after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6015                                NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6016                                tcp_reset(sk);
6017                                return 1;
6018                        }
6019                }
6020                /* Fall through */
6021        case TCP_ESTABLISHED:
6022                tcp_data_queue(sk, skb);
6023                queued = 1;
6024                break;
6025        }
6026
6027        /* tcp_data could move socket to TIME-WAIT */
6028        if (sk->sk_state != TCP_CLOSE) {
6029                tcp_data_snd_check(sk);
6030                tcp_ack_snd_check(sk);
6031        }
6032
6033        if (!queued) {
6034discard:
6035                tcp_drop(sk, skb);
6036        }
6037        return 0;
6038}
6039EXPORT_SYMBOL(tcp_rcv_state_process);
6040
6041static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6042{
6043        struct inet_request_sock *ireq = inet_rsk(req);
6044
6045        if (family == AF_INET)
6046                net_dbg_ratelimited("drop open request from %pI4/%u\n",
6047                                    &ireq->ir_rmt_addr, port);
6048#if IS_ENABLED(CONFIG_IPV6)
6049        else if (family == AF_INET6)
6050                net_dbg_ratelimited("drop open request from %pI6/%u\n",
6051                                    &ireq->ir_v6_rmt_addr, port);
6052#endif
6053}
6054
6055/* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6056 *
6057 * If we receive a SYN packet with these bits set, it means a
6058 * network is playing bad games with TOS bits. In order to
6059 * avoid possible false congestion notifications, we disable
6060 * TCP ECN negotiation.
6061 *
6062 * Exception: tcp_ca wants ECN. This is required for DCTCP
6063 * congestion control: Linux DCTCP asserts ECT on all packets,
6064 * including SYN, which is most optimal solution; however,
6065 * others, such as FreeBSD do not.
6066 */
6067static void tcp_ecn_create_request(struct request_sock *req,
6068                                   const struct sk_buff *skb,
6069                                   const struct sock *listen_sk,
6070                                   const struct dst_entry *dst)
6071{
6072        const struct tcphdr *th = tcp_hdr(skb);
6073        const struct net *net = sock_net(listen_sk);
6074        bool th_ecn = th->ece && th->cwr;
6075        bool ect, ecn_ok;
6076        u32 ecn_ok_dst;
6077
6078        if (!th_ecn)
6079                return;
6080
6081        ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6082        ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6083        ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6084
6085        if ((!ect && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6086            (ecn_ok_dst & DST_FEATURE_ECN_CA))
6087                inet_rsk(req)->ecn_ok = 1;
6088}
6089
6090static void tcp_openreq_init(struct request_sock *req,
6091                             const struct tcp_options_received *rx_opt,
6092                             struct sk_buff *skb, const struct sock *sk)
6093{
6094        struct inet_request_sock *ireq = inet_rsk(req);
6095
6096        req->rsk_rcv_wnd = 0;           /* So that tcp_send_synack() knows! */
6097        req->cookie_ts = 0;
6098        tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6099        tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6100        skb_mstamp_get(&tcp_rsk(req)->snt_synack);
6101        tcp_rsk(req)->last_oow_ack_time = 0;
6102        req->mss = rx_opt->mss_clamp;
6103        req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6104        ireq->tstamp_ok = rx_opt->tstamp_ok;
6105        ireq->sack_ok = rx_opt->sack_ok;
6106        ireq->snd_wscale = rx_opt->snd_wscale;
6107        ireq->wscale_ok = rx_opt->wscale_ok;
6108        ireq->acked = 0;
6109        ireq->ecn_ok = 0;
6110        ireq->ir_rmt_port = tcp_hdr(skb)->source;
6111        ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6112        ireq->ir_mark = inet_request_mark(sk, skb);
6113}
6114
6115struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6116                                      struct sock *sk_listener,
6117                                      bool attach_listener)
6118{
6119        struct request_sock *req = reqsk_alloc(ops, sk_listener,
6120                                               attach_listener);
6121
6122        if (req) {
6123                struct inet_request_sock *ireq = inet_rsk(req);
6124
6125                kmemcheck_annotate_bitfield(ireq, flags);
6126                ireq->opt = NULL;
6127                atomic64_set(&ireq->ir_cookie, 0);
6128                ireq->ireq_state = TCP_NEW_SYN_RECV;
6129                write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6130                ireq->ireq_family = sk_listener->sk_family;
6131        }
6132
6133        return req;
6134}
6135EXPORT_SYMBOL(inet_reqsk_alloc);
6136
6137/*
6138 * Return true if a syncookie should be sent
6139 */
6140static bool tcp_syn_flood_action(const struct sock *sk,
6141                                 const struct sk_buff *skb,
6142                                 const char *proto)
6143{
6144        struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6145        const char *msg = "Dropping request";
6146        bool want_cookie = false;
6147        struct net *net = sock_net(sk);
6148
6149#ifdef CONFIG_SYN_COOKIES
6150        if (net->ipv4.sysctl_tcp_syncookies) {
6151                msg = "Sending cookies";
6152                want_cookie = true;
6153                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6154        } else
6155#endif
6156                __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6157
6158        if (!queue->synflood_warned &&
6159            net->ipv4.sysctl_tcp_syncookies != 2 &&
6160            xchg(&queue->synflood_warned, 1) == 0)
6161                pr_info("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6162                        proto, ntohs(tcp_hdr(skb)->dest), msg);
6163
6164        return want_cookie;
6165}
6166
6167static void tcp_reqsk_record_syn(const struct sock *sk,
6168                                 struct request_sock *req,
6169                                 const struct sk_buff *skb)
6170{
6171        if (tcp_sk(sk)->save_syn) {
6172                u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6173                u32 *copy;
6174
6175                copy = kmalloc(len + sizeof(u32), GFP_ATOMIC);
6176                if (copy) {
6177                        copy[0] = len;
6178                        memcpy(&copy[1], skb_network_header(skb), len);
6179                        req->saved_syn = copy;
6180                }
6181        }
6182}
6183
6184int tcp_conn_request(struct request_sock_ops *rsk_ops,
6185                     const struct tcp_request_sock_ops *af_ops,
6186                     struct sock *sk, struct sk_buff *skb)
6187{
6188        struct tcp_fastopen_cookie foc = { .len = -1 };
6189        __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6190        struct tcp_options_received tmp_opt;
6191        struct tcp_sock *tp = tcp_sk(sk);
6192        struct net *net = sock_net(sk);
6193        struct sock *fastopen_sk = NULL;
6194        struct dst_entry *dst = NULL;
6195        struct request_sock *req;
6196        bool want_cookie = false;
6197        struct flowi fl;
6198
6199        /* TW buckets are converted to open requests without
6200         * limitations, they conserve resources and peer is
6201         * evidently real one.
6202         */
6203        if ((net->ipv4.sysctl_tcp_syncookies == 2 ||
6204             inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6205                want_cookie = tcp_syn_flood_action(sk, skb, rsk_ops->slab_name);
6206                if (!want_cookie)
6207                        goto drop;
6208        }
6209
6210
6211        /* Accept backlog is full. If we have already queued enough
6212         * of warm entries in syn queue, drop request. It is better than
6213         * clogging syn queue with openreqs with exponentially increasing
6214         * timeout.
6215         */
6216        if (sk_acceptq_is_full(sk) && inet_csk_reqsk_queue_young(sk) > 1) {
6217                NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6218                goto drop;
6219        }
6220
6221        req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6222        if (!req)
6223                goto drop;
6224
6225        tcp_rsk(req)->af_specific = af_ops;
6226
6227        tcp_clear_options(&tmp_opt);
6228        tmp_opt.mss_clamp = af_ops->mss_clamp;
6229        tmp_opt.user_mss  = tp->rx_opt.user_mss;
6230        tcp_parse_options(skb, &tmp_opt, 0, want_cookie ? NULL : &foc);
6231
6232        if (want_cookie && !tmp_opt.saw_tstamp)
6233                tcp_clear_options(&tmp_opt);
6234
6235        tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6236        tcp_openreq_init(req, &tmp_opt, skb, sk);
6237
6238        /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6239        inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6240
6241        af_ops->init_req(req, sk, skb);
6242
6243        if (security_inet_conn_request(sk, skb, req))
6244                goto drop_and_free;
6245
6246        if (!want_cookie && !isn) {
6247                /* VJ's idea. We save last timestamp seen
6248                 * from the destination in peer table, when entering
6249                 * state TIME-WAIT, and check against it before
6250                 * accepting new connection request.
6251                 *
6252                 * If "isn" is not zero, this request hit alive
6253                 * timewait bucket, so that all the necessary checks
6254                 * are made in the function processing timewait state.
6255                 */
6256                if (tcp_death_row.sysctl_tw_recycle) {
6257                        bool strict;
6258
6259                        dst = af_ops->route_req(sk, &fl, req, &strict);
6260
6261                        if (dst && strict &&
6262                            !tcp_peer_is_proven(req, dst, true,
6263                                                tmp_opt.saw_tstamp)) {
6264                                NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSPASSIVEREJECTED);
6265                                goto drop_and_release;
6266                        }
6267                }
6268                /* Kill the following clause, if you dislike this way. */
6269                else if (!net->ipv4.sysctl_tcp_syncookies &&
6270                         (sysctl_max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6271                          (sysctl_max_syn_backlog >> 2)) &&
6272                         !tcp_peer_is_proven(req, dst, false,
6273                                             tmp_opt.saw_tstamp)) {
6274                        /* Without syncookies last quarter of
6275                         * backlog is filled with destinations,
6276                         * proven to be alive.
6277                         * It means that we continue to communicate
6278                         * to destinations, already remembered
6279                         * to the moment of synflood.
6280                         */
6281                        pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6282                                    rsk_ops->family);
6283                        goto drop_and_release;
6284                }
6285
6286                isn = af_ops->init_seq(skb);
6287        }
6288        if (!dst) {
6289                dst = af_ops->route_req(sk, &fl, req, NULL);
6290                if (!dst)
6291                        goto drop_and_free;
6292        }
6293
6294        tcp_ecn_create_request(req, skb, sk, dst);
6295
6296        if (want_cookie) {
6297                isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6298                req->cookie_ts = tmp_opt.tstamp_ok;
6299                if (!tmp_opt.tstamp_ok)
6300                        inet_rsk(req)->ecn_ok = 0;
6301        }
6302
6303        tcp_rsk(req)->snt_isn = isn;
6304        tcp_rsk(req)->txhash = net_tx_rndhash();
6305        tcp_openreq_init_rwin(req, sk, dst);
6306        if (!want_cookie) {
6307                tcp_reqsk_record_syn(sk, req, skb);
6308                fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6309        }
6310        if (fastopen_sk) {
6311                af_ops->send_synack(fastopen_sk, dst, &fl, req,
6312                                    &foc, TCP_SYNACK_FASTOPEN);
6313                /* Add the child socket directly into the accept queue */
6314                inet_csk_reqsk_queue_add(sk, req, fastopen_sk);
6315                sk->sk_data_ready(sk);
6316                bh_unlock_sock(fastopen_sk);
6317                sock_put(fastopen_sk);
6318        } else {
6319                tcp_rsk(req)->tfo_listener = false;
6320                if (!want_cookie)
6321                        inet_csk_reqsk_queue_hash_add(sk, req, TCP_TIMEOUT_INIT);
6322                af_ops->send_synack(sk, dst, &fl, req, &foc,
6323                                    !want_cookie ? TCP_SYNACK_NORMAL :
6324                                                   TCP_SYNACK_COOKIE);
6325                if (want_cookie) {
6326                        reqsk_free(req);
6327                        return 0;
6328                }
6329        }
6330        reqsk_put(req);
6331        return 0;
6332
6333drop_and_release:
6334        dst_release(dst);
6335drop_and_free:
6336        reqsk_free(req);
6337drop:
6338        tcp_listendrop(sk);
6339        return 0;
6340}
6341EXPORT_SYMBOL(tcp_conn_request);
6342