linux/net/socket.c
<<
>>
Prefs
   1/*
   2 * NET          An implementation of the SOCKET network access protocol.
   3 *
   4 * Version:     @(#)socket.c    1.1.93  18/02/95
   5 *
   6 * Authors:     Orest Zborowski, <obz@Kodak.COM>
   7 *              Ross Biro
   8 *              Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
   9 *
  10 * Fixes:
  11 *              Anonymous       :       NOTSOCK/BADF cleanup. Error fix in
  12 *                                      shutdown()
  13 *              Alan Cox        :       verify_area() fixes
  14 *              Alan Cox        :       Removed DDI
  15 *              Jonathan Kamens :       SOCK_DGRAM reconnect bug
  16 *              Alan Cox        :       Moved a load of checks to the very
  17 *                                      top level.
  18 *              Alan Cox        :       Move address structures to/from user
  19 *                                      mode above the protocol layers.
  20 *              Rob Janssen     :       Allow 0 length sends.
  21 *              Alan Cox        :       Asynchronous I/O support (cribbed from the
  22 *                                      tty drivers).
  23 *              Niibe Yutaka    :       Asynchronous I/O for writes (4.4BSD style)
  24 *              Jeff Uphoff     :       Made max number of sockets command-line
  25 *                                      configurable.
  26 *              Matti Aarnio    :       Made the number of sockets dynamic,
  27 *                                      to be allocated when needed, and mr.
  28 *                                      Uphoff's max is used as max to be
  29 *                                      allowed to allocate.
  30 *              Linus           :       Argh. removed all the socket allocation
  31 *                                      altogether: it's in the inode now.
  32 *              Alan Cox        :       Made sock_alloc()/sock_release() public
  33 *                                      for NetROM and future kernel nfsd type
  34 *                                      stuff.
  35 *              Alan Cox        :       sendmsg/recvmsg basics.
  36 *              Tom Dyas        :       Export net symbols.
  37 *              Marcin Dalecki  :       Fixed problems with CONFIG_NET="n".
  38 *              Alan Cox        :       Added thread locking to sys_* calls
  39 *                                      for sockets. May have errors at the
  40 *                                      moment.
  41 *              Kevin Buhr      :       Fixed the dumb errors in the above.
  42 *              Andi Kleen      :       Some small cleanups, optimizations,
  43 *                                      and fixed a copy_from_user() bug.
  44 *              Tigran Aivazian :       sys_send(args) calls sys_sendto(args, NULL, 0)
  45 *              Tigran Aivazian :       Made listen(2) backlog sanity checks
  46 *                                      protocol-independent
  47 *
  48 *
  49 *              This program is free software; you can redistribute it and/or
  50 *              modify it under the terms of the GNU General Public License
  51 *              as published by the Free Software Foundation; either version
  52 *              2 of the License, or (at your option) any later version.
  53 *
  54 *
  55 *      This module is effectively the top level interface to the BSD socket
  56 *      paradigm.
  57 *
  58 *      Based upon Swansea University Computer Society NET3.039
  59 */
  60
  61#include <linux/mm.h>
  62#include <linux/socket.h>
  63#include <linux/file.h>
  64#include <linux/net.h>
  65#include <linux/interrupt.h>
  66#include <linux/thread_info.h>
  67#include <linux/rcupdate.h>
  68#include <linux/netdevice.h>
  69#include <linux/proc_fs.h>
  70#include <linux/seq_file.h>
  71#include <linux/mutex.h>
  72#include <linux/if_bridge.h>
  73#include <linux/if_frad.h>
  74#include <linux/if_vlan.h>
  75#include <linux/ptp_classify.h>
  76#include <linux/init.h>
  77#include <linux/poll.h>
  78#include <linux/cache.h>
  79#include <linux/module.h>
  80#include <linux/highmem.h>
  81#include <linux/mount.h>
  82#include <linux/security.h>
  83#include <linux/syscalls.h>
  84#include <linux/compat.h>
  85#include <linux/kmod.h>
  86#include <linux/audit.h>
  87#include <linux/wireless.h>
  88#include <linux/nsproxy.h>
  89#include <linux/magic.h>
  90#include <linux/slab.h>
  91#include <linux/xattr.h>
  92
  93#include <asm/uaccess.h>
  94#include <asm/unistd.h>
  95
  96#include <net/compat.h>
  97#include <net/wext.h>
  98#include <net/cls_cgroup.h>
  99
 100#include <net/sock.h>
 101#include <linux/netfilter.h>
 102
 103#include <linux/if_tun.h>
 104#include <linux/ipv6_route.h>
 105#include <linux/route.h>
 106#include <linux/sockios.h>
 107#include <linux/atalk.h>
 108#include <net/busy_poll.h>
 109#include <linux/errqueue.h>
 110
 111#ifdef CONFIG_NET_RX_BUSY_POLL
 112unsigned int sysctl_net_busy_read __read_mostly;
 113unsigned int sysctl_net_busy_poll __read_mostly;
 114#endif
 115
 116static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
 117static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
 118static int sock_mmap(struct file *file, struct vm_area_struct *vma);
 119
 120static int sock_close(struct inode *inode, struct file *file);
 121static unsigned int sock_poll(struct file *file,
 122                              struct poll_table_struct *wait);
 123static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 124#ifdef CONFIG_COMPAT
 125static long compat_sock_ioctl(struct file *file,
 126                              unsigned int cmd, unsigned long arg);
 127#endif
 128static int sock_fasync(int fd, struct file *filp, int on);
 129static ssize_t sock_sendpage(struct file *file, struct page *page,
 130                             int offset, size_t size, loff_t *ppos, int more);
 131static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 132                                struct pipe_inode_info *pipe, size_t len,
 133                                unsigned int flags);
 134
 135/*
 136 *      Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
 137 *      in the operation structures but are done directly via the socketcall() multiplexor.
 138 */
 139
 140static const struct file_operations socket_file_ops = {
 141        .owner =        THIS_MODULE,
 142        .llseek =       no_llseek,
 143        .read_iter =    sock_read_iter,
 144        .write_iter =   sock_write_iter,
 145        .poll =         sock_poll,
 146        .unlocked_ioctl = sock_ioctl,
 147#ifdef CONFIG_COMPAT
 148        .compat_ioctl = compat_sock_ioctl,
 149#endif
 150        .mmap =         sock_mmap,
 151        .release =      sock_close,
 152        .fasync =       sock_fasync,
 153        .sendpage =     sock_sendpage,
 154        .splice_write = generic_splice_sendpage,
 155        .splice_read =  sock_splice_read,
 156};
 157
 158/*
 159 *      The protocol list. Each protocol is registered in here.
 160 */
 161
 162static DEFINE_SPINLOCK(net_family_lock);
 163static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
 164
 165/*
 166 *      Statistics counters of the socket lists
 167 */
 168
 169static DEFINE_PER_CPU(int, sockets_in_use);
 170
 171/*
 172 * Support routines.
 173 * Move socket addresses back and forth across the kernel/user
 174 * divide and look after the messy bits.
 175 */
 176
 177/**
 178 *      move_addr_to_kernel     -       copy a socket address into kernel space
 179 *      @uaddr: Address in user space
 180 *      @kaddr: Address in kernel space
 181 *      @ulen: Length in user space
 182 *
 183 *      The address is copied into kernel space. If the provided address is
 184 *      too long an error code of -EINVAL is returned. If the copy gives
 185 *      invalid addresses -EFAULT is returned. On a success 0 is returned.
 186 */
 187
 188int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
 189{
 190        if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
 191                return -EINVAL;
 192        if (ulen == 0)
 193                return 0;
 194        if (copy_from_user(kaddr, uaddr, ulen))
 195                return -EFAULT;
 196        return audit_sockaddr(ulen, kaddr);
 197}
 198
 199/**
 200 *      move_addr_to_user       -       copy an address to user space
 201 *      @kaddr: kernel space address
 202 *      @klen: length of address in kernel
 203 *      @uaddr: user space address
 204 *      @ulen: pointer to user length field
 205 *
 206 *      The value pointed to by ulen on entry is the buffer length available.
 207 *      This is overwritten with the buffer space used. -EINVAL is returned
 208 *      if an overlong buffer is specified or a negative buffer size. -EFAULT
 209 *      is returned if either the buffer or the length field are not
 210 *      accessible.
 211 *      After copying the data up to the limit the user specifies, the true
 212 *      length of the data is written over the length limit the user
 213 *      specified. Zero is returned for a success.
 214 */
 215
 216static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
 217                             void __user *uaddr, int __user *ulen)
 218{
 219        int err;
 220        int len;
 221
 222        BUG_ON(klen > sizeof(struct sockaddr_storage));
 223        err = get_user(len, ulen);
 224        if (err)
 225                return err;
 226        if (len > klen)
 227                len = klen;
 228        if (len < 0)
 229                return -EINVAL;
 230        if (len) {
 231                if (audit_sockaddr(klen, kaddr))
 232                        return -ENOMEM;
 233                if (copy_to_user(uaddr, kaddr, len))
 234                        return -EFAULT;
 235        }
 236        /*
 237         *      "fromlen shall refer to the value before truncation.."
 238         *                      1003.1g
 239         */
 240        return __put_user(klen, ulen);
 241}
 242
 243static struct kmem_cache *sock_inode_cachep __read_mostly;
 244
 245static struct inode *sock_alloc_inode(struct super_block *sb)
 246{
 247        struct socket_alloc *ei;
 248        struct socket_wq *wq;
 249
 250        ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
 251        if (!ei)
 252                return NULL;
 253        wq = kmalloc(sizeof(*wq), GFP_KERNEL);
 254        if (!wq) {
 255                kmem_cache_free(sock_inode_cachep, ei);
 256                return NULL;
 257        }
 258        init_waitqueue_head(&wq->wait);
 259        wq->fasync_list = NULL;
 260        wq->flags = 0;
 261        RCU_INIT_POINTER(ei->socket.wq, wq);
 262
 263        ei->socket.state = SS_UNCONNECTED;
 264        ei->socket.flags = 0;
 265        ei->socket.ops = NULL;
 266        ei->socket.sk = NULL;
 267        ei->socket.file = NULL;
 268
 269        return &ei->vfs_inode;
 270}
 271
 272static void sock_destroy_inode(struct inode *inode)
 273{
 274        struct socket_alloc *ei;
 275        struct socket_wq *wq;
 276
 277        ei = container_of(inode, struct socket_alloc, vfs_inode);
 278        wq = rcu_dereference_protected(ei->socket.wq, 1);
 279        kfree_rcu(wq, rcu);
 280        kmem_cache_free(sock_inode_cachep, ei);
 281}
 282
 283static void init_once(void *foo)
 284{
 285        struct socket_alloc *ei = (struct socket_alloc *)foo;
 286
 287        inode_init_once(&ei->vfs_inode);
 288}
 289
 290static int init_inodecache(void)
 291{
 292        sock_inode_cachep = kmem_cache_create("sock_inode_cache",
 293                                              sizeof(struct socket_alloc),
 294                                              0,
 295                                              (SLAB_HWCACHE_ALIGN |
 296                                               SLAB_RECLAIM_ACCOUNT |
 297                                               SLAB_MEM_SPREAD | SLAB_ACCOUNT),
 298                                              init_once);
 299        if (sock_inode_cachep == NULL)
 300                return -ENOMEM;
 301        return 0;
 302}
 303
 304static const struct super_operations sockfs_ops = {
 305        .alloc_inode    = sock_alloc_inode,
 306        .destroy_inode  = sock_destroy_inode,
 307        .statfs         = simple_statfs,
 308};
 309
 310/*
 311 * sockfs_dname() is called from d_path().
 312 */
 313static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
 314{
 315        return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
 316                                d_inode(dentry)->i_ino);
 317}
 318
 319static const struct dentry_operations sockfs_dentry_operations = {
 320        .d_dname  = sockfs_dname,
 321};
 322
 323static struct dentry *sockfs_mount(struct file_system_type *fs_type,
 324                         int flags, const char *dev_name, void *data)
 325{
 326        return mount_pseudo(fs_type, "socket:", &sockfs_ops,
 327                &sockfs_dentry_operations, SOCKFS_MAGIC);
 328}
 329
 330static struct vfsmount *sock_mnt __read_mostly;
 331
 332static struct file_system_type sock_fs_type = {
 333        .name =         "sockfs",
 334        .mount =        sockfs_mount,
 335        .kill_sb =      kill_anon_super,
 336};
 337
 338/*
 339 *      Obtains the first available file descriptor and sets it up for use.
 340 *
 341 *      These functions create file structures and maps them to fd space
 342 *      of the current process. On success it returns file descriptor
 343 *      and file struct implicitly stored in sock->file.
 344 *      Note that another thread may close file descriptor before we return
 345 *      from this function. We use the fact that now we do not refer
 346 *      to socket after mapping. If one day we will need it, this
 347 *      function will increment ref. count on file by 1.
 348 *
 349 *      In any case returned fd MAY BE not valid!
 350 *      This race condition is unavoidable
 351 *      with shared fd spaces, we cannot solve it inside kernel,
 352 *      but we take care of internal coherence yet.
 353 */
 354
 355struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
 356{
 357        struct qstr name = { .name = "" };
 358        struct path path;
 359        struct file *file;
 360
 361        if (dname) {
 362                name.name = dname;
 363                name.len = strlen(name.name);
 364        } else if (sock->sk) {
 365                name.name = sock->sk->sk_prot_creator->name;
 366                name.len = strlen(name.name);
 367        }
 368        path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
 369        if (unlikely(!path.dentry))
 370                return ERR_PTR(-ENOMEM);
 371        path.mnt = mntget(sock_mnt);
 372
 373        d_instantiate(path.dentry, SOCK_INODE(sock));
 374
 375        file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
 376                  &socket_file_ops);
 377        if (IS_ERR(file)) {
 378                /* drop dentry, keep inode */
 379                ihold(d_inode(path.dentry));
 380                path_put(&path);
 381                return file;
 382        }
 383
 384        sock->file = file;
 385        file->f_flags = O_RDWR | (flags & O_NONBLOCK);
 386        file->private_data = sock;
 387        return file;
 388}
 389EXPORT_SYMBOL(sock_alloc_file);
 390
 391static int sock_map_fd(struct socket *sock, int flags)
 392{
 393        struct file *newfile;
 394        int fd = get_unused_fd_flags(flags);
 395        if (unlikely(fd < 0))
 396                return fd;
 397
 398        newfile = sock_alloc_file(sock, flags, NULL);
 399        if (likely(!IS_ERR(newfile))) {
 400                fd_install(fd, newfile);
 401                return fd;
 402        }
 403
 404        put_unused_fd(fd);
 405        return PTR_ERR(newfile);
 406}
 407
 408struct socket *sock_from_file(struct file *file, int *err)
 409{
 410        if (file->f_op == &socket_file_ops)
 411                return file->private_data;      /* set in sock_map_fd */
 412
 413        *err = -ENOTSOCK;
 414        return NULL;
 415}
 416EXPORT_SYMBOL(sock_from_file);
 417
 418/**
 419 *      sockfd_lookup - Go from a file number to its socket slot
 420 *      @fd: file handle
 421 *      @err: pointer to an error code return
 422 *
 423 *      The file handle passed in is locked and the socket it is bound
 424 *      too is returned. If an error occurs the err pointer is overwritten
 425 *      with a negative errno code and NULL is returned. The function checks
 426 *      for both invalid handles and passing a handle which is not a socket.
 427 *
 428 *      On a success the socket object pointer is returned.
 429 */
 430
 431struct socket *sockfd_lookup(int fd, int *err)
 432{
 433        struct file *file;
 434        struct socket *sock;
 435
 436        file = fget(fd);
 437        if (!file) {
 438                *err = -EBADF;
 439                return NULL;
 440        }
 441
 442        sock = sock_from_file(file, err);
 443        if (!sock)
 444                fput(file);
 445        return sock;
 446}
 447EXPORT_SYMBOL(sockfd_lookup);
 448
 449static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
 450{
 451        struct fd f = fdget(fd);
 452        struct socket *sock;
 453
 454        *err = -EBADF;
 455        if (f.file) {
 456                sock = sock_from_file(f.file, err);
 457                if (likely(sock)) {
 458                        *fput_needed = f.flags;
 459                        return sock;
 460                }
 461                fdput(f);
 462        }
 463        return NULL;
 464}
 465
 466#define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
 467#define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
 468#define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
 469static ssize_t sockfs_getxattr(struct dentry *dentry, struct inode *inode,
 470                               const char *name, void *value, size_t size)
 471{
 472        const char *proto_name;
 473        size_t proto_size;
 474        int error;
 475
 476        error = -ENODATA;
 477        if (!strncmp(name, XATTR_NAME_SOCKPROTONAME, XATTR_NAME_SOCKPROTONAME_LEN)) {
 478                proto_name = dentry->d_name.name;
 479                proto_size = strlen(proto_name);
 480
 481                if (value) {
 482                        error = -ERANGE;
 483                        if (proto_size + 1 > size)
 484                                goto out;
 485
 486                        strncpy(value, proto_name, proto_size + 1);
 487                }
 488                error = proto_size + 1;
 489        }
 490
 491out:
 492        return error;
 493}
 494
 495static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
 496                                size_t size)
 497{
 498        ssize_t len;
 499        ssize_t used = 0;
 500
 501        len = security_inode_listsecurity(d_inode(dentry), buffer, size);
 502        if (len < 0)
 503                return len;
 504        used += len;
 505        if (buffer) {
 506                if (size < used)
 507                        return -ERANGE;
 508                buffer += len;
 509        }
 510
 511        len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
 512        used += len;
 513        if (buffer) {
 514                if (size < used)
 515                        return -ERANGE;
 516                memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
 517                buffer += len;
 518        }
 519
 520        return used;
 521}
 522
 523static const struct inode_operations sockfs_inode_ops = {
 524        .getxattr = sockfs_getxattr,
 525        .listxattr = sockfs_listxattr,
 526};
 527
 528/**
 529 *      sock_alloc      -       allocate a socket
 530 *
 531 *      Allocate a new inode and socket object. The two are bound together
 532 *      and initialised. The socket is then returned. If we are out of inodes
 533 *      NULL is returned.
 534 */
 535
 536struct socket *sock_alloc(void)
 537{
 538        struct inode *inode;
 539        struct socket *sock;
 540
 541        inode = new_inode_pseudo(sock_mnt->mnt_sb);
 542        if (!inode)
 543                return NULL;
 544
 545        sock = SOCKET_I(inode);
 546
 547        kmemcheck_annotate_bitfield(sock, type);
 548        inode->i_ino = get_next_ino();
 549        inode->i_mode = S_IFSOCK | S_IRWXUGO;
 550        inode->i_uid = current_fsuid();
 551        inode->i_gid = current_fsgid();
 552        inode->i_op = &sockfs_inode_ops;
 553
 554        this_cpu_add(sockets_in_use, 1);
 555        return sock;
 556}
 557EXPORT_SYMBOL(sock_alloc);
 558
 559/**
 560 *      sock_release    -       close a socket
 561 *      @sock: socket to close
 562 *
 563 *      The socket is released from the protocol stack if it has a release
 564 *      callback, and the inode is then released if the socket is bound to
 565 *      an inode not a file.
 566 */
 567
 568void sock_release(struct socket *sock)
 569{
 570        if (sock->ops) {
 571                struct module *owner = sock->ops->owner;
 572
 573                sock->ops->release(sock);
 574                sock->ops = NULL;
 575                module_put(owner);
 576        }
 577
 578        if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
 579                pr_err("%s: fasync list not empty!\n", __func__);
 580
 581        this_cpu_sub(sockets_in_use, 1);
 582        if (!sock->file) {
 583                iput(SOCK_INODE(sock));
 584                return;
 585        }
 586        sock->file = NULL;
 587}
 588EXPORT_SYMBOL(sock_release);
 589
 590void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
 591{
 592        u8 flags = *tx_flags;
 593
 594        if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
 595                flags |= SKBTX_HW_TSTAMP;
 596
 597        if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
 598                flags |= SKBTX_SW_TSTAMP;
 599
 600        if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
 601                flags |= SKBTX_SCHED_TSTAMP;
 602
 603        *tx_flags = flags;
 604}
 605EXPORT_SYMBOL(__sock_tx_timestamp);
 606
 607static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
 608{
 609        int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
 610        BUG_ON(ret == -EIOCBQUEUED);
 611        return ret;
 612}
 613
 614int sock_sendmsg(struct socket *sock, struct msghdr *msg)
 615{
 616        int err = security_socket_sendmsg(sock, msg,
 617                                          msg_data_left(msg));
 618
 619        return err ?: sock_sendmsg_nosec(sock, msg);
 620}
 621EXPORT_SYMBOL(sock_sendmsg);
 622
 623int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
 624                   struct kvec *vec, size_t num, size_t size)
 625{
 626        iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
 627        return sock_sendmsg(sock, msg);
 628}
 629EXPORT_SYMBOL(kernel_sendmsg);
 630
 631/*
 632 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
 633 */
 634void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
 635        struct sk_buff *skb)
 636{
 637        int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
 638        struct scm_timestamping tss;
 639        int empty = 1;
 640        struct skb_shared_hwtstamps *shhwtstamps =
 641                skb_hwtstamps(skb);
 642
 643        /* Race occurred between timestamp enabling and packet
 644           receiving.  Fill in the current time for now. */
 645        if (need_software_tstamp && skb->tstamp.tv64 == 0)
 646                __net_timestamp(skb);
 647
 648        if (need_software_tstamp) {
 649                if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
 650                        struct timeval tv;
 651                        skb_get_timestamp(skb, &tv);
 652                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
 653                                 sizeof(tv), &tv);
 654                } else {
 655                        struct timespec ts;
 656                        skb_get_timestampns(skb, &ts);
 657                        put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
 658                                 sizeof(ts), &ts);
 659                }
 660        }
 661
 662        memset(&tss, 0, sizeof(tss));
 663        if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
 664            ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
 665                empty = 0;
 666        if (shhwtstamps &&
 667            (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
 668            ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2))
 669                empty = 0;
 670        if (!empty)
 671                put_cmsg(msg, SOL_SOCKET,
 672                         SCM_TIMESTAMPING, sizeof(tss), &tss);
 673}
 674EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
 675
 676void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
 677        struct sk_buff *skb)
 678{
 679        int ack;
 680
 681        if (!sock_flag(sk, SOCK_WIFI_STATUS))
 682                return;
 683        if (!skb->wifi_acked_valid)
 684                return;
 685
 686        ack = skb->wifi_acked;
 687
 688        put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
 689}
 690EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
 691
 692static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
 693                                   struct sk_buff *skb)
 694{
 695        if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
 696                put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
 697                        sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
 698}
 699
 700void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
 701        struct sk_buff *skb)
 702{
 703        sock_recv_timestamp(msg, sk, skb);
 704        sock_recv_drops(msg, sk, skb);
 705}
 706EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
 707
 708static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
 709                                     int flags)
 710{
 711        return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
 712}
 713
 714int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
 715{
 716        int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
 717
 718        return err ?: sock_recvmsg_nosec(sock, msg, flags);
 719}
 720EXPORT_SYMBOL(sock_recvmsg);
 721
 722/**
 723 * kernel_recvmsg - Receive a message from a socket (kernel space)
 724 * @sock:       The socket to receive the message from
 725 * @msg:        Received message
 726 * @vec:        Input s/g array for message data
 727 * @num:        Size of input s/g array
 728 * @size:       Number of bytes to read
 729 * @flags:      Message flags (MSG_DONTWAIT, etc...)
 730 *
 731 * On return the msg structure contains the scatter/gather array passed in the
 732 * vec argument. The array is modified so that it consists of the unfilled
 733 * portion of the original array.
 734 *
 735 * The returned value is the total number of bytes received, or an error.
 736 */
 737int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
 738                   struct kvec *vec, size_t num, size_t size, int flags)
 739{
 740        mm_segment_t oldfs = get_fs();
 741        int result;
 742
 743        iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
 744        set_fs(KERNEL_DS);
 745        result = sock_recvmsg(sock, msg, flags);
 746        set_fs(oldfs);
 747        return result;
 748}
 749EXPORT_SYMBOL(kernel_recvmsg);
 750
 751static ssize_t sock_sendpage(struct file *file, struct page *page,
 752                             int offset, size_t size, loff_t *ppos, int more)
 753{
 754        struct socket *sock;
 755        int flags;
 756
 757        sock = file->private_data;
 758
 759        flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
 760        /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
 761        flags |= more;
 762
 763        return kernel_sendpage(sock, page, offset, size, flags);
 764}
 765
 766static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
 767                                struct pipe_inode_info *pipe, size_t len,
 768                                unsigned int flags)
 769{
 770        struct socket *sock = file->private_data;
 771
 772        if (unlikely(!sock->ops->splice_read))
 773                return -EINVAL;
 774
 775        return sock->ops->splice_read(sock, ppos, pipe, len, flags);
 776}
 777
 778static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
 779{
 780        struct file *file = iocb->ki_filp;
 781        struct socket *sock = file->private_data;
 782        struct msghdr msg = {.msg_iter = *to,
 783                             .msg_iocb = iocb};
 784        ssize_t res;
 785
 786        if (file->f_flags & O_NONBLOCK)
 787                msg.msg_flags = MSG_DONTWAIT;
 788
 789        if (iocb->ki_pos != 0)
 790                return -ESPIPE;
 791
 792        if (!iov_iter_count(to))        /* Match SYS5 behaviour */
 793                return 0;
 794
 795        res = sock_recvmsg(sock, &msg, msg.msg_flags);
 796        *to = msg.msg_iter;
 797        return res;
 798}
 799
 800static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
 801{
 802        struct file *file = iocb->ki_filp;
 803        struct socket *sock = file->private_data;
 804        struct msghdr msg = {.msg_iter = *from,
 805                             .msg_iocb = iocb};
 806        ssize_t res;
 807
 808        if (iocb->ki_pos != 0)
 809                return -ESPIPE;
 810
 811        if (file->f_flags & O_NONBLOCK)
 812                msg.msg_flags = MSG_DONTWAIT;
 813
 814        if (sock->type == SOCK_SEQPACKET)
 815                msg.msg_flags |= MSG_EOR;
 816
 817        res = sock_sendmsg(sock, &msg);
 818        *from = msg.msg_iter;
 819        return res;
 820}
 821
 822/*
 823 * Atomic setting of ioctl hooks to avoid race
 824 * with module unload.
 825 */
 826
 827static DEFINE_MUTEX(br_ioctl_mutex);
 828static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
 829
 830void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
 831{
 832        mutex_lock(&br_ioctl_mutex);
 833        br_ioctl_hook = hook;
 834        mutex_unlock(&br_ioctl_mutex);
 835}
 836EXPORT_SYMBOL(brioctl_set);
 837
 838static DEFINE_MUTEX(vlan_ioctl_mutex);
 839static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
 840
 841void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
 842{
 843        mutex_lock(&vlan_ioctl_mutex);
 844        vlan_ioctl_hook = hook;
 845        mutex_unlock(&vlan_ioctl_mutex);
 846}
 847EXPORT_SYMBOL(vlan_ioctl_set);
 848
 849static DEFINE_MUTEX(dlci_ioctl_mutex);
 850static int (*dlci_ioctl_hook) (unsigned int, void __user *);
 851
 852void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
 853{
 854        mutex_lock(&dlci_ioctl_mutex);
 855        dlci_ioctl_hook = hook;
 856        mutex_unlock(&dlci_ioctl_mutex);
 857}
 858EXPORT_SYMBOL(dlci_ioctl_set);
 859
 860static long sock_do_ioctl(struct net *net, struct socket *sock,
 861                                 unsigned int cmd, unsigned long arg)
 862{
 863        int err;
 864        void __user *argp = (void __user *)arg;
 865
 866        err = sock->ops->ioctl(sock, cmd, arg);
 867
 868        /*
 869         * If this ioctl is unknown try to hand it down
 870         * to the NIC driver.
 871         */
 872        if (err == -ENOIOCTLCMD)
 873                err = dev_ioctl(net, cmd, argp);
 874
 875        return err;
 876}
 877
 878/*
 879 *      With an ioctl, arg may well be a user mode pointer, but we don't know
 880 *      what to do with it - that's up to the protocol still.
 881 */
 882
 883static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
 884{
 885        struct socket *sock;
 886        struct sock *sk;
 887        void __user *argp = (void __user *)arg;
 888        int pid, err;
 889        struct net *net;
 890
 891        sock = file->private_data;
 892        sk = sock->sk;
 893        net = sock_net(sk);
 894        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
 895                err = dev_ioctl(net, cmd, argp);
 896        } else
 897#ifdef CONFIG_WEXT_CORE
 898        if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
 899                err = dev_ioctl(net, cmd, argp);
 900        } else
 901#endif
 902                switch (cmd) {
 903                case FIOSETOWN:
 904                case SIOCSPGRP:
 905                        err = -EFAULT;
 906                        if (get_user(pid, (int __user *)argp))
 907                                break;
 908                        f_setown(sock->file, pid, 1);
 909                        err = 0;
 910                        break;
 911                case FIOGETOWN:
 912                case SIOCGPGRP:
 913                        err = put_user(f_getown(sock->file),
 914                                       (int __user *)argp);
 915                        break;
 916                case SIOCGIFBR:
 917                case SIOCSIFBR:
 918                case SIOCBRADDBR:
 919                case SIOCBRDELBR:
 920                        err = -ENOPKG;
 921                        if (!br_ioctl_hook)
 922                                request_module("bridge");
 923
 924                        mutex_lock(&br_ioctl_mutex);
 925                        if (br_ioctl_hook)
 926                                err = br_ioctl_hook(net, cmd, argp);
 927                        mutex_unlock(&br_ioctl_mutex);
 928                        break;
 929                case SIOCGIFVLAN:
 930                case SIOCSIFVLAN:
 931                        err = -ENOPKG;
 932                        if (!vlan_ioctl_hook)
 933                                request_module("8021q");
 934
 935                        mutex_lock(&vlan_ioctl_mutex);
 936                        if (vlan_ioctl_hook)
 937                                err = vlan_ioctl_hook(net, argp);
 938                        mutex_unlock(&vlan_ioctl_mutex);
 939                        break;
 940                case SIOCADDDLCI:
 941                case SIOCDELDLCI:
 942                        err = -ENOPKG;
 943                        if (!dlci_ioctl_hook)
 944                                request_module("dlci");
 945
 946                        mutex_lock(&dlci_ioctl_mutex);
 947                        if (dlci_ioctl_hook)
 948                                err = dlci_ioctl_hook(cmd, argp);
 949                        mutex_unlock(&dlci_ioctl_mutex);
 950                        break;
 951                default:
 952                        err = sock_do_ioctl(net, sock, cmd, arg);
 953                        break;
 954                }
 955        return err;
 956}
 957
 958int sock_create_lite(int family, int type, int protocol, struct socket **res)
 959{
 960        int err;
 961        struct socket *sock = NULL;
 962
 963        err = security_socket_create(family, type, protocol, 1);
 964        if (err)
 965                goto out;
 966
 967        sock = sock_alloc();
 968        if (!sock) {
 969                err = -ENOMEM;
 970                goto out;
 971        }
 972
 973        sock->type = type;
 974        err = security_socket_post_create(sock, family, type, protocol, 1);
 975        if (err)
 976                goto out_release;
 977
 978out:
 979        *res = sock;
 980        return err;
 981out_release:
 982        sock_release(sock);
 983        sock = NULL;
 984        goto out;
 985}
 986EXPORT_SYMBOL(sock_create_lite);
 987
 988/* No kernel lock held - perfect */
 989static unsigned int sock_poll(struct file *file, poll_table *wait)
 990{
 991        unsigned int busy_flag = 0;
 992        struct socket *sock;
 993
 994        /*
 995         *      We can't return errors to poll, so it's either yes or no.
 996         */
 997        sock = file->private_data;
 998
 999        if (sk_can_busy_loop(sock->sk)) {
1000                /* this socket can poll_ll so tell the system call */
1001                busy_flag = POLL_BUSY_LOOP;
1002
1003                /* once, only if requested by syscall */
1004                if (wait && (wait->_key & POLL_BUSY_LOOP))
1005                        sk_busy_loop(sock->sk, 1);
1006        }
1007
1008        return busy_flag | sock->ops->poll(file, sock, wait);
1009}
1010
1011static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1012{
1013        struct socket *sock = file->private_data;
1014
1015        return sock->ops->mmap(file, sock, vma);
1016}
1017
1018static int sock_close(struct inode *inode, struct file *filp)
1019{
1020        sock_release(SOCKET_I(inode));
1021        return 0;
1022}
1023
1024/*
1025 *      Update the socket async list
1026 *
1027 *      Fasync_list locking strategy.
1028 *
1029 *      1. fasync_list is modified only under process context socket lock
1030 *         i.e. under semaphore.
1031 *      2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1032 *         or under socket lock
1033 */
1034
1035static int sock_fasync(int fd, struct file *filp, int on)
1036{
1037        struct socket *sock = filp->private_data;
1038        struct sock *sk = sock->sk;
1039        struct socket_wq *wq;
1040
1041        if (sk == NULL)
1042                return -EINVAL;
1043
1044        lock_sock(sk);
1045        wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1046        fasync_helper(fd, filp, on, &wq->fasync_list);
1047
1048        if (!wq->fasync_list)
1049                sock_reset_flag(sk, SOCK_FASYNC);
1050        else
1051                sock_set_flag(sk, SOCK_FASYNC);
1052
1053        release_sock(sk);
1054        return 0;
1055}
1056
1057/* This function may be called only under rcu_lock */
1058
1059int sock_wake_async(struct socket_wq *wq, int how, int band)
1060{
1061        if (!wq || !wq->fasync_list)
1062                return -1;
1063
1064        switch (how) {
1065        case SOCK_WAKE_WAITD:
1066                if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1067                        break;
1068                goto call_kill;
1069        case SOCK_WAKE_SPACE:
1070                if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1071                        break;
1072                /* fall through */
1073        case SOCK_WAKE_IO:
1074call_kill:
1075                kill_fasync(&wq->fasync_list, SIGIO, band);
1076                break;
1077        case SOCK_WAKE_URG:
1078                kill_fasync(&wq->fasync_list, SIGURG, band);
1079        }
1080
1081        return 0;
1082}
1083EXPORT_SYMBOL(sock_wake_async);
1084
1085int __sock_create(struct net *net, int family, int type, int protocol,
1086                         struct socket **res, int kern)
1087{
1088        int err;
1089        struct socket *sock;
1090        const struct net_proto_family *pf;
1091
1092        /*
1093         *      Check protocol is in range
1094         */
1095        if (family < 0 || family >= NPROTO)
1096                return -EAFNOSUPPORT;
1097        if (type < 0 || type >= SOCK_MAX)
1098                return -EINVAL;
1099
1100        /* Compatibility.
1101
1102           This uglymoron is moved from INET layer to here to avoid
1103           deadlock in module load.
1104         */
1105        if (family == PF_INET && type == SOCK_PACKET) {
1106                pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1107                             current->comm);
1108                family = PF_PACKET;
1109        }
1110
1111        err = security_socket_create(family, type, protocol, kern);
1112        if (err)
1113                return err;
1114
1115        /*
1116         *      Allocate the socket and allow the family to set things up. if
1117         *      the protocol is 0, the family is instructed to select an appropriate
1118         *      default.
1119         */
1120        sock = sock_alloc();
1121        if (!sock) {
1122                net_warn_ratelimited("socket: no more sockets\n");
1123                return -ENFILE; /* Not exactly a match, but its the
1124                                   closest posix thing */
1125        }
1126
1127        sock->type = type;
1128
1129#ifdef CONFIG_MODULES
1130        /* Attempt to load a protocol module if the find failed.
1131         *
1132         * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1133         * requested real, full-featured networking support upon configuration.
1134         * Otherwise module support will break!
1135         */
1136        if (rcu_access_pointer(net_families[family]) == NULL)
1137                request_module("net-pf-%d", family);
1138#endif
1139
1140        rcu_read_lock();
1141        pf = rcu_dereference(net_families[family]);
1142        err = -EAFNOSUPPORT;
1143        if (!pf)
1144                goto out_release;
1145
1146        /*
1147         * We will call the ->create function, that possibly is in a loadable
1148         * module, so we have to bump that loadable module refcnt first.
1149         */
1150        if (!try_module_get(pf->owner))
1151                goto out_release;
1152
1153        /* Now protected by module ref count */
1154        rcu_read_unlock();
1155
1156        err = pf->create(net, sock, protocol, kern);
1157        if (err < 0)
1158                goto out_module_put;
1159
1160        /*
1161         * Now to bump the refcnt of the [loadable] module that owns this
1162         * socket at sock_release time we decrement its refcnt.
1163         */
1164        if (!try_module_get(sock->ops->owner))
1165                goto out_module_busy;
1166
1167        /*
1168         * Now that we're done with the ->create function, the [loadable]
1169         * module can have its refcnt decremented
1170         */
1171        module_put(pf->owner);
1172        err = security_socket_post_create(sock, family, type, protocol, kern);
1173        if (err)
1174                goto out_sock_release;
1175        *res = sock;
1176
1177        return 0;
1178
1179out_module_busy:
1180        err = -EAFNOSUPPORT;
1181out_module_put:
1182        sock->ops = NULL;
1183        module_put(pf->owner);
1184out_sock_release:
1185        sock_release(sock);
1186        return err;
1187
1188out_release:
1189        rcu_read_unlock();
1190        goto out_sock_release;
1191}
1192EXPORT_SYMBOL(__sock_create);
1193
1194int sock_create(int family, int type, int protocol, struct socket **res)
1195{
1196        return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1197}
1198EXPORT_SYMBOL(sock_create);
1199
1200int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1201{
1202        return __sock_create(net, family, type, protocol, res, 1);
1203}
1204EXPORT_SYMBOL(sock_create_kern);
1205
1206SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1207{
1208        int retval;
1209        struct socket *sock;
1210        int flags;
1211
1212        /* Check the SOCK_* constants for consistency.  */
1213        BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1214        BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1215        BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1216        BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1217
1218        flags = type & ~SOCK_TYPE_MASK;
1219        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1220                return -EINVAL;
1221        type &= SOCK_TYPE_MASK;
1222
1223        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1224                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1225
1226        retval = sock_create(family, type, protocol, &sock);
1227        if (retval < 0)
1228                goto out;
1229
1230        retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1231        if (retval < 0)
1232                goto out_release;
1233
1234out:
1235        /* It may be already another descriptor 8) Not kernel problem. */
1236        return retval;
1237
1238out_release:
1239        sock_release(sock);
1240        return retval;
1241}
1242
1243/*
1244 *      Create a pair of connected sockets.
1245 */
1246
1247SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1248                int __user *, usockvec)
1249{
1250        struct socket *sock1, *sock2;
1251        int fd1, fd2, err;
1252        struct file *newfile1, *newfile2;
1253        int flags;
1254
1255        flags = type & ~SOCK_TYPE_MASK;
1256        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1257                return -EINVAL;
1258        type &= SOCK_TYPE_MASK;
1259
1260        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1261                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1262
1263        /*
1264         * Obtain the first socket and check if the underlying protocol
1265         * supports the socketpair call.
1266         */
1267
1268        err = sock_create(family, type, protocol, &sock1);
1269        if (err < 0)
1270                goto out;
1271
1272        err = sock_create(family, type, protocol, &sock2);
1273        if (err < 0)
1274                goto out_release_1;
1275
1276        err = sock1->ops->socketpair(sock1, sock2);
1277        if (err < 0)
1278                goto out_release_both;
1279
1280        fd1 = get_unused_fd_flags(flags);
1281        if (unlikely(fd1 < 0)) {
1282                err = fd1;
1283                goto out_release_both;
1284        }
1285
1286        fd2 = get_unused_fd_flags(flags);
1287        if (unlikely(fd2 < 0)) {
1288                err = fd2;
1289                goto out_put_unused_1;
1290        }
1291
1292        newfile1 = sock_alloc_file(sock1, flags, NULL);
1293        if (IS_ERR(newfile1)) {
1294                err = PTR_ERR(newfile1);
1295                goto out_put_unused_both;
1296        }
1297
1298        newfile2 = sock_alloc_file(sock2, flags, NULL);
1299        if (IS_ERR(newfile2)) {
1300                err = PTR_ERR(newfile2);
1301                goto out_fput_1;
1302        }
1303
1304        err = put_user(fd1, &usockvec[0]);
1305        if (err)
1306                goto out_fput_both;
1307
1308        err = put_user(fd2, &usockvec[1]);
1309        if (err)
1310                goto out_fput_both;
1311
1312        audit_fd_pair(fd1, fd2);
1313
1314        fd_install(fd1, newfile1);
1315        fd_install(fd2, newfile2);
1316        /* fd1 and fd2 may be already another descriptors.
1317         * Not kernel problem.
1318         */
1319
1320        return 0;
1321
1322out_fput_both:
1323        fput(newfile2);
1324        fput(newfile1);
1325        put_unused_fd(fd2);
1326        put_unused_fd(fd1);
1327        goto out;
1328
1329out_fput_1:
1330        fput(newfile1);
1331        put_unused_fd(fd2);
1332        put_unused_fd(fd1);
1333        sock_release(sock2);
1334        goto out;
1335
1336out_put_unused_both:
1337        put_unused_fd(fd2);
1338out_put_unused_1:
1339        put_unused_fd(fd1);
1340out_release_both:
1341        sock_release(sock2);
1342out_release_1:
1343        sock_release(sock1);
1344out:
1345        return err;
1346}
1347
1348/*
1349 *      Bind a name to a socket. Nothing much to do here since it's
1350 *      the protocol's responsibility to handle the local address.
1351 *
1352 *      We move the socket address to kernel space before we call
1353 *      the protocol layer (having also checked the address is ok).
1354 */
1355
1356SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1357{
1358        struct socket *sock;
1359        struct sockaddr_storage address;
1360        int err, fput_needed;
1361
1362        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1363        if (sock) {
1364                err = move_addr_to_kernel(umyaddr, addrlen, &address);
1365                if (err >= 0) {
1366                        err = security_socket_bind(sock,
1367                                                   (struct sockaddr *)&address,
1368                                                   addrlen);
1369                        if (!err)
1370                                err = sock->ops->bind(sock,
1371                                                      (struct sockaddr *)
1372                                                      &address, addrlen);
1373                }
1374                fput_light(sock->file, fput_needed);
1375        }
1376        return err;
1377}
1378
1379/*
1380 *      Perform a listen. Basically, we allow the protocol to do anything
1381 *      necessary for a listen, and if that works, we mark the socket as
1382 *      ready for listening.
1383 */
1384
1385SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1386{
1387        struct socket *sock;
1388        int err, fput_needed;
1389        int somaxconn;
1390
1391        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1392        if (sock) {
1393                somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1394                if ((unsigned int)backlog > somaxconn)
1395                        backlog = somaxconn;
1396
1397                err = security_socket_listen(sock, backlog);
1398                if (!err)
1399                        err = sock->ops->listen(sock, backlog);
1400
1401                fput_light(sock->file, fput_needed);
1402        }
1403        return err;
1404}
1405
1406/*
1407 *      For accept, we attempt to create a new socket, set up the link
1408 *      with the client, wake up the client, then return the new
1409 *      connected fd. We collect the address of the connector in kernel
1410 *      space and move it to user at the very end. This is unclean because
1411 *      we open the socket then return an error.
1412 *
1413 *      1003.1g adds the ability to recvmsg() to query connection pending
1414 *      status to recvmsg. We need to add that support in a way thats
1415 *      clean when we restucture accept also.
1416 */
1417
1418SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1419                int __user *, upeer_addrlen, int, flags)
1420{
1421        struct socket *sock, *newsock;
1422        struct file *newfile;
1423        int err, len, newfd, fput_needed;
1424        struct sockaddr_storage address;
1425
1426        if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1427                return -EINVAL;
1428
1429        if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1430                flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1431
1432        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1433        if (!sock)
1434                goto out;
1435
1436        err = -ENFILE;
1437        newsock = sock_alloc();
1438        if (!newsock)
1439                goto out_put;
1440
1441        newsock->type = sock->type;
1442        newsock->ops = sock->ops;
1443
1444        /*
1445         * We don't need try_module_get here, as the listening socket (sock)
1446         * has the protocol module (sock->ops->owner) held.
1447         */
1448        __module_get(newsock->ops->owner);
1449
1450        newfd = get_unused_fd_flags(flags);
1451        if (unlikely(newfd < 0)) {
1452                err = newfd;
1453                sock_release(newsock);
1454                goto out_put;
1455        }
1456        newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1457        if (IS_ERR(newfile)) {
1458                err = PTR_ERR(newfile);
1459                put_unused_fd(newfd);
1460                sock_release(newsock);
1461                goto out_put;
1462        }
1463
1464        err = security_socket_accept(sock, newsock);
1465        if (err)
1466                goto out_fd;
1467
1468        err = sock->ops->accept(sock, newsock, sock->file->f_flags);
1469        if (err < 0)
1470                goto out_fd;
1471
1472        if (upeer_sockaddr) {
1473                if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1474                                          &len, 2) < 0) {
1475                        err = -ECONNABORTED;
1476                        goto out_fd;
1477                }
1478                err = move_addr_to_user(&address,
1479                                        len, upeer_sockaddr, upeer_addrlen);
1480                if (err < 0)
1481                        goto out_fd;
1482        }
1483
1484        /* File flags are not inherited via accept() unlike another OSes. */
1485
1486        fd_install(newfd, newfile);
1487        err = newfd;
1488
1489out_put:
1490        fput_light(sock->file, fput_needed);
1491out:
1492        return err;
1493out_fd:
1494        fput(newfile);
1495        put_unused_fd(newfd);
1496        goto out_put;
1497}
1498
1499SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1500                int __user *, upeer_addrlen)
1501{
1502        return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1503}
1504
1505/*
1506 *      Attempt to connect to a socket with the server address.  The address
1507 *      is in user space so we verify it is OK and move it to kernel space.
1508 *
1509 *      For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1510 *      break bindings
1511 *
1512 *      NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1513 *      other SEQPACKET protocols that take time to connect() as it doesn't
1514 *      include the -EINPROGRESS status for such sockets.
1515 */
1516
1517SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1518                int, addrlen)
1519{
1520        struct socket *sock;
1521        struct sockaddr_storage address;
1522        int err, fput_needed;
1523
1524        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1525        if (!sock)
1526                goto out;
1527        err = move_addr_to_kernel(uservaddr, addrlen, &address);
1528        if (err < 0)
1529                goto out_put;
1530
1531        err =
1532            security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1533        if (err)
1534                goto out_put;
1535
1536        err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1537                                 sock->file->f_flags);
1538out_put:
1539        fput_light(sock->file, fput_needed);
1540out:
1541        return err;
1542}
1543
1544/*
1545 *      Get the local address ('name') of a socket object. Move the obtained
1546 *      name to user space.
1547 */
1548
1549SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1550                int __user *, usockaddr_len)
1551{
1552        struct socket *sock;
1553        struct sockaddr_storage address;
1554        int len, err, fput_needed;
1555
1556        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1557        if (!sock)
1558                goto out;
1559
1560        err = security_socket_getsockname(sock);
1561        if (err)
1562                goto out_put;
1563
1564        err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1565        if (err)
1566                goto out_put;
1567        err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1568
1569out_put:
1570        fput_light(sock->file, fput_needed);
1571out:
1572        return err;
1573}
1574
1575/*
1576 *      Get the remote address ('name') of a socket object. Move the obtained
1577 *      name to user space.
1578 */
1579
1580SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1581                int __user *, usockaddr_len)
1582{
1583        struct socket *sock;
1584        struct sockaddr_storage address;
1585        int len, err, fput_needed;
1586
1587        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1588        if (sock != NULL) {
1589                err = security_socket_getpeername(sock);
1590                if (err) {
1591                        fput_light(sock->file, fput_needed);
1592                        return err;
1593                }
1594
1595                err =
1596                    sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1597                                       1);
1598                if (!err)
1599                        err = move_addr_to_user(&address, len, usockaddr,
1600                                                usockaddr_len);
1601                fput_light(sock->file, fput_needed);
1602        }
1603        return err;
1604}
1605
1606/*
1607 *      Send a datagram to a given address. We move the address into kernel
1608 *      space and check the user space data area is readable before invoking
1609 *      the protocol.
1610 */
1611
1612SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1613                unsigned int, flags, struct sockaddr __user *, addr,
1614                int, addr_len)
1615{
1616        struct socket *sock;
1617        struct sockaddr_storage address;
1618        int err;
1619        struct msghdr msg;
1620        struct iovec iov;
1621        int fput_needed;
1622
1623        err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1624        if (unlikely(err))
1625                return err;
1626        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1627        if (!sock)
1628                goto out;
1629
1630        msg.msg_name = NULL;
1631        msg.msg_control = NULL;
1632        msg.msg_controllen = 0;
1633        msg.msg_namelen = 0;
1634        if (addr) {
1635                err = move_addr_to_kernel(addr, addr_len, &address);
1636                if (err < 0)
1637                        goto out_put;
1638                msg.msg_name = (struct sockaddr *)&address;
1639                msg.msg_namelen = addr_len;
1640        }
1641        if (sock->file->f_flags & O_NONBLOCK)
1642                flags |= MSG_DONTWAIT;
1643        msg.msg_flags = flags;
1644        err = sock_sendmsg(sock, &msg);
1645
1646out_put:
1647        fput_light(sock->file, fput_needed);
1648out:
1649        return err;
1650}
1651
1652/*
1653 *      Send a datagram down a socket.
1654 */
1655
1656SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1657                unsigned int, flags)
1658{
1659        return sys_sendto(fd, buff, len, flags, NULL, 0);
1660}
1661
1662/*
1663 *      Receive a frame from the socket and optionally record the address of the
1664 *      sender. We verify the buffers are writable and if needed move the
1665 *      sender address from kernel to user space.
1666 */
1667
1668SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1669                unsigned int, flags, struct sockaddr __user *, addr,
1670                int __user *, addr_len)
1671{
1672        struct socket *sock;
1673        struct iovec iov;
1674        struct msghdr msg;
1675        struct sockaddr_storage address;
1676        int err, err2;
1677        int fput_needed;
1678
1679        err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1680        if (unlikely(err))
1681                return err;
1682        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1683        if (!sock)
1684                goto out;
1685
1686        msg.msg_control = NULL;
1687        msg.msg_controllen = 0;
1688        /* Save some cycles and don't copy the address if not needed */
1689        msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1690        /* We assume all kernel code knows the size of sockaddr_storage */
1691        msg.msg_namelen = 0;
1692        msg.msg_iocb = NULL;
1693        if (sock->file->f_flags & O_NONBLOCK)
1694                flags |= MSG_DONTWAIT;
1695        err = sock_recvmsg(sock, &msg, flags);
1696
1697        if (err >= 0 && addr != NULL) {
1698                err2 = move_addr_to_user(&address,
1699                                         msg.msg_namelen, addr, addr_len);
1700                if (err2 < 0)
1701                        err = err2;
1702        }
1703
1704        fput_light(sock->file, fput_needed);
1705out:
1706        return err;
1707}
1708
1709/*
1710 *      Receive a datagram from a socket.
1711 */
1712
1713SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1714                unsigned int, flags)
1715{
1716        return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1717}
1718
1719/*
1720 *      Set a socket option. Because we don't know the option lengths we have
1721 *      to pass the user mode parameter for the protocols to sort out.
1722 */
1723
1724SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1725                char __user *, optval, int, optlen)
1726{
1727        int err, fput_needed;
1728        struct socket *sock;
1729
1730        if (optlen < 0)
1731                return -EINVAL;
1732
1733        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1734        if (sock != NULL) {
1735                err = security_socket_setsockopt(sock, level, optname);
1736                if (err)
1737                        goto out_put;
1738
1739                if (level == SOL_SOCKET)
1740                        err =
1741                            sock_setsockopt(sock, level, optname, optval,
1742                                            optlen);
1743                else
1744                        err =
1745                            sock->ops->setsockopt(sock, level, optname, optval,
1746                                                  optlen);
1747out_put:
1748                fput_light(sock->file, fput_needed);
1749        }
1750        return err;
1751}
1752
1753/*
1754 *      Get a socket option. Because we don't know the option lengths we have
1755 *      to pass a user mode parameter for the protocols to sort out.
1756 */
1757
1758SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1759                char __user *, optval, int __user *, optlen)
1760{
1761        int err, fput_needed;
1762        struct socket *sock;
1763
1764        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1765        if (sock != NULL) {
1766                err = security_socket_getsockopt(sock, level, optname);
1767                if (err)
1768                        goto out_put;
1769
1770                if (level == SOL_SOCKET)
1771                        err =
1772                            sock_getsockopt(sock, level, optname, optval,
1773                                            optlen);
1774                else
1775                        err =
1776                            sock->ops->getsockopt(sock, level, optname, optval,
1777                                                  optlen);
1778out_put:
1779                fput_light(sock->file, fput_needed);
1780        }
1781        return err;
1782}
1783
1784/*
1785 *      Shutdown a socket.
1786 */
1787
1788SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1789{
1790        int err, fput_needed;
1791        struct socket *sock;
1792
1793        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1794        if (sock != NULL) {
1795                err = security_socket_shutdown(sock, how);
1796                if (!err)
1797                        err = sock->ops->shutdown(sock, how);
1798                fput_light(sock->file, fput_needed);
1799        }
1800        return err;
1801}
1802
1803/* A couple of helpful macros for getting the address of the 32/64 bit
1804 * fields which are the same type (int / unsigned) on our platforms.
1805 */
1806#define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1807#define COMPAT_NAMELEN(msg)     COMPAT_MSG(msg, msg_namelen)
1808#define COMPAT_FLAGS(msg)       COMPAT_MSG(msg, msg_flags)
1809
1810struct used_address {
1811        struct sockaddr_storage name;
1812        unsigned int name_len;
1813};
1814
1815static int copy_msghdr_from_user(struct msghdr *kmsg,
1816                                 struct user_msghdr __user *umsg,
1817                                 struct sockaddr __user **save_addr,
1818                                 struct iovec **iov)
1819{
1820        struct sockaddr __user *uaddr;
1821        struct iovec __user *uiov;
1822        size_t nr_segs;
1823        ssize_t err;
1824
1825        if (!access_ok(VERIFY_READ, umsg, sizeof(*umsg)) ||
1826            __get_user(uaddr, &umsg->msg_name) ||
1827            __get_user(kmsg->msg_namelen, &umsg->msg_namelen) ||
1828            __get_user(uiov, &umsg->msg_iov) ||
1829            __get_user(nr_segs, &umsg->msg_iovlen) ||
1830            __get_user(kmsg->msg_control, &umsg->msg_control) ||
1831            __get_user(kmsg->msg_controllen, &umsg->msg_controllen) ||
1832            __get_user(kmsg->msg_flags, &umsg->msg_flags))
1833                return -EFAULT;
1834
1835        if (!uaddr)
1836                kmsg->msg_namelen = 0;
1837
1838        if (kmsg->msg_namelen < 0)
1839                return -EINVAL;
1840
1841        if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1842                kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1843
1844        if (save_addr)
1845                *save_addr = uaddr;
1846
1847        if (uaddr && kmsg->msg_namelen) {
1848                if (!save_addr) {
1849                        err = move_addr_to_kernel(uaddr, kmsg->msg_namelen,
1850                                                  kmsg->msg_name);
1851                        if (err < 0)
1852                                return err;
1853                }
1854        } else {
1855                kmsg->msg_name = NULL;
1856                kmsg->msg_namelen = 0;
1857        }
1858
1859        if (nr_segs > UIO_MAXIOV)
1860                return -EMSGSIZE;
1861
1862        kmsg->msg_iocb = NULL;
1863
1864        return import_iovec(save_addr ? READ : WRITE, uiov, nr_segs,
1865                            UIO_FASTIOV, iov, &kmsg->msg_iter);
1866}
1867
1868static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1869                         struct msghdr *msg_sys, unsigned int flags,
1870                         struct used_address *used_address,
1871                         unsigned int allowed_msghdr_flags)
1872{
1873        struct compat_msghdr __user *msg_compat =
1874            (struct compat_msghdr __user *)msg;
1875        struct sockaddr_storage address;
1876        struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1877        unsigned char ctl[sizeof(struct cmsghdr) + 20]
1878            __attribute__ ((aligned(sizeof(__kernel_size_t))));
1879        /* 20 is size of ipv6_pktinfo */
1880        unsigned char *ctl_buf = ctl;
1881        int ctl_len;
1882        ssize_t err;
1883
1884        msg_sys->msg_name = &address;
1885
1886        if (MSG_CMSG_COMPAT & flags)
1887                err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1888        else
1889                err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1890        if (err < 0)
1891                return err;
1892
1893        err = -ENOBUFS;
1894
1895        if (msg_sys->msg_controllen > INT_MAX)
1896                goto out_freeiov;
1897        flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
1898        ctl_len = msg_sys->msg_controllen;
1899        if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
1900                err =
1901                    cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
1902                                                     sizeof(ctl));
1903                if (err)
1904                        goto out_freeiov;
1905                ctl_buf = msg_sys->msg_control;
1906                ctl_len = msg_sys->msg_controllen;
1907        } else if (ctl_len) {
1908                if (ctl_len > sizeof(ctl)) {
1909                        ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
1910                        if (ctl_buf == NULL)
1911                                goto out_freeiov;
1912                }
1913                err = -EFAULT;
1914                /*
1915                 * Careful! Before this, msg_sys->msg_control contains a user pointer.
1916                 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
1917                 * checking falls down on this.
1918                 */
1919                if (copy_from_user(ctl_buf,
1920                                   (void __user __force *)msg_sys->msg_control,
1921                                   ctl_len))
1922                        goto out_freectl;
1923                msg_sys->msg_control = ctl_buf;
1924        }
1925        msg_sys->msg_flags = flags;
1926
1927        if (sock->file->f_flags & O_NONBLOCK)
1928                msg_sys->msg_flags |= MSG_DONTWAIT;
1929        /*
1930         * If this is sendmmsg() and current destination address is same as
1931         * previously succeeded address, omit asking LSM's decision.
1932         * used_address->name_len is initialized to UINT_MAX so that the first
1933         * destination address never matches.
1934         */
1935        if (used_address && msg_sys->msg_name &&
1936            used_address->name_len == msg_sys->msg_namelen &&
1937            !memcmp(&used_address->name, msg_sys->msg_name,
1938                    used_address->name_len)) {
1939                err = sock_sendmsg_nosec(sock, msg_sys);
1940                goto out_freectl;
1941        }
1942        err = sock_sendmsg(sock, msg_sys);
1943        /*
1944         * If this is sendmmsg() and sending to current destination address was
1945         * successful, remember it.
1946         */
1947        if (used_address && err >= 0) {
1948                used_address->name_len = msg_sys->msg_namelen;
1949                if (msg_sys->msg_name)
1950                        memcpy(&used_address->name, msg_sys->msg_name,
1951                               used_address->name_len);
1952        }
1953
1954out_freectl:
1955        if (ctl_buf != ctl)
1956                sock_kfree_s(sock->sk, ctl_buf, ctl_len);
1957out_freeiov:
1958        kfree(iov);
1959        return err;
1960}
1961
1962/*
1963 *      BSD sendmsg interface
1964 */
1965
1966long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
1967{
1968        int fput_needed, err;
1969        struct msghdr msg_sys;
1970        struct socket *sock;
1971
1972        sock = sockfd_lookup_light(fd, &err, &fput_needed);
1973        if (!sock)
1974                goto out;
1975
1976        err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
1977
1978        fput_light(sock->file, fput_needed);
1979out:
1980        return err;
1981}
1982
1983SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
1984{
1985        if (flags & MSG_CMSG_COMPAT)
1986                return -EINVAL;
1987        return __sys_sendmsg(fd, msg, flags);
1988}
1989
1990/*
1991 *      Linux sendmmsg interface
1992 */
1993
1994int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
1995                   unsigned int flags)
1996{
1997        int fput_needed, err, datagrams;
1998        struct socket *sock;
1999        struct mmsghdr __user *entry;
2000        struct compat_mmsghdr __user *compat_entry;
2001        struct msghdr msg_sys;
2002        struct used_address used_address;
2003        unsigned int oflags = flags;
2004
2005        if (vlen > UIO_MAXIOV)
2006                vlen = UIO_MAXIOV;
2007
2008        datagrams = 0;
2009
2010        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2011        if (!sock)
2012                return err;
2013
2014        used_address.name_len = UINT_MAX;
2015        entry = mmsg;
2016        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2017        err = 0;
2018        flags |= MSG_BATCH;
2019
2020        while (datagrams < vlen) {
2021                if (datagrams == vlen - 1)
2022                        flags = oflags;
2023
2024                if (MSG_CMSG_COMPAT & flags) {
2025                        err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2026                                             &msg_sys, flags, &used_address, MSG_EOR);
2027                        if (err < 0)
2028                                break;
2029                        err = __put_user(err, &compat_entry->msg_len);
2030                        ++compat_entry;
2031                } else {
2032                        err = ___sys_sendmsg(sock,
2033                                             (struct user_msghdr __user *)entry,
2034                                             &msg_sys, flags, &used_address, MSG_EOR);
2035                        if (err < 0)
2036                                break;
2037                        err = put_user(err, &entry->msg_len);
2038                        ++entry;
2039                }
2040
2041                if (err)
2042                        break;
2043                ++datagrams;
2044                cond_resched();
2045        }
2046
2047        fput_light(sock->file, fput_needed);
2048
2049        /* We only return an error if no datagrams were able to be sent */
2050        if (datagrams != 0)
2051                return datagrams;
2052
2053        return err;
2054}
2055
2056SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2057                unsigned int, vlen, unsigned int, flags)
2058{
2059        if (flags & MSG_CMSG_COMPAT)
2060                return -EINVAL;
2061        return __sys_sendmmsg(fd, mmsg, vlen, flags);
2062}
2063
2064static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2065                         struct msghdr *msg_sys, unsigned int flags, int nosec)
2066{
2067        struct compat_msghdr __user *msg_compat =
2068            (struct compat_msghdr __user *)msg;
2069        struct iovec iovstack[UIO_FASTIOV];
2070        struct iovec *iov = iovstack;
2071        unsigned long cmsg_ptr;
2072        int len;
2073        ssize_t err;
2074
2075        /* kernel mode address */
2076        struct sockaddr_storage addr;
2077
2078        /* user mode address pointers */
2079        struct sockaddr __user *uaddr;
2080        int __user *uaddr_len = COMPAT_NAMELEN(msg);
2081
2082        msg_sys->msg_name = &addr;
2083
2084        if (MSG_CMSG_COMPAT & flags)
2085                err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2086        else
2087                err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2088        if (err < 0)
2089                return err;
2090
2091        cmsg_ptr = (unsigned long)msg_sys->msg_control;
2092        msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2093
2094        /* We assume all kernel code knows the size of sockaddr_storage */
2095        msg_sys->msg_namelen = 0;
2096
2097        if (sock->file->f_flags & O_NONBLOCK)
2098                flags |= MSG_DONTWAIT;
2099        err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2100        if (err < 0)
2101                goto out_freeiov;
2102        len = err;
2103
2104        if (uaddr != NULL) {
2105                err = move_addr_to_user(&addr,
2106                                        msg_sys->msg_namelen, uaddr,
2107                                        uaddr_len);
2108                if (err < 0)
2109                        goto out_freeiov;
2110        }
2111        err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2112                         COMPAT_FLAGS(msg));
2113        if (err)
2114                goto out_freeiov;
2115        if (MSG_CMSG_COMPAT & flags)
2116                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2117                                 &msg_compat->msg_controllen);
2118        else
2119                err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2120                                 &msg->msg_controllen);
2121        if (err)
2122                goto out_freeiov;
2123        err = len;
2124
2125out_freeiov:
2126        kfree(iov);
2127        return err;
2128}
2129
2130/*
2131 *      BSD recvmsg interface
2132 */
2133
2134long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2135{
2136        int fput_needed, err;
2137        struct msghdr msg_sys;
2138        struct socket *sock;
2139
2140        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2141        if (!sock)
2142                goto out;
2143
2144        err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2145
2146        fput_light(sock->file, fput_needed);
2147out:
2148        return err;
2149}
2150
2151SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2152                unsigned int, flags)
2153{
2154        if (flags & MSG_CMSG_COMPAT)
2155                return -EINVAL;
2156        return __sys_recvmsg(fd, msg, flags);
2157}
2158
2159/*
2160 *     Linux recvmmsg interface
2161 */
2162
2163int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2164                   unsigned int flags, struct timespec *timeout)
2165{
2166        int fput_needed, err, datagrams;
2167        struct socket *sock;
2168        struct mmsghdr __user *entry;
2169        struct compat_mmsghdr __user *compat_entry;
2170        struct msghdr msg_sys;
2171        struct timespec64 end_time;
2172        struct timespec64 timeout64;
2173
2174        if (timeout &&
2175            poll_select_set_timeout(&end_time, timeout->tv_sec,
2176                                    timeout->tv_nsec))
2177                return -EINVAL;
2178
2179        datagrams = 0;
2180
2181        sock = sockfd_lookup_light(fd, &err, &fput_needed);
2182        if (!sock)
2183                return err;
2184
2185        err = sock_error(sock->sk);
2186        if (err)
2187                goto out_put;
2188
2189        entry = mmsg;
2190        compat_entry = (struct compat_mmsghdr __user *)mmsg;
2191
2192        while (datagrams < vlen) {
2193                /*
2194                 * No need to ask LSM for more than the first datagram.
2195                 */
2196                if (MSG_CMSG_COMPAT & flags) {
2197                        err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2198                                             &msg_sys, flags & ~MSG_WAITFORONE,
2199                                             datagrams);
2200                        if (err < 0)
2201                                break;
2202                        err = __put_user(err, &compat_entry->msg_len);
2203                        ++compat_entry;
2204                } else {
2205                        err = ___sys_recvmsg(sock,
2206                                             (struct user_msghdr __user *)entry,
2207                                             &msg_sys, flags & ~MSG_WAITFORONE,
2208                                             datagrams);
2209                        if (err < 0)
2210                                break;
2211                        err = put_user(err, &entry->msg_len);
2212                        ++entry;
2213                }
2214
2215                if (err)
2216                        break;
2217                ++datagrams;
2218
2219                /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2220                if (flags & MSG_WAITFORONE)
2221                        flags |= MSG_DONTWAIT;
2222
2223                if (timeout) {
2224                        ktime_get_ts64(&timeout64);
2225                        *timeout = timespec64_to_timespec(
2226                                        timespec64_sub(end_time, timeout64));
2227                        if (timeout->tv_sec < 0) {
2228                                timeout->tv_sec = timeout->tv_nsec = 0;
2229                                break;
2230                        }
2231
2232                        /* Timeout, return less than vlen datagrams */
2233                        if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2234                                break;
2235                }
2236
2237                /* Out of band data, return right away */
2238                if (msg_sys.msg_flags & MSG_OOB)
2239                        break;
2240                cond_resched();
2241        }
2242
2243        if (err == 0)
2244                goto out_put;
2245
2246        if (datagrams == 0) {
2247                datagrams = err;
2248                goto out_put;
2249        }
2250
2251        /*
2252         * We may return less entries than requested (vlen) if the
2253         * sock is non block and there aren't enough datagrams...
2254         */
2255        if (err != -EAGAIN) {
2256                /*
2257                 * ... or  if recvmsg returns an error after we
2258                 * received some datagrams, where we record the
2259                 * error to return on the next call or if the
2260                 * app asks about it using getsockopt(SO_ERROR).
2261                 */
2262                sock->sk->sk_err = -err;
2263        }
2264out_put:
2265        fput_light(sock->file, fput_needed);
2266
2267        return datagrams;
2268}
2269
2270SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2271                unsigned int, vlen, unsigned int, flags,
2272                struct timespec __user *, timeout)
2273{
2274        int datagrams;
2275        struct timespec timeout_sys;
2276
2277        if (flags & MSG_CMSG_COMPAT)
2278                return -EINVAL;
2279
2280        if (!timeout)
2281                return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2282
2283        if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2284                return -EFAULT;
2285
2286        datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2287
2288        if (datagrams > 0 &&
2289            copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2290                datagrams = -EFAULT;
2291
2292        return datagrams;
2293}
2294
2295#ifdef __ARCH_WANT_SYS_SOCKETCALL
2296/* Argument list sizes for sys_socketcall */
2297#define AL(x) ((x) * sizeof(unsigned long))
2298static const unsigned char nargs[21] = {
2299        AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2300        AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2301        AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2302        AL(4), AL(5), AL(4)
2303};
2304
2305#undef AL
2306
2307/*
2308 *      System call vectors.
2309 *
2310 *      Argument checking cleaned up. Saved 20% in size.
2311 *  This function doesn't need to set the kernel lock because
2312 *  it is set by the callees.
2313 */
2314
2315SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2316{
2317        unsigned long a[AUDITSC_ARGS];
2318        unsigned long a0, a1;
2319        int err;
2320        unsigned int len;
2321
2322        if (call < 1 || call > SYS_SENDMMSG)
2323                return -EINVAL;
2324
2325        len = nargs[call];
2326        if (len > sizeof(a))
2327                return -EINVAL;
2328
2329        /* copy_from_user should be SMP safe. */
2330        if (copy_from_user(a, args, len))
2331                return -EFAULT;
2332
2333        err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2334        if (err)
2335                return err;
2336
2337        a0 = a[0];
2338        a1 = a[1];
2339
2340        switch (call) {
2341        case SYS_SOCKET:
2342                err = sys_socket(a0, a1, a[2]);
2343                break;
2344        case SYS_BIND:
2345                err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2346                break;
2347        case SYS_CONNECT:
2348                err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2349                break;
2350        case SYS_LISTEN:
2351                err = sys_listen(a0, a1);
2352                break;
2353        case SYS_ACCEPT:
2354                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2355                                  (int __user *)a[2], 0);
2356                break;
2357        case SYS_GETSOCKNAME:
2358                err =
2359                    sys_getsockname(a0, (struct sockaddr __user *)a1,
2360                                    (int __user *)a[2]);
2361                break;
2362        case SYS_GETPEERNAME:
2363                err =
2364                    sys_getpeername(a0, (struct sockaddr __user *)a1,
2365                                    (int __user *)a[2]);
2366                break;
2367        case SYS_SOCKETPAIR:
2368                err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2369                break;
2370        case SYS_SEND:
2371                err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2372                break;
2373        case SYS_SENDTO:
2374                err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2375                                 (struct sockaddr __user *)a[4], a[5]);
2376                break;
2377        case SYS_RECV:
2378                err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2379                break;
2380        case SYS_RECVFROM:
2381                err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2382                                   (struct sockaddr __user *)a[4],
2383                                   (int __user *)a[5]);
2384                break;
2385        case SYS_SHUTDOWN:
2386                err = sys_shutdown(a0, a1);
2387                break;
2388        case SYS_SETSOCKOPT:
2389                err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2390                break;
2391        case SYS_GETSOCKOPT:
2392                err =
2393                    sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2394                                   (int __user *)a[4]);
2395                break;
2396        case SYS_SENDMSG:
2397                err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2398                break;
2399        case SYS_SENDMMSG:
2400                err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2401                break;
2402        case SYS_RECVMSG:
2403                err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2404                break;
2405        case SYS_RECVMMSG:
2406                err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2407                                   (struct timespec __user *)a[4]);
2408                break;
2409        case SYS_ACCEPT4:
2410                err = sys_accept4(a0, (struct sockaddr __user *)a1,
2411                                  (int __user *)a[2], a[3]);
2412                break;
2413        default:
2414                err = -EINVAL;
2415                break;
2416        }
2417        return err;
2418}
2419
2420#endif                          /* __ARCH_WANT_SYS_SOCKETCALL */
2421
2422/**
2423 *      sock_register - add a socket protocol handler
2424 *      @ops: description of protocol
2425 *
2426 *      This function is called by a protocol handler that wants to
2427 *      advertise its address family, and have it linked into the
2428 *      socket interface. The value ops->family corresponds to the
2429 *      socket system call protocol family.
2430 */
2431int sock_register(const struct net_proto_family *ops)
2432{
2433        int err;
2434
2435        if (ops->family >= NPROTO) {
2436                pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2437                return -ENOBUFS;
2438        }
2439
2440        spin_lock(&net_family_lock);
2441        if (rcu_dereference_protected(net_families[ops->family],
2442                                      lockdep_is_held(&net_family_lock)))
2443                err = -EEXIST;
2444        else {
2445                rcu_assign_pointer(net_families[ops->family], ops);
2446                err = 0;
2447        }
2448        spin_unlock(&net_family_lock);
2449
2450        pr_info("NET: Registered protocol family %d\n", ops->family);
2451        return err;
2452}
2453EXPORT_SYMBOL(sock_register);
2454
2455/**
2456 *      sock_unregister - remove a protocol handler
2457 *      @family: protocol family to remove
2458 *
2459 *      This function is called by a protocol handler that wants to
2460 *      remove its address family, and have it unlinked from the
2461 *      new socket creation.
2462 *
2463 *      If protocol handler is a module, then it can use module reference
2464 *      counts to protect against new references. If protocol handler is not
2465 *      a module then it needs to provide its own protection in
2466 *      the ops->create routine.
2467 */
2468void sock_unregister(int family)
2469{
2470        BUG_ON(family < 0 || family >= NPROTO);
2471
2472        spin_lock(&net_family_lock);
2473        RCU_INIT_POINTER(net_families[family], NULL);
2474        spin_unlock(&net_family_lock);
2475
2476        synchronize_rcu();
2477
2478        pr_info("NET: Unregistered protocol family %d\n", family);
2479}
2480EXPORT_SYMBOL(sock_unregister);
2481
2482static int __init sock_init(void)
2483{
2484        int err;
2485        /*
2486         *      Initialize the network sysctl infrastructure.
2487         */
2488        err = net_sysctl_init();
2489        if (err)
2490                goto out;
2491
2492        /*
2493         *      Initialize skbuff SLAB cache
2494         */
2495        skb_init();
2496
2497        /*
2498         *      Initialize the protocols module.
2499         */
2500
2501        init_inodecache();
2502
2503        err = register_filesystem(&sock_fs_type);
2504        if (err)
2505                goto out_fs;
2506        sock_mnt = kern_mount(&sock_fs_type);
2507        if (IS_ERR(sock_mnt)) {
2508                err = PTR_ERR(sock_mnt);
2509                goto out_mount;
2510        }
2511
2512        /* The real protocol initialization is performed in later initcalls.
2513         */
2514
2515#ifdef CONFIG_NETFILTER
2516        err = netfilter_init();
2517        if (err)
2518                goto out;
2519#endif
2520
2521        ptp_classifier_init();
2522
2523out:
2524        return err;
2525
2526out_mount:
2527        unregister_filesystem(&sock_fs_type);
2528out_fs:
2529        goto out;
2530}
2531
2532core_initcall(sock_init);       /* early initcall */
2533
2534#ifdef CONFIG_PROC_FS
2535void socket_seq_show(struct seq_file *seq)
2536{
2537        int cpu;
2538        int counter = 0;
2539
2540        for_each_possible_cpu(cpu)
2541            counter += per_cpu(sockets_in_use, cpu);
2542
2543        /* It can be negative, by the way. 8) */
2544        if (counter < 0)
2545                counter = 0;
2546
2547        seq_printf(seq, "sockets: used %d\n", counter);
2548}
2549#endif                          /* CONFIG_PROC_FS */
2550
2551#ifdef CONFIG_COMPAT
2552static int do_siocgstamp(struct net *net, struct socket *sock,
2553                         unsigned int cmd, void __user *up)
2554{
2555        mm_segment_t old_fs = get_fs();
2556        struct timeval ktv;
2557        int err;
2558
2559        set_fs(KERNEL_DS);
2560        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2561        set_fs(old_fs);
2562        if (!err)
2563                err = compat_put_timeval(&ktv, up);
2564
2565        return err;
2566}
2567
2568static int do_siocgstampns(struct net *net, struct socket *sock,
2569                           unsigned int cmd, void __user *up)
2570{
2571        mm_segment_t old_fs = get_fs();
2572        struct timespec kts;
2573        int err;
2574
2575        set_fs(KERNEL_DS);
2576        err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2577        set_fs(old_fs);
2578        if (!err)
2579                err = compat_put_timespec(&kts, up);
2580
2581        return err;
2582}
2583
2584static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2585{
2586        struct ifreq __user *uifr;
2587        int err;
2588
2589        uifr = compat_alloc_user_space(sizeof(struct ifreq));
2590        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2591                return -EFAULT;
2592
2593        err = dev_ioctl(net, SIOCGIFNAME, uifr);
2594        if (err)
2595                return err;
2596
2597        if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2598                return -EFAULT;
2599
2600        return 0;
2601}
2602
2603static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2604{
2605        struct compat_ifconf ifc32;
2606        struct ifconf ifc;
2607        struct ifconf __user *uifc;
2608        struct compat_ifreq __user *ifr32;
2609        struct ifreq __user *ifr;
2610        unsigned int i, j;
2611        int err;
2612
2613        if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2614                return -EFAULT;
2615
2616        memset(&ifc, 0, sizeof(ifc));
2617        if (ifc32.ifcbuf == 0) {
2618                ifc32.ifc_len = 0;
2619                ifc.ifc_len = 0;
2620                ifc.ifc_req = NULL;
2621                uifc = compat_alloc_user_space(sizeof(struct ifconf));
2622        } else {
2623                size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2624                        sizeof(struct ifreq);
2625                uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2626                ifc.ifc_len = len;
2627                ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2628                ifr32 = compat_ptr(ifc32.ifcbuf);
2629                for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2630                        if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2631                                return -EFAULT;
2632                        ifr++;
2633                        ifr32++;
2634                }
2635        }
2636        if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2637                return -EFAULT;
2638
2639        err = dev_ioctl(net, SIOCGIFCONF, uifc);
2640        if (err)
2641                return err;
2642
2643        if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2644                return -EFAULT;
2645
2646        ifr = ifc.ifc_req;
2647        ifr32 = compat_ptr(ifc32.ifcbuf);
2648        for (i = 0, j = 0;
2649             i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2650             i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2651                if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2652                        return -EFAULT;
2653                ifr32++;
2654                ifr++;
2655        }
2656
2657        if (ifc32.ifcbuf == 0) {
2658                /* Translate from 64-bit structure multiple to
2659                 * a 32-bit one.
2660                 */
2661                i = ifc.ifc_len;
2662                i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2663                ifc32.ifc_len = i;
2664        } else {
2665                ifc32.ifc_len = i;
2666        }
2667        if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2668                return -EFAULT;
2669
2670        return 0;
2671}
2672
2673static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2674{
2675        struct compat_ethtool_rxnfc __user *compat_rxnfc;
2676        bool convert_in = false, convert_out = false;
2677        size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2678        struct ethtool_rxnfc __user *rxnfc;
2679        struct ifreq __user *ifr;
2680        u32 rule_cnt = 0, actual_rule_cnt;
2681        u32 ethcmd;
2682        u32 data;
2683        int ret;
2684
2685        if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2686                return -EFAULT;
2687
2688        compat_rxnfc = compat_ptr(data);
2689
2690        if (get_user(ethcmd, &compat_rxnfc->cmd))
2691                return -EFAULT;
2692
2693        /* Most ethtool structures are defined without padding.
2694         * Unfortunately struct ethtool_rxnfc is an exception.
2695         */
2696        switch (ethcmd) {
2697        default:
2698                break;
2699        case ETHTOOL_GRXCLSRLALL:
2700                /* Buffer size is variable */
2701                if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2702                        return -EFAULT;
2703                if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2704                        return -ENOMEM;
2705                buf_size += rule_cnt * sizeof(u32);
2706                /* fall through */
2707        case ETHTOOL_GRXRINGS:
2708        case ETHTOOL_GRXCLSRLCNT:
2709        case ETHTOOL_GRXCLSRULE:
2710        case ETHTOOL_SRXCLSRLINS:
2711                convert_out = true;
2712                /* fall through */
2713        case ETHTOOL_SRXCLSRLDEL:
2714                buf_size += sizeof(struct ethtool_rxnfc);
2715                convert_in = true;
2716                break;
2717        }
2718
2719        ifr = compat_alloc_user_space(buf_size);
2720        rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2721
2722        if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2723                return -EFAULT;
2724
2725        if (put_user(convert_in ? rxnfc : compat_ptr(data),
2726                     &ifr->ifr_ifru.ifru_data))
2727                return -EFAULT;
2728
2729        if (convert_in) {
2730                /* We expect there to be holes between fs.m_ext and
2731                 * fs.ring_cookie and at the end of fs, but nowhere else.
2732                 */
2733                BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2734                             sizeof(compat_rxnfc->fs.m_ext) !=
2735                             offsetof(struct ethtool_rxnfc, fs.m_ext) +
2736                             sizeof(rxnfc->fs.m_ext));
2737                BUILD_BUG_ON(
2738                        offsetof(struct compat_ethtool_rxnfc, fs.location) -
2739                        offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2740                        offsetof(struct ethtool_rxnfc, fs.location) -
2741                        offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2742
2743                if (copy_in_user(rxnfc, compat_rxnfc,
2744                                 (void __user *)(&rxnfc->fs.m_ext + 1) -
2745                                 (void __user *)rxnfc) ||
2746                    copy_in_user(&rxnfc->fs.ring_cookie,
2747                                 &compat_rxnfc->fs.ring_cookie,
2748                                 (void __user *)(&rxnfc->fs.location + 1) -
2749                                 (void __user *)&rxnfc->fs.ring_cookie) ||
2750                    copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2751                                 sizeof(rxnfc->rule_cnt)))
2752                        return -EFAULT;
2753        }
2754
2755        ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2756        if (ret)
2757                return ret;
2758
2759        if (convert_out) {
2760                if (copy_in_user(compat_rxnfc, rxnfc,
2761                                 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2762                                 (const void __user *)rxnfc) ||
2763                    copy_in_user(&compat_rxnfc->fs.ring_cookie,
2764                                 &rxnfc->fs.ring_cookie,
2765                                 (const void __user *)(&rxnfc->fs.location + 1) -
2766                                 (const void __user *)&rxnfc->fs.ring_cookie) ||
2767                    copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2768                                 sizeof(rxnfc->rule_cnt)))
2769                        return -EFAULT;
2770
2771                if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2772                        /* As an optimisation, we only copy the actual
2773                         * number of rules that the underlying
2774                         * function returned.  Since Mallory might
2775                         * change the rule count in user memory, we
2776                         * check that it is less than the rule count
2777                         * originally given (as the user buffer size),
2778                         * which has been range-checked.
2779                         */
2780                        if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2781                                return -EFAULT;
2782                        if (actual_rule_cnt < rule_cnt)
2783                                rule_cnt = actual_rule_cnt;
2784                        if (copy_in_user(&compat_rxnfc->rule_locs[0],
2785                                         &rxnfc->rule_locs[0],
2786                                         rule_cnt * sizeof(u32)))
2787                                return -EFAULT;
2788                }
2789        }
2790
2791        return 0;
2792}
2793
2794static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2795{
2796        void __user *uptr;
2797        compat_uptr_t uptr32;
2798        struct ifreq __user *uifr;
2799
2800        uifr = compat_alloc_user_space(sizeof(*uifr));
2801        if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2802                return -EFAULT;
2803
2804        if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2805                return -EFAULT;
2806
2807        uptr = compat_ptr(uptr32);
2808
2809        if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2810                return -EFAULT;
2811
2812        return dev_ioctl(net, SIOCWANDEV, uifr);
2813}
2814
2815static int bond_ioctl(struct net *net, unsigned int cmd,
2816                         struct compat_ifreq __user *ifr32)
2817{
2818        struct ifreq kifr;
2819        mm_segment_t old_fs;
2820        int err;
2821
2822        switch (cmd) {
2823        case SIOCBONDENSLAVE:
2824        case SIOCBONDRELEASE:
2825        case SIOCBONDSETHWADDR:
2826        case SIOCBONDCHANGEACTIVE:
2827                if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2828                        return -EFAULT;
2829
2830                old_fs = get_fs();
2831                set_fs(KERNEL_DS);
2832                err = dev_ioctl(net, cmd,
2833                                (struct ifreq __user __force *) &kifr);
2834                set_fs(old_fs);
2835
2836                return err;
2837        default:
2838                return -ENOIOCTLCMD;
2839        }
2840}
2841
2842/* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2843static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2844                                 struct compat_ifreq __user *u_ifreq32)
2845{
2846        struct ifreq __user *u_ifreq64;
2847        char tmp_buf[IFNAMSIZ];
2848        void __user *data64;
2849        u32 data32;
2850
2851        if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2852                           IFNAMSIZ))
2853                return -EFAULT;
2854        if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2855                return -EFAULT;
2856        data64 = compat_ptr(data32);
2857
2858        u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2859
2860        if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2861                         IFNAMSIZ))
2862                return -EFAULT;
2863        if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2864                return -EFAULT;
2865
2866        return dev_ioctl(net, cmd, u_ifreq64);
2867}
2868
2869static int dev_ifsioc(struct net *net, struct socket *sock,
2870                         unsigned int cmd, struct compat_ifreq __user *uifr32)
2871{
2872        struct ifreq __user *uifr;
2873        int err;
2874
2875        uifr = compat_alloc_user_space(sizeof(*uifr));
2876        if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2877                return -EFAULT;
2878
2879        err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2880
2881        if (!err) {
2882                switch (cmd) {
2883                case SIOCGIFFLAGS:
2884                case SIOCGIFMETRIC:
2885                case SIOCGIFMTU:
2886                case SIOCGIFMEM:
2887                case SIOCGIFHWADDR:
2888                case SIOCGIFINDEX:
2889                case SIOCGIFADDR:
2890                case SIOCGIFBRDADDR:
2891                case SIOCGIFDSTADDR:
2892                case SIOCGIFNETMASK:
2893                case SIOCGIFPFLAGS:
2894                case SIOCGIFTXQLEN:
2895                case SIOCGMIIPHY:
2896                case SIOCGMIIREG:
2897                        if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
2898                                err = -EFAULT;
2899                        break;
2900                }
2901        }
2902        return err;
2903}
2904
2905static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
2906                        struct compat_ifreq __user *uifr32)
2907{
2908        struct ifreq ifr;
2909        struct compat_ifmap __user *uifmap32;
2910        mm_segment_t old_fs;
2911        int err;
2912
2913        uifmap32 = &uifr32->ifr_ifru.ifru_map;
2914        err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
2915        err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2916        err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2917        err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2918        err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
2919        err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
2920        err |= get_user(ifr.ifr_map.port, &uifmap32->port);
2921        if (err)
2922                return -EFAULT;
2923
2924        old_fs = get_fs();
2925        set_fs(KERNEL_DS);
2926        err = dev_ioctl(net, cmd, (void  __user __force *)&ifr);
2927        set_fs(old_fs);
2928
2929        if (cmd == SIOCGIFMAP && !err) {
2930                err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
2931                err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
2932                err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
2933                err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
2934                err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
2935                err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
2936                err |= put_user(ifr.ifr_map.port, &uifmap32->port);
2937                if (err)
2938                        err = -EFAULT;
2939        }
2940        return err;
2941}
2942
2943struct rtentry32 {
2944        u32             rt_pad1;
2945        struct sockaddr rt_dst;         /* target address               */
2946        struct sockaddr rt_gateway;     /* gateway addr (RTF_GATEWAY)   */
2947        struct sockaddr rt_genmask;     /* target network mask (IP)     */
2948        unsigned short  rt_flags;
2949        short           rt_pad2;
2950        u32             rt_pad3;
2951        unsigned char   rt_tos;
2952        unsigned char   rt_class;
2953        short           rt_pad4;
2954        short           rt_metric;      /* +1 for binary compatibility! */
2955        /* char * */ u32 rt_dev;        /* forcing the device at add    */
2956        u32             rt_mtu;         /* per route MTU/Window         */
2957        u32             rt_window;      /* Window clamping              */
2958        unsigned short  rt_irtt;        /* Initial RTT                  */
2959};
2960
2961struct in6_rtmsg32 {
2962        struct in6_addr         rtmsg_dst;
2963        struct in6_addr         rtmsg_src;
2964        struct in6_addr         rtmsg_gateway;
2965        u32                     rtmsg_type;
2966        u16                     rtmsg_dst_len;
2967        u16                     rtmsg_src_len;
2968        u32                     rtmsg_metric;
2969        u32                     rtmsg_info;
2970        u32                     rtmsg_flags;
2971        s32                     rtmsg_ifindex;
2972};
2973
2974static int routing_ioctl(struct net *net, struct socket *sock,
2975                         unsigned int cmd, void __user *argp)
2976{
2977        int ret;
2978        void *r = NULL;
2979        struct in6_rtmsg r6;
2980        struct rtentry r4;
2981        char devname[16];
2982        u32 rtdev;
2983        mm_segment_t old_fs = get_fs();
2984
2985        if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
2986                struct in6_rtmsg32 __user *ur6 = argp;
2987                ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
2988                        3 * sizeof(struct in6_addr));
2989                ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
2990                ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
2991                ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
2992                ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
2993                ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
2994                ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
2995                ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
2996
2997                r = (void *) &r6;
2998        } else { /* ipv4 */
2999                struct rtentry32 __user *ur4 = argp;
3000                ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3001                                        3 * sizeof(struct sockaddr));
3002                ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3003                ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3004                ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3005                ret |= get_user(r4.rt_window, &(ur4->rt_window));
3006                ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3007                ret |= get_user(rtdev, &(ur4->rt_dev));
3008                if (rtdev) {
3009                        ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3010                        r4.rt_dev = (char __user __force *)devname;
3011                        devname[15] = 0;
3012                } else
3013                        r4.rt_dev = NULL;
3014
3015                r = (void *) &r4;
3016        }
3017
3018        if (ret) {
3019                ret = -EFAULT;
3020                goto out;
3021        }
3022
3023        set_fs(KERNEL_DS);
3024        ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3025        set_fs(old_fs);
3026
3027out:
3028        return ret;
3029}
3030
3031/* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3032 * for some operations; this forces use of the newer bridge-utils that
3033 * use compatible ioctls
3034 */
3035static int old_bridge_ioctl(compat_ulong_t __user *argp)
3036{
3037        compat_ulong_t tmp;
3038
3039        if (get_user(tmp, argp))
3040                return -EFAULT;
3041        if (tmp == BRCTL_GET_VERSION)
3042                return BRCTL_VERSION + 1;
3043        return -EINVAL;
3044}
3045
3046static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3047                         unsigned int cmd, unsigned long arg)
3048{
3049        void __user *argp = compat_ptr(arg);
3050        struct sock *sk = sock->sk;
3051        struct net *net = sock_net(sk);
3052
3053        if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3054                return compat_ifr_data_ioctl(net, cmd, argp);
3055
3056        switch (cmd) {
3057        case SIOCSIFBR:
3058        case SIOCGIFBR:
3059                return old_bridge_ioctl(argp);
3060        case SIOCGIFNAME:
3061                return dev_ifname32(net, argp);
3062        case SIOCGIFCONF:
3063                return dev_ifconf(net, argp);
3064        case SIOCETHTOOL:
3065                return ethtool_ioctl(net, argp);
3066        case SIOCWANDEV:
3067                return compat_siocwandev(net, argp);
3068        case SIOCGIFMAP:
3069        case SIOCSIFMAP:
3070                return compat_sioc_ifmap(net, cmd, argp);
3071        case SIOCBONDENSLAVE:
3072        case SIOCBONDRELEASE:
3073        case SIOCBONDSETHWADDR:
3074        case SIOCBONDCHANGEACTIVE:
3075                return bond_ioctl(net, cmd, argp);
3076        case SIOCADDRT:
3077        case SIOCDELRT:
3078                return routing_ioctl(net, sock, cmd, argp);
3079        case SIOCGSTAMP:
3080                return do_siocgstamp(net, sock, cmd, argp);
3081        case SIOCGSTAMPNS:
3082                return do_siocgstampns(net, sock, cmd, argp);
3083        case SIOCBONDSLAVEINFOQUERY:
3084        case SIOCBONDINFOQUERY:
3085        case SIOCSHWTSTAMP:
3086        case SIOCGHWTSTAMP:
3087                return compat_ifr_data_ioctl(net, cmd, argp);
3088
3089        case FIOSETOWN:
3090        case SIOCSPGRP:
3091        case FIOGETOWN:
3092        case SIOCGPGRP:
3093        case SIOCBRADDBR:
3094        case SIOCBRDELBR:
3095        case SIOCGIFVLAN:
3096        case SIOCSIFVLAN:
3097        case SIOCADDDLCI:
3098        case SIOCDELDLCI:
3099                return sock_ioctl(file, cmd, arg);
3100
3101        case SIOCGIFFLAGS:
3102        case SIOCSIFFLAGS:
3103        case SIOCGIFMETRIC:
3104        case SIOCSIFMETRIC:
3105        case SIOCGIFMTU:
3106        case SIOCSIFMTU:
3107        case SIOCGIFMEM:
3108        case SIOCSIFMEM:
3109        case SIOCGIFHWADDR:
3110        case SIOCSIFHWADDR:
3111        case SIOCADDMULTI:
3112        case SIOCDELMULTI:
3113        case SIOCGIFINDEX:
3114        case SIOCGIFADDR:
3115        case SIOCSIFADDR:
3116        case SIOCSIFHWBROADCAST:
3117        case SIOCDIFADDR:
3118        case SIOCGIFBRDADDR:
3119        case SIOCSIFBRDADDR:
3120        case SIOCGIFDSTADDR:
3121        case SIOCSIFDSTADDR:
3122        case SIOCGIFNETMASK:
3123        case SIOCSIFNETMASK:
3124        case SIOCSIFPFLAGS:
3125        case SIOCGIFPFLAGS:
3126        case SIOCGIFTXQLEN:
3127        case SIOCSIFTXQLEN:
3128        case SIOCBRADDIF:
3129        case SIOCBRDELIF:
3130        case SIOCSIFNAME:
3131        case SIOCGMIIPHY:
3132        case SIOCGMIIREG:
3133        case SIOCSMIIREG:
3134                return dev_ifsioc(net, sock, cmd, argp);
3135
3136        case SIOCSARP:
3137        case SIOCGARP:
3138        case SIOCDARP:
3139        case SIOCATMARK:
3140                return sock_do_ioctl(net, sock, cmd, arg);
3141        }
3142
3143        return -ENOIOCTLCMD;
3144}
3145
3146static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3147                              unsigned long arg)
3148{
3149        struct socket *sock = file->private_data;
3150        int ret = -ENOIOCTLCMD;
3151        struct sock *sk;
3152        struct net *net;
3153
3154        sk = sock->sk;
3155        net = sock_net(sk);
3156
3157        if (sock->ops->compat_ioctl)
3158                ret = sock->ops->compat_ioctl(sock, cmd, arg);
3159
3160        if (ret == -ENOIOCTLCMD &&
3161            (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3162                ret = compat_wext_handle_ioctl(net, cmd, arg);
3163
3164        if (ret == -ENOIOCTLCMD)
3165                ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3166
3167        return ret;
3168}
3169#endif
3170
3171int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3172{
3173        return sock->ops->bind(sock, addr, addrlen);
3174}
3175EXPORT_SYMBOL(kernel_bind);
3176
3177int kernel_listen(struct socket *sock, int backlog)
3178{
3179        return sock->ops->listen(sock, backlog);
3180}
3181EXPORT_SYMBOL(kernel_listen);
3182
3183int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3184{
3185        struct sock *sk = sock->sk;
3186        int err;
3187
3188        err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3189                               newsock);
3190        if (err < 0)
3191                goto done;
3192
3193        err = sock->ops->accept(sock, *newsock, flags);
3194        if (err < 0) {
3195                sock_release(*newsock);
3196                *newsock = NULL;
3197                goto done;
3198        }
3199
3200        (*newsock)->ops = sock->ops;
3201        __module_get((*newsock)->ops->owner);
3202
3203done:
3204        return err;
3205}
3206EXPORT_SYMBOL(kernel_accept);
3207
3208int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3209                   int flags)
3210{
3211        return sock->ops->connect(sock, addr, addrlen, flags);
3212}
3213EXPORT_SYMBOL(kernel_connect);
3214
3215int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3216                         int *addrlen)
3217{
3218        return sock->ops->getname(sock, addr, addrlen, 0);
3219}
3220EXPORT_SYMBOL(kernel_getsockname);
3221
3222int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3223                         int *addrlen)
3224{
3225        return sock->ops->getname(sock, addr, addrlen, 1);
3226}
3227EXPORT_SYMBOL(kernel_getpeername);
3228
3229int kernel_getsockopt(struct socket *sock, int level, int optname,
3230                        char *optval, int *optlen)
3231{
3232        mm_segment_t oldfs = get_fs();
3233        char __user *uoptval;
3234        int __user *uoptlen;
3235        int err;
3236
3237        uoptval = (char __user __force *) optval;
3238        uoptlen = (int __user __force *) optlen;
3239
3240        set_fs(KERNEL_DS);
3241        if (level == SOL_SOCKET)
3242                err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3243        else
3244                err = sock->ops->getsockopt(sock, level, optname, uoptval,
3245                                            uoptlen);
3246        set_fs(oldfs);
3247        return err;
3248}
3249EXPORT_SYMBOL(kernel_getsockopt);
3250
3251int kernel_setsockopt(struct socket *sock, int level, int optname,
3252                        char *optval, unsigned int optlen)
3253{
3254        mm_segment_t oldfs = get_fs();
3255        char __user *uoptval;
3256        int err;
3257
3258        uoptval = (char __user __force *) optval;
3259
3260        set_fs(KERNEL_DS);
3261        if (level == SOL_SOCKET)
3262                err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3263        else
3264                err = sock->ops->setsockopt(sock, level, optname, uoptval,
3265                                            optlen);
3266        set_fs(oldfs);
3267        return err;
3268}
3269EXPORT_SYMBOL(kernel_setsockopt);
3270
3271int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3272                    size_t size, int flags)
3273{
3274        if (sock->ops->sendpage)
3275                return sock->ops->sendpage(sock, page, offset, size, flags);
3276
3277        return sock_no_sendpage(sock, page, offset, size, flags);
3278}
3279EXPORT_SYMBOL(kernel_sendpage);
3280
3281int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3282{
3283        mm_segment_t oldfs = get_fs();
3284        int err;
3285
3286        set_fs(KERNEL_DS);
3287        err = sock->ops->ioctl(sock, cmd, arg);
3288        set_fs(oldfs);
3289
3290        return err;
3291}
3292EXPORT_SYMBOL(kernel_sock_ioctl);
3293
3294int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3295{
3296        return sock->ops->shutdown(sock, how);
3297}
3298EXPORT_SYMBOL(kernel_sock_shutdown);
3299