linux/arch/alpha/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/alpha/kernel/process.c
   3 *
   4 *  Copyright (C) 1995  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the architecture-dependent parts of process handling.
   9 */
  10
  11#include <linux/errno.h>
  12#include <linux/module.h>
  13#include <linux/sched.h>
  14#include <linux/kernel.h>
  15#include <linux/mm.h>
  16#include <linux/smp.h>
  17#include <linux/stddef.h>
  18#include <linux/unistd.h>
  19#include <linux/ptrace.h>
  20#include <linux/user.h>
  21#include <linux/time.h>
  22#include <linux/major.h>
  23#include <linux/stat.h>
  24#include <linux/vt.h>
  25#include <linux/mman.h>
  26#include <linux/elfcore.h>
  27#include <linux/reboot.h>
  28#include <linux/tty.h>
  29#include <linux/console.h>
  30#include <linux/slab.h>
  31#include <linux/rcupdate.h>
  32
  33#include <asm/reg.h>
  34#include <asm/uaccess.h>
  35#include <asm/io.h>
  36#include <asm/pgtable.h>
  37#include <asm/hwrpb.h>
  38#include <asm/fpu.h>
  39
  40#include "proto.h"
  41#include "pci_impl.h"
  42
  43/*
  44 * Power off function, if any
  45 */
  46void (*pm_power_off)(void) = machine_power_off;
  47EXPORT_SYMBOL(pm_power_off);
  48
  49#ifdef CONFIG_ALPHA_WTINT
  50/*
  51 * Sleep the CPU.
  52 * EV6, LCA45 and QEMU know how to power down, skipping N timer interrupts.
  53 */
  54void arch_cpu_idle(void)
  55{
  56        wtint(0);
  57        local_irq_enable();
  58}
  59
  60void arch_cpu_idle_dead(void)
  61{
  62        wtint(INT_MAX);
  63}
  64#endif /* ALPHA_WTINT */
  65
  66struct halt_info {
  67        int mode;
  68        char *restart_cmd;
  69};
  70
  71static void
  72common_shutdown_1(void *generic_ptr)
  73{
  74        struct halt_info *how = (struct halt_info *)generic_ptr;
  75        struct percpu_struct *cpup;
  76        unsigned long *pflags, flags;
  77        int cpuid = smp_processor_id();
  78
  79        /* No point in taking interrupts anymore. */
  80        local_irq_disable();
  81
  82        cpup = (struct percpu_struct *)
  83                        ((unsigned long)hwrpb + hwrpb->processor_offset
  84                         + hwrpb->processor_size * cpuid);
  85        pflags = &cpup->flags;
  86        flags = *pflags;
  87
  88        /* Clear reason to "default"; clear "bootstrap in progress". */
  89        flags &= ~0x00ff0001UL;
  90
  91#ifdef CONFIG_SMP
  92        /* Secondaries halt here. */
  93        if (cpuid != boot_cpuid) {
  94                flags |= 0x00040000UL; /* "remain halted" */
  95                *pflags = flags;
  96                set_cpu_present(cpuid, false);
  97                set_cpu_possible(cpuid, false);
  98                halt();
  99        }
 100#endif
 101
 102        if (how->mode == LINUX_REBOOT_CMD_RESTART) {
 103                if (!how->restart_cmd) {
 104                        flags |= 0x00020000UL; /* "cold bootstrap" */
 105                } else {
 106                        /* For SRM, we could probably set environment
 107                           variables to get this to work.  We'd have to
 108                           delay this until after srm_paging_stop unless
 109                           we ever got srm_fixup working.
 110
 111                           At the moment, SRM will use the last boot device,
 112                           but the file and flags will be the defaults, when
 113                           doing a "warm" bootstrap.  */
 114                        flags |= 0x00030000UL; /* "warm bootstrap" */
 115                }
 116        } else {
 117                flags |= 0x00040000UL; /* "remain halted" */
 118        }
 119        *pflags = flags;
 120
 121#ifdef CONFIG_SMP
 122        /* Wait for the secondaries to halt. */
 123        set_cpu_present(boot_cpuid, false);
 124        set_cpu_possible(boot_cpuid, false);
 125        while (cpumask_weight(cpu_present_mask))
 126                barrier();
 127#endif
 128
 129        /* If booted from SRM, reset some of the original environment. */
 130        if (alpha_using_srm) {
 131#ifdef CONFIG_DUMMY_CONSOLE
 132                /* If we've gotten here after SysRq-b, leave interrupt
 133                   context before taking over the console. */
 134                if (in_interrupt())
 135                        irq_exit();
 136                /* This has the effect of resetting the VGA video origin.  */
 137                console_lock();
 138                do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES-1, 1);
 139                console_unlock();
 140#endif
 141                pci_restore_srm_config();
 142                set_hae(srm_hae);
 143        }
 144
 145        if (alpha_mv.kill_arch)
 146                alpha_mv.kill_arch(how->mode);
 147
 148        if (! alpha_using_srm && how->mode != LINUX_REBOOT_CMD_RESTART) {
 149                /* Unfortunately, since MILO doesn't currently understand
 150                   the hwrpb bits above, we can't reliably halt the 
 151                   processor and keep it halted.  So just loop.  */
 152                return;
 153        }
 154
 155        if (alpha_using_srm)
 156                srm_paging_stop();
 157
 158        halt();
 159}
 160
 161static void
 162common_shutdown(int mode, char *restart_cmd)
 163{
 164        struct halt_info args;
 165        args.mode = mode;
 166        args.restart_cmd = restart_cmd;
 167        on_each_cpu(common_shutdown_1, &args, 0);
 168}
 169
 170void
 171machine_restart(char *restart_cmd)
 172{
 173        common_shutdown(LINUX_REBOOT_CMD_RESTART, restart_cmd);
 174}
 175
 176
 177void
 178machine_halt(void)
 179{
 180        common_shutdown(LINUX_REBOOT_CMD_HALT, NULL);
 181}
 182
 183
 184void
 185machine_power_off(void)
 186{
 187        common_shutdown(LINUX_REBOOT_CMD_POWER_OFF, NULL);
 188}
 189
 190
 191/* Used by sysrq-p, among others.  I don't believe r9-r15 are ever
 192   saved in the context it's used.  */
 193
 194void
 195show_regs(struct pt_regs *regs)
 196{
 197        show_regs_print_info(KERN_DEFAULT);
 198        dik_show_regs(regs, NULL);
 199}
 200
 201/*
 202 * Re-start a thread when doing execve()
 203 */
 204void
 205start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
 206{
 207        regs->pc = pc;
 208        regs->ps = 8;
 209        wrusp(sp);
 210}
 211EXPORT_SYMBOL(start_thread);
 212
 213void
 214flush_thread(void)
 215{
 216        /* Arrange for each exec'ed process to start off with a clean slate
 217           with respect to the FPU.  This is all exceptions disabled.  */
 218        current_thread_info()->ieee_state = 0;
 219        wrfpcr(FPCR_DYN_NORMAL | ieee_swcr_to_fpcr(0));
 220
 221        /* Clean slate for TLS.  */
 222        current_thread_info()->pcb.unique = 0;
 223}
 224
 225void
 226release_thread(struct task_struct *dead_task)
 227{
 228}
 229
 230/*
 231 * Copy architecture-specific thread state
 232 */
 233int
 234copy_thread(unsigned long clone_flags, unsigned long usp,
 235            unsigned long kthread_arg,
 236            struct task_struct *p)
 237{
 238        extern void ret_from_fork(void);
 239        extern void ret_from_kernel_thread(void);
 240
 241        struct thread_info *childti = task_thread_info(p);
 242        struct pt_regs *childregs = task_pt_regs(p);
 243        struct pt_regs *regs = current_pt_regs();
 244        struct switch_stack *childstack, *stack;
 245
 246        childstack = ((struct switch_stack *) childregs) - 1;
 247        childti->pcb.ksp = (unsigned long) childstack;
 248        childti->pcb.flags = 1; /* set FEN, clear everything else */
 249
 250        if (unlikely(p->flags & PF_KTHREAD)) {
 251                /* kernel thread */
 252                memset(childstack, 0,
 253                        sizeof(struct switch_stack) + sizeof(struct pt_regs));
 254                childstack->r26 = (unsigned long) ret_from_kernel_thread;
 255                childstack->r9 = usp;   /* function */
 256                childstack->r10 = kthread_arg;
 257                childregs->hae = alpha_mv.hae_cache,
 258                childti->pcb.usp = 0;
 259                return 0;
 260        }
 261        /* Note: if CLONE_SETTLS is not set, then we must inherit the
 262           value from the parent, which will have been set by the block
 263           copy in dup_task_struct.  This is non-intuitive, but is
 264           required for proper operation in the case of a threaded
 265           application calling fork.  */
 266        if (clone_flags & CLONE_SETTLS)
 267                childti->pcb.unique = regs->r20;
 268        childti->pcb.usp = usp ?: rdusp();
 269        *childregs = *regs;
 270        childregs->r0 = 0;
 271        childregs->r19 = 0;
 272        childregs->r20 = 1;     /* OSF/1 has some strange fork() semantics.  */
 273        regs->r20 = 0;
 274        stack = ((struct switch_stack *) regs) - 1;
 275        *childstack = *stack;
 276        childstack->r26 = (unsigned long) ret_from_fork;
 277        return 0;
 278}
 279
 280/*
 281 * Fill in the user structure for a ELF core dump.
 282 */
 283void
 284dump_elf_thread(elf_greg_t *dest, struct pt_regs *pt, struct thread_info *ti)
 285{
 286        /* switch stack follows right below pt_regs: */
 287        struct switch_stack * sw = ((struct switch_stack *) pt) - 1;
 288
 289        dest[ 0] = pt->r0;
 290        dest[ 1] = pt->r1;
 291        dest[ 2] = pt->r2;
 292        dest[ 3] = pt->r3;
 293        dest[ 4] = pt->r4;
 294        dest[ 5] = pt->r5;
 295        dest[ 6] = pt->r6;
 296        dest[ 7] = pt->r7;
 297        dest[ 8] = pt->r8;
 298        dest[ 9] = sw->r9;
 299        dest[10] = sw->r10;
 300        dest[11] = sw->r11;
 301        dest[12] = sw->r12;
 302        dest[13] = sw->r13;
 303        dest[14] = sw->r14;
 304        dest[15] = sw->r15;
 305        dest[16] = pt->r16;
 306        dest[17] = pt->r17;
 307        dest[18] = pt->r18;
 308        dest[19] = pt->r19;
 309        dest[20] = pt->r20;
 310        dest[21] = pt->r21;
 311        dest[22] = pt->r22;
 312        dest[23] = pt->r23;
 313        dest[24] = pt->r24;
 314        dest[25] = pt->r25;
 315        dest[26] = pt->r26;
 316        dest[27] = pt->r27;
 317        dest[28] = pt->r28;
 318        dest[29] = pt->gp;
 319        dest[30] = ti == current_thread_info() ? rdusp() : ti->pcb.usp;
 320        dest[31] = pt->pc;
 321
 322        /* Once upon a time this was the PS value.  Which is stupid
 323           since that is always 8 for usermode.  Usurped for the more
 324           useful value of the thread's UNIQUE field.  */
 325        dest[32] = ti->pcb.unique;
 326}
 327EXPORT_SYMBOL(dump_elf_thread);
 328
 329int
 330dump_elf_task(elf_greg_t *dest, struct task_struct *task)
 331{
 332        dump_elf_thread(dest, task_pt_regs(task), task_thread_info(task));
 333        return 1;
 334}
 335EXPORT_SYMBOL(dump_elf_task);
 336
 337int
 338dump_elf_task_fp(elf_fpreg_t *dest, struct task_struct *task)
 339{
 340        struct switch_stack *sw = (struct switch_stack *)task_pt_regs(task) - 1;
 341        memcpy(dest, sw->fp, 32 * 8);
 342        return 1;
 343}
 344EXPORT_SYMBOL(dump_elf_task_fp);
 345
 346/*
 347 * Return saved PC of a blocked thread.  This assumes the frame
 348 * pointer is the 6th saved long on the kernel stack and that the
 349 * saved return address is the first long in the frame.  This all
 350 * holds provided the thread blocked through a call to schedule() ($15
 351 * is the frame pointer in schedule() and $15 is saved at offset 48 by
 352 * entry.S:do_switch_stack).
 353 *
 354 * Under heavy swap load I've seen this lose in an ugly way.  So do
 355 * some extra sanity checking on the ranges we expect these pointers
 356 * to be in so that we can fail gracefully.  This is just for ps after
 357 * all.  -- r~
 358 */
 359
 360unsigned long
 361thread_saved_pc(struct task_struct *t)
 362{
 363        unsigned long base = (unsigned long)task_stack_page(t);
 364        unsigned long fp, sp = task_thread_info(t)->pcb.ksp;
 365
 366        if (sp > base && sp+6*8 < base + 16*1024) {
 367                fp = ((unsigned long*)sp)[6];
 368                if (fp > sp && fp < base + 16*1024)
 369                        return *(unsigned long *)fp;
 370        }
 371
 372        return 0;
 373}
 374
 375unsigned long
 376get_wchan(struct task_struct *p)
 377{
 378        unsigned long schedule_frame;
 379        unsigned long pc;
 380        if (!p || p == current || p->state == TASK_RUNNING)
 381                return 0;
 382        /*
 383         * This one depends on the frame size of schedule().  Do a
 384         * "disass schedule" in gdb to find the frame size.  Also, the
 385         * code assumes that sleep_on() follows immediately after
 386         * interruptible_sleep_on() and that add_timer() follows
 387         * immediately after interruptible_sleep().  Ugly, isn't it?
 388         * Maybe adding a wchan field to task_struct would be better,
 389         * after all...
 390         */
 391
 392        pc = thread_saved_pc(p);
 393        if (in_sched_functions(pc)) {
 394                schedule_frame = ((unsigned long *)task_thread_info(p)->pcb.ksp)[6];
 395                return ((unsigned long *)schedule_frame)[12];
 396        }
 397        return pc;
 398}
 399