linux/arch/arm/kvm/arm.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
   3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License, version 2, as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  17 */
  18
  19#include <linux/cpu_pm.h>
  20#include <linux/errno.h>
  21#include <linux/err.h>
  22#include <linux/kvm_host.h>
  23#include <linux/list.h>
  24#include <linux/module.h>
  25#include <linux/vmalloc.h>
  26#include <linux/fs.h>
  27#include <linux/mman.h>
  28#include <linux/sched.h>
  29#include <linux/kvm.h>
  30#include <trace/events/kvm.h>
  31#include <kvm/arm_pmu.h>
  32
  33#define CREATE_TRACE_POINTS
  34#include "trace.h"
  35
  36#include <asm/uaccess.h>
  37#include <asm/ptrace.h>
  38#include <asm/mman.h>
  39#include <asm/tlbflush.h>
  40#include <asm/cacheflush.h>
  41#include <asm/virt.h>
  42#include <asm/kvm_arm.h>
  43#include <asm/kvm_asm.h>
  44#include <asm/kvm_mmu.h>
  45#include <asm/kvm_emulate.h>
  46#include <asm/kvm_coproc.h>
  47#include <asm/kvm_psci.h>
  48#include <asm/sections.h>
  49
  50#ifdef REQUIRES_VIRT
  51__asm__(".arch_extension        virt");
  52#endif
  53
  54static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
  55static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
  56static unsigned long hyp_default_vectors;
  57
  58/* Per-CPU variable containing the currently running vcpu. */
  59static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
  60
  61/* The VMID used in the VTTBR */
  62static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
  63static u32 kvm_next_vmid;
  64static unsigned int kvm_vmid_bits __read_mostly;
  65static DEFINE_SPINLOCK(kvm_vmid_lock);
  66
  67static bool vgic_present;
  68
  69static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
  70
  71static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
  72{
  73        BUG_ON(preemptible());
  74        __this_cpu_write(kvm_arm_running_vcpu, vcpu);
  75}
  76
  77/**
  78 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
  79 * Must be called from non-preemptible context
  80 */
  81struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
  82{
  83        BUG_ON(preemptible());
  84        return __this_cpu_read(kvm_arm_running_vcpu);
  85}
  86
  87/**
  88 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
  89 */
  90struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
  91{
  92        return &kvm_arm_running_vcpu;
  93}
  94
  95int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  96{
  97        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
  98}
  99
 100int kvm_arch_hardware_setup(void)
 101{
 102        return 0;
 103}
 104
 105void kvm_arch_check_processor_compat(void *rtn)
 106{
 107        *(int *)rtn = 0;
 108}
 109
 110
 111/**
 112 * kvm_arch_init_vm - initializes a VM data structure
 113 * @kvm:        pointer to the KVM struct
 114 */
 115int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 116{
 117        int ret = 0;
 118
 119        if (type)
 120                return -EINVAL;
 121
 122        ret = kvm_alloc_stage2_pgd(kvm);
 123        if (ret)
 124                goto out_fail_alloc;
 125
 126        ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
 127        if (ret)
 128                goto out_free_stage2_pgd;
 129
 130        kvm_vgic_early_init(kvm);
 131        kvm_timer_init(kvm);
 132
 133        /* Mark the initial VMID generation invalid */
 134        kvm->arch.vmid_gen = 0;
 135
 136        /* The maximum number of VCPUs is limited by the host's GIC model */
 137        kvm->arch.max_vcpus = vgic_present ?
 138                                kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
 139
 140        return ret;
 141out_free_stage2_pgd:
 142        kvm_free_stage2_pgd(kvm);
 143out_fail_alloc:
 144        return ret;
 145}
 146
 147int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
 148{
 149        return VM_FAULT_SIGBUS;
 150}
 151
 152
 153/**
 154 * kvm_arch_destroy_vm - destroy the VM data structure
 155 * @kvm:        pointer to the KVM struct
 156 */
 157void kvm_arch_destroy_vm(struct kvm *kvm)
 158{
 159        int i;
 160
 161        for (i = 0; i < KVM_MAX_VCPUS; ++i) {
 162                if (kvm->vcpus[i]) {
 163                        kvm_arch_vcpu_free(kvm->vcpus[i]);
 164                        kvm->vcpus[i] = NULL;
 165                }
 166        }
 167
 168        kvm_vgic_destroy(kvm);
 169}
 170
 171int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
 172{
 173        int r;
 174        switch (ext) {
 175        case KVM_CAP_IRQCHIP:
 176                r = vgic_present;
 177                break;
 178        case KVM_CAP_IOEVENTFD:
 179        case KVM_CAP_DEVICE_CTRL:
 180        case KVM_CAP_USER_MEMORY:
 181        case KVM_CAP_SYNC_MMU:
 182        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
 183        case KVM_CAP_ONE_REG:
 184        case KVM_CAP_ARM_PSCI:
 185        case KVM_CAP_ARM_PSCI_0_2:
 186        case KVM_CAP_READONLY_MEM:
 187        case KVM_CAP_MP_STATE:
 188                r = 1;
 189                break;
 190        case KVM_CAP_COALESCED_MMIO:
 191                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 192                break;
 193        case KVM_CAP_ARM_SET_DEVICE_ADDR:
 194                r = 1;
 195                break;
 196        case KVM_CAP_NR_VCPUS:
 197                r = num_online_cpus();
 198                break;
 199        case KVM_CAP_MAX_VCPUS:
 200                r = KVM_MAX_VCPUS;
 201                break;
 202        default:
 203                r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
 204                break;
 205        }
 206        return r;
 207}
 208
 209long kvm_arch_dev_ioctl(struct file *filp,
 210                        unsigned int ioctl, unsigned long arg)
 211{
 212        return -EINVAL;
 213}
 214
 215
 216struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 217{
 218        int err;
 219        struct kvm_vcpu *vcpu;
 220
 221        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
 222                err = -EBUSY;
 223                goto out;
 224        }
 225
 226        if (id >= kvm->arch.max_vcpus) {
 227                err = -EINVAL;
 228                goto out;
 229        }
 230
 231        vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
 232        if (!vcpu) {
 233                err = -ENOMEM;
 234                goto out;
 235        }
 236
 237        err = kvm_vcpu_init(vcpu, kvm, id);
 238        if (err)
 239                goto free_vcpu;
 240
 241        err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
 242        if (err)
 243                goto vcpu_uninit;
 244
 245        return vcpu;
 246vcpu_uninit:
 247        kvm_vcpu_uninit(vcpu);
 248free_vcpu:
 249        kmem_cache_free(kvm_vcpu_cache, vcpu);
 250out:
 251        return ERR_PTR(err);
 252}
 253
 254void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
 255{
 256        kvm_vgic_vcpu_early_init(vcpu);
 257}
 258
 259void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 260{
 261        kvm_mmu_free_memory_caches(vcpu);
 262        kvm_timer_vcpu_terminate(vcpu);
 263        kvm_vgic_vcpu_destroy(vcpu);
 264        kvm_pmu_vcpu_destroy(vcpu);
 265        kvm_vcpu_uninit(vcpu);
 266        kmem_cache_free(kvm_vcpu_cache, vcpu);
 267}
 268
 269void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 270{
 271        kvm_arch_vcpu_free(vcpu);
 272}
 273
 274int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
 275{
 276        return kvm_timer_should_fire(vcpu);
 277}
 278
 279void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
 280{
 281        kvm_timer_schedule(vcpu);
 282}
 283
 284void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
 285{
 286        kvm_timer_unschedule(vcpu);
 287}
 288
 289int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 290{
 291        /* Force users to call KVM_ARM_VCPU_INIT */
 292        vcpu->arch.target = -1;
 293        bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
 294
 295        /* Set up the timer */
 296        kvm_timer_vcpu_init(vcpu);
 297
 298        kvm_arm_reset_debug_ptr(vcpu);
 299
 300        return 0;
 301}
 302
 303void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 304{
 305        vcpu->cpu = cpu;
 306        vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
 307
 308        kvm_arm_set_running_vcpu(vcpu);
 309}
 310
 311void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 312{
 313        /*
 314         * The arch-generic KVM code expects the cpu field of a vcpu to be -1
 315         * if the vcpu is no longer assigned to a cpu.  This is used for the
 316         * optimized make_all_cpus_request path.
 317         */
 318        vcpu->cpu = -1;
 319
 320        kvm_arm_set_running_vcpu(NULL);
 321        kvm_timer_vcpu_put(vcpu);
 322}
 323
 324int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 325                                    struct kvm_mp_state *mp_state)
 326{
 327        if (vcpu->arch.power_off)
 328                mp_state->mp_state = KVM_MP_STATE_STOPPED;
 329        else
 330                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
 331
 332        return 0;
 333}
 334
 335int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 336                                    struct kvm_mp_state *mp_state)
 337{
 338        switch (mp_state->mp_state) {
 339        case KVM_MP_STATE_RUNNABLE:
 340                vcpu->arch.power_off = false;
 341                break;
 342        case KVM_MP_STATE_STOPPED:
 343                vcpu->arch.power_off = true;
 344                break;
 345        default:
 346                return -EINVAL;
 347        }
 348
 349        return 0;
 350}
 351
 352/**
 353 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
 354 * @v:          The VCPU pointer
 355 *
 356 * If the guest CPU is not waiting for interrupts or an interrupt line is
 357 * asserted, the CPU is by definition runnable.
 358 */
 359int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
 360{
 361        return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
 362                && !v->arch.power_off && !v->arch.pause);
 363}
 364
 365/* Just ensure a guest exit from a particular CPU */
 366static void exit_vm_noop(void *info)
 367{
 368}
 369
 370void force_vm_exit(const cpumask_t *mask)
 371{
 372        preempt_disable();
 373        smp_call_function_many(mask, exit_vm_noop, NULL, true);
 374        preempt_enable();
 375}
 376
 377/**
 378 * need_new_vmid_gen - check that the VMID is still valid
 379 * @kvm: The VM's VMID to check
 380 *
 381 * return true if there is a new generation of VMIDs being used
 382 *
 383 * The hardware supports only 256 values with the value zero reserved for the
 384 * host, so we check if an assigned value belongs to a previous generation,
 385 * which which requires us to assign a new value. If we're the first to use a
 386 * VMID for the new generation, we must flush necessary caches and TLBs on all
 387 * CPUs.
 388 */
 389static bool need_new_vmid_gen(struct kvm *kvm)
 390{
 391        return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
 392}
 393
 394/**
 395 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
 396 * @kvm The guest that we are about to run
 397 *
 398 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
 399 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
 400 * caches and TLBs.
 401 */
 402static void update_vttbr(struct kvm *kvm)
 403{
 404        phys_addr_t pgd_phys;
 405        u64 vmid;
 406
 407        if (!need_new_vmid_gen(kvm))
 408                return;
 409
 410        spin_lock(&kvm_vmid_lock);
 411
 412        /*
 413         * We need to re-check the vmid_gen here to ensure that if another vcpu
 414         * already allocated a valid vmid for this vm, then this vcpu should
 415         * use the same vmid.
 416         */
 417        if (!need_new_vmid_gen(kvm)) {
 418                spin_unlock(&kvm_vmid_lock);
 419                return;
 420        }
 421
 422        /* First user of a new VMID generation? */
 423        if (unlikely(kvm_next_vmid == 0)) {
 424                atomic64_inc(&kvm_vmid_gen);
 425                kvm_next_vmid = 1;
 426
 427                /*
 428                 * On SMP we know no other CPUs can use this CPU's or each
 429                 * other's VMID after force_vm_exit returns since the
 430                 * kvm_vmid_lock blocks them from reentry to the guest.
 431                 */
 432                force_vm_exit(cpu_all_mask);
 433                /*
 434                 * Now broadcast TLB + ICACHE invalidation over the inner
 435                 * shareable domain to make sure all data structures are
 436                 * clean.
 437                 */
 438                kvm_call_hyp(__kvm_flush_vm_context);
 439        }
 440
 441        kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
 442        kvm->arch.vmid = kvm_next_vmid;
 443        kvm_next_vmid++;
 444        kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
 445
 446        /* update vttbr to be used with the new vmid */
 447        pgd_phys = virt_to_phys(kvm->arch.pgd);
 448        BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
 449        vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
 450        kvm->arch.vttbr = pgd_phys | vmid;
 451
 452        spin_unlock(&kvm_vmid_lock);
 453}
 454
 455static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
 456{
 457        struct kvm *kvm = vcpu->kvm;
 458        int ret = 0;
 459
 460        if (likely(vcpu->arch.has_run_once))
 461                return 0;
 462
 463        vcpu->arch.has_run_once = true;
 464
 465        /*
 466         * Map the VGIC hardware resources before running a vcpu the first
 467         * time on this VM.
 468         */
 469        if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
 470                ret = kvm_vgic_map_resources(kvm);
 471                if (ret)
 472                        return ret;
 473        }
 474
 475        /*
 476         * Enable the arch timers only if we have an in-kernel VGIC
 477         * and it has been properly initialized, since we cannot handle
 478         * interrupts from the virtual timer with a userspace gic.
 479         */
 480        if (irqchip_in_kernel(kvm) && vgic_initialized(kvm))
 481                ret = kvm_timer_enable(vcpu);
 482
 483        return ret;
 484}
 485
 486bool kvm_arch_intc_initialized(struct kvm *kvm)
 487{
 488        return vgic_initialized(kvm);
 489}
 490
 491void kvm_arm_halt_guest(struct kvm *kvm)
 492{
 493        int i;
 494        struct kvm_vcpu *vcpu;
 495
 496        kvm_for_each_vcpu(i, vcpu, kvm)
 497                vcpu->arch.pause = true;
 498        kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
 499}
 500
 501void kvm_arm_halt_vcpu(struct kvm_vcpu *vcpu)
 502{
 503        vcpu->arch.pause = true;
 504        kvm_vcpu_kick(vcpu);
 505}
 506
 507void kvm_arm_resume_vcpu(struct kvm_vcpu *vcpu)
 508{
 509        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 510
 511        vcpu->arch.pause = false;
 512        swake_up(wq);
 513}
 514
 515void kvm_arm_resume_guest(struct kvm *kvm)
 516{
 517        int i;
 518        struct kvm_vcpu *vcpu;
 519
 520        kvm_for_each_vcpu(i, vcpu, kvm)
 521                kvm_arm_resume_vcpu(vcpu);
 522}
 523
 524static void vcpu_sleep(struct kvm_vcpu *vcpu)
 525{
 526        struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
 527
 528        swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
 529                                       (!vcpu->arch.pause)));
 530}
 531
 532static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
 533{
 534        return vcpu->arch.target >= 0;
 535}
 536
 537/**
 538 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
 539 * @vcpu:       The VCPU pointer
 540 * @run:        The kvm_run structure pointer used for userspace state exchange
 541 *
 542 * This function is called through the VCPU_RUN ioctl called from user space. It
 543 * will execute VM code in a loop until the time slice for the process is used
 544 * or some emulation is needed from user space in which case the function will
 545 * return with return value 0 and with the kvm_run structure filled in with the
 546 * required data for the requested emulation.
 547 */
 548int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 549{
 550        int ret;
 551        sigset_t sigsaved;
 552
 553        if (unlikely(!kvm_vcpu_initialized(vcpu)))
 554                return -ENOEXEC;
 555
 556        ret = kvm_vcpu_first_run_init(vcpu);
 557        if (ret)
 558                return ret;
 559
 560        if (run->exit_reason == KVM_EXIT_MMIO) {
 561                ret = kvm_handle_mmio_return(vcpu, vcpu->run);
 562                if (ret)
 563                        return ret;
 564        }
 565
 566        if (vcpu->sigset_active)
 567                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 568
 569        ret = 1;
 570        run->exit_reason = KVM_EXIT_UNKNOWN;
 571        while (ret > 0) {
 572                /*
 573                 * Check conditions before entering the guest
 574                 */
 575                cond_resched();
 576
 577                update_vttbr(vcpu->kvm);
 578
 579                if (vcpu->arch.power_off || vcpu->arch.pause)
 580                        vcpu_sleep(vcpu);
 581
 582                /*
 583                 * Preparing the interrupts to be injected also
 584                 * involves poking the GIC, which must be done in a
 585                 * non-preemptible context.
 586                 */
 587                preempt_disable();
 588                kvm_pmu_flush_hwstate(vcpu);
 589                kvm_timer_flush_hwstate(vcpu);
 590                kvm_vgic_flush_hwstate(vcpu);
 591
 592                local_irq_disable();
 593
 594                /*
 595                 * Re-check atomic conditions
 596                 */
 597                if (signal_pending(current)) {
 598                        ret = -EINTR;
 599                        run->exit_reason = KVM_EXIT_INTR;
 600                }
 601
 602                if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
 603                        vcpu->arch.power_off || vcpu->arch.pause) {
 604                        local_irq_enable();
 605                        kvm_pmu_sync_hwstate(vcpu);
 606                        kvm_timer_sync_hwstate(vcpu);
 607                        kvm_vgic_sync_hwstate(vcpu);
 608                        preempt_enable();
 609                        continue;
 610                }
 611
 612                kvm_arm_setup_debug(vcpu);
 613
 614                /**************************************************************
 615                 * Enter the guest
 616                 */
 617                trace_kvm_entry(*vcpu_pc(vcpu));
 618                guest_enter_irqoff();
 619                vcpu->mode = IN_GUEST_MODE;
 620
 621                ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
 622
 623                vcpu->mode = OUTSIDE_GUEST_MODE;
 624                vcpu->stat.exits++;
 625                /*
 626                 * Back from guest
 627                 *************************************************************/
 628
 629                kvm_arm_clear_debug(vcpu);
 630
 631                /*
 632                 * We may have taken a host interrupt in HYP mode (ie
 633                 * while executing the guest). This interrupt is still
 634                 * pending, as we haven't serviced it yet!
 635                 *
 636                 * We're now back in SVC mode, with interrupts
 637                 * disabled.  Enabling the interrupts now will have
 638                 * the effect of taking the interrupt again, in SVC
 639                 * mode this time.
 640                 */
 641                local_irq_enable();
 642
 643                /*
 644                 * We do local_irq_enable() before calling guest_exit() so
 645                 * that if a timer interrupt hits while running the guest we
 646                 * account that tick as being spent in the guest.  We enable
 647                 * preemption after calling guest_exit() so that if we get
 648                 * preempted we make sure ticks after that is not counted as
 649                 * guest time.
 650                 */
 651                guest_exit();
 652                trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
 653
 654                /*
 655                 * We must sync the PMU and timer state before the vgic state so
 656                 * that the vgic can properly sample the updated state of the
 657                 * interrupt line.
 658                 */
 659                kvm_pmu_sync_hwstate(vcpu);
 660                kvm_timer_sync_hwstate(vcpu);
 661
 662                kvm_vgic_sync_hwstate(vcpu);
 663
 664                preempt_enable();
 665
 666                ret = handle_exit(vcpu, run, ret);
 667        }
 668
 669        if (vcpu->sigset_active)
 670                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 671        return ret;
 672}
 673
 674static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
 675{
 676        int bit_index;
 677        bool set;
 678        unsigned long *ptr;
 679
 680        if (number == KVM_ARM_IRQ_CPU_IRQ)
 681                bit_index = __ffs(HCR_VI);
 682        else /* KVM_ARM_IRQ_CPU_FIQ */
 683                bit_index = __ffs(HCR_VF);
 684
 685        ptr = (unsigned long *)&vcpu->arch.irq_lines;
 686        if (level)
 687                set = test_and_set_bit(bit_index, ptr);
 688        else
 689                set = test_and_clear_bit(bit_index, ptr);
 690
 691        /*
 692         * If we didn't change anything, no need to wake up or kick other CPUs
 693         */
 694        if (set == level)
 695                return 0;
 696
 697        /*
 698         * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
 699         * trigger a world-switch round on the running physical CPU to set the
 700         * virtual IRQ/FIQ fields in the HCR appropriately.
 701         */
 702        kvm_vcpu_kick(vcpu);
 703
 704        return 0;
 705}
 706
 707int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
 708                          bool line_status)
 709{
 710        u32 irq = irq_level->irq;
 711        unsigned int irq_type, vcpu_idx, irq_num;
 712        int nrcpus = atomic_read(&kvm->online_vcpus);
 713        struct kvm_vcpu *vcpu = NULL;
 714        bool level = irq_level->level;
 715
 716        irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
 717        vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
 718        irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
 719
 720        trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
 721
 722        switch (irq_type) {
 723        case KVM_ARM_IRQ_TYPE_CPU:
 724                if (irqchip_in_kernel(kvm))
 725                        return -ENXIO;
 726
 727                if (vcpu_idx >= nrcpus)
 728                        return -EINVAL;
 729
 730                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 731                if (!vcpu)
 732                        return -EINVAL;
 733
 734                if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
 735                        return -EINVAL;
 736
 737                return vcpu_interrupt_line(vcpu, irq_num, level);
 738        case KVM_ARM_IRQ_TYPE_PPI:
 739                if (!irqchip_in_kernel(kvm))
 740                        return -ENXIO;
 741
 742                if (vcpu_idx >= nrcpus)
 743                        return -EINVAL;
 744
 745                vcpu = kvm_get_vcpu(kvm, vcpu_idx);
 746                if (!vcpu)
 747                        return -EINVAL;
 748
 749                if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
 750                        return -EINVAL;
 751
 752                return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
 753        case KVM_ARM_IRQ_TYPE_SPI:
 754                if (!irqchip_in_kernel(kvm))
 755                        return -ENXIO;
 756
 757                if (irq_num < VGIC_NR_PRIVATE_IRQS)
 758                        return -EINVAL;
 759
 760                return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
 761        }
 762
 763        return -EINVAL;
 764}
 765
 766static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
 767                               const struct kvm_vcpu_init *init)
 768{
 769        unsigned int i;
 770        int phys_target = kvm_target_cpu();
 771
 772        if (init->target != phys_target)
 773                return -EINVAL;
 774
 775        /*
 776         * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 777         * use the same target.
 778         */
 779        if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
 780                return -EINVAL;
 781
 782        /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
 783        for (i = 0; i < sizeof(init->features) * 8; i++) {
 784                bool set = (init->features[i / 32] & (1 << (i % 32)));
 785
 786                if (set && i >= KVM_VCPU_MAX_FEATURES)
 787                        return -ENOENT;
 788
 789                /*
 790                 * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
 791                 * use the same feature set.
 792                 */
 793                if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
 794                    test_bit(i, vcpu->arch.features) != set)
 795                        return -EINVAL;
 796
 797                if (set)
 798                        set_bit(i, vcpu->arch.features);
 799        }
 800
 801        vcpu->arch.target = phys_target;
 802
 803        /* Now we know what it is, we can reset it. */
 804        return kvm_reset_vcpu(vcpu);
 805}
 806
 807
 808static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
 809                                         struct kvm_vcpu_init *init)
 810{
 811        int ret;
 812
 813        ret = kvm_vcpu_set_target(vcpu, init);
 814        if (ret)
 815                return ret;
 816
 817        /*
 818         * Ensure a rebooted VM will fault in RAM pages and detect if the
 819         * guest MMU is turned off and flush the caches as needed.
 820         */
 821        if (vcpu->arch.has_run_once)
 822                stage2_unmap_vm(vcpu->kvm);
 823
 824        vcpu_reset_hcr(vcpu);
 825
 826        /*
 827         * Handle the "start in power-off" case.
 828         */
 829        if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
 830                vcpu->arch.power_off = true;
 831        else
 832                vcpu->arch.power_off = false;
 833
 834        return 0;
 835}
 836
 837static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
 838                                 struct kvm_device_attr *attr)
 839{
 840        int ret = -ENXIO;
 841
 842        switch (attr->group) {
 843        default:
 844                ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
 845                break;
 846        }
 847
 848        return ret;
 849}
 850
 851static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
 852                                 struct kvm_device_attr *attr)
 853{
 854        int ret = -ENXIO;
 855
 856        switch (attr->group) {
 857        default:
 858                ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
 859                break;
 860        }
 861
 862        return ret;
 863}
 864
 865static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
 866                                 struct kvm_device_attr *attr)
 867{
 868        int ret = -ENXIO;
 869
 870        switch (attr->group) {
 871        default:
 872                ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
 873                break;
 874        }
 875
 876        return ret;
 877}
 878
 879long kvm_arch_vcpu_ioctl(struct file *filp,
 880                         unsigned int ioctl, unsigned long arg)
 881{
 882        struct kvm_vcpu *vcpu = filp->private_data;
 883        void __user *argp = (void __user *)arg;
 884        struct kvm_device_attr attr;
 885
 886        switch (ioctl) {
 887        case KVM_ARM_VCPU_INIT: {
 888                struct kvm_vcpu_init init;
 889
 890                if (copy_from_user(&init, argp, sizeof(init)))
 891                        return -EFAULT;
 892
 893                return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
 894        }
 895        case KVM_SET_ONE_REG:
 896        case KVM_GET_ONE_REG: {
 897                struct kvm_one_reg reg;
 898
 899                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 900                        return -ENOEXEC;
 901
 902                if (copy_from_user(&reg, argp, sizeof(reg)))
 903                        return -EFAULT;
 904                if (ioctl == KVM_SET_ONE_REG)
 905                        return kvm_arm_set_reg(vcpu, &reg);
 906                else
 907                        return kvm_arm_get_reg(vcpu, &reg);
 908        }
 909        case KVM_GET_REG_LIST: {
 910                struct kvm_reg_list __user *user_list = argp;
 911                struct kvm_reg_list reg_list;
 912                unsigned n;
 913
 914                if (unlikely(!kvm_vcpu_initialized(vcpu)))
 915                        return -ENOEXEC;
 916
 917                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
 918                        return -EFAULT;
 919                n = reg_list.n;
 920                reg_list.n = kvm_arm_num_regs(vcpu);
 921                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
 922                        return -EFAULT;
 923                if (n < reg_list.n)
 924                        return -E2BIG;
 925                return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
 926        }
 927        case KVM_SET_DEVICE_ATTR: {
 928                if (copy_from_user(&attr, argp, sizeof(attr)))
 929                        return -EFAULT;
 930                return kvm_arm_vcpu_set_attr(vcpu, &attr);
 931        }
 932        case KVM_GET_DEVICE_ATTR: {
 933                if (copy_from_user(&attr, argp, sizeof(attr)))
 934                        return -EFAULT;
 935                return kvm_arm_vcpu_get_attr(vcpu, &attr);
 936        }
 937        case KVM_HAS_DEVICE_ATTR: {
 938                if (copy_from_user(&attr, argp, sizeof(attr)))
 939                        return -EFAULT;
 940                return kvm_arm_vcpu_has_attr(vcpu, &attr);
 941        }
 942        default:
 943                return -EINVAL;
 944        }
 945}
 946
 947/**
 948 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
 949 * @kvm: kvm instance
 950 * @log: slot id and address to which we copy the log
 951 *
 952 * Steps 1-4 below provide general overview of dirty page logging. See
 953 * kvm_get_dirty_log_protect() function description for additional details.
 954 *
 955 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
 956 * always flush the TLB (step 4) even if previous step failed  and the dirty
 957 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
 958 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
 959 * writes will be marked dirty for next log read.
 960 *
 961 *   1. Take a snapshot of the bit and clear it if needed.
 962 *   2. Write protect the corresponding page.
 963 *   3. Copy the snapshot to the userspace.
 964 *   4. Flush TLB's if needed.
 965 */
 966int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
 967{
 968        bool is_dirty = false;
 969        int r;
 970
 971        mutex_lock(&kvm->slots_lock);
 972
 973        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
 974
 975        if (is_dirty)
 976                kvm_flush_remote_tlbs(kvm);
 977
 978        mutex_unlock(&kvm->slots_lock);
 979        return r;
 980}
 981
 982static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
 983                                        struct kvm_arm_device_addr *dev_addr)
 984{
 985        unsigned long dev_id, type;
 986
 987        dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
 988                KVM_ARM_DEVICE_ID_SHIFT;
 989        type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
 990                KVM_ARM_DEVICE_TYPE_SHIFT;
 991
 992        switch (dev_id) {
 993        case KVM_ARM_DEVICE_VGIC_V2:
 994                if (!vgic_present)
 995                        return -ENXIO;
 996                return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
 997        default:
 998                return -ENODEV;
 999        }
1000}
1001
1002long kvm_arch_vm_ioctl(struct file *filp,
1003                       unsigned int ioctl, unsigned long arg)
1004{
1005        struct kvm *kvm = filp->private_data;
1006        void __user *argp = (void __user *)arg;
1007
1008        switch (ioctl) {
1009        case KVM_CREATE_IRQCHIP: {
1010                int ret;
1011                if (!vgic_present)
1012                        return -ENXIO;
1013                mutex_lock(&kvm->lock);
1014                ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1015                mutex_unlock(&kvm->lock);
1016                return ret;
1017        }
1018        case KVM_ARM_SET_DEVICE_ADDR: {
1019                struct kvm_arm_device_addr dev_addr;
1020
1021                if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1022                        return -EFAULT;
1023                return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1024        }
1025        case KVM_ARM_PREFERRED_TARGET: {
1026                int err;
1027                struct kvm_vcpu_init init;
1028
1029                err = kvm_vcpu_preferred_target(&init);
1030                if (err)
1031                        return err;
1032
1033                if (copy_to_user(argp, &init, sizeof(init)))
1034                        return -EFAULT;
1035
1036                return 0;
1037        }
1038        default:
1039                return -EINVAL;
1040        }
1041}
1042
1043static void cpu_init_hyp_mode(void *dummy)
1044{
1045        phys_addr_t pgd_ptr;
1046        unsigned long hyp_stack_ptr;
1047        unsigned long stack_page;
1048        unsigned long vector_ptr;
1049
1050        /* Switch from the HYP stub to our own HYP init vector */
1051        __hyp_set_vectors(kvm_get_idmap_vector());
1052
1053        pgd_ptr = kvm_mmu_get_httbr();
1054        stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1055        hyp_stack_ptr = stack_page + PAGE_SIZE;
1056        vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1057
1058        __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1059        __cpu_init_stage2();
1060
1061        kvm_arm_init_debug();
1062}
1063
1064static void cpu_hyp_reinit(void)
1065{
1066        if (is_kernel_in_hyp_mode()) {
1067                /*
1068                 * __cpu_init_stage2() is safe to call even if the PM
1069                 * event was cancelled before the CPU was reset.
1070                 */
1071                __cpu_init_stage2();
1072        } else {
1073                if (__hyp_get_vectors() == hyp_default_vectors)
1074                        cpu_init_hyp_mode(NULL);
1075        }
1076}
1077
1078static void cpu_hyp_reset(void)
1079{
1080        if (!is_kernel_in_hyp_mode())
1081                __cpu_reset_hyp_mode(hyp_default_vectors,
1082                                     kvm_get_idmap_start());
1083}
1084
1085static void _kvm_arch_hardware_enable(void *discard)
1086{
1087        if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1088                cpu_hyp_reinit();
1089                __this_cpu_write(kvm_arm_hardware_enabled, 1);
1090        }
1091}
1092
1093int kvm_arch_hardware_enable(void)
1094{
1095        _kvm_arch_hardware_enable(NULL);
1096        return 0;
1097}
1098
1099static void _kvm_arch_hardware_disable(void *discard)
1100{
1101        if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1102                cpu_hyp_reset();
1103                __this_cpu_write(kvm_arm_hardware_enabled, 0);
1104        }
1105}
1106
1107void kvm_arch_hardware_disable(void)
1108{
1109        _kvm_arch_hardware_disable(NULL);
1110}
1111
1112#ifdef CONFIG_CPU_PM
1113static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1114                                    unsigned long cmd,
1115                                    void *v)
1116{
1117        /*
1118         * kvm_arm_hardware_enabled is left with its old value over
1119         * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1120         * re-enable hyp.
1121         */
1122        switch (cmd) {
1123        case CPU_PM_ENTER:
1124                if (__this_cpu_read(kvm_arm_hardware_enabled))
1125                        /*
1126                         * don't update kvm_arm_hardware_enabled here
1127                         * so that the hardware will be re-enabled
1128                         * when we resume. See below.
1129                         */
1130                        cpu_hyp_reset();
1131
1132                return NOTIFY_OK;
1133        case CPU_PM_EXIT:
1134                if (__this_cpu_read(kvm_arm_hardware_enabled))
1135                        /* The hardware was enabled before suspend. */
1136                        cpu_hyp_reinit();
1137
1138                return NOTIFY_OK;
1139
1140        default:
1141                return NOTIFY_DONE;
1142        }
1143}
1144
1145static struct notifier_block hyp_init_cpu_pm_nb = {
1146        .notifier_call = hyp_init_cpu_pm_notifier,
1147};
1148
1149static void __init hyp_cpu_pm_init(void)
1150{
1151        cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1152}
1153static void __init hyp_cpu_pm_exit(void)
1154{
1155        cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1156}
1157#else
1158static inline void hyp_cpu_pm_init(void)
1159{
1160}
1161static inline void hyp_cpu_pm_exit(void)
1162{
1163}
1164#endif
1165
1166static void teardown_common_resources(void)
1167{
1168        free_percpu(kvm_host_cpu_state);
1169}
1170
1171static int init_common_resources(void)
1172{
1173        kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1174        if (!kvm_host_cpu_state) {
1175                kvm_err("Cannot allocate host CPU state\n");
1176                return -ENOMEM;
1177        }
1178
1179        return 0;
1180}
1181
1182static int init_subsystems(void)
1183{
1184        int err = 0;
1185
1186        /*
1187         * Enable hardware so that subsystem initialisation can access EL2.
1188         */
1189        on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1190
1191        /*
1192         * Register CPU lower-power notifier
1193         */
1194        hyp_cpu_pm_init();
1195
1196        /*
1197         * Init HYP view of VGIC
1198         */
1199        err = kvm_vgic_hyp_init();
1200        switch (err) {
1201        case 0:
1202                vgic_present = true;
1203                break;
1204        case -ENODEV:
1205        case -ENXIO:
1206                vgic_present = false;
1207                err = 0;
1208                break;
1209        default:
1210                goto out;
1211        }
1212
1213        /*
1214         * Init HYP architected timer support
1215         */
1216        err = kvm_timer_hyp_init();
1217        if (err)
1218                goto out;
1219
1220        kvm_perf_init();
1221        kvm_coproc_table_init();
1222
1223out:
1224        on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1225
1226        return err;
1227}
1228
1229static void teardown_hyp_mode(void)
1230{
1231        int cpu;
1232
1233        if (is_kernel_in_hyp_mode())
1234                return;
1235
1236        free_hyp_pgds();
1237        for_each_possible_cpu(cpu)
1238                free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1239        hyp_cpu_pm_exit();
1240}
1241
1242static int init_vhe_mode(void)
1243{
1244        /* set size of VMID supported by CPU */
1245        kvm_vmid_bits = kvm_get_vmid_bits();
1246        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1247
1248        kvm_info("VHE mode initialized successfully\n");
1249        return 0;
1250}
1251
1252/**
1253 * Inits Hyp-mode on all online CPUs
1254 */
1255static int init_hyp_mode(void)
1256{
1257        int cpu;
1258        int err = 0;
1259
1260        /*
1261         * Allocate Hyp PGD and setup Hyp identity mapping
1262         */
1263        err = kvm_mmu_init();
1264        if (err)
1265                goto out_err;
1266
1267        /*
1268         * It is probably enough to obtain the default on one
1269         * CPU. It's unlikely to be different on the others.
1270         */
1271        hyp_default_vectors = __hyp_get_vectors();
1272
1273        /*
1274         * Allocate stack pages for Hypervisor-mode
1275         */
1276        for_each_possible_cpu(cpu) {
1277                unsigned long stack_page;
1278
1279                stack_page = __get_free_page(GFP_KERNEL);
1280                if (!stack_page) {
1281                        err = -ENOMEM;
1282                        goto out_err;
1283                }
1284
1285                per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1286        }
1287
1288        /*
1289         * Map the Hyp-code called directly from the host
1290         */
1291        err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1292                                  kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1293        if (err) {
1294                kvm_err("Cannot map world-switch code\n");
1295                goto out_err;
1296        }
1297
1298        err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1299                                  kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1300        if (err) {
1301                kvm_err("Cannot map rodata section\n");
1302                goto out_err;
1303        }
1304
1305        /*
1306         * Map the Hyp stack pages
1307         */
1308        for_each_possible_cpu(cpu) {
1309                char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1310                err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1311                                          PAGE_HYP);
1312
1313                if (err) {
1314                        kvm_err("Cannot map hyp stack\n");
1315                        goto out_err;
1316                }
1317        }
1318
1319        for_each_possible_cpu(cpu) {
1320                kvm_cpu_context_t *cpu_ctxt;
1321
1322                cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1323                err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1324
1325                if (err) {
1326                        kvm_err("Cannot map host CPU state: %d\n", err);
1327                        goto out_err;
1328                }
1329        }
1330
1331        /* set size of VMID supported by CPU */
1332        kvm_vmid_bits = kvm_get_vmid_bits();
1333        kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1334
1335        kvm_info("Hyp mode initialized successfully\n");
1336
1337        return 0;
1338
1339out_err:
1340        teardown_hyp_mode();
1341        kvm_err("error initializing Hyp mode: %d\n", err);
1342        return err;
1343}
1344
1345static void check_kvm_target_cpu(void *ret)
1346{
1347        *(int *)ret = kvm_target_cpu();
1348}
1349
1350struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1351{
1352        struct kvm_vcpu *vcpu;
1353        int i;
1354
1355        mpidr &= MPIDR_HWID_BITMASK;
1356        kvm_for_each_vcpu(i, vcpu, kvm) {
1357                if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1358                        return vcpu;
1359        }
1360        return NULL;
1361}
1362
1363/**
1364 * Initialize Hyp-mode and memory mappings on all CPUs.
1365 */
1366int kvm_arch_init(void *opaque)
1367{
1368        int err;
1369        int ret, cpu;
1370
1371        if (!is_hyp_mode_available()) {
1372                kvm_err("HYP mode not available\n");
1373                return -ENODEV;
1374        }
1375
1376        for_each_online_cpu(cpu) {
1377                smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1378                if (ret < 0) {
1379                        kvm_err("Error, CPU %d not supported!\n", cpu);
1380                        return -ENODEV;
1381                }
1382        }
1383
1384        err = init_common_resources();
1385        if (err)
1386                return err;
1387
1388        if (is_kernel_in_hyp_mode())
1389                err = init_vhe_mode();
1390        else
1391                err = init_hyp_mode();
1392        if (err)
1393                goto out_err;
1394
1395        err = init_subsystems();
1396        if (err)
1397                goto out_hyp;
1398
1399        return 0;
1400
1401out_hyp:
1402        teardown_hyp_mode();
1403out_err:
1404        teardown_common_resources();
1405        return err;
1406}
1407
1408/* NOP: Compiling as a module not supported */
1409void kvm_arch_exit(void)
1410{
1411        kvm_perf_teardown();
1412}
1413
1414static int arm_init(void)
1415{
1416        int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1417        return rc;
1418}
1419
1420module_init(arm_init);
1421