linux/arch/mips/cavium-octeon/executive/cvmx-bootmem.c
<<
>>
Prefs
   1/***********************license start***************
   2 * Author: Cavium Networks
   3 *
   4 * Contact: support@caviumnetworks.com
   5 * This file is part of the OCTEON SDK
   6 *
   7 * Copyright (c) 2003-2008 Cavium Networks
   8 *
   9 * This file is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License, Version 2, as
  11 * published by the Free Software Foundation.
  12 *
  13 * This file is distributed in the hope that it will be useful, but
  14 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
  15 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
  16 * NONINFRINGEMENT.  See the GNU General Public License for more
  17 * details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this file; if not, write to the Free Software
  21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  22 * or visit http://www.gnu.org/licenses/.
  23 *
  24 * This file may also be available under a different license from Cavium.
  25 * Contact Cavium Networks for more information
  26 ***********************license end**************************************/
  27
  28/*
  29 * Simple allocate only memory allocator.  Used to allocate memory at
  30 * application start time.
  31 */
  32
  33#include <linux/kernel.h>
  34#include <linux/module.h>
  35
  36#include <asm/octeon/cvmx.h>
  37#include <asm/octeon/cvmx-spinlock.h>
  38#include <asm/octeon/cvmx-bootmem.h>
  39
  40/*#define DEBUG */
  41
  42
  43static struct cvmx_bootmem_desc *cvmx_bootmem_desc;
  44
  45/* See header file for descriptions of functions */
  46
  47/*
  48 * Wrapper functions are provided for reading/writing the size and
  49 * next block values as these may not be directly addressible (in 32
  50 * bit applications, for instance.)  Offsets of data elements in
  51 * bootmem list, must match cvmx_bootmem_block_header_t.
  52 */
  53#define NEXT_OFFSET 0
  54#define SIZE_OFFSET 8
  55
  56static void cvmx_bootmem_phy_set_size(uint64_t addr, uint64_t size)
  57{
  58        cvmx_write64_uint64((addr + SIZE_OFFSET) | (1ull << 63), size);
  59}
  60
  61static void cvmx_bootmem_phy_set_next(uint64_t addr, uint64_t next)
  62{
  63        cvmx_write64_uint64((addr + NEXT_OFFSET) | (1ull << 63), next);
  64}
  65
  66static uint64_t cvmx_bootmem_phy_get_size(uint64_t addr)
  67{
  68        return cvmx_read64_uint64((addr + SIZE_OFFSET) | (1ull << 63));
  69}
  70
  71static uint64_t cvmx_bootmem_phy_get_next(uint64_t addr)
  72{
  73        return cvmx_read64_uint64((addr + NEXT_OFFSET) | (1ull << 63));
  74}
  75
  76void *cvmx_bootmem_alloc_range(uint64_t size, uint64_t alignment,
  77                               uint64_t min_addr, uint64_t max_addr)
  78{
  79        int64_t address;
  80        address =
  81            cvmx_bootmem_phy_alloc(size, min_addr, max_addr, alignment, 0);
  82
  83        if (address > 0)
  84                return cvmx_phys_to_ptr(address);
  85        else
  86                return NULL;
  87}
  88
  89void *cvmx_bootmem_alloc_address(uint64_t size, uint64_t address,
  90                                 uint64_t alignment)
  91{
  92        return cvmx_bootmem_alloc_range(size, alignment, address,
  93                                        address + size);
  94}
  95
  96void *cvmx_bootmem_alloc(uint64_t size, uint64_t alignment)
  97{
  98        return cvmx_bootmem_alloc_range(size, alignment, 0, 0);
  99}
 100
 101void *cvmx_bootmem_alloc_named_range(uint64_t size, uint64_t min_addr,
 102                                     uint64_t max_addr, uint64_t align,
 103                                     char *name)
 104{
 105        int64_t addr;
 106
 107        addr = cvmx_bootmem_phy_named_block_alloc(size, min_addr, max_addr,
 108                                                  align, name, 0);
 109        if (addr >= 0)
 110                return cvmx_phys_to_ptr(addr);
 111        else
 112                return NULL;
 113}
 114
 115void *cvmx_bootmem_alloc_named_address(uint64_t size, uint64_t address,
 116                                       char *name)
 117{
 118    return cvmx_bootmem_alloc_named_range(size, address, address + size,
 119                                          0, name);
 120}
 121
 122void *cvmx_bootmem_alloc_named(uint64_t size, uint64_t alignment, char *name)
 123{
 124    return cvmx_bootmem_alloc_named_range(size, 0, 0, alignment, name);
 125}
 126EXPORT_SYMBOL(cvmx_bootmem_alloc_named);
 127
 128int cvmx_bootmem_free_named(char *name)
 129{
 130        return cvmx_bootmem_phy_named_block_free(name, 0);
 131}
 132
 133struct cvmx_bootmem_named_block_desc *cvmx_bootmem_find_named_block(char *name)
 134{
 135        return cvmx_bootmem_phy_named_block_find(name, 0);
 136}
 137EXPORT_SYMBOL(cvmx_bootmem_find_named_block);
 138
 139void cvmx_bootmem_lock(void)
 140{
 141        cvmx_spinlock_lock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
 142}
 143
 144void cvmx_bootmem_unlock(void)
 145{
 146        cvmx_spinlock_unlock((cvmx_spinlock_t *) &(cvmx_bootmem_desc->lock));
 147}
 148
 149int cvmx_bootmem_init(void *mem_desc_ptr)
 150{
 151        /* Here we set the global pointer to the bootmem descriptor
 152         * block.  This pointer will be used directly, so we will set
 153         * it up to be directly usable by the application.  It is set
 154         * up as follows for the various runtime/ABI combinations:
 155         *
 156         * Linux 64 bit: Set XKPHYS bit
 157         * Linux 32 bit: use mmap to create mapping, use virtual address
 158         * CVMX 64 bit:  use physical address directly
 159         * CVMX 32 bit:  use physical address directly
 160         *
 161         * Note that the CVMX environment assumes the use of 1-1 TLB
 162         * mappings so that the physical addresses can be used
 163         * directly
 164         */
 165        if (!cvmx_bootmem_desc) {
 166#if   defined(CVMX_ABI_64)
 167                /* Set XKPHYS bit */
 168                cvmx_bootmem_desc = cvmx_phys_to_ptr(CAST64(mem_desc_ptr));
 169#else
 170                cvmx_bootmem_desc = (struct cvmx_bootmem_desc *) mem_desc_ptr;
 171#endif
 172        }
 173
 174        return 0;
 175}
 176
 177/*
 178 * The cvmx_bootmem_phy* functions below return 64 bit physical
 179 * addresses, and expose more features that the cvmx_bootmem_functions
 180 * above.  These are required for full memory space access in 32 bit
 181 * applications, as well as for using some advance features.  Most
 182 * applications should not need to use these.
 183 */
 184
 185int64_t cvmx_bootmem_phy_alloc(uint64_t req_size, uint64_t address_min,
 186                               uint64_t address_max, uint64_t alignment,
 187                               uint32_t flags)
 188{
 189
 190        uint64_t head_addr;
 191        uint64_t ent_addr;
 192        /* points to previous list entry, NULL current entry is head of list */
 193        uint64_t prev_addr = 0;
 194        uint64_t new_ent_addr = 0;
 195        uint64_t desired_min_addr;
 196
 197#ifdef DEBUG
 198        cvmx_dprintf("cvmx_bootmem_phy_alloc: req_size: 0x%llx, "
 199                     "min_addr: 0x%llx, max_addr: 0x%llx, align: 0x%llx\n",
 200                     (unsigned long long)req_size,
 201                     (unsigned long long)address_min,
 202                     (unsigned long long)address_max,
 203                     (unsigned long long)alignment);
 204#endif
 205
 206        if (cvmx_bootmem_desc->major_version > 3) {
 207                cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
 208                             "version: %d.%d at addr: %p\n",
 209                             (int)cvmx_bootmem_desc->major_version,
 210                             (int)cvmx_bootmem_desc->minor_version,
 211                             cvmx_bootmem_desc);
 212                goto error_out;
 213        }
 214
 215        /*
 216         * Do a variety of checks to validate the arguments.  The
 217         * allocator code will later assume that these checks have
 218         * been made.  We validate that the requested constraints are
 219         * not self-contradictory before we look through the list of
 220         * available memory.
 221         */
 222
 223        /* 0 is not a valid req_size for this allocator */
 224        if (!req_size)
 225                goto error_out;
 226
 227        /* Round req_size up to mult of minimum alignment bytes */
 228        req_size = (req_size + (CVMX_BOOTMEM_ALIGNMENT_SIZE - 1)) &
 229                ~(CVMX_BOOTMEM_ALIGNMENT_SIZE - 1);
 230
 231        /*
 232         * Convert !0 address_min and 0 address_max to special case of
 233         * range that specifies an exact memory block to allocate.  Do
 234         * this before other checks and adjustments so that this
 235         * tranformation will be validated.
 236         */
 237        if (address_min && !address_max)
 238                address_max = address_min + req_size;
 239        else if (!address_min && !address_max)
 240                address_max = ~0ull;  /* If no limits given, use max limits */
 241
 242
 243        /*
 244         * Enforce minimum alignment (this also keeps the minimum free block
 245         * req_size the same as the alignment req_size.
 246         */
 247        if (alignment < CVMX_BOOTMEM_ALIGNMENT_SIZE)
 248                alignment = CVMX_BOOTMEM_ALIGNMENT_SIZE;
 249
 250        /*
 251         * Adjust address minimum based on requested alignment (round
 252         * up to meet alignment).  Do this here so we can reject
 253         * impossible requests up front. (NOP for address_min == 0)
 254         */
 255        if (alignment)
 256                address_min = ALIGN(address_min, alignment);
 257
 258        /*
 259         * Reject inconsistent args.  We have adjusted these, so this
 260         * may fail due to our internal changes even if this check
 261         * would pass for the values the user supplied.
 262         */
 263        if (req_size > address_max - address_min)
 264                goto error_out;
 265
 266        /* Walk through the list entries - first fit found is returned */
 267
 268        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 269                cvmx_bootmem_lock();
 270        head_addr = cvmx_bootmem_desc->head_addr;
 271        ent_addr = head_addr;
 272        for (; ent_addr;
 273             prev_addr = ent_addr,
 274             ent_addr = cvmx_bootmem_phy_get_next(ent_addr)) {
 275                uint64_t usable_base, usable_max;
 276                uint64_t ent_size = cvmx_bootmem_phy_get_size(ent_addr);
 277
 278                if (cvmx_bootmem_phy_get_next(ent_addr)
 279                    && ent_addr > cvmx_bootmem_phy_get_next(ent_addr)) {
 280                        cvmx_dprintf("Internal bootmem_alloc() error: ent: "
 281                                "0x%llx, next: 0x%llx\n",
 282                                (unsigned long long)ent_addr,
 283                                (unsigned long long)
 284                                cvmx_bootmem_phy_get_next(ent_addr));
 285                        goto error_out;
 286                }
 287
 288                /*
 289                 * Determine if this is an entry that can satisify the
 290                 * request Check to make sure entry is large enough to
 291                 * satisfy request.
 292                 */
 293                usable_base =
 294                    ALIGN(max(address_min, ent_addr), alignment);
 295                usable_max = min(address_max, ent_addr + ent_size);
 296                /*
 297                 * We should be able to allocate block at address
 298                 * usable_base.
 299                 */
 300
 301                desired_min_addr = usable_base;
 302                /*
 303                 * Determine if request can be satisfied from the
 304                 * current entry.
 305                 */
 306                if (!((ent_addr + ent_size) > usable_base
 307                                && ent_addr < address_max
 308                                && req_size <= usable_max - usable_base))
 309                        continue;
 310                /*
 311                 * We have found an entry that has room to satisfy the
 312                 * request, so allocate it from this entry.  If end
 313                 * CVMX_BOOTMEM_FLAG_END_ALLOC set, then allocate from
 314                 * the end of this block rather than the beginning.
 315                 */
 316                if (flags & CVMX_BOOTMEM_FLAG_END_ALLOC) {
 317                        desired_min_addr = usable_max - req_size;
 318                        /*
 319                         * Align desired address down to required
 320                         * alignment.
 321                         */
 322                        desired_min_addr &= ~(alignment - 1);
 323                }
 324
 325                /* Match at start of entry */
 326                if (desired_min_addr == ent_addr) {
 327                        if (req_size < ent_size) {
 328                                /*
 329                                 * big enough to create a new block
 330                                 * from top portion of block.
 331                                 */
 332                                new_ent_addr = ent_addr + req_size;
 333                                cvmx_bootmem_phy_set_next(new_ent_addr,
 334                                        cvmx_bootmem_phy_get_next(ent_addr));
 335                                cvmx_bootmem_phy_set_size(new_ent_addr,
 336                                                        ent_size -
 337                                                        req_size);
 338
 339                                /*
 340                                 * Adjust next pointer as following
 341                                 * code uses this.
 342                                 */
 343                                cvmx_bootmem_phy_set_next(ent_addr,
 344                                                        new_ent_addr);
 345                        }
 346
 347                        /*
 348                         * adjust prev ptr or head to remove this
 349                         * entry from list.
 350                         */
 351                        if (prev_addr)
 352                                cvmx_bootmem_phy_set_next(prev_addr,
 353                                        cvmx_bootmem_phy_get_next(ent_addr));
 354                        else
 355                                /*
 356                                 * head of list being returned, so
 357                                 * update head ptr.
 358                                 */
 359                                cvmx_bootmem_desc->head_addr =
 360                                        cvmx_bootmem_phy_get_next(ent_addr);
 361
 362                        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 363                                cvmx_bootmem_unlock();
 364                        return desired_min_addr;
 365                }
 366                /*
 367                 * block returned doesn't start at beginning of entry,
 368                 * so we know that we will be splitting a block off
 369                 * the front of this one.  Create a new block from the
 370                 * beginning, add to list, and go to top of loop
 371                 * again.
 372                 *
 373                 * create new block from high portion of
 374                 * block, so that top block starts at desired
 375                 * addr.
 376                 */
 377                new_ent_addr = desired_min_addr;
 378                cvmx_bootmem_phy_set_next(new_ent_addr,
 379                                        cvmx_bootmem_phy_get_next
 380                                        (ent_addr));
 381                cvmx_bootmem_phy_set_size(new_ent_addr,
 382                                        cvmx_bootmem_phy_get_size
 383                                        (ent_addr) -
 384                                        (desired_min_addr -
 385                                                ent_addr));
 386                cvmx_bootmem_phy_set_size(ent_addr,
 387                                        desired_min_addr - ent_addr);
 388                cvmx_bootmem_phy_set_next(ent_addr, new_ent_addr);
 389                /* Loop again to handle actual alloc from new block */
 390        }
 391error_out:
 392        /* We didn't find anything, so return error */
 393        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 394                cvmx_bootmem_unlock();
 395        return -1;
 396}
 397
 398int __cvmx_bootmem_phy_free(uint64_t phy_addr, uint64_t size, uint32_t flags)
 399{
 400        uint64_t cur_addr;
 401        uint64_t prev_addr = 0; /* zero is invalid */
 402        int retval = 0;
 403
 404#ifdef DEBUG
 405        cvmx_dprintf("__cvmx_bootmem_phy_free addr: 0x%llx, size: 0x%llx\n",
 406                     (unsigned long long)phy_addr, (unsigned long long)size);
 407#endif
 408        if (cvmx_bootmem_desc->major_version > 3) {
 409                cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
 410                             "version: %d.%d at addr: %p\n",
 411                             (int)cvmx_bootmem_desc->major_version,
 412                             (int)cvmx_bootmem_desc->minor_version,
 413                             cvmx_bootmem_desc);
 414                return 0;
 415        }
 416
 417        /* 0 is not a valid size for this allocator */
 418        if (!size)
 419                return 0;
 420
 421        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 422                cvmx_bootmem_lock();
 423        cur_addr = cvmx_bootmem_desc->head_addr;
 424        if (cur_addr == 0 || phy_addr < cur_addr) {
 425                /* add at front of list - special case with changing head ptr */
 426                if (cur_addr && phy_addr + size > cur_addr)
 427                        goto bootmem_free_done; /* error, overlapping section */
 428                else if (phy_addr + size == cur_addr) {
 429                        /* Add to front of existing first block */
 430                        cvmx_bootmem_phy_set_next(phy_addr,
 431                                                  cvmx_bootmem_phy_get_next
 432                                                  (cur_addr));
 433                        cvmx_bootmem_phy_set_size(phy_addr,
 434                                                  cvmx_bootmem_phy_get_size
 435                                                  (cur_addr) + size);
 436                        cvmx_bootmem_desc->head_addr = phy_addr;
 437
 438                } else {
 439                        /* New block before first block.  OK if cur_addr is 0 */
 440                        cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
 441                        cvmx_bootmem_phy_set_size(phy_addr, size);
 442                        cvmx_bootmem_desc->head_addr = phy_addr;
 443                }
 444                retval = 1;
 445                goto bootmem_free_done;
 446        }
 447
 448        /* Find place in list to add block */
 449        while (cur_addr && phy_addr > cur_addr) {
 450                prev_addr = cur_addr;
 451                cur_addr = cvmx_bootmem_phy_get_next(cur_addr);
 452        }
 453
 454        if (!cur_addr) {
 455                /*
 456                 * We have reached the end of the list, add on to end,
 457                 * checking to see if we need to combine with last
 458                 * block
 459                 */
 460                if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
 461                    phy_addr) {
 462                        cvmx_bootmem_phy_set_size(prev_addr,
 463                                                  cvmx_bootmem_phy_get_size
 464                                                  (prev_addr) + size);
 465                } else {
 466                        cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
 467                        cvmx_bootmem_phy_set_size(phy_addr, size);
 468                        cvmx_bootmem_phy_set_next(phy_addr, 0);
 469                }
 470                retval = 1;
 471                goto bootmem_free_done;
 472        } else {
 473                /*
 474                 * insert between prev and cur nodes, checking for
 475                 * merge with either/both.
 476                 */
 477                if (prev_addr + cvmx_bootmem_phy_get_size(prev_addr) ==
 478                    phy_addr) {
 479                        /* Merge with previous */
 480                        cvmx_bootmem_phy_set_size(prev_addr,
 481                                                  cvmx_bootmem_phy_get_size
 482                                                  (prev_addr) + size);
 483                        if (phy_addr + size == cur_addr) {
 484                                /* Also merge with current */
 485                                cvmx_bootmem_phy_set_size(prev_addr,
 486                                        cvmx_bootmem_phy_get_size(cur_addr) +
 487                                        cvmx_bootmem_phy_get_size(prev_addr));
 488                                cvmx_bootmem_phy_set_next(prev_addr,
 489                                        cvmx_bootmem_phy_get_next(cur_addr));
 490                        }
 491                        retval = 1;
 492                        goto bootmem_free_done;
 493                } else if (phy_addr + size == cur_addr) {
 494                        /* Merge with current */
 495                        cvmx_bootmem_phy_set_size(phy_addr,
 496                                                  cvmx_bootmem_phy_get_size
 497                                                  (cur_addr) + size);
 498                        cvmx_bootmem_phy_set_next(phy_addr,
 499                                                  cvmx_bootmem_phy_get_next
 500                                                  (cur_addr));
 501                        cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
 502                        retval = 1;
 503                        goto bootmem_free_done;
 504                }
 505
 506                /* It is a standalone block, add in between prev and cur */
 507                cvmx_bootmem_phy_set_size(phy_addr, size);
 508                cvmx_bootmem_phy_set_next(phy_addr, cur_addr);
 509                cvmx_bootmem_phy_set_next(prev_addr, phy_addr);
 510
 511        }
 512        retval = 1;
 513
 514bootmem_free_done:
 515        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 516                cvmx_bootmem_unlock();
 517        return retval;
 518
 519}
 520
 521struct cvmx_bootmem_named_block_desc *
 522        cvmx_bootmem_phy_named_block_find(char *name, uint32_t flags)
 523{
 524        unsigned int i;
 525        struct cvmx_bootmem_named_block_desc *named_block_array_ptr;
 526
 527#ifdef DEBUG
 528        cvmx_dprintf("cvmx_bootmem_phy_named_block_find: %s\n", name);
 529#endif
 530        /*
 531         * Lock the structure to make sure that it is not being
 532         * changed while we are examining it.
 533         */
 534        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 535                cvmx_bootmem_lock();
 536
 537        /* Use XKPHYS for 64 bit linux */
 538        named_block_array_ptr = (struct cvmx_bootmem_named_block_desc *)
 539            cvmx_phys_to_ptr(cvmx_bootmem_desc->named_block_array_addr);
 540
 541#ifdef DEBUG
 542        cvmx_dprintf
 543            ("cvmx_bootmem_phy_named_block_find: named_block_array_ptr: %p\n",
 544             named_block_array_ptr);
 545#endif
 546        if (cvmx_bootmem_desc->major_version == 3) {
 547                for (i = 0;
 548                     i < cvmx_bootmem_desc->named_block_num_blocks; i++) {
 549                        if ((name && named_block_array_ptr[i].size
 550                             && !strncmp(name, named_block_array_ptr[i].name,
 551                                         cvmx_bootmem_desc->named_block_name_len
 552                                         - 1))
 553                            || (!name && !named_block_array_ptr[i].size)) {
 554                                if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 555                                        cvmx_bootmem_unlock();
 556
 557                                return &(named_block_array_ptr[i]);
 558                        }
 559                }
 560        } else {
 561                cvmx_dprintf("ERROR: Incompatible bootmem descriptor "
 562                             "version: %d.%d at addr: %p\n",
 563                             (int)cvmx_bootmem_desc->major_version,
 564                             (int)cvmx_bootmem_desc->minor_version,
 565                             cvmx_bootmem_desc);
 566        }
 567        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 568                cvmx_bootmem_unlock();
 569
 570        return NULL;
 571}
 572
 573int cvmx_bootmem_phy_named_block_free(char *name, uint32_t flags)
 574{
 575        struct cvmx_bootmem_named_block_desc *named_block_ptr;
 576
 577        if (cvmx_bootmem_desc->major_version != 3) {
 578                cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
 579                             "%d.%d at addr: %p\n",
 580                             (int)cvmx_bootmem_desc->major_version,
 581                             (int)cvmx_bootmem_desc->minor_version,
 582                             cvmx_bootmem_desc);
 583                return 0;
 584        }
 585#ifdef DEBUG
 586        cvmx_dprintf("cvmx_bootmem_phy_named_block_free: %s\n", name);
 587#endif
 588
 589        /*
 590         * Take lock here, as name lookup/block free/name free need to
 591         * be atomic.
 592         */
 593        cvmx_bootmem_lock();
 594
 595        named_block_ptr =
 596            cvmx_bootmem_phy_named_block_find(name,
 597                                              CVMX_BOOTMEM_FLAG_NO_LOCKING);
 598        if (named_block_ptr) {
 599#ifdef DEBUG
 600                cvmx_dprintf("cvmx_bootmem_phy_named_block_free: "
 601                             "%s, base: 0x%llx, size: 0x%llx\n",
 602                             name,
 603                             (unsigned long long)named_block_ptr->base_addr,
 604                             (unsigned long long)named_block_ptr->size);
 605#endif
 606                __cvmx_bootmem_phy_free(named_block_ptr->base_addr,
 607                                        named_block_ptr->size,
 608                                        CVMX_BOOTMEM_FLAG_NO_LOCKING);
 609                named_block_ptr->size = 0;
 610                /* Set size to zero to indicate block not used. */
 611        }
 612
 613        cvmx_bootmem_unlock();
 614        return named_block_ptr != NULL; /* 0 on failure, 1 on success */
 615}
 616
 617int64_t cvmx_bootmem_phy_named_block_alloc(uint64_t size, uint64_t min_addr,
 618                                           uint64_t max_addr,
 619                                           uint64_t alignment,
 620                                           char *name,
 621                                           uint32_t flags)
 622{
 623        int64_t addr_allocated;
 624        struct cvmx_bootmem_named_block_desc *named_block_desc_ptr;
 625
 626#ifdef DEBUG
 627        cvmx_dprintf("cvmx_bootmem_phy_named_block_alloc: size: 0x%llx, min: "
 628                     "0x%llx, max: 0x%llx, align: 0x%llx, name: %s\n",
 629                     (unsigned long long)size,
 630                     (unsigned long long)min_addr,
 631                     (unsigned long long)max_addr,
 632                     (unsigned long long)alignment,
 633                     name);
 634#endif
 635        if (cvmx_bootmem_desc->major_version != 3) {
 636                cvmx_dprintf("ERROR: Incompatible bootmem descriptor version: "
 637                             "%d.%d at addr: %p\n",
 638                             (int)cvmx_bootmem_desc->major_version,
 639                             (int)cvmx_bootmem_desc->minor_version,
 640                             cvmx_bootmem_desc);
 641                return -1;
 642        }
 643
 644        /*
 645         * Take lock here, as name lookup/block alloc/name add need to
 646         * be atomic.
 647         */
 648        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 649                cvmx_spinlock_lock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
 650
 651        /* Get pointer to first available named block descriptor */
 652        named_block_desc_ptr =
 653                cvmx_bootmem_phy_named_block_find(NULL,
 654                                                  flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
 655
 656        /*
 657         * Check to see if name already in use, return error if name
 658         * not available or no more room for blocks.
 659         */
 660        if (cvmx_bootmem_phy_named_block_find(name,
 661                                              flags | CVMX_BOOTMEM_FLAG_NO_LOCKING) || !named_block_desc_ptr) {
 662                if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 663                        cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
 664                return -1;
 665        }
 666
 667
 668        /*
 669         * Round size up to mult of minimum alignment bytes We need
 670         * the actual size allocated to allow for blocks to be
 671         * coalesced when they are freed. The alloc routine does the
 672         * same rounding up on all allocations.
 673         */
 674        size = ALIGN(size, CVMX_BOOTMEM_ALIGNMENT_SIZE);
 675
 676        addr_allocated = cvmx_bootmem_phy_alloc(size, min_addr, max_addr,
 677                                                alignment,
 678                                                flags | CVMX_BOOTMEM_FLAG_NO_LOCKING);
 679        if (addr_allocated >= 0) {
 680                named_block_desc_ptr->base_addr = addr_allocated;
 681                named_block_desc_ptr->size = size;
 682                strncpy(named_block_desc_ptr->name, name,
 683                        cvmx_bootmem_desc->named_block_name_len);
 684                named_block_desc_ptr->name[cvmx_bootmem_desc->named_block_name_len - 1] = 0;
 685        }
 686
 687        if (!(flags & CVMX_BOOTMEM_FLAG_NO_LOCKING))
 688                cvmx_spinlock_unlock((cvmx_spinlock_t *)&(cvmx_bootmem_desc->lock));
 689        return addr_allocated;
 690}
 691
 692struct cvmx_bootmem_desc *cvmx_bootmem_get_desc(void)
 693{
 694        return cvmx_bootmem_desc;
 695}
 696