linux/arch/mips/kvm/mips.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * KVM/MIPS: MIPS specific KVM APIs
   7 *
   8 * Copyright (C) 2012  MIPS Technologies, Inc.  All rights reserved.
   9 * Authors: Sanjay Lal <sanjayl@kymasys.com>
  10 */
  11
  12#include <linux/bitops.h>
  13#include <linux/errno.h>
  14#include <linux/err.h>
  15#include <linux/kdebug.h>
  16#include <linux/module.h>
  17#include <linux/vmalloc.h>
  18#include <linux/fs.h>
  19#include <linux/bootmem.h>
  20#include <asm/fpu.h>
  21#include <asm/page.h>
  22#include <asm/cacheflush.h>
  23#include <asm/mmu_context.h>
  24#include <asm/pgtable.h>
  25
  26#include <linux/kvm_host.h>
  27
  28#include "interrupt.h"
  29#include "commpage.h"
  30
  31#define CREATE_TRACE_POINTS
  32#include "trace.h"
  33
  34#ifndef VECTORSPACING
  35#define VECTORSPACING 0x100     /* for EI/VI mode */
  36#endif
  37
  38#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
  39struct kvm_stats_debugfs_item debugfs_entries[] = {
  40        { "wait",         VCPU_STAT(wait_exits),         KVM_STAT_VCPU },
  41        { "cache",        VCPU_STAT(cache_exits),        KVM_STAT_VCPU },
  42        { "signal",       VCPU_STAT(signal_exits),       KVM_STAT_VCPU },
  43        { "interrupt",    VCPU_STAT(int_exits),          KVM_STAT_VCPU },
  44        { "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
  45        { "tlbmod",       VCPU_STAT(tlbmod_exits),       KVM_STAT_VCPU },
  46        { "tlbmiss_ld",   VCPU_STAT(tlbmiss_ld_exits),   KVM_STAT_VCPU },
  47        { "tlbmiss_st",   VCPU_STAT(tlbmiss_st_exits),   KVM_STAT_VCPU },
  48        { "addrerr_st",   VCPU_STAT(addrerr_st_exits),   KVM_STAT_VCPU },
  49        { "addrerr_ld",   VCPU_STAT(addrerr_ld_exits),   KVM_STAT_VCPU },
  50        { "syscall",      VCPU_STAT(syscall_exits),      KVM_STAT_VCPU },
  51        { "resvd_inst",   VCPU_STAT(resvd_inst_exits),   KVM_STAT_VCPU },
  52        { "break_inst",   VCPU_STAT(break_inst_exits),   KVM_STAT_VCPU },
  53        { "trap_inst",    VCPU_STAT(trap_inst_exits),    KVM_STAT_VCPU },
  54        { "msa_fpe",      VCPU_STAT(msa_fpe_exits),      KVM_STAT_VCPU },
  55        { "fpe",          VCPU_STAT(fpe_exits),          KVM_STAT_VCPU },
  56        { "msa_disabled", VCPU_STAT(msa_disabled_exits), KVM_STAT_VCPU },
  57        { "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
  58        { "halt_successful_poll", VCPU_STAT(halt_successful_poll), KVM_STAT_VCPU },
  59        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll), KVM_STAT_VCPU },
  60        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid), KVM_STAT_VCPU },
  61        { "halt_wakeup",  VCPU_STAT(halt_wakeup),        KVM_STAT_VCPU },
  62        {NULL}
  63};
  64
  65static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
  66{
  67        int i;
  68
  69        for_each_possible_cpu(i) {
  70                vcpu->arch.guest_kernel_asid[i] = 0;
  71                vcpu->arch.guest_user_asid[i] = 0;
  72        }
  73
  74        return 0;
  75}
  76
  77/*
  78 * XXXKYMA: We are simulatoring a processor that has the WII bit set in
  79 * Config7, so we are "runnable" if interrupts are pending
  80 */
  81int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  82{
  83        return !!(vcpu->arch.pending_exceptions);
  84}
  85
  86int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
  87{
  88        return 1;
  89}
  90
  91int kvm_arch_hardware_enable(void)
  92{
  93        return 0;
  94}
  95
  96int kvm_arch_hardware_setup(void)
  97{
  98        return 0;
  99}
 100
 101void kvm_arch_check_processor_compat(void *rtn)
 102{
 103        *(int *)rtn = 0;
 104}
 105
 106static void kvm_mips_init_tlbs(struct kvm *kvm)
 107{
 108        unsigned long wired;
 109
 110        /*
 111         * Add a wired entry to the TLB, it is used to map the commpage to
 112         * the Guest kernel
 113         */
 114        wired = read_c0_wired();
 115        write_c0_wired(wired + 1);
 116        mtc0_tlbw_hazard();
 117        kvm->arch.commpage_tlb = wired;
 118
 119        kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
 120                  kvm->arch.commpage_tlb);
 121}
 122
 123static void kvm_mips_init_vm_percpu(void *arg)
 124{
 125        struct kvm *kvm = (struct kvm *)arg;
 126
 127        kvm_mips_init_tlbs(kvm);
 128        kvm_mips_callbacks->vm_init(kvm);
 129
 130}
 131
 132int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
 133{
 134        if (atomic_inc_return(&kvm_mips_instance) == 1) {
 135                kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
 136                          __func__);
 137                on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
 138        }
 139
 140        return 0;
 141}
 142
 143void kvm_mips_free_vcpus(struct kvm *kvm)
 144{
 145        unsigned int i;
 146        struct kvm_vcpu *vcpu;
 147
 148        /* Put the pages we reserved for the guest pmap */
 149        for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
 150                if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
 151                        kvm_release_pfn_clean(kvm->arch.guest_pmap[i]);
 152        }
 153        kfree(kvm->arch.guest_pmap);
 154
 155        kvm_for_each_vcpu(i, vcpu, kvm) {
 156                kvm_arch_vcpu_free(vcpu);
 157        }
 158
 159        mutex_lock(&kvm->lock);
 160
 161        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 162                kvm->vcpus[i] = NULL;
 163
 164        atomic_set(&kvm->online_vcpus, 0);
 165
 166        mutex_unlock(&kvm->lock);
 167}
 168
 169static void kvm_mips_uninit_tlbs(void *arg)
 170{
 171        /* Restore wired count */
 172        write_c0_wired(0);
 173        mtc0_tlbw_hazard();
 174        /* Clear out all the TLBs */
 175        kvm_local_flush_tlb_all();
 176}
 177
 178void kvm_arch_destroy_vm(struct kvm *kvm)
 179{
 180        kvm_mips_free_vcpus(kvm);
 181
 182        /* If this is the last instance, restore wired count */
 183        if (atomic_dec_return(&kvm_mips_instance) == 0) {
 184                kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
 185                          __func__);
 186                on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
 187        }
 188}
 189
 190long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
 191                        unsigned long arg)
 192{
 193        return -ENOIOCTLCMD;
 194}
 195
 196int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
 197                            unsigned long npages)
 198{
 199        return 0;
 200}
 201
 202int kvm_arch_prepare_memory_region(struct kvm *kvm,
 203                                   struct kvm_memory_slot *memslot,
 204                                   const struct kvm_userspace_memory_region *mem,
 205                                   enum kvm_mr_change change)
 206{
 207        return 0;
 208}
 209
 210void kvm_arch_commit_memory_region(struct kvm *kvm,
 211                                   const struct kvm_userspace_memory_region *mem,
 212                                   const struct kvm_memory_slot *old,
 213                                   const struct kvm_memory_slot *new,
 214                                   enum kvm_mr_change change)
 215{
 216        unsigned long npages = 0;
 217        int i;
 218
 219        kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
 220                  __func__, kvm, mem->slot, mem->guest_phys_addr,
 221                  mem->memory_size, mem->userspace_addr);
 222
 223        /* Setup Guest PMAP table */
 224        if (!kvm->arch.guest_pmap) {
 225                if (mem->slot == 0)
 226                        npages = mem->memory_size >> PAGE_SHIFT;
 227
 228                if (npages) {
 229                        kvm->arch.guest_pmap_npages = npages;
 230                        kvm->arch.guest_pmap =
 231                            kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
 232
 233                        if (!kvm->arch.guest_pmap) {
 234                                kvm_err("Failed to allocate guest PMAP\n");
 235                                return;
 236                        }
 237
 238                        kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
 239                                  npages, kvm->arch.guest_pmap);
 240
 241                        /* Now setup the page table */
 242                        for (i = 0; i < npages; i++)
 243                                kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
 244                }
 245        }
 246}
 247
 248static inline void dump_handler(const char *symbol, void *start, void *end)
 249{
 250        u32 *p;
 251
 252        pr_debug("LEAF(%s)\n", symbol);
 253
 254        pr_debug("\t.set push\n");
 255        pr_debug("\t.set noreorder\n");
 256
 257        for (p = start; p < (u32 *)end; ++p)
 258                pr_debug("\t.word\t0x%08x\t\t# %p\n", *p, p);
 259
 260        pr_debug("\t.set\tpop\n");
 261
 262        pr_debug("\tEND(%s)\n", symbol);
 263}
 264
 265struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
 266{
 267        int err, size;
 268        void *gebase, *p, *handler;
 269        int i;
 270
 271        struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
 272
 273        if (!vcpu) {
 274                err = -ENOMEM;
 275                goto out;
 276        }
 277
 278        err = kvm_vcpu_init(vcpu, kvm, id);
 279
 280        if (err)
 281                goto out_free_cpu;
 282
 283        kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
 284
 285        /*
 286         * Allocate space for host mode exception handlers that handle
 287         * guest mode exits
 288         */
 289        if (cpu_has_veic || cpu_has_vint)
 290                size = 0x200 + VECTORSPACING * 64;
 291        else
 292                size = 0x4000;
 293
 294        gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
 295
 296        if (!gebase) {
 297                err = -ENOMEM;
 298                goto out_uninit_cpu;
 299        }
 300        kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
 301                  ALIGN(size, PAGE_SIZE), gebase);
 302
 303        /*
 304         * Check new ebase actually fits in CP0_EBase. The lack of a write gate
 305         * limits us to the low 512MB of physical address space. If the memory
 306         * we allocate is out of range, just give up now.
 307         */
 308        if (!cpu_has_ebase_wg && virt_to_phys(gebase) >= 0x20000000) {
 309                kvm_err("CP0_EBase.WG required for guest exception base %pK\n",
 310                        gebase);
 311                err = -ENOMEM;
 312                goto out_free_gebase;
 313        }
 314
 315        /* Save new ebase */
 316        vcpu->arch.guest_ebase = gebase;
 317
 318        /* Build guest exception vectors dynamically in unmapped memory */
 319        handler = gebase + 0x2000;
 320
 321        /* TLB Refill, EXL = 0 */
 322        kvm_mips_build_exception(gebase, handler);
 323
 324        /* General Exception Entry point */
 325        kvm_mips_build_exception(gebase + 0x180, handler);
 326
 327        /* For vectored interrupts poke the exception code @ all offsets 0-7 */
 328        for (i = 0; i < 8; i++) {
 329                kvm_debug("L1 Vectored handler @ %p\n",
 330                          gebase + 0x200 + (i * VECTORSPACING));
 331                kvm_mips_build_exception(gebase + 0x200 + i * VECTORSPACING,
 332                                         handler);
 333        }
 334
 335        /* General exit handler */
 336        p = handler;
 337        p = kvm_mips_build_exit(p);
 338
 339        /* Guest entry routine */
 340        vcpu->arch.vcpu_run = p;
 341        p = kvm_mips_build_vcpu_run(p);
 342
 343        /* Dump the generated code */
 344        pr_debug("#include <asm/asm.h>\n");
 345        pr_debug("#include <asm/regdef.h>\n");
 346        pr_debug("\n");
 347        dump_handler("kvm_vcpu_run", vcpu->arch.vcpu_run, p);
 348        dump_handler("kvm_gen_exc", gebase + 0x180, gebase + 0x200);
 349        dump_handler("kvm_exit", gebase + 0x2000, vcpu->arch.vcpu_run);
 350
 351        /* Invalidate the icache for these ranges */
 352        local_flush_icache_range((unsigned long)gebase,
 353                                (unsigned long)gebase + ALIGN(size, PAGE_SIZE));
 354
 355        /*
 356         * Allocate comm page for guest kernel, a TLB will be reserved for
 357         * mapping GVA @ 0xFFFF8000 to this page
 358         */
 359        vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
 360
 361        if (!vcpu->arch.kseg0_commpage) {
 362                err = -ENOMEM;
 363                goto out_free_gebase;
 364        }
 365
 366        kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
 367        kvm_mips_commpage_init(vcpu);
 368
 369        /* Init */
 370        vcpu->arch.last_sched_cpu = -1;
 371
 372        /* Start off the timer */
 373        kvm_mips_init_count(vcpu);
 374
 375        return vcpu;
 376
 377out_free_gebase:
 378        kfree(gebase);
 379
 380out_uninit_cpu:
 381        kvm_vcpu_uninit(vcpu);
 382
 383out_free_cpu:
 384        kfree(vcpu);
 385
 386out:
 387        return ERR_PTR(err);
 388}
 389
 390void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 391{
 392        hrtimer_cancel(&vcpu->arch.comparecount_timer);
 393
 394        kvm_vcpu_uninit(vcpu);
 395
 396        kvm_mips_dump_stats(vcpu);
 397
 398        kfree(vcpu->arch.guest_ebase);
 399        kfree(vcpu->arch.kseg0_commpage);
 400        kfree(vcpu);
 401}
 402
 403void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 404{
 405        kvm_arch_vcpu_free(vcpu);
 406}
 407
 408int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 409                                        struct kvm_guest_debug *dbg)
 410{
 411        return -ENOIOCTLCMD;
 412}
 413
 414int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
 415{
 416        int r = 0;
 417        sigset_t sigsaved;
 418
 419        if (vcpu->sigset_active)
 420                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 421
 422        if (vcpu->mmio_needed) {
 423                if (!vcpu->mmio_is_write)
 424                        kvm_mips_complete_mmio_load(vcpu, run);
 425                vcpu->mmio_needed = 0;
 426        }
 427
 428        lose_fpu(1);
 429
 430        local_irq_disable();
 431        /* Check if we have any exceptions/interrupts pending */
 432        kvm_mips_deliver_interrupts(vcpu,
 433                                    kvm_read_c0_guest_cause(vcpu->arch.cop0));
 434
 435        guest_enter_irqoff();
 436
 437        /* Disable hardware page table walking while in guest */
 438        htw_stop();
 439
 440        trace_kvm_enter(vcpu);
 441        r = vcpu->arch.vcpu_run(run, vcpu);
 442        trace_kvm_out(vcpu);
 443
 444        /* Re-enable HTW before enabling interrupts */
 445        htw_start();
 446
 447        guest_exit_irqoff();
 448        local_irq_enable();
 449
 450        if (vcpu->sigset_active)
 451                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 452
 453        return r;
 454}
 455
 456int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 457                             struct kvm_mips_interrupt *irq)
 458{
 459        int intr = (int)irq->irq;
 460        struct kvm_vcpu *dvcpu = NULL;
 461
 462        if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
 463                kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
 464                          (int)intr);
 465
 466        if (irq->cpu == -1)
 467                dvcpu = vcpu;
 468        else
 469                dvcpu = vcpu->kvm->vcpus[irq->cpu];
 470
 471        if (intr == 2 || intr == 3 || intr == 4) {
 472                kvm_mips_callbacks->queue_io_int(dvcpu, irq);
 473
 474        } else if (intr == -2 || intr == -3 || intr == -4) {
 475                kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
 476        } else {
 477                kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
 478                        irq->cpu, irq->irq);
 479                return -EINVAL;
 480        }
 481
 482        dvcpu->arch.wait = 0;
 483
 484        if (swait_active(&dvcpu->wq))
 485                swake_up(&dvcpu->wq);
 486
 487        return 0;
 488}
 489
 490int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 491                                    struct kvm_mp_state *mp_state)
 492{
 493        return -ENOIOCTLCMD;
 494}
 495
 496int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 497                                    struct kvm_mp_state *mp_state)
 498{
 499        return -ENOIOCTLCMD;
 500}
 501
 502static u64 kvm_mips_get_one_regs[] = {
 503        KVM_REG_MIPS_R0,
 504        KVM_REG_MIPS_R1,
 505        KVM_REG_MIPS_R2,
 506        KVM_REG_MIPS_R3,
 507        KVM_REG_MIPS_R4,
 508        KVM_REG_MIPS_R5,
 509        KVM_REG_MIPS_R6,
 510        KVM_REG_MIPS_R7,
 511        KVM_REG_MIPS_R8,
 512        KVM_REG_MIPS_R9,
 513        KVM_REG_MIPS_R10,
 514        KVM_REG_MIPS_R11,
 515        KVM_REG_MIPS_R12,
 516        KVM_REG_MIPS_R13,
 517        KVM_REG_MIPS_R14,
 518        KVM_REG_MIPS_R15,
 519        KVM_REG_MIPS_R16,
 520        KVM_REG_MIPS_R17,
 521        KVM_REG_MIPS_R18,
 522        KVM_REG_MIPS_R19,
 523        KVM_REG_MIPS_R20,
 524        KVM_REG_MIPS_R21,
 525        KVM_REG_MIPS_R22,
 526        KVM_REG_MIPS_R23,
 527        KVM_REG_MIPS_R24,
 528        KVM_REG_MIPS_R25,
 529        KVM_REG_MIPS_R26,
 530        KVM_REG_MIPS_R27,
 531        KVM_REG_MIPS_R28,
 532        KVM_REG_MIPS_R29,
 533        KVM_REG_MIPS_R30,
 534        KVM_REG_MIPS_R31,
 535
 536#ifndef CONFIG_CPU_MIPSR6
 537        KVM_REG_MIPS_HI,
 538        KVM_REG_MIPS_LO,
 539#endif
 540        KVM_REG_MIPS_PC,
 541
 542        KVM_REG_MIPS_CP0_INDEX,
 543        KVM_REG_MIPS_CP0_CONTEXT,
 544        KVM_REG_MIPS_CP0_USERLOCAL,
 545        KVM_REG_MIPS_CP0_PAGEMASK,
 546        KVM_REG_MIPS_CP0_WIRED,
 547        KVM_REG_MIPS_CP0_HWRENA,
 548        KVM_REG_MIPS_CP0_BADVADDR,
 549        KVM_REG_MIPS_CP0_COUNT,
 550        KVM_REG_MIPS_CP0_ENTRYHI,
 551        KVM_REG_MIPS_CP0_COMPARE,
 552        KVM_REG_MIPS_CP0_STATUS,
 553        KVM_REG_MIPS_CP0_CAUSE,
 554        KVM_REG_MIPS_CP0_EPC,
 555        KVM_REG_MIPS_CP0_PRID,
 556        KVM_REG_MIPS_CP0_CONFIG,
 557        KVM_REG_MIPS_CP0_CONFIG1,
 558        KVM_REG_MIPS_CP0_CONFIG2,
 559        KVM_REG_MIPS_CP0_CONFIG3,
 560        KVM_REG_MIPS_CP0_CONFIG4,
 561        KVM_REG_MIPS_CP0_CONFIG5,
 562        KVM_REG_MIPS_CP0_CONFIG7,
 563        KVM_REG_MIPS_CP0_ERROREPC,
 564
 565        KVM_REG_MIPS_COUNT_CTL,
 566        KVM_REG_MIPS_COUNT_RESUME,
 567        KVM_REG_MIPS_COUNT_HZ,
 568};
 569
 570static u64 kvm_mips_get_one_regs_fpu[] = {
 571        KVM_REG_MIPS_FCR_IR,
 572        KVM_REG_MIPS_FCR_CSR,
 573};
 574
 575static u64 kvm_mips_get_one_regs_msa[] = {
 576        KVM_REG_MIPS_MSA_IR,
 577        KVM_REG_MIPS_MSA_CSR,
 578};
 579
 580static u64 kvm_mips_get_one_regs_kscratch[] = {
 581        KVM_REG_MIPS_CP0_KSCRATCH1,
 582        KVM_REG_MIPS_CP0_KSCRATCH2,
 583        KVM_REG_MIPS_CP0_KSCRATCH3,
 584        KVM_REG_MIPS_CP0_KSCRATCH4,
 585        KVM_REG_MIPS_CP0_KSCRATCH5,
 586        KVM_REG_MIPS_CP0_KSCRATCH6,
 587};
 588
 589static unsigned long kvm_mips_num_regs(struct kvm_vcpu *vcpu)
 590{
 591        unsigned long ret;
 592
 593        ret = ARRAY_SIZE(kvm_mips_get_one_regs);
 594        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 595                ret += ARRAY_SIZE(kvm_mips_get_one_regs_fpu) + 48;
 596                /* odd doubles */
 597                if (boot_cpu_data.fpu_id & MIPS_FPIR_F64)
 598                        ret += 16;
 599        }
 600        if (kvm_mips_guest_can_have_msa(&vcpu->arch))
 601                ret += ARRAY_SIZE(kvm_mips_get_one_regs_msa) + 32;
 602        ret += __arch_hweight8(vcpu->arch.kscratch_enabled);
 603        ret += kvm_mips_callbacks->num_regs(vcpu);
 604
 605        return ret;
 606}
 607
 608static int kvm_mips_copy_reg_indices(struct kvm_vcpu *vcpu, u64 __user *indices)
 609{
 610        u64 index;
 611        unsigned int i;
 612
 613        if (copy_to_user(indices, kvm_mips_get_one_regs,
 614                         sizeof(kvm_mips_get_one_regs)))
 615                return -EFAULT;
 616        indices += ARRAY_SIZE(kvm_mips_get_one_regs);
 617
 618        if (kvm_mips_guest_can_have_fpu(&vcpu->arch)) {
 619                if (copy_to_user(indices, kvm_mips_get_one_regs_fpu,
 620                                 sizeof(kvm_mips_get_one_regs_fpu)))
 621                        return -EFAULT;
 622                indices += ARRAY_SIZE(kvm_mips_get_one_regs_fpu);
 623
 624                for (i = 0; i < 32; ++i) {
 625                        index = KVM_REG_MIPS_FPR_32(i);
 626                        if (copy_to_user(indices, &index, sizeof(index)))
 627                                return -EFAULT;
 628                        ++indices;
 629
 630                        /* skip odd doubles if no F64 */
 631                        if (i & 1 && !(boot_cpu_data.fpu_id & MIPS_FPIR_F64))
 632                                continue;
 633
 634                        index = KVM_REG_MIPS_FPR_64(i);
 635                        if (copy_to_user(indices, &index, sizeof(index)))
 636                                return -EFAULT;
 637                        ++indices;
 638                }
 639        }
 640
 641        if (kvm_mips_guest_can_have_msa(&vcpu->arch)) {
 642                if (copy_to_user(indices, kvm_mips_get_one_regs_msa,
 643                                 sizeof(kvm_mips_get_one_regs_msa)))
 644                        return -EFAULT;
 645                indices += ARRAY_SIZE(kvm_mips_get_one_regs_msa);
 646
 647                for (i = 0; i < 32; ++i) {
 648                        index = KVM_REG_MIPS_VEC_128(i);
 649                        if (copy_to_user(indices, &index, sizeof(index)))
 650                                return -EFAULT;
 651                        ++indices;
 652                }
 653        }
 654
 655        for (i = 0; i < 6; ++i) {
 656                if (!(vcpu->arch.kscratch_enabled & BIT(i + 2)))
 657                        continue;
 658
 659                if (copy_to_user(indices, &kvm_mips_get_one_regs_kscratch[i],
 660                                 sizeof(kvm_mips_get_one_regs_kscratch[i])))
 661                        return -EFAULT;
 662                ++indices;
 663        }
 664
 665        return kvm_mips_callbacks->copy_reg_indices(vcpu, indices);
 666}
 667
 668static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
 669                            const struct kvm_one_reg *reg)
 670{
 671        struct mips_coproc *cop0 = vcpu->arch.cop0;
 672        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 673        int ret;
 674        s64 v;
 675        s64 vs[2];
 676        unsigned int idx;
 677
 678        switch (reg->id) {
 679        /* General purpose registers */
 680        case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
 681                v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
 682                break;
 683#ifndef CONFIG_CPU_MIPSR6
 684        case KVM_REG_MIPS_HI:
 685                v = (long)vcpu->arch.hi;
 686                break;
 687        case KVM_REG_MIPS_LO:
 688                v = (long)vcpu->arch.lo;
 689                break;
 690#endif
 691        case KVM_REG_MIPS_PC:
 692                v = (long)vcpu->arch.pc;
 693                break;
 694
 695        /* Floating point registers */
 696        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 697                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 698                        return -EINVAL;
 699                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 700                /* Odd singles in top of even double when FR=0 */
 701                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 702                        v = get_fpr32(&fpu->fpr[idx], 0);
 703                else
 704                        v = get_fpr32(&fpu->fpr[idx & ~1], idx & 1);
 705                break;
 706        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 707                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 708                        return -EINVAL;
 709                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 710                /* Can't access odd doubles in FR=0 mode */
 711                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 712                        return -EINVAL;
 713                v = get_fpr64(&fpu->fpr[idx], 0);
 714                break;
 715        case KVM_REG_MIPS_FCR_IR:
 716                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 717                        return -EINVAL;
 718                v = boot_cpu_data.fpu_id;
 719                break;
 720        case KVM_REG_MIPS_FCR_CSR:
 721                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 722                        return -EINVAL;
 723                v = fpu->fcr31;
 724                break;
 725
 726        /* MIPS SIMD Architecture (MSA) registers */
 727        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 728                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 729                        return -EINVAL;
 730                /* Can't access MSA registers in FR=0 mode */
 731                if (!(kvm_read_c0_guest_status(cop0) & ST0_FR))
 732                        return -EINVAL;
 733                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 734#ifdef CONFIG_CPU_LITTLE_ENDIAN
 735                /* least significant byte first */
 736                vs[0] = get_fpr64(&fpu->fpr[idx], 0);
 737                vs[1] = get_fpr64(&fpu->fpr[idx], 1);
 738#else
 739                /* most significant byte first */
 740                vs[0] = get_fpr64(&fpu->fpr[idx], 1);
 741                vs[1] = get_fpr64(&fpu->fpr[idx], 0);
 742#endif
 743                break;
 744        case KVM_REG_MIPS_MSA_IR:
 745                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 746                        return -EINVAL;
 747                v = boot_cpu_data.msa_id;
 748                break;
 749        case KVM_REG_MIPS_MSA_CSR:
 750                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 751                        return -EINVAL;
 752                v = fpu->msacsr;
 753                break;
 754
 755        /* Co-processor 0 registers */
 756        case KVM_REG_MIPS_CP0_INDEX:
 757                v = (long)kvm_read_c0_guest_index(cop0);
 758                break;
 759        case KVM_REG_MIPS_CP0_CONTEXT:
 760                v = (long)kvm_read_c0_guest_context(cop0);
 761                break;
 762        case KVM_REG_MIPS_CP0_USERLOCAL:
 763                v = (long)kvm_read_c0_guest_userlocal(cop0);
 764                break;
 765        case KVM_REG_MIPS_CP0_PAGEMASK:
 766                v = (long)kvm_read_c0_guest_pagemask(cop0);
 767                break;
 768        case KVM_REG_MIPS_CP0_WIRED:
 769                v = (long)kvm_read_c0_guest_wired(cop0);
 770                break;
 771        case KVM_REG_MIPS_CP0_HWRENA:
 772                v = (long)kvm_read_c0_guest_hwrena(cop0);
 773                break;
 774        case KVM_REG_MIPS_CP0_BADVADDR:
 775                v = (long)kvm_read_c0_guest_badvaddr(cop0);
 776                break;
 777        case KVM_REG_MIPS_CP0_ENTRYHI:
 778                v = (long)kvm_read_c0_guest_entryhi(cop0);
 779                break;
 780        case KVM_REG_MIPS_CP0_COMPARE:
 781                v = (long)kvm_read_c0_guest_compare(cop0);
 782                break;
 783        case KVM_REG_MIPS_CP0_STATUS:
 784                v = (long)kvm_read_c0_guest_status(cop0);
 785                break;
 786        case KVM_REG_MIPS_CP0_CAUSE:
 787                v = (long)kvm_read_c0_guest_cause(cop0);
 788                break;
 789        case KVM_REG_MIPS_CP0_EPC:
 790                v = (long)kvm_read_c0_guest_epc(cop0);
 791                break;
 792        case KVM_REG_MIPS_CP0_PRID:
 793                v = (long)kvm_read_c0_guest_prid(cop0);
 794                break;
 795        case KVM_REG_MIPS_CP0_CONFIG:
 796                v = (long)kvm_read_c0_guest_config(cop0);
 797                break;
 798        case KVM_REG_MIPS_CP0_CONFIG1:
 799                v = (long)kvm_read_c0_guest_config1(cop0);
 800                break;
 801        case KVM_REG_MIPS_CP0_CONFIG2:
 802                v = (long)kvm_read_c0_guest_config2(cop0);
 803                break;
 804        case KVM_REG_MIPS_CP0_CONFIG3:
 805                v = (long)kvm_read_c0_guest_config3(cop0);
 806                break;
 807        case KVM_REG_MIPS_CP0_CONFIG4:
 808                v = (long)kvm_read_c0_guest_config4(cop0);
 809                break;
 810        case KVM_REG_MIPS_CP0_CONFIG5:
 811                v = (long)kvm_read_c0_guest_config5(cop0);
 812                break;
 813        case KVM_REG_MIPS_CP0_CONFIG7:
 814                v = (long)kvm_read_c0_guest_config7(cop0);
 815                break;
 816        case KVM_REG_MIPS_CP0_ERROREPC:
 817                v = (long)kvm_read_c0_guest_errorepc(cop0);
 818                break;
 819        case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
 820                idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
 821                if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
 822                        return -EINVAL;
 823                switch (idx) {
 824                case 2:
 825                        v = (long)kvm_read_c0_guest_kscratch1(cop0);
 826                        break;
 827                case 3:
 828                        v = (long)kvm_read_c0_guest_kscratch2(cop0);
 829                        break;
 830                case 4:
 831                        v = (long)kvm_read_c0_guest_kscratch3(cop0);
 832                        break;
 833                case 5:
 834                        v = (long)kvm_read_c0_guest_kscratch4(cop0);
 835                        break;
 836                case 6:
 837                        v = (long)kvm_read_c0_guest_kscratch5(cop0);
 838                        break;
 839                case 7:
 840                        v = (long)kvm_read_c0_guest_kscratch6(cop0);
 841                        break;
 842                }
 843                break;
 844        /* registers to be handled specially */
 845        default:
 846                ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
 847                if (ret)
 848                        return ret;
 849                break;
 850        }
 851        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 852                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 853
 854                return put_user(v, uaddr64);
 855        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 856                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 857                u32 v32 = (u32)v;
 858
 859                return put_user(v32, uaddr32);
 860        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 861                void __user *uaddr = (void __user *)(long)reg->addr;
 862
 863                return copy_to_user(uaddr, vs, 16) ? -EFAULT : 0;
 864        } else {
 865                return -EINVAL;
 866        }
 867}
 868
 869static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
 870                            const struct kvm_one_reg *reg)
 871{
 872        struct mips_coproc *cop0 = vcpu->arch.cop0;
 873        struct mips_fpu_struct *fpu = &vcpu->arch.fpu;
 874        s64 v;
 875        s64 vs[2];
 876        unsigned int idx;
 877
 878        if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
 879                u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
 880
 881                if (get_user(v, uaddr64) != 0)
 882                        return -EFAULT;
 883        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
 884                u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
 885                s32 v32;
 886
 887                if (get_user(v32, uaddr32) != 0)
 888                        return -EFAULT;
 889                v = (s64)v32;
 890        } else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U128) {
 891                void __user *uaddr = (void __user *)(long)reg->addr;
 892
 893                return copy_from_user(vs, uaddr, 16) ? -EFAULT : 0;
 894        } else {
 895                return -EINVAL;
 896        }
 897
 898        switch (reg->id) {
 899        /* General purpose registers */
 900        case KVM_REG_MIPS_R0:
 901                /* Silently ignore requests to set $0 */
 902                break;
 903        case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
 904                vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
 905                break;
 906#ifndef CONFIG_CPU_MIPSR6
 907        case KVM_REG_MIPS_HI:
 908                vcpu->arch.hi = v;
 909                break;
 910        case KVM_REG_MIPS_LO:
 911                vcpu->arch.lo = v;
 912                break;
 913#endif
 914        case KVM_REG_MIPS_PC:
 915                vcpu->arch.pc = v;
 916                break;
 917
 918        /* Floating point registers */
 919        case KVM_REG_MIPS_FPR_32(0) ... KVM_REG_MIPS_FPR_32(31):
 920                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 921                        return -EINVAL;
 922                idx = reg->id - KVM_REG_MIPS_FPR_32(0);
 923                /* Odd singles in top of even double when FR=0 */
 924                if (kvm_read_c0_guest_status(cop0) & ST0_FR)
 925                        set_fpr32(&fpu->fpr[idx], 0, v);
 926                else
 927                        set_fpr32(&fpu->fpr[idx & ~1], idx & 1, v);
 928                break;
 929        case KVM_REG_MIPS_FPR_64(0) ... KVM_REG_MIPS_FPR_64(31):
 930                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 931                        return -EINVAL;
 932                idx = reg->id - KVM_REG_MIPS_FPR_64(0);
 933                /* Can't access odd doubles in FR=0 mode */
 934                if (idx & 1 && !(kvm_read_c0_guest_status(cop0) & ST0_FR))
 935                        return -EINVAL;
 936                set_fpr64(&fpu->fpr[idx], 0, v);
 937                break;
 938        case KVM_REG_MIPS_FCR_IR:
 939                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 940                        return -EINVAL;
 941                /* Read-only */
 942                break;
 943        case KVM_REG_MIPS_FCR_CSR:
 944                if (!kvm_mips_guest_has_fpu(&vcpu->arch))
 945                        return -EINVAL;
 946                fpu->fcr31 = v;
 947                break;
 948
 949        /* MIPS SIMD Architecture (MSA) registers */
 950        case KVM_REG_MIPS_VEC_128(0) ... KVM_REG_MIPS_VEC_128(31):
 951                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 952                        return -EINVAL;
 953                idx = reg->id - KVM_REG_MIPS_VEC_128(0);
 954#ifdef CONFIG_CPU_LITTLE_ENDIAN
 955                /* least significant byte first */
 956                set_fpr64(&fpu->fpr[idx], 0, vs[0]);
 957                set_fpr64(&fpu->fpr[idx], 1, vs[1]);
 958#else
 959                /* most significant byte first */
 960                set_fpr64(&fpu->fpr[idx], 1, vs[0]);
 961                set_fpr64(&fpu->fpr[idx], 0, vs[1]);
 962#endif
 963                break;
 964        case KVM_REG_MIPS_MSA_IR:
 965                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 966                        return -EINVAL;
 967                /* Read-only */
 968                break;
 969        case KVM_REG_MIPS_MSA_CSR:
 970                if (!kvm_mips_guest_has_msa(&vcpu->arch))
 971                        return -EINVAL;
 972                fpu->msacsr = v;
 973                break;
 974
 975        /* Co-processor 0 registers */
 976        case KVM_REG_MIPS_CP0_INDEX:
 977                kvm_write_c0_guest_index(cop0, v);
 978                break;
 979        case KVM_REG_MIPS_CP0_CONTEXT:
 980                kvm_write_c0_guest_context(cop0, v);
 981                break;
 982        case KVM_REG_MIPS_CP0_USERLOCAL:
 983                kvm_write_c0_guest_userlocal(cop0, v);
 984                break;
 985        case KVM_REG_MIPS_CP0_PAGEMASK:
 986                kvm_write_c0_guest_pagemask(cop0, v);
 987                break;
 988        case KVM_REG_MIPS_CP0_WIRED:
 989                kvm_write_c0_guest_wired(cop0, v);
 990                break;
 991        case KVM_REG_MIPS_CP0_HWRENA:
 992                kvm_write_c0_guest_hwrena(cop0, v);
 993                break;
 994        case KVM_REG_MIPS_CP0_BADVADDR:
 995                kvm_write_c0_guest_badvaddr(cop0, v);
 996                break;
 997        case KVM_REG_MIPS_CP0_ENTRYHI:
 998                kvm_write_c0_guest_entryhi(cop0, v);
 999                break;
1000        case KVM_REG_MIPS_CP0_STATUS:
1001                kvm_write_c0_guest_status(cop0, v);
1002                break;
1003        case KVM_REG_MIPS_CP0_EPC:
1004                kvm_write_c0_guest_epc(cop0, v);
1005                break;
1006        case KVM_REG_MIPS_CP0_PRID:
1007                kvm_write_c0_guest_prid(cop0, v);
1008                break;
1009        case KVM_REG_MIPS_CP0_ERROREPC:
1010                kvm_write_c0_guest_errorepc(cop0, v);
1011                break;
1012        case KVM_REG_MIPS_CP0_KSCRATCH1 ... KVM_REG_MIPS_CP0_KSCRATCH6:
1013                idx = reg->id - KVM_REG_MIPS_CP0_KSCRATCH1 + 2;
1014                if (!(vcpu->arch.kscratch_enabled & BIT(idx)))
1015                        return -EINVAL;
1016                switch (idx) {
1017                case 2:
1018                        kvm_write_c0_guest_kscratch1(cop0, v);
1019                        break;
1020                case 3:
1021                        kvm_write_c0_guest_kscratch2(cop0, v);
1022                        break;
1023                case 4:
1024                        kvm_write_c0_guest_kscratch3(cop0, v);
1025                        break;
1026                case 5:
1027                        kvm_write_c0_guest_kscratch4(cop0, v);
1028                        break;
1029                case 6:
1030                        kvm_write_c0_guest_kscratch5(cop0, v);
1031                        break;
1032                case 7:
1033                        kvm_write_c0_guest_kscratch6(cop0, v);
1034                        break;
1035                }
1036                break;
1037        /* registers to be handled specially */
1038        default:
1039                return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
1040        }
1041        return 0;
1042}
1043
1044static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1045                                     struct kvm_enable_cap *cap)
1046{
1047        int r = 0;
1048
1049        if (!kvm_vm_ioctl_check_extension(vcpu->kvm, cap->cap))
1050                return -EINVAL;
1051        if (cap->flags)
1052                return -EINVAL;
1053        if (cap->args[0])
1054                return -EINVAL;
1055
1056        switch (cap->cap) {
1057        case KVM_CAP_MIPS_FPU:
1058                vcpu->arch.fpu_enabled = true;
1059                break;
1060        case KVM_CAP_MIPS_MSA:
1061                vcpu->arch.msa_enabled = true;
1062                break;
1063        default:
1064                r = -EINVAL;
1065                break;
1066        }
1067
1068        return r;
1069}
1070
1071long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
1072                         unsigned long arg)
1073{
1074        struct kvm_vcpu *vcpu = filp->private_data;
1075        void __user *argp = (void __user *)arg;
1076        long r;
1077
1078        switch (ioctl) {
1079        case KVM_SET_ONE_REG:
1080        case KVM_GET_ONE_REG: {
1081                struct kvm_one_reg reg;
1082
1083                if (copy_from_user(&reg, argp, sizeof(reg)))
1084                        return -EFAULT;
1085                if (ioctl == KVM_SET_ONE_REG)
1086                        return kvm_mips_set_reg(vcpu, &reg);
1087                else
1088                        return kvm_mips_get_reg(vcpu, &reg);
1089        }
1090        case KVM_GET_REG_LIST: {
1091                struct kvm_reg_list __user *user_list = argp;
1092                struct kvm_reg_list reg_list;
1093                unsigned n;
1094
1095                if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1096                        return -EFAULT;
1097                n = reg_list.n;
1098                reg_list.n = kvm_mips_num_regs(vcpu);
1099                if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1100                        return -EFAULT;
1101                if (n < reg_list.n)
1102                        return -E2BIG;
1103                return kvm_mips_copy_reg_indices(vcpu, user_list->reg);
1104        }
1105        case KVM_NMI:
1106                /* Treat the NMI as a CPU reset */
1107                r = kvm_mips_reset_vcpu(vcpu);
1108                break;
1109        case KVM_INTERRUPT:
1110                {
1111                        struct kvm_mips_interrupt irq;
1112
1113                        r = -EFAULT;
1114                        if (copy_from_user(&irq, argp, sizeof(irq)))
1115                                goto out;
1116
1117                        kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
1118                                  irq.irq);
1119
1120                        r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1121                        break;
1122                }
1123        case KVM_ENABLE_CAP: {
1124                struct kvm_enable_cap cap;
1125
1126                r = -EFAULT;
1127                if (copy_from_user(&cap, argp, sizeof(cap)))
1128                        goto out;
1129                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1130                break;
1131        }
1132        default:
1133                r = -ENOIOCTLCMD;
1134        }
1135
1136out:
1137        return r;
1138}
1139
1140/* Get (and clear) the dirty memory log for a memory slot. */
1141int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1142{
1143        struct kvm_memslots *slots;
1144        struct kvm_memory_slot *memslot;
1145        unsigned long ga, ga_end;
1146        int is_dirty = 0;
1147        int r;
1148        unsigned long n;
1149
1150        mutex_lock(&kvm->slots_lock);
1151
1152        r = kvm_get_dirty_log(kvm, log, &is_dirty);
1153        if (r)
1154                goto out;
1155
1156        /* If nothing is dirty, don't bother messing with page tables. */
1157        if (is_dirty) {
1158                slots = kvm_memslots(kvm);
1159                memslot = id_to_memslot(slots, log->slot);
1160
1161                ga = memslot->base_gfn << PAGE_SHIFT;
1162                ga_end = ga + (memslot->npages << PAGE_SHIFT);
1163
1164                kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
1165                         ga_end);
1166
1167                n = kvm_dirty_bitmap_bytes(memslot);
1168                memset(memslot->dirty_bitmap, 0, n);
1169        }
1170
1171        r = 0;
1172out:
1173        mutex_unlock(&kvm->slots_lock);
1174        return r;
1175
1176}
1177
1178long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1179{
1180        long r;
1181
1182        switch (ioctl) {
1183        default:
1184                r = -ENOIOCTLCMD;
1185        }
1186
1187        return r;
1188}
1189
1190int kvm_arch_init(void *opaque)
1191{
1192        if (kvm_mips_callbacks) {
1193                kvm_err("kvm: module already exists\n");
1194                return -EEXIST;
1195        }
1196
1197        return kvm_mips_emulation_init(&kvm_mips_callbacks);
1198}
1199
1200void kvm_arch_exit(void)
1201{
1202        kvm_mips_callbacks = NULL;
1203}
1204
1205int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1206                                  struct kvm_sregs *sregs)
1207{
1208        return -ENOIOCTLCMD;
1209}
1210
1211int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1212                                  struct kvm_sregs *sregs)
1213{
1214        return -ENOIOCTLCMD;
1215}
1216
1217void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1218{
1219}
1220
1221int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1222{
1223        return -ENOIOCTLCMD;
1224}
1225
1226int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1227{
1228        return -ENOIOCTLCMD;
1229}
1230
1231int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1232{
1233        return VM_FAULT_SIGBUS;
1234}
1235
1236int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
1237{
1238        int r;
1239
1240        switch (ext) {
1241        case KVM_CAP_ONE_REG:
1242        case KVM_CAP_ENABLE_CAP:
1243                r = 1;
1244                break;
1245        case KVM_CAP_COALESCED_MMIO:
1246                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
1247                break;
1248        case KVM_CAP_MIPS_FPU:
1249                /* We don't handle systems with inconsistent cpu_has_fpu */
1250                r = !!raw_cpu_has_fpu;
1251                break;
1252        case KVM_CAP_MIPS_MSA:
1253                /*
1254                 * We don't support MSA vector partitioning yet:
1255                 * 1) It would require explicit support which can't be tested
1256                 *    yet due to lack of support in current hardware.
1257                 * 2) It extends the state that would need to be saved/restored
1258                 *    by e.g. QEMU for migration.
1259                 *
1260                 * When vector partitioning hardware becomes available, support
1261                 * could be added by requiring a flag when enabling
1262                 * KVM_CAP_MIPS_MSA capability to indicate that userland knows
1263                 * to save/restore the appropriate extra state.
1264                 */
1265                r = cpu_has_msa && !(boot_cpu_data.msa_id & MSA_IR_WRPF);
1266                break;
1267        default:
1268                r = 0;
1269                break;
1270        }
1271        return r;
1272}
1273
1274int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1275{
1276        return kvm_mips_pending_timer(vcpu);
1277}
1278
1279int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
1280{
1281        int i;
1282        struct mips_coproc *cop0;
1283
1284        if (!vcpu)
1285                return -1;
1286
1287        kvm_debug("VCPU Register Dump:\n");
1288        kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
1289        kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
1290
1291        for (i = 0; i < 32; i += 4) {
1292                kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
1293                       vcpu->arch.gprs[i],
1294                       vcpu->arch.gprs[i + 1],
1295                       vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
1296        }
1297        kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
1298        kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
1299
1300        cop0 = vcpu->arch.cop0;
1301        kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
1302                  kvm_read_c0_guest_status(cop0),
1303                  kvm_read_c0_guest_cause(cop0));
1304
1305        kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
1306
1307        return 0;
1308}
1309
1310int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1311{
1312        int i;
1313
1314        for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1315                vcpu->arch.gprs[i] = regs->gpr[i];
1316        vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
1317        vcpu->arch.hi = regs->hi;
1318        vcpu->arch.lo = regs->lo;
1319        vcpu->arch.pc = regs->pc;
1320
1321        return 0;
1322}
1323
1324int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1325{
1326        int i;
1327
1328        for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
1329                regs->gpr[i] = vcpu->arch.gprs[i];
1330
1331        regs->hi = vcpu->arch.hi;
1332        regs->lo = vcpu->arch.lo;
1333        regs->pc = vcpu->arch.pc;
1334
1335        return 0;
1336}
1337
1338static void kvm_mips_comparecount_func(unsigned long data)
1339{
1340        struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
1341
1342        kvm_mips_callbacks->queue_timer_int(vcpu);
1343
1344        vcpu->arch.wait = 0;
1345        if (swait_active(&vcpu->wq))
1346                swake_up(&vcpu->wq);
1347}
1348
1349/* low level hrtimer wake routine */
1350static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
1351{
1352        struct kvm_vcpu *vcpu;
1353
1354        vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
1355        kvm_mips_comparecount_func((unsigned long) vcpu);
1356        return kvm_mips_count_timeout(vcpu);
1357}
1358
1359int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1360{
1361        kvm_mips_callbacks->vcpu_init(vcpu);
1362        hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
1363                     HRTIMER_MODE_REL);
1364        vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
1365        return 0;
1366}
1367
1368int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1369                                  struct kvm_translation *tr)
1370{
1371        return 0;
1372}
1373
1374/* Initial guest state */
1375int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1376{
1377        return kvm_mips_callbacks->vcpu_setup(vcpu);
1378}
1379
1380static void kvm_mips_set_c0_status(void)
1381{
1382        u32 status = read_c0_status();
1383
1384        if (cpu_has_dsp)
1385                status |= (ST0_MX);
1386
1387        write_c0_status(status);
1388        ehb();
1389}
1390
1391/*
1392 * Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
1393 */
1394int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
1395{
1396        u32 cause = vcpu->arch.host_cp0_cause;
1397        u32 exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
1398        u32 __user *opc = (u32 __user *) vcpu->arch.pc;
1399        unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
1400        enum emulation_result er = EMULATE_DONE;
1401        int ret = RESUME_GUEST;
1402
1403        /* re-enable HTW before enabling interrupts */
1404        htw_start();
1405
1406        /* Set a default exit reason */
1407        run->exit_reason = KVM_EXIT_UNKNOWN;
1408        run->ready_for_interrupt_injection = 1;
1409
1410        /*
1411         * Set the appropriate status bits based on host CPU features,
1412         * before we hit the scheduler
1413         */
1414        kvm_mips_set_c0_status();
1415
1416        local_irq_enable();
1417
1418        kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
1419                        cause, opc, run, vcpu);
1420        trace_kvm_exit(vcpu, exccode);
1421
1422        /*
1423         * Do a privilege check, if in UM most of these exit conditions end up
1424         * causing an exception to be delivered to the Guest Kernel
1425         */
1426        er = kvm_mips_check_privilege(cause, opc, run, vcpu);
1427        if (er == EMULATE_PRIV_FAIL) {
1428                goto skip_emul;
1429        } else if (er == EMULATE_FAIL) {
1430                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1431                ret = RESUME_HOST;
1432                goto skip_emul;
1433        }
1434
1435        switch (exccode) {
1436        case EXCCODE_INT:
1437                kvm_debug("[%d]EXCCODE_INT @ %p\n", vcpu->vcpu_id, opc);
1438
1439                ++vcpu->stat.int_exits;
1440
1441                if (need_resched())
1442                        cond_resched();
1443
1444                ret = RESUME_GUEST;
1445                break;
1446
1447        case EXCCODE_CPU:
1448                kvm_debug("EXCCODE_CPU: @ PC: %p\n", opc);
1449
1450                ++vcpu->stat.cop_unusable_exits;
1451                ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
1452                /* XXXKYMA: Might need to return to user space */
1453                if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
1454                        ret = RESUME_HOST;
1455                break;
1456
1457        case EXCCODE_MOD:
1458                ++vcpu->stat.tlbmod_exits;
1459                ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
1460                break;
1461
1462        case EXCCODE_TLBS:
1463                kvm_debug("TLB ST fault:  cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
1464                          cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
1465                          badvaddr);
1466
1467                ++vcpu->stat.tlbmiss_st_exits;
1468                ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
1469                break;
1470
1471        case EXCCODE_TLBL:
1472                kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
1473                          cause, opc, badvaddr);
1474
1475                ++vcpu->stat.tlbmiss_ld_exits;
1476                ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
1477                break;
1478
1479        case EXCCODE_ADES:
1480                ++vcpu->stat.addrerr_st_exits;
1481                ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
1482                break;
1483
1484        case EXCCODE_ADEL:
1485                ++vcpu->stat.addrerr_ld_exits;
1486                ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
1487                break;
1488
1489        case EXCCODE_SYS:
1490                ++vcpu->stat.syscall_exits;
1491                ret = kvm_mips_callbacks->handle_syscall(vcpu);
1492                break;
1493
1494        case EXCCODE_RI:
1495                ++vcpu->stat.resvd_inst_exits;
1496                ret = kvm_mips_callbacks->handle_res_inst(vcpu);
1497                break;
1498
1499        case EXCCODE_BP:
1500                ++vcpu->stat.break_inst_exits;
1501                ret = kvm_mips_callbacks->handle_break(vcpu);
1502                break;
1503
1504        case EXCCODE_TR:
1505                ++vcpu->stat.trap_inst_exits;
1506                ret = kvm_mips_callbacks->handle_trap(vcpu);
1507                break;
1508
1509        case EXCCODE_MSAFPE:
1510                ++vcpu->stat.msa_fpe_exits;
1511                ret = kvm_mips_callbacks->handle_msa_fpe(vcpu);
1512                break;
1513
1514        case EXCCODE_FPE:
1515                ++vcpu->stat.fpe_exits;
1516                ret = kvm_mips_callbacks->handle_fpe(vcpu);
1517                break;
1518
1519        case EXCCODE_MSADIS:
1520                ++vcpu->stat.msa_disabled_exits;
1521                ret = kvm_mips_callbacks->handle_msa_disabled(vcpu);
1522                break;
1523
1524        default:
1525                kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x  BadVaddr: %#lx Status: %#lx\n",
1526                        exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
1527                        kvm_read_c0_guest_status(vcpu->arch.cop0));
1528                kvm_arch_vcpu_dump_regs(vcpu);
1529                run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
1530                ret = RESUME_HOST;
1531                break;
1532
1533        }
1534
1535skip_emul:
1536        local_irq_disable();
1537
1538        if (er == EMULATE_DONE && !(ret & RESUME_HOST))
1539                kvm_mips_deliver_interrupts(vcpu, cause);
1540
1541        if (!(ret & RESUME_HOST)) {
1542                /* Only check for signals if not already exiting to userspace */
1543                if (signal_pending(current)) {
1544                        run->exit_reason = KVM_EXIT_INTR;
1545                        ret = (-EINTR << 2) | RESUME_HOST;
1546                        ++vcpu->stat.signal_exits;
1547                        trace_kvm_exit(vcpu, KVM_TRACE_EXIT_SIGNAL);
1548                }
1549        }
1550
1551        if (ret == RESUME_GUEST) {
1552                trace_kvm_reenter(vcpu);
1553
1554                /*
1555                 * If FPU / MSA are enabled (i.e. the guest's FPU / MSA context
1556                 * is live), restore FCR31 / MSACSR.
1557                 *
1558                 * This should be before returning to the guest exception
1559                 * vector, as it may well cause an [MSA] FP exception if there
1560                 * are pending exception bits unmasked. (see
1561                 * kvm_mips_csr_die_notifier() for how that is handled).
1562                 */
1563                if (kvm_mips_guest_has_fpu(&vcpu->arch) &&
1564                    read_c0_status() & ST0_CU1)
1565                        __kvm_restore_fcsr(&vcpu->arch);
1566
1567                if (kvm_mips_guest_has_msa(&vcpu->arch) &&
1568                    read_c0_config5() & MIPS_CONF5_MSAEN)
1569                        __kvm_restore_msacsr(&vcpu->arch);
1570        }
1571
1572        /* Disable HTW before returning to guest or host */
1573        htw_stop();
1574
1575        return ret;
1576}
1577
1578/* Enable FPU for guest and restore context */
1579void kvm_own_fpu(struct kvm_vcpu *vcpu)
1580{
1581        struct mips_coproc *cop0 = vcpu->arch.cop0;
1582        unsigned int sr, cfg5;
1583
1584        preempt_disable();
1585
1586        sr = kvm_read_c0_guest_status(cop0);
1587
1588        /*
1589         * If MSA state is already live, it is undefined how it interacts with
1590         * FR=0 FPU state, and we don't want to hit reserved instruction
1591         * exceptions trying to save the MSA state later when CU=1 && FR=1, so
1592         * play it safe and save it first.
1593         *
1594         * In theory we shouldn't ever hit this case since kvm_lose_fpu() should
1595         * get called when guest CU1 is set, however we can't trust the guest
1596         * not to clobber the status register directly via the commpage.
1597         */
1598        if (cpu_has_msa && sr & ST0_CU1 && !(sr & ST0_FR) &&
1599            vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA)
1600                kvm_lose_fpu(vcpu);
1601
1602        /*
1603         * Enable FPU for guest
1604         * We set FR and FRE according to guest context
1605         */
1606        change_c0_status(ST0_CU1 | ST0_FR, sr);
1607        if (cpu_has_fre) {
1608                cfg5 = kvm_read_c0_guest_config5(cop0);
1609                change_c0_config5(MIPS_CONF5_FRE, cfg5);
1610        }
1611        enable_fpu_hazard();
1612
1613        /* If guest FPU state not active, restore it now */
1614        if (!(vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU)) {
1615                __kvm_restore_fpu(&vcpu->arch);
1616                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1617                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_FPU);
1618        } else {
1619                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_FPU);
1620        }
1621
1622        preempt_enable();
1623}
1624
1625#ifdef CONFIG_CPU_HAS_MSA
1626/* Enable MSA for guest and restore context */
1627void kvm_own_msa(struct kvm_vcpu *vcpu)
1628{
1629        struct mips_coproc *cop0 = vcpu->arch.cop0;
1630        unsigned int sr, cfg5;
1631
1632        preempt_disable();
1633
1634        /*
1635         * Enable FPU if enabled in guest, since we're restoring FPU context
1636         * anyway. We set FR and FRE according to guest context.
1637         */
1638        if (kvm_mips_guest_has_fpu(&vcpu->arch)) {
1639                sr = kvm_read_c0_guest_status(cop0);
1640
1641                /*
1642                 * If FR=0 FPU state is already live, it is undefined how it
1643                 * interacts with MSA state, so play it safe and save it first.
1644                 */
1645                if (!(sr & ST0_FR) &&
1646                    (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU |
1647                                KVM_MIPS_AUX_MSA)) == KVM_MIPS_AUX_FPU)
1648                        kvm_lose_fpu(vcpu);
1649
1650                change_c0_status(ST0_CU1 | ST0_FR, sr);
1651                if (sr & ST0_CU1 && cpu_has_fre) {
1652                        cfg5 = kvm_read_c0_guest_config5(cop0);
1653                        change_c0_config5(MIPS_CONF5_FRE, cfg5);
1654                }
1655        }
1656
1657        /* Enable MSA for guest */
1658        set_c0_config5(MIPS_CONF5_MSAEN);
1659        enable_fpu_hazard();
1660
1661        switch (vcpu->arch.aux_inuse & (KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA)) {
1662        case KVM_MIPS_AUX_FPU:
1663                /*
1664                 * Guest FPU state already loaded, only restore upper MSA state
1665                 */
1666                __kvm_restore_msa_upper(&vcpu->arch);
1667                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1668                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE, KVM_TRACE_AUX_MSA);
1669                break;
1670        case 0:
1671                /* Neither FPU or MSA already active, restore full MSA state */
1672                __kvm_restore_msa(&vcpu->arch);
1673                vcpu->arch.aux_inuse |= KVM_MIPS_AUX_MSA;
1674                if (kvm_mips_guest_has_fpu(&vcpu->arch))
1675                        vcpu->arch.aux_inuse |= KVM_MIPS_AUX_FPU;
1676                trace_kvm_aux(vcpu, KVM_TRACE_AUX_RESTORE,
1677                              KVM_TRACE_AUX_FPU_MSA);
1678                break;
1679        default:
1680                trace_kvm_aux(vcpu, KVM_TRACE_AUX_ENABLE, KVM_TRACE_AUX_MSA);
1681                break;
1682        }
1683
1684        preempt_enable();
1685}
1686#endif
1687
1688/* Drop FPU & MSA without saving it */
1689void kvm_drop_fpu(struct kvm_vcpu *vcpu)
1690{
1691        preempt_disable();
1692        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1693                disable_msa();
1694                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_MSA);
1695                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_MSA;
1696        }
1697        if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1698                clear_c0_status(ST0_CU1 | ST0_FR);
1699                trace_kvm_aux(vcpu, KVM_TRACE_AUX_DISCARD, KVM_TRACE_AUX_FPU);
1700                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1701        }
1702        preempt_enable();
1703}
1704
1705/* Save and disable FPU & MSA */
1706void kvm_lose_fpu(struct kvm_vcpu *vcpu)
1707{
1708        /*
1709         * FPU & MSA get disabled in root context (hardware) when it is disabled
1710         * in guest context (software), but the register state in the hardware
1711         * may still be in use. This is why we explicitly re-enable the hardware
1712         * before saving.
1713         */
1714
1715        preempt_disable();
1716        if (cpu_has_msa && vcpu->arch.aux_inuse & KVM_MIPS_AUX_MSA) {
1717                set_c0_config5(MIPS_CONF5_MSAEN);
1718                enable_fpu_hazard();
1719
1720                __kvm_save_msa(&vcpu->arch);
1721                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU_MSA);
1722
1723                /* Disable MSA & FPU */
1724                disable_msa();
1725                if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1726                        clear_c0_status(ST0_CU1 | ST0_FR);
1727                        disable_fpu_hazard();
1728                }
1729                vcpu->arch.aux_inuse &= ~(KVM_MIPS_AUX_FPU | KVM_MIPS_AUX_MSA);
1730        } else if (vcpu->arch.aux_inuse & KVM_MIPS_AUX_FPU) {
1731                set_c0_status(ST0_CU1);
1732                enable_fpu_hazard();
1733
1734                __kvm_save_fpu(&vcpu->arch);
1735                vcpu->arch.aux_inuse &= ~KVM_MIPS_AUX_FPU;
1736                trace_kvm_aux(vcpu, KVM_TRACE_AUX_SAVE, KVM_TRACE_AUX_FPU);
1737
1738                /* Disable FPU */
1739                clear_c0_status(ST0_CU1 | ST0_FR);
1740                disable_fpu_hazard();
1741        }
1742        preempt_enable();
1743}
1744
1745/*
1746 * Step over a specific ctc1 to FCSR and a specific ctcmsa to MSACSR which are
1747 * used to restore guest FCSR/MSACSR state and may trigger a "harmless" FP/MSAFP
1748 * exception if cause bits are set in the value being written.
1749 */
1750static int kvm_mips_csr_die_notify(struct notifier_block *self,
1751                                   unsigned long cmd, void *ptr)
1752{
1753        struct die_args *args = (struct die_args *)ptr;
1754        struct pt_regs *regs = args->regs;
1755        unsigned long pc;
1756
1757        /* Only interested in FPE and MSAFPE */
1758        if (cmd != DIE_FP && cmd != DIE_MSAFP)
1759                return NOTIFY_DONE;
1760
1761        /* Return immediately if guest context isn't active */
1762        if (!(current->flags & PF_VCPU))
1763                return NOTIFY_DONE;
1764
1765        /* Should never get here from user mode */
1766        BUG_ON(user_mode(regs));
1767
1768        pc = instruction_pointer(regs);
1769        switch (cmd) {
1770        case DIE_FP:
1771                /* match 2nd instruction in __kvm_restore_fcsr */
1772                if (pc != (unsigned long)&__kvm_restore_fcsr + 4)
1773                        return NOTIFY_DONE;
1774                break;
1775        case DIE_MSAFP:
1776                /* match 2nd/3rd instruction in __kvm_restore_msacsr */
1777                if (!cpu_has_msa ||
1778                    pc < (unsigned long)&__kvm_restore_msacsr + 4 ||
1779                    pc > (unsigned long)&__kvm_restore_msacsr + 8)
1780                        return NOTIFY_DONE;
1781                break;
1782        }
1783
1784        /* Move PC forward a little and continue executing */
1785        instruction_pointer(regs) += 4;
1786
1787        return NOTIFY_STOP;
1788}
1789
1790static struct notifier_block kvm_mips_csr_die_notifier = {
1791        .notifier_call = kvm_mips_csr_die_notify,
1792};
1793
1794static int __init kvm_mips_init(void)
1795{
1796        int ret;
1797
1798        ret = kvm_mips_entry_setup();
1799        if (ret)
1800                return ret;
1801
1802        ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1803
1804        if (ret)
1805                return ret;
1806
1807        register_die_notifier(&kvm_mips_csr_die_notifier);
1808
1809        return 0;
1810}
1811
1812static void __exit kvm_mips_exit(void)
1813{
1814        kvm_exit();
1815
1816        unregister_die_notifier(&kvm_mips_csr_die_notifier);
1817}
1818
1819module_init(kvm_mips_init);
1820module_exit(kvm_mips_exit);
1821
1822EXPORT_TRACEPOINT_SYMBOL(kvm_exit);
1823