linux/arch/mips/mm/dma-default.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 2000  Ani Joshi <ajoshi@unixbox.com>
   7 * Copyright (C) 2000, 2001, 06  Ralf Baechle <ralf@linux-mips.org>
   8 * swiped from i386, and cloned for MIPS by Geert, polished by Ralf.
   9 */
  10
  11#include <linux/types.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/mm.h>
  14#include <linux/module.h>
  15#include <linux/scatterlist.h>
  16#include <linux/string.h>
  17#include <linux/gfp.h>
  18#include <linux/highmem.h>
  19#include <linux/dma-contiguous.h>
  20
  21#include <asm/cache.h>
  22#include <asm/cpu-type.h>
  23#include <asm/io.h>
  24
  25#include <dma-coherence.h>
  26
  27#ifdef CONFIG_DMA_MAYBE_COHERENT
  28int coherentio = 0;     /* User defined DMA coherency from command line. */
  29EXPORT_SYMBOL_GPL(coherentio);
  30int hw_coherentio = 0;  /* Actual hardware supported DMA coherency setting. */
  31
  32static int __init setcoherentio(char *str)
  33{
  34        coherentio = 1;
  35        pr_info("Hardware DMA cache coherency (command line)\n");
  36        return 0;
  37}
  38early_param("coherentio", setcoherentio);
  39
  40static int __init setnocoherentio(char *str)
  41{
  42        coherentio = 0;
  43        pr_info("Software DMA cache coherency (command line)\n");
  44        return 0;
  45}
  46early_param("nocoherentio", setnocoherentio);
  47#endif
  48
  49static inline struct page *dma_addr_to_page(struct device *dev,
  50        dma_addr_t dma_addr)
  51{
  52        return pfn_to_page(
  53                plat_dma_addr_to_phys(dev, dma_addr) >> PAGE_SHIFT);
  54}
  55
  56/*
  57 * The affected CPUs below in 'cpu_needs_post_dma_flush()' can
  58 * speculatively fill random cachelines with stale data at any time,
  59 * requiring an extra flush post-DMA.
  60 *
  61 * Warning on the terminology - Linux calls an uncached area coherent;
  62 * MIPS terminology calls memory areas with hardware maintained coherency
  63 * coherent.
  64 *
  65 * Note that the R14000 and R16000 should also be checked for in this
  66 * condition.  However this function is only called on non-I/O-coherent
  67 * systems and only the R10000 and R12000 are used in such systems, the
  68 * SGI IP28 Indigo² rsp. SGI IP32 aka O2.
  69 */
  70static inline int cpu_needs_post_dma_flush(struct device *dev)
  71{
  72        return !plat_device_is_coherent(dev) &&
  73               (boot_cpu_type() == CPU_R10000 ||
  74                boot_cpu_type() == CPU_R12000 ||
  75                boot_cpu_type() == CPU_BMIPS5000);
  76}
  77
  78static gfp_t massage_gfp_flags(const struct device *dev, gfp_t gfp)
  79{
  80        gfp_t dma_flag;
  81
  82        /* ignore region specifiers */
  83        gfp &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
  84
  85#ifdef CONFIG_ISA
  86        if (dev == NULL)
  87                dma_flag = __GFP_DMA;
  88        else
  89#endif
  90#if defined(CONFIG_ZONE_DMA32) && defined(CONFIG_ZONE_DMA)
  91             if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(32))
  92                        dma_flag = __GFP_DMA;
  93        else if (dev->coherent_dma_mask < DMA_BIT_MASK(64))
  94                        dma_flag = __GFP_DMA32;
  95        else
  96#endif
  97#if defined(CONFIG_ZONE_DMA32) && !defined(CONFIG_ZONE_DMA)
  98             if (dev == NULL || dev->coherent_dma_mask < DMA_BIT_MASK(64))
  99                dma_flag = __GFP_DMA32;
 100        else
 101#endif
 102#if defined(CONFIG_ZONE_DMA) && !defined(CONFIG_ZONE_DMA32)
 103             if (dev == NULL ||
 104                 dev->coherent_dma_mask < DMA_BIT_MASK(sizeof(phys_addr_t) * 8))
 105                dma_flag = __GFP_DMA;
 106        else
 107#endif
 108                dma_flag = 0;
 109
 110        /* Don't invoke OOM killer */
 111        gfp |= __GFP_NORETRY;
 112
 113        return gfp | dma_flag;
 114}
 115
 116static void *mips_dma_alloc_noncoherent(struct device *dev, size_t size,
 117        dma_addr_t * dma_handle, gfp_t gfp)
 118{
 119        void *ret;
 120
 121        gfp = massage_gfp_flags(dev, gfp);
 122
 123        ret = (void *) __get_free_pages(gfp, get_order(size));
 124
 125        if (ret != NULL) {
 126                memset(ret, 0, size);
 127                *dma_handle = plat_map_dma_mem(dev, ret, size);
 128        }
 129
 130        return ret;
 131}
 132
 133static void *mips_dma_alloc_coherent(struct device *dev, size_t size,
 134        dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
 135{
 136        void *ret;
 137        struct page *page = NULL;
 138        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 139
 140        /*
 141         * XXX: seems like the coherent and non-coherent implementations could
 142         * be consolidated.
 143         */
 144        if (attrs & DMA_ATTR_NON_CONSISTENT)
 145                return mips_dma_alloc_noncoherent(dev, size, dma_handle, gfp);
 146
 147        gfp = massage_gfp_flags(dev, gfp);
 148
 149        if (IS_ENABLED(CONFIG_DMA_CMA) && gfpflags_allow_blocking(gfp))
 150                page = dma_alloc_from_contiguous(dev,
 151                                        count, get_order(size));
 152        if (!page)
 153                page = alloc_pages(gfp, get_order(size));
 154
 155        if (!page)
 156                return NULL;
 157
 158        ret = page_address(page);
 159        memset(ret, 0, size);
 160        *dma_handle = plat_map_dma_mem(dev, ret, size);
 161        if (!plat_device_is_coherent(dev)) {
 162                dma_cache_wback_inv((unsigned long) ret, size);
 163                if (!hw_coherentio)
 164                        ret = UNCAC_ADDR(ret);
 165        }
 166
 167        return ret;
 168}
 169
 170
 171static void mips_dma_free_noncoherent(struct device *dev, size_t size,
 172                void *vaddr, dma_addr_t dma_handle)
 173{
 174        plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 175        free_pages((unsigned long) vaddr, get_order(size));
 176}
 177
 178static void mips_dma_free_coherent(struct device *dev, size_t size, void *vaddr,
 179        dma_addr_t dma_handle, unsigned long attrs)
 180{
 181        unsigned long addr = (unsigned long) vaddr;
 182        unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 183        struct page *page = NULL;
 184
 185        if (attrs & DMA_ATTR_NON_CONSISTENT) {
 186                mips_dma_free_noncoherent(dev, size, vaddr, dma_handle);
 187                return;
 188        }
 189
 190        plat_unmap_dma_mem(dev, dma_handle, size, DMA_BIDIRECTIONAL);
 191
 192        if (!plat_device_is_coherent(dev) && !hw_coherentio)
 193                addr = CAC_ADDR(addr);
 194
 195        page = virt_to_page((void *) addr);
 196
 197        if (!dma_release_from_contiguous(dev, page, count))
 198                __free_pages(page, get_order(size));
 199}
 200
 201static int mips_dma_mmap(struct device *dev, struct vm_area_struct *vma,
 202        void *cpu_addr, dma_addr_t dma_addr, size_t size,
 203        unsigned long attrs)
 204{
 205        unsigned long user_count = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
 206        unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
 207        unsigned long addr = (unsigned long)cpu_addr;
 208        unsigned long off = vma->vm_pgoff;
 209        unsigned long pfn;
 210        int ret = -ENXIO;
 211
 212        if (!plat_device_is_coherent(dev) && !hw_coherentio)
 213                addr = CAC_ADDR(addr);
 214
 215        pfn = page_to_pfn(virt_to_page((void *)addr));
 216
 217        if (attrs & DMA_ATTR_WRITE_COMBINE)
 218                vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
 219        else
 220                vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
 221
 222        if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
 223                return ret;
 224
 225        if (off < count && user_count <= (count - off)) {
 226                ret = remap_pfn_range(vma, vma->vm_start,
 227                                      pfn + off,
 228                                      user_count << PAGE_SHIFT,
 229                                      vma->vm_page_prot);
 230        }
 231
 232        return ret;
 233}
 234
 235static inline void __dma_sync_virtual(void *addr, size_t size,
 236        enum dma_data_direction direction)
 237{
 238        switch (direction) {
 239        case DMA_TO_DEVICE:
 240                dma_cache_wback((unsigned long)addr, size);
 241                break;
 242
 243        case DMA_FROM_DEVICE:
 244                dma_cache_inv((unsigned long)addr, size);
 245                break;
 246
 247        case DMA_BIDIRECTIONAL:
 248                dma_cache_wback_inv((unsigned long)addr, size);
 249                break;
 250
 251        default:
 252                BUG();
 253        }
 254}
 255
 256/*
 257 * A single sg entry may refer to multiple physically contiguous
 258 * pages. But we still need to process highmem pages individually.
 259 * If highmem is not configured then the bulk of this loop gets
 260 * optimized out.
 261 */
 262static inline void __dma_sync(struct page *page,
 263        unsigned long offset, size_t size, enum dma_data_direction direction)
 264{
 265        size_t left = size;
 266
 267        do {
 268                size_t len = left;
 269
 270                if (PageHighMem(page)) {
 271                        void *addr;
 272
 273                        if (offset + len > PAGE_SIZE) {
 274                                if (offset >= PAGE_SIZE) {
 275                                        page += offset >> PAGE_SHIFT;
 276                                        offset &= ~PAGE_MASK;
 277                                }
 278                                len = PAGE_SIZE - offset;
 279                        }
 280
 281                        addr = kmap_atomic(page);
 282                        __dma_sync_virtual(addr + offset, len, direction);
 283                        kunmap_atomic(addr);
 284                } else
 285                        __dma_sync_virtual(page_address(page) + offset,
 286                                           size, direction);
 287                offset = 0;
 288                page++;
 289                left -= len;
 290        } while (left);
 291}
 292
 293static void mips_dma_unmap_page(struct device *dev, dma_addr_t dma_addr,
 294        size_t size, enum dma_data_direction direction, unsigned long attrs)
 295{
 296        if (cpu_needs_post_dma_flush(dev))
 297                __dma_sync(dma_addr_to_page(dev, dma_addr),
 298                           dma_addr & ~PAGE_MASK, size, direction);
 299        plat_post_dma_flush(dev);
 300        plat_unmap_dma_mem(dev, dma_addr, size, direction);
 301}
 302
 303static int mips_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 304        int nents, enum dma_data_direction direction, unsigned long attrs)
 305{
 306        int i;
 307        struct scatterlist *sg;
 308
 309        for_each_sg(sglist, sg, nents, i) {
 310                if (!plat_device_is_coherent(dev))
 311                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 312                                   direction);
 313#ifdef CONFIG_NEED_SG_DMA_LENGTH
 314                sg->dma_length = sg->length;
 315#endif
 316                sg->dma_address = plat_map_dma_mem_page(dev, sg_page(sg)) +
 317                                  sg->offset;
 318        }
 319
 320        return nents;
 321}
 322
 323static dma_addr_t mips_dma_map_page(struct device *dev, struct page *page,
 324        unsigned long offset, size_t size, enum dma_data_direction direction,
 325        unsigned long attrs)
 326{
 327        if (!plat_device_is_coherent(dev))
 328                __dma_sync(page, offset, size, direction);
 329
 330        return plat_map_dma_mem_page(dev, page) + offset;
 331}
 332
 333static void mips_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
 334        int nhwentries, enum dma_data_direction direction,
 335        unsigned long attrs)
 336{
 337        int i;
 338        struct scatterlist *sg;
 339
 340        for_each_sg(sglist, sg, nhwentries, i) {
 341                if (!plat_device_is_coherent(dev) &&
 342                    direction != DMA_TO_DEVICE)
 343                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 344                                   direction);
 345                plat_unmap_dma_mem(dev, sg->dma_address, sg->length, direction);
 346        }
 347}
 348
 349static void mips_dma_sync_single_for_cpu(struct device *dev,
 350        dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 351{
 352        if (cpu_needs_post_dma_flush(dev))
 353                __dma_sync(dma_addr_to_page(dev, dma_handle),
 354                           dma_handle & ~PAGE_MASK, size, direction);
 355        plat_post_dma_flush(dev);
 356}
 357
 358static void mips_dma_sync_single_for_device(struct device *dev,
 359        dma_addr_t dma_handle, size_t size, enum dma_data_direction direction)
 360{
 361        if (!plat_device_is_coherent(dev))
 362                __dma_sync(dma_addr_to_page(dev, dma_handle),
 363                           dma_handle & ~PAGE_MASK, size, direction);
 364}
 365
 366static void mips_dma_sync_sg_for_cpu(struct device *dev,
 367        struct scatterlist *sglist, int nelems,
 368        enum dma_data_direction direction)
 369{
 370        int i;
 371        struct scatterlist *sg;
 372
 373        if (cpu_needs_post_dma_flush(dev)) {
 374                for_each_sg(sglist, sg, nelems, i) {
 375                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 376                                   direction);
 377                }
 378        }
 379        plat_post_dma_flush(dev);
 380}
 381
 382static void mips_dma_sync_sg_for_device(struct device *dev,
 383        struct scatterlist *sglist, int nelems,
 384        enum dma_data_direction direction)
 385{
 386        int i;
 387        struct scatterlist *sg;
 388
 389        if (!plat_device_is_coherent(dev)) {
 390                for_each_sg(sglist, sg, nelems, i) {
 391                        __dma_sync(sg_page(sg), sg->offset, sg->length,
 392                                   direction);
 393                }
 394        }
 395}
 396
 397int mips_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 398{
 399        return 0;
 400}
 401
 402int mips_dma_supported(struct device *dev, u64 mask)
 403{
 404        return plat_dma_supported(dev, mask);
 405}
 406
 407void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
 408                         enum dma_data_direction direction)
 409{
 410        BUG_ON(direction == DMA_NONE);
 411
 412        if (!plat_device_is_coherent(dev))
 413                __dma_sync_virtual(vaddr, size, direction);
 414}
 415
 416EXPORT_SYMBOL(dma_cache_sync);
 417
 418static struct dma_map_ops mips_default_dma_map_ops = {
 419        .alloc = mips_dma_alloc_coherent,
 420        .free = mips_dma_free_coherent,
 421        .mmap = mips_dma_mmap,
 422        .map_page = mips_dma_map_page,
 423        .unmap_page = mips_dma_unmap_page,
 424        .map_sg = mips_dma_map_sg,
 425        .unmap_sg = mips_dma_unmap_sg,
 426        .sync_single_for_cpu = mips_dma_sync_single_for_cpu,
 427        .sync_single_for_device = mips_dma_sync_single_for_device,
 428        .sync_sg_for_cpu = mips_dma_sync_sg_for_cpu,
 429        .sync_sg_for_device = mips_dma_sync_sg_for_device,
 430        .mapping_error = mips_dma_mapping_error,
 431        .dma_supported = mips_dma_supported
 432};
 433
 434struct dma_map_ops *mips_dma_map_ops = &mips_default_dma_map_ops;
 435EXPORT_SYMBOL(mips_dma_map_ops);
 436
 437#define PREALLOC_DMA_DEBUG_ENTRIES (1 << 16)
 438
 439static int __init mips_dma_init(void)
 440{
 441        dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
 442
 443        return 0;
 444}
 445fs_initcall(mips_dma_init);
 446