linux/arch/powerpc/kvm/book3s_32_mmu.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or modify
   3 * it under the terms of the GNU General Public License, version 2, as
   4 * published by the Free Software Foundation.
   5 *
   6 * This program is distributed in the hope that it will be useful,
   7 * but WITHOUT ANY WARRANTY; without even the implied warranty of
   8 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   9 * GNU General Public License for more details.
  10 *
  11 * You should have received a copy of the GNU General Public License
  12 * along with this program; if not, write to the Free Software
  13 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
  14 *
  15 * Copyright SUSE Linux Products GmbH 2009
  16 *
  17 * Authors: Alexander Graf <agraf@suse.de>
  18 */
  19
  20#include <linux/types.h>
  21#include <linux/string.h>
  22#include <linux/kvm.h>
  23#include <linux/kvm_host.h>
  24#include <linux/highmem.h>
  25
  26#include <asm/tlbflush.h>
  27#include <asm/kvm_ppc.h>
  28#include <asm/kvm_book3s.h>
  29
  30/* #define DEBUG_MMU */
  31/* #define DEBUG_MMU_PTE */
  32/* #define DEBUG_MMU_PTE_IP 0xfff14c40 */
  33
  34#ifdef DEBUG_MMU
  35#define dprintk(X...) printk(KERN_INFO X)
  36#else
  37#define dprintk(X...) do { } while(0)
  38#endif
  39
  40#ifdef DEBUG_MMU_PTE
  41#define dprintk_pte(X...) printk(KERN_INFO X)
  42#else
  43#define dprintk_pte(X...) do { } while(0)
  44#endif
  45
  46#define PTEG_FLAG_ACCESSED      0x00000100
  47#define PTEG_FLAG_DIRTY         0x00000080
  48#ifndef SID_SHIFT
  49#define SID_SHIFT               28
  50#endif
  51
  52static inline bool check_debug_ip(struct kvm_vcpu *vcpu)
  53{
  54#ifdef DEBUG_MMU_PTE_IP
  55        return vcpu->arch.pc == DEBUG_MMU_PTE_IP;
  56#else
  57        return true;
  58#endif
  59}
  60
  61static inline u32 sr_vsid(u32 sr_raw)
  62{
  63        return sr_raw & 0x0fffffff;
  64}
  65
  66static inline bool sr_valid(u32 sr_raw)
  67{
  68        return (sr_raw & 0x80000000) ? false : true;
  69}
  70
  71static inline bool sr_ks(u32 sr_raw)
  72{
  73        return (sr_raw & 0x40000000) ? true: false;
  74}
  75
  76static inline bool sr_kp(u32 sr_raw)
  77{
  78        return (sr_raw & 0x20000000) ? true: false;
  79}
  80
  81static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
  82                                          struct kvmppc_pte *pte, bool data,
  83                                          bool iswrite);
  84static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
  85                                             u64 *vsid);
  86
  87static u32 find_sr(struct kvm_vcpu *vcpu, gva_t eaddr)
  88{
  89        return kvmppc_get_sr(vcpu, (eaddr >> 28) & 0xf);
  90}
  91
  92static u64 kvmppc_mmu_book3s_32_ea_to_vp(struct kvm_vcpu *vcpu, gva_t eaddr,
  93                                         bool data)
  94{
  95        u64 vsid;
  96        struct kvmppc_pte pte;
  97
  98        if (!kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, &pte, data, false))
  99                return pte.vpage;
 100
 101        kvmppc_mmu_book3s_32_esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
 102        return (((u64)eaddr >> 12) & 0xffff) | (vsid << 16);
 103}
 104
 105static void kvmppc_mmu_book3s_32_reset_msr(struct kvm_vcpu *vcpu)
 106{
 107        kvmppc_set_msr(vcpu, 0);
 108}
 109
 110static hva_t kvmppc_mmu_book3s_32_get_pteg(struct kvm_vcpu *vcpu,
 111                                      u32 sre, gva_t eaddr,
 112                                      bool primary)
 113{
 114        struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
 115        u32 page, hash, pteg, htabmask;
 116        hva_t r;
 117
 118        page = (eaddr & 0x0FFFFFFF) >> 12;
 119        htabmask = ((vcpu_book3s->sdr1 & 0x1FF) << 16) | 0xFFC0;
 120
 121        hash = ((sr_vsid(sre) ^ page) << 6);
 122        if (!primary)
 123                hash = ~hash;
 124        hash &= htabmask;
 125
 126        pteg = (vcpu_book3s->sdr1 & 0xffff0000) | hash;
 127
 128        dprintk("MMU: pc=0x%lx eaddr=0x%lx sdr1=0x%llx pteg=0x%x vsid=0x%x\n",
 129                kvmppc_get_pc(vcpu), eaddr, vcpu_book3s->sdr1, pteg,
 130                sr_vsid(sre));
 131
 132        r = gfn_to_hva(vcpu->kvm, pteg >> PAGE_SHIFT);
 133        if (kvm_is_error_hva(r))
 134                return r;
 135        return r | (pteg & ~PAGE_MASK);
 136}
 137
 138static u32 kvmppc_mmu_book3s_32_get_ptem(u32 sre, gva_t eaddr, bool primary)
 139{
 140        return ((eaddr & 0x0fffffff) >> 22) | (sr_vsid(sre) << 7) |
 141               (primary ? 0 : 0x40) | 0x80000000;
 142}
 143
 144static int kvmppc_mmu_book3s_32_xlate_bat(struct kvm_vcpu *vcpu, gva_t eaddr,
 145                                          struct kvmppc_pte *pte, bool data,
 146                                          bool iswrite)
 147{
 148        struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
 149        struct kvmppc_bat *bat;
 150        int i;
 151
 152        for (i = 0; i < 8; i++) {
 153                if (data)
 154                        bat = &vcpu_book3s->dbat[i];
 155                else
 156                        bat = &vcpu_book3s->ibat[i];
 157
 158                if (kvmppc_get_msr(vcpu) & MSR_PR) {
 159                        if (!bat->vp)
 160                                continue;
 161                } else {
 162                        if (!bat->vs)
 163                                continue;
 164                }
 165
 166                if (check_debug_ip(vcpu))
 167                {
 168                        dprintk_pte("%cBAT %02d: 0x%lx - 0x%x (0x%x)\n",
 169                                    data ? 'd' : 'i', i, eaddr, bat->bepi,
 170                                    bat->bepi_mask);
 171                }
 172                if ((eaddr & bat->bepi_mask) == bat->bepi) {
 173                        u64 vsid;
 174                        kvmppc_mmu_book3s_32_esid_to_vsid(vcpu,
 175                                eaddr >> SID_SHIFT, &vsid);
 176                        vsid <<= 16;
 177                        pte->vpage = (((u64)eaddr >> 12) & 0xffff) | vsid;
 178
 179                        pte->raddr = bat->brpn | (eaddr & ~bat->bepi_mask);
 180                        pte->may_read = bat->pp;
 181                        pte->may_write = bat->pp > 1;
 182                        pte->may_execute = true;
 183                        if (!pte->may_read) {
 184                                printk(KERN_INFO "BAT is not readable!\n");
 185                                continue;
 186                        }
 187                        if (iswrite && !pte->may_write) {
 188                                dprintk_pte("BAT is read-only!\n");
 189                                continue;
 190                        }
 191
 192                        return 0;
 193                }
 194        }
 195
 196        return -ENOENT;
 197}
 198
 199static int kvmppc_mmu_book3s_32_xlate_pte(struct kvm_vcpu *vcpu, gva_t eaddr,
 200                                     struct kvmppc_pte *pte, bool data,
 201                                     bool iswrite, bool primary)
 202{
 203        u32 sre;
 204        hva_t ptegp;
 205        u32 pteg[16];
 206        u32 pte0, pte1;
 207        u32 ptem = 0;
 208        int i;
 209        int found = 0;
 210
 211        sre = find_sr(vcpu, eaddr);
 212
 213        dprintk_pte("SR 0x%lx: vsid=0x%x, raw=0x%x\n", eaddr >> 28,
 214                    sr_vsid(sre), sre);
 215
 216        pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
 217
 218        ptegp = kvmppc_mmu_book3s_32_get_pteg(vcpu, sre, eaddr, primary);
 219        if (kvm_is_error_hva(ptegp)) {
 220                printk(KERN_INFO "KVM: Invalid PTEG!\n");
 221                goto no_page_found;
 222        }
 223
 224        ptem = kvmppc_mmu_book3s_32_get_ptem(sre, eaddr, primary);
 225
 226        if(copy_from_user(pteg, (void __user *)ptegp, sizeof(pteg))) {
 227                printk(KERN_ERR "KVM: Can't copy data from 0x%lx!\n", ptegp);
 228                goto no_page_found;
 229        }
 230
 231        for (i=0; i<16; i+=2) {
 232                pte0 = be32_to_cpu(pteg[i]);
 233                pte1 = be32_to_cpu(pteg[i + 1]);
 234                if (ptem == pte0) {
 235                        u8 pp;
 236
 237                        pte->raddr = (pte1 & ~(0xFFFULL)) | (eaddr & 0xFFF);
 238                        pp = pte1 & 3;
 239
 240                        if ((sr_kp(sre) &&  (kvmppc_get_msr(vcpu) & MSR_PR)) ||
 241                            (sr_ks(sre) && !(kvmppc_get_msr(vcpu) & MSR_PR)))
 242                                pp |= 4;
 243
 244                        pte->may_write = false;
 245                        pte->may_read = false;
 246                        pte->may_execute = true;
 247                        switch (pp) {
 248                                case 0:
 249                                case 1:
 250                                case 2:
 251                                case 6:
 252                                        pte->may_write = true;
 253                                case 3:
 254                                case 5:
 255                                case 7:
 256                                        pte->may_read = true;
 257                                        break;
 258                        }
 259
 260                        dprintk_pte("MMU: Found PTE -> %x %x - %x\n",
 261                                    pte0, pte1, pp);
 262                        found = 1;
 263                        break;
 264                }
 265        }
 266
 267        /* Update PTE C and A bits, so the guest's swapper knows we used the
 268           page */
 269        if (found) {
 270                u32 pte_r = pte1;
 271                char __user *addr = (char __user *) (ptegp + (i+1) * sizeof(u32));
 272
 273                /*
 274                 * Use single-byte writes to update the HPTE, to
 275                 * conform to what real hardware does.
 276                 */
 277                if (pte->may_read && !(pte_r & PTEG_FLAG_ACCESSED)) {
 278                        pte_r |= PTEG_FLAG_ACCESSED;
 279                        put_user(pte_r >> 8, addr + 2);
 280                }
 281                if (iswrite && pte->may_write && !(pte_r & PTEG_FLAG_DIRTY)) {
 282                        pte_r |= PTEG_FLAG_DIRTY;
 283                        put_user(pte_r, addr + 3);
 284                }
 285                if (!pte->may_read || (iswrite && !pte->may_write))
 286                        return -EPERM;
 287                return 0;
 288        }
 289
 290no_page_found:
 291
 292        if (check_debug_ip(vcpu)) {
 293                dprintk_pte("KVM MMU: No PTE found (sdr1=0x%llx ptegp=0x%lx)\n",
 294                            to_book3s(vcpu)->sdr1, ptegp);
 295                for (i=0; i<16; i+=2) {
 296                        dprintk_pte("   %02d: 0x%x - 0x%x (0x%x)\n",
 297                                    i, be32_to_cpu(pteg[i]),
 298                                    be32_to_cpu(pteg[i+1]), ptem);
 299                }
 300        }
 301
 302        return -ENOENT;
 303}
 304
 305static int kvmppc_mmu_book3s_32_xlate(struct kvm_vcpu *vcpu, gva_t eaddr,
 306                                      struct kvmppc_pte *pte, bool data,
 307                                      bool iswrite)
 308{
 309        int r;
 310        ulong mp_ea = vcpu->arch.magic_page_ea;
 311
 312        pte->eaddr = eaddr;
 313        pte->page_size = MMU_PAGE_4K;
 314
 315        /* Magic page override */
 316        if (unlikely(mp_ea) &&
 317            unlikely((eaddr & ~0xfffULL) == (mp_ea & ~0xfffULL)) &&
 318            !(kvmppc_get_msr(vcpu) & MSR_PR)) {
 319                pte->vpage = kvmppc_mmu_book3s_32_ea_to_vp(vcpu, eaddr, data);
 320                pte->raddr = vcpu->arch.magic_page_pa | (pte->raddr & 0xfff);
 321                pte->raddr &= KVM_PAM;
 322                pte->may_execute = true;
 323                pte->may_read = true;
 324                pte->may_write = true;
 325
 326                return 0;
 327        }
 328
 329        r = kvmppc_mmu_book3s_32_xlate_bat(vcpu, eaddr, pte, data, iswrite);
 330        if (r < 0)
 331                r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
 332                                                   data, iswrite, true);
 333        if (r == -ENOENT)
 334                r = kvmppc_mmu_book3s_32_xlate_pte(vcpu, eaddr, pte,
 335                                                   data, iswrite, false);
 336
 337        return r;
 338}
 339
 340
 341static u32 kvmppc_mmu_book3s_32_mfsrin(struct kvm_vcpu *vcpu, u32 srnum)
 342{
 343        return kvmppc_get_sr(vcpu, srnum);
 344}
 345
 346static void kvmppc_mmu_book3s_32_mtsrin(struct kvm_vcpu *vcpu, u32 srnum,
 347                                        ulong value)
 348{
 349        kvmppc_set_sr(vcpu, srnum, value);
 350        kvmppc_mmu_map_segment(vcpu, srnum << SID_SHIFT);
 351}
 352
 353static void kvmppc_mmu_book3s_32_tlbie(struct kvm_vcpu *vcpu, ulong ea, bool large)
 354{
 355        int i;
 356        struct kvm_vcpu *v;
 357
 358        /* flush this VA on all cpus */
 359        kvm_for_each_vcpu(i, v, vcpu->kvm)
 360                kvmppc_mmu_pte_flush(v, ea, 0x0FFFF000);
 361}
 362
 363static int kvmppc_mmu_book3s_32_esid_to_vsid(struct kvm_vcpu *vcpu, ulong esid,
 364                                             u64 *vsid)
 365{
 366        ulong ea = esid << SID_SHIFT;
 367        u32 sr;
 368        u64 gvsid = esid;
 369        u64 msr = kvmppc_get_msr(vcpu);
 370
 371        if (msr & (MSR_DR|MSR_IR)) {
 372                sr = find_sr(vcpu, ea);
 373                if (sr_valid(sr))
 374                        gvsid = sr_vsid(sr);
 375        }
 376
 377        /* In case we only have one of MSR_IR or MSR_DR set, let's put
 378           that in the real-mode context (and hope RM doesn't access
 379           high memory) */
 380        switch (msr & (MSR_DR|MSR_IR)) {
 381        case 0:
 382                *vsid = VSID_REAL | esid;
 383                break;
 384        case MSR_IR:
 385                *vsid = VSID_REAL_IR | gvsid;
 386                break;
 387        case MSR_DR:
 388                *vsid = VSID_REAL_DR | gvsid;
 389                break;
 390        case MSR_DR|MSR_IR:
 391                if (sr_valid(sr))
 392                        *vsid = sr_vsid(sr);
 393                else
 394                        *vsid = VSID_BAT | gvsid;
 395                break;
 396        default:
 397                BUG();
 398        }
 399
 400        if (msr & MSR_PR)
 401                *vsid |= VSID_PR;
 402
 403        return 0;
 404}
 405
 406static bool kvmppc_mmu_book3s_32_is_dcbz32(struct kvm_vcpu *vcpu)
 407{
 408        return true;
 409}
 410
 411
 412void kvmppc_mmu_book3s_32_init(struct kvm_vcpu *vcpu)
 413{
 414        struct kvmppc_mmu *mmu = &vcpu->arch.mmu;
 415
 416        mmu->mtsrin = kvmppc_mmu_book3s_32_mtsrin;
 417        mmu->mfsrin = kvmppc_mmu_book3s_32_mfsrin;
 418        mmu->xlate = kvmppc_mmu_book3s_32_xlate;
 419        mmu->reset_msr = kvmppc_mmu_book3s_32_reset_msr;
 420        mmu->tlbie = kvmppc_mmu_book3s_32_tlbie;
 421        mmu->esid_to_vsid = kvmppc_mmu_book3s_32_esid_to_vsid;
 422        mmu->ea_to_vp = kvmppc_mmu_book3s_32_ea_to_vp;
 423        mmu->is_dcbz32 = kvmppc_mmu_book3s_32_is_dcbz32;
 424
 425        mmu->slbmte = NULL;
 426        mmu->slbmfee = NULL;
 427        mmu->slbmfev = NULL;
 428        mmu->slbie = NULL;
 429        mmu->slbia = NULL;
 430}
 431