linux/arch/powerpc/mm/hugetlbpage.c
<<
>>
Prefs
   1/*
   2 * PPC Huge TLB Page Support for Kernel.
   3 *
   4 * Copyright (C) 2003 David Gibson, IBM Corporation.
   5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
   6 *
   7 * Based on the IA-32 version:
   8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
   9 */
  10
  11#include <linux/mm.h>
  12#include <linux/io.h>
  13#include <linux/slab.h>
  14#include <linux/hugetlb.h>
  15#include <linux/export.h>
  16#include <linux/of_fdt.h>
  17#include <linux/memblock.h>
  18#include <linux/bootmem.h>
  19#include <linux/moduleparam.h>
  20#include <asm/pgtable.h>
  21#include <asm/pgalloc.h>
  22#include <asm/tlb.h>
  23#include <asm/setup.h>
  24#include <asm/hugetlb.h>
  25
  26#ifdef CONFIG_HUGETLB_PAGE
  27
  28#define PAGE_SHIFT_64K  16
  29#define PAGE_SHIFT_16M  24
  30#define PAGE_SHIFT_16G  34
  31
  32unsigned int HPAGE_SHIFT;
  33
  34/*
  35 * Tracks gpages after the device tree is scanned and before the
  36 * huge_boot_pages list is ready.  On non-Freescale implementations, this is
  37 * just used to track 16G pages and so is a single array.  FSL-based
  38 * implementations may have more than one gpage size, so we need multiple
  39 * arrays
  40 */
  41#ifdef CONFIG_PPC_FSL_BOOK3E
  42#define MAX_NUMBER_GPAGES       128
  43struct psize_gpages {
  44        u64 gpage_list[MAX_NUMBER_GPAGES];
  45        unsigned int nr_gpages;
  46};
  47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
  48#else
  49#define MAX_NUMBER_GPAGES       1024
  50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
  51static unsigned nr_gpages;
  52#endif
  53
  54#define hugepd_none(hpd)        ((hpd).pd == 0)
  55
  56pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
  57{
  58        /* Only called for hugetlbfs pages, hence can ignore THP */
  59        return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
  60}
  61
  62static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
  63                           unsigned long address, unsigned pdshift, unsigned pshift)
  64{
  65        struct kmem_cache *cachep;
  66        pte_t *new;
  67
  68#ifdef CONFIG_PPC_FSL_BOOK3E
  69        int i;
  70        int num_hugepd = 1 << (pshift - pdshift);
  71        cachep = hugepte_cache;
  72#else
  73        cachep = PGT_CACHE(pdshift - pshift);
  74#endif
  75
  76        new = kmem_cache_zalloc(cachep, GFP_KERNEL);
  77
  78        BUG_ON(pshift > HUGEPD_SHIFT_MASK);
  79        BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
  80
  81        if (! new)
  82                return -ENOMEM;
  83
  84        /*
  85         * Make sure other cpus find the hugepd set only after a
  86         * properly initialized page table is visible to them.
  87         * For more details look for comment in __pte_alloc().
  88         */
  89        smp_wmb();
  90
  91        spin_lock(&mm->page_table_lock);
  92#ifdef CONFIG_PPC_FSL_BOOK3E
  93        /*
  94         * We have multiple higher-level entries that point to the same
  95         * actual pte location.  Fill in each as we go and backtrack on error.
  96         * We need all of these so the DTLB pgtable walk code can find the
  97         * right higher-level entry without knowing if it's a hugepage or not.
  98         */
  99        for (i = 0; i < num_hugepd; i++, hpdp++) {
 100                if (unlikely(!hugepd_none(*hpdp)))
 101                        break;
 102                else
 103                        /* We use the old format for PPC_FSL_BOOK3E */
 104                        hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 105        }
 106        /* If we bailed from the for loop early, an error occurred, clean up */
 107        if (i < num_hugepd) {
 108                for (i = i - 1 ; i >= 0; i--, hpdp--)
 109                        hpdp->pd = 0;
 110                kmem_cache_free(cachep, new);
 111        }
 112#else
 113        if (!hugepd_none(*hpdp))
 114                kmem_cache_free(cachep, new);
 115        else {
 116#ifdef CONFIG_PPC_BOOK3S_64
 117                hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
 118#else
 119                hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
 120#endif
 121        }
 122#endif
 123        spin_unlock(&mm->page_table_lock);
 124        return 0;
 125}
 126
 127/*
 128 * These macros define how to determine which level of the page table holds
 129 * the hpdp.
 130 */
 131#ifdef CONFIG_PPC_FSL_BOOK3E
 132#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
 133#define HUGEPD_PUD_SHIFT PUD_SHIFT
 134#else
 135#define HUGEPD_PGD_SHIFT PUD_SHIFT
 136#define HUGEPD_PUD_SHIFT PMD_SHIFT
 137#endif
 138
 139#ifdef CONFIG_PPC_BOOK3S_64
 140/*
 141 * At this point we do the placement change only for BOOK3S 64. This would
 142 * possibly work on other subarchs.
 143 */
 144pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 145{
 146        pgd_t *pg;
 147        pud_t *pu;
 148        pmd_t *pm;
 149        hugepd_t *hpdp = NULL;
 150        unsigned pshift = __ffs(sz);
 151        unsigned pdshift = PGDIR_SHIFT;
 152
 153        addr &= ~(sz-1);
 154        pg = pgd_offset(mm, addr);
 155
 156        if (pshift == PGDIR_SHIFT)
 157                /* 16GB huge page */
 158                return (pte_t *) pg;
 159        else if (pshift > PUD_SHIFT)
 160                /*
 161                 * We need to use hugepd table
 162                 */
 163                hpdp = (hugepd_t *)pg;
 164        else {
 165                pdshift = PUD_SHIFT;
 166                pu = pud_alloc(mm, pg, addr);
 167                if (pshift == PUD_SHIFT)
 168                        return (pte_t *)pu;
 169                else if (pshift > PMD_SHIFT)
 170                        hpdp = (hugepd_t *)pu;
 171                else {
 172                        pdshift = PMD_SHIFT;
 173                        pm = pmd_alloc(mm, pu, addr);
 174                        if (pshift == PMD_SHIFT)
 175                                /* 16MB hugepage */
 176                                return (pte_t *)pm;
 177                        else
 178                                hpdp = (hugepd_t *)pm;
 179                }
 180        }
 181        if (!hpdp)
 182                return NULL;
 183
 184        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 185
 186        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 187                return NULL;
 188
 189        return hugepte_offset(*hpdp, addr, pdshift);
 190}
 191
 192#else
 193
 194pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
 195{
 196        pgd_t *pg;
 197        pud_t *pu;
 198        pmd_t *pm;
 199        hugepd_t *hpdp = NULL;
 200        unsigned pshift = __ffs(sz);
 201        unsigned pdshift = PGDIR_SHIFT;
 202
 203        addr &= ~(sz-1);
 204
 205        pg = pgd_offset(mm, addr);
 206
 207        if (pshift >= HUGEPD_PGD_SHIFT) {
 208                hpdp = (hugepd_t *)pg;
 209        } else {
 210                pdshift = PUD_SHIFT;
 211                pu = pud_alloc(mm, pg, addr);
 212                if (pshift >= HUGEPD_PUD_SHIFT) {
 213                        hpdp = (hugepd_t *)pu;
 214                } else {
 215                        pdshift = PMD_SHIFT;
 216                        pm = pmd_alloc(mm, pu, addr);
 217                        hpdp = (hugepd_t *)pm;
 218                }
 219        }
 220
 221        if (!hpdp)
 222                return NULL;
 223
 224        BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
 225
 226        if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
 227                return NULL;
 228
 229        return hugepte_offset(*hpdp, addr, pdshift);
 230}
 231#endif
 232
 233#ifdef CONFIG_PPC_FSL_BOOK3E
 234/* Build list of addresses of gigantic pages.  This function is used in early
 235 * boot before the buddy allocator is setup.
 236 */
 237void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 238{
 239        unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
 240        int i;
 241
 242        if (addr == 0)
 243                return;
 244
 245        gpage_freearray[idx].nr_gpages = number_of_pages;
 246
 247        for (i = 0; i < number_of_pages; i++) {
 248                gpage_freearray[idx].gpage_list[i] = addr;
 249                addr += page_size;
 250        }
 251}
 252
 253/*
 254 * Moves the gigantic page addresses from the temporary list to the
 255 * huge_boot_pages list.
 256 */
 257int alloc_bootmem_huge_page(struct hstate *hstate)
 258{
 259        struct huge_bootmem_page *m;
 260        int idx = shift_to_mmu_psize(huge_page_shift(hstate));
 261        int nr_gpages = gpage_freearray[idx].nr_gpages;
 262
 263        if (nr_gpages == 0)
 264                return 0;
 265
 266#ifdef CONFIG_HIGHMEM
 267        /*
 268         * If gpages can be in highmem we can't use the trick of storing the
 269         * data structure in the page; allocate space for this
 270         */
 271        m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
 272        m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
 273#else
 274        m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
 275#endif
 276
 277        list_add(&m->list, &huge_boot_pages);
 278        gpage_freearray[idx].nr_gpages = nr_gpages;
 279        gpage_freearray[idx].gpage_list[nr_gpages] = 0;
 280        m->hstate = hstate;
 281
 282        return 1;
 283}
 284/*
 285 * Scan the command line hugepagesz= options for gigantic pages; store those in
 286 * a list that we use to allocate the memory once all options are parsed.
 287 */
 288
 289unsigned long gpage_npages[MMU_PAGE_COUNT];
 290
 291static int __init do_gpage_early_setup(char *param, char *val,
 292                                       const char *unused, void *arg)
 293{
 294        static phys_addr_t size;
 295        unsigned long npages;
 296
 297        /*
 298         * The hugepagesz and hugepages cmdline options are interleaved.  We
 299         * use the size variable to keep track of whether or not this was done
 300         * properly and skip over instances where it is incorrect.  Other
 301         * command-line parsing code will issue warnings, so we don't need to.
 302         *
 303         */
 304        if ((strcmp(param, "default_hugepagesz") == 0) ||
 305            (strcmp(param, "hugepagesz") == 0)) {
 306                size = memparse(val, NULL);
 307        } else if (strcmp(param, "hugepages") == 0) {
 308                if (size != 0) {
 309                        if (sscanf(val, "%lu", &npages) <= 0)
 310                                npages = 0;
 311                        if (npages > MAX_NUMBER_GPAGES) {
 312                                pr_warn("MMU: %lu pages requested for page "
 313                                        "size %llu KB, limiting to "
 314                                        __stringify(MAX_NUMBER_GPAGES) "\n",
 315                                        npages, size / 1024);
 316                                npages = MAX_NUMBER_GPAGES;
 317                        }
 318                        gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
 319                        size = 0;
 320                }
 321        }
 322        return 0;
 323}
 324
 325
 326/*
 327 * This function allocates physical space for pages that are larger than the
 328 * buddy allocator can handle.  We want to allocate these in highmem because
 329 * the amount of lowmem is limited.  This means that this function MUST be
 330 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
 331 * allocate to grab highmem.
 332 */
 333void __init reserve_hugetlb_gpages(void)
 334{
 335        static __initdata char cmdline[COMMAND_LINE_SIZE];
 336        phys_addr_t size, base;
 337        int i;
 338
 339        strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
 340        parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
 341                        NULL, &do_gpage_early_setup);
 342
 343        /*
 344         * Walk gpage list in reverse, allocating larger page sizes first.
 345         * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
 346         * When we reach the point in the list where pages are no longer
 347         * considered gpages, we're done.
 348         */
 349        for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
 350                if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
 351                        continue;
 352                else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
 353                        break;
 354
 355                size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
 356                base = memblock_alloc_base(size * gpage_npages[i], size,
 357                                           MEMBLOCK_ALLOC_ANYWHERE);
 358                add_gpage(base, size, gpage_npages[i]);
 359        }
 360}
 361
 362#else /* !PPC_FSL_BOOK3E */
 363
 364/* Build list of addresses of gigantic pages.  This function is used in early
 365 * boot before the buddy allocator is setup.
 366 */
 367void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
 368{
 369        if (!addr)
 370                return;
 371        while (number_of_pages > 0) {
 372                gpage_freearray[nr_gpages] = addr;
 373                nr_gpages++;
 374                number_of_pages--;
 375                addr += page_size;
 376        }
 377}
 378
 379/* Moves the gigantic page addresses from the temporary list to the
 380 * huge_boot_pages list.
 381 */
 382int alloc_bootmem_huge_page(struct hstate *hstate)
 383{
 384        struct huge_bootmem_page *m;
 385        if (nr_gpages == 0)
 386                return 0;
 387        m = phys_to_virt(gpage_freearray[--nr_gpages]);
 388        gpage_freearray[nr_gpages] = 0;
 389        list_add(&m->list, &huge_boot_pages);
 390        m->hstate = hstate;
 391        return 1;
 392}
 393#endif
 394
 395#ifdef CONFIG_PPC_FSL_BOOK3E
 396#define HUGEPD_FREELIST_SIZE \
 397        ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
 398
 399struct hugepd_freelist {
 400        struct rcu_head rcu;
 401        unsigned int index;
 402        void *ptes[0];
 403};
 404
 405static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
 406
 407static void hugepd_free_rcu_callback(struct rcu_head *head)
 408{
 409        struct hugepd_freelist *batch =
 410                container_of(head, struct hugepd_freelist, rcu);
 411        unsigned int i;
 412
 413        for (i = 0; i < batch->index; i++)
 414                kmem_cache_free(hugepte_cache, batch->ptes[i]);
 415
 416        free_page((unsigned long)batch);
 417}
 418
 419static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
 420{
 421        struct hugepd_freelist **batchp;
 422
 423        batchp = &get_cpu_var(hugepd_freelist_cur);
 424
 425        if (atomic_read(&tlb->mm->mm_users) < 2 ||
 426            cpumask_equal(mm_cpumask(tlb->mm),
 427                          cpumask_of(smp_processor_id()))) {
 428                kmem_cache_free(hugepte_cache, hugepte);
 429                put_cpu_var(hugepd_freelist_cur);
 430                return;
 431        }
 432
 433        if (*batchp == NULL) {
 434                *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
 435                (*batchp)->index = 0;
 436        }
 437
 438        (*batchp)->ptes[(*batchp)->index++] = hugepte;
 439        if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
 440                call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
 441                *batchp = NULL;
 442        }
 443        put_cpu_var(hugepd_freelist_cur);
 444}
 445#endif
 446
 447static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
 448                              unsigned long start, unsigned long end,
 449                              unsigned long floor, unsigned long ceiling)
 450{
 451        pte_t *hugepte = hugepd_page(*hpdp);
 452        int i;
 453
 454        unsigned long pdmask = ~((1UL << pdshift) - 1);
 455        unsigned int num_hugepd = 1;
 456
 457#ifdef CONFIG_PPC_FSL_BOOK3E
 458        /* Note: On fsl the hpdp may be the first of several */
 459        num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
 460#else
 461        unsigned int shift = hugepd_shift(*hpdp);
 462#endif
 463
 464        start &= pdmask;
 465        if (start < floor)
 466                return;
 467        if (ceiling) {
 468                ceiling &= pdmask;
 469                if (! ceiling)
 470                        return;
 471        }
 472        if (end - 1 > ceiling - 1)
 473                return;
 474
 475        for (i = 0; i < num_hugepd; i++, hpdp++)
 476                hpdp->pd = 0;
 477
 478#ifdef CONFIG_PPC_FSL_BOOK3E
 479        hugepd_free(tlb, hugepte);
 480#else
 481        pgtable_free_tlb(tlb, hugepte, pdshift - shift);
 482#endif
 483}
 484
 485static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 486                                   unsigned long addr, unsigned long end,
 487                                   unsigned long floor, unsigned long ceiling)
 488{
 489        pmd_t *pmd;
 490        unsigned long next;
 491        unsigned long start;
 492
 493        start = addr;
 494        do {
 495                pmd = pmd_offset(pud, addr);
 496                next = pmd_addr_end(addr, end);
 497                if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
 498                        /*
 499                         * if it is not hugepd pointer, we should already find
 500                         * it cleared.
 501                         */
 502                        WARN_ON(!pmd_none_or_clear_bad(pmd));
 503                        continue;
 504                }
 505#ifdef CONFIG_PPC_FSL_BOOK3E
 506                /*
 507                 * Increment next by the size of the huge mapping since
 508                 * there may be more than one entry at this level for a
 509                 * single hugepage, but all of them point to
 510                 * the same kmem cache that holds the hugepte.
 511                 */
 512                next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
 513#endif
 514                free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
 515                                  addr, next, floor, ceiling);
 516        } while (addr = next, addr != end);
 517
 518        start &= PUD_MASK;
 519        if (start < floor)
 520                return;
 521        if (ceiling) {
 522                ceiling &= PUD_MASK;
 523                if (!ceiling)
 524                        return;
 525        }
 526        if (end - 1 > ceiling - 1)
 527                return;
 528
 529        pmd = pmd_offset(pud, start);
 530        pud_clear(pud);
 531        pmd_free_tlb(tlb, pmd, start);
 532        mm_dec_nr_pmds(tlb->mm);
 533}
 534
 535static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
 536                                   unsigned long addr, unsigned long end,
 537                                   unsigned long floor, unsigned long ceiling)
 538{
 539        pud_t *pud;
 540        unsigned long next;
 541        unsigned long start;
 542
 543        start = addr;
 544        do {
 545                pud = pud_offset(pgd, addr);
 546                next = pud_addr_end(addr, end);
 547                if (!is_hugepd(__hugepd(pud_val(*pud)))) {
 548                        if (pud_none_or_clear_bad(pud))
 549                                continue;
 550                        hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
 551                                               ceiling);
 552                } else {
 553#ifdef CONFIG_PPC_FSL_BOOK3E
 554                        /*
 555                         * Increment next by the size of the huge mapping since
 556                         * there may be more than one entry at this level for a
 557                         * single hugepage, but all of them point to
 558                         * the same kmem cache that holds the hugepte.
 559                         */
 560                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
 561#endif
 562                        free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
 563                                          addr, next, floor, ceiling);
 564                }
 565        } while (addr = next, addr != end);
 566
 567        start &= PGDIR_MASK;
 568        if (start < floor)
 569                return;
 570        if (ceiling) {
 571                ceiling &= PGDIR_MASK;
 572                if (!ceiling)
 573                        return;
 574        }
 575        if (end - 1 > ceiling - 1)
 576                return;
 577
 578        pud = pud_offset(pgd, start);
 579        pgd_clear(pgd);
 580        pud_free_tlb(tlb, pud, start);
 581}
 582
 583/*
 584 * This function frees user-level page tables of a process.
 585 */
 586void hugetlb_free_pgd_range(struct mmu_gather *tlb,
 587                            unsigned long addr, unsigned long end,
 588                            unsigned long floor, unsigned long ceiling)
 589{
 590        pgd_t *pgd;
 591        unsigned long next;
 592
 593        /*
 594         * Because there are a number of different possible pagetable
 595         * layouts for hugepage ranges, we limit knowledge of how
 596         * things should be laid out to the allocation path
 597         * (huge_pte_alloc(), above).  Everything else works out the
 598         * structure as it goes from information in the hugepd
 599         * pointers.  That means that we can't here use the
 600         * optimization used in the normal page free_pgd_range(), of
 601         * checking whether we're actually covering a large enough
 602         * range to have to do anything at the top level of the walk
 603         * instead of at the bottom.
 604         *
 605         * To make sense of this, you should probably go read the big
 606         * block comment at the top of the normal free_pgd_range(),
 607         * too.
 608         */
 609
 610        do {
 611                next = pgd_addr_end(addr, end);
 612                pgd = pgd_offset(tlb->mm, addr);
 613                if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
 614                        if (pgd_none_or_clear_bad(pgd))
 615                                continue;
 616                        hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
 617                } else {
 618#ifdef CONFIG_PPC_FSL_BOOK3E
 619                        /*
 620                         * Increment next by the size of the huge mapping since
 621                         * there may be more than one entry at the pgd level
 622                         * for a single hugepage, but all of them point to the
 623                         * same kmem cache that holds the hugepte.
 624                         */
 625                        next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
 626#endif
 627                        free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
 628                                          addr, next, floor, ceiling);
 629                }
 630        } while (addr = next, addr != end);
 631}
 632
 633/*
 634 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
 635 * To prevent hugepage split, disable irq.
 636 */
 637struct page *
 638follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
 639{
 640        bool is_thp;
 641        pte_t *ptep, pte;
 642        unsigned shift;
 643        unsigned long mask, flags;
 644        struct page *page = ERR_PTR(-EINVAL);
 645
 646        local_irq_save(flags);
 647        ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
 648        if (!ptep)
 649                goto no_page;
 650        pte = READ_ONCE(*ptep);
 651        /*
 652         * Verify it is a huge page else bail.
 653         * Transparent hugepages are handled by generic code. We can skip them
 654         * here.
 655         */
 656        if (!shift || is_thp)
 657                goto no_page;
 658
 659        if (!pte_present(pte)) {
 660                page = NULL;
 661                goto no_page;
 662        }
 663        mask = (1UL << shift) - 1;
 664        page = pte_page(pte);
 665        if (page)
 666                page += (address & mask) / PAGE_SIZE;
 667
 668no_page:
 669        local_irq_restore(flags);
 670        return page;
 671}
 672
 673struct page *
 674follow_huge_pmd(struct mm_struct *mm, unsigned long address,
 675                pmd_t *pmd, int write)
 676{
 677        BUG();
 678        return NULL;
 679}
 680
 681struct page *
 682follow_huge_pud(struct mm_struct *mm, unsigned long address,
 683                pud_t *pud, int write)
 684{
 685        BUG();
 686        return NULL;
 687}
 688
 689static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
 690                                      unsigned long sz)
 691{
 692        unsigned long __boundary = (addr + sz) & ~(sz-1);
 693        return (__boundary - 1 < end - 1) ? __boundary : end;
 694}
 695
 696int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
 697                unsigned long end, int write, struct page **pages, int *nr)
 698{
 699        pte_t *ptep;
 700        unsigned long sz = 1UL << hugepd_shift(hugepd);
 701        unsigned long next;
 702
 703        ptep = hugepte_offset(hugepd, addr, pdshift);
 704        do {
 705                next = hugepte_addr_end(addr, end, sz);
 706                if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
 707                        return 0;
 708        } while (ptep++, addr = next, addr != end);
 709
 710        return 1;
 711}
 712
 713#ifdef CONFIG_PPC_MM_SLICES
 714unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
 715                                        unsigned long len, unsigned long pgoff,
 716                                        unsigned long flags)
 717{
 718        struct hstate *hstate = hstate_file(file);
 719        int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
 720
 721        if (radix_enabled())
 722                return radix__hugetlb_get_unmapped_area(file, addr, len,
 723                                                       pgoff, flags);
 724        return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
 725}
 726#endif
 727
 728unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
 729{
 730#ifdef CONFIG_PPC_MM_SLICES
 731        unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
 732        /* With radix we don't use slice, so derive it from vma*/
 733        if (!radix_enabled())
 734                return 1UL << mmu_psize_to_shift(psize);
 735#endif
 736        if (!is_vm_hugetlb_page(vma))
 737                return PAGE_SIZE;
 738
 739        return huge_page_size(hstate_vma(vma));
 740}
 741
 742static inline bool is_power_of_4(unsigned long x)
 743{
 744        if (is_power_of_2(x))
 745                return (__ilog2(x) % 2) ? false : true;
 746        return false;
 747}
 748
 749static int __init add_huge_page_size(unsigned long long size)
 750{
 751        int shift = __ffs(size);
 752        int mmu_psize;
 753
 754        /* Check that it is a page size supported by the hardware and
 755         * that it fits within pagetable and slice limits. */
 756#ifdef CONFIG_PPC_FSL_BOOK3E
 757        if ((size < PAGE_SIZE) || !is_power_of_4(size))
 758                return -EINVAL;
 759#else
 760        if (!is_power_of_2(size)
 761            || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
 762                return -EINVAL;
 763#endif
 764
 765        if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
 766                return -EINVAL;
 767
 768        BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
 769
 770        /* Return if huge page size has already been setup */
 771        if (size_to_hstate(size))
 772                return 0;
 773
 774        hugetlb_add_hstate(shift - PAGE_SHIFT);
 775
 776        return 0;
 777}
 778
 779static int __init hugepage_setup_sz(char *str)
 780{
 781        unsigned long long size;
 782
 783        size = memparse(str, &str);
 784
 785        if (add_huge_page_size(size) != 0) {
 786                hugetlb_bad_size();
 787                pr_err("Invalid huge page size specified(%llu)\n", size);
 788        }
 789
 790        return 1;
 791}
 792__setup("hugepagesz=", hugepage_setup_sz);
 793
 794#ifdef CONFIG_PPC_FSL_BOOK3E
 795struct kmem_cache *hugepte_cache;
 796static int __init hugetlbpage_init(void)
 797{
 798        int psize;
 799
 800        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 801                unsigned shift;
 802
 803                if (!mmu_psize_defs[psize].shift)
 804                        continue;
 805
 806                shift = mmu_psize_to_shift(psize);
 807
 808                /* Don't treat normal page sizes as huge... */
 809                if (shift != PAGE_SHIFT)
 810                        if (add_huge_page_size(1ULL << shift) < 0)
 811                                continue;
 812        }
 813
 814        /*
 815         * Create a kmem cache for hugeptes.  The bottom bits in the pte have
 816         * size information encoded in them, so align them to allow this
 817         */
 818        hugepte_cache =  kmem_cache_create("hugepte-cache", sizeof(pte_t),
 819                                           HUGEPD_SHIFT_MASK + 1, 0, NULL);
 820        if (hugepte_cache == NULL)
 821                panic("%s: Unable to create kmem cache for hugeptes\n",
 822                      __func__);
 823
 824        /* Default hpage size = 4M */
 825        if (mmu_psize_defs[MMU_PAGE_4M].shift)
 826                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
 827        else
 828                panic("%s: Unable to set default huge page size\n", __func__);
 829
 830
 831        return 0;
 832}
 833#else
 834static int __init hugetlbpage_init(void)
 835{
 836        int psize;
 837
 838        if (!radix_enabled() && !mmu_has_feature(MMU_FTR_16M_PAGE))
 839                return -ENODEV;
 840
 841        for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
 842                unsigned shift;
 843                unsigned pdshift;
 844
 845                if (!mmu_psize_defs[psize].shift)
 846                        continue;
 847
 848                shift = mmu_psize_to_shift(psize);
 849
 850                if (add_huge_page_size(1ULL << shift) < 0)
 851                        continue;
 852
 853                if (shift < PMD_SHIFT)
 854                        pdshift = PMD_SHIFT;
 855                else if (shift < PUD_SHIFT)
 856                        pdshift = PUD_SHIFT;
 857                else
 858                        pdshift = PGDIR_SHIFT;
 859                /*
 860                 * if we have pdshift and shift value same, we don't
 861                 * use pgt cache for hugepd.
 862                 */
 863                if (pdshift != shift) {
 864                        pgtable_cache_add(pdshift - shift, NULL);
 865                        if (!PGT_CACHE(pdshift - shift))
 866                                panic("hugetlbpage_init(): could not create "
 867                                      "pgtable cache for %d bit pagesize\n", shift);
 868                }
 869        }
 870
 871        /* Set default large page size. Currently, we pick 16M or 1M
 872         * depending on what is available
 873         */
 874        if (mmu_psize_defs[MMU_PAGE_16M].shift)
 875                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
 876        else if (mmu_psize_defs[MMU_PAGE_1M].shift)
 877                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
 878        else if (mmu_psize_defs[MMU_PAGE_2M].shift)
 879                HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_2M].shift;
 880
 881
 882        return 0;
 883}
 884#endif
 885arch_initcall(hugetlbpage_init);
 886
 887void flush_dcache_icache_hugepage(struct page *page)
 888{
 889        int i;
 890        void *start;
 891
 892        BUG_ON(!PageCompound(page));
 893
 894        for (i = 0; i < (1UL << compound_order(page)); i++) {
 895                if (!PageHighMem(page)) {
 896                        __flush_dcache_icache(page_address(page+i));
 897                } else {
 898                        start = kmap_atomic(page+i);
 899                        __flush_dcache_icache(start);
 900                        kunmap_atomic(start);
 901                }
 902        }
 903}
 904
 905#endif /* CONFIG_HUGETLB_PAGE */
 906
 907/*
 908 * We have 4 cases for pgds and pmds:
 909 * (1) invalid (all zeroes)
 910 * (2) pointer to next table, as normal; bottom 6 bits == 0
 911 * (3) leaf pte for huge page _PAGE_PTE set
 912 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
 913 *
 914 * So long as we atomically load page table pointers we are safe against teardown,
 915 * we can follow the address down to the the page and take a ref on it.
 916 * This function need to be called with interrupts disabled. We use this variant
 917 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
 918 */
 919
 920pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
 921                                   bool *is_thp, unsigned *shift)
 922{
 923        pgd_t pgd, *pgdp;
 924        pud_t pud, *pudp;
 925        pmd_t pmd, *pmdp;
 926        pte_t *ret_pte;
 927        hugepd_t *hpdp = NULL;
 928        unsigned pdshift = PGDIR_SHIFT;
 929
 930        if (shift)
 931                *shift = 0;
 932
 933        if (is_thp)
 934                *is_thp = false;
 935
 936        pgdp = pgdir + pgd_index(ea);
 937        pgd  = READ_ONCE(*pgdp);
 938        /*
 939         * Always operate on the local stack value. This make sure the
 940         * value don't get updated by a parallel THP split/collapse,
 941         * page fault or a page unmap. The return pte_t * is still not
 942         * stable. So should be checked there for above conditions.
 943         */
 944        if (pgd_none(pgd))
 945                return NULL;
 946        else if (pgd_huge(pgd)) {
 947                ret_pte = (pte_t *) pgdp;
 948                goto out;
 949        } else if (is_hugepd(__hugepd(pgd_val(pgd))))
 950                hpdp = (hugepd_t *)&pgd;
 951        else {
 952                /*
 953                 * Even if we end up with an unmap, the pgtable will not
 954                 * be freed, because we do an rcu free and here we are
 955                 * irq disabled
 956                 */
 957                pdshift = PUD_SHIFT;
 958                pudp = pud_offset(&pgd, ea);
 959                pud  = READ_ONCE(*pudp);
 960
 961                if (pud_none(pud))
 962                        return NULL;
 963                else if (pud_huge(pud)) {
 964                        ret_pte = (pte_t *) pudp;
 965                        goto out;
 966                } else if (is_hugepd(__hugepd(pud_val(pud))))
 967                        hpdp = (hugepd_t *)&pud;
 968                else {
 969                        pdshift = PMD_SHIFT;
 970                        pmdp = pmd_offset(&pud, ea);
 971                        pmd  = READ_ONCE(*pmdp);
 972                        /*
 973                         * A hugepage collapse is captured by pmd_none, because
 974                         * it mark the pmd none and do a hpte invalidate.
 975                         */
 976                        if (pmd_none(pmd))
 977                                return NULL;
 978
 979                        if (pmd_trans_huge(pmd)) {
 980                                if (is_thp)
 981                                        *is_thp = true;
 982                                ret_pte = (pte_t *) pmdp;
 983                                goto out;
 984                        }
 985
 986                        if (pmd_huge(pmd)) {
 987                                ret_pte = (pte_t *) pmdp;
 988                                goto out;
 989                        } else if (is_hugepd(__hugepd(pmd_val(pmd))))
 990                                hpdp = (hugepd_t *)&pmd;
 991                        else
 992                                return pte_offset_kernel(&pmd, ea);
 993                }
 994        }
 995        if (!hpdp)
 996                return NULL;
 997
 998        ret_pte = hugepte_offset(*hpdp, ea, pdshift);
 999        pdshift = hugepd_shift(*hpdp);
1000out:
1001        if (shift)
1002                *shift = pdshift;
1003        return ret_pte;
1004}
1005EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
1006
1007int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1008                unsigned long end, int write, struct page **pages, int *nr)
1009{
1010        unsigned long mask;
1011        unsigned long pte_end;
1012        struct page *head, *page;
1013        pte_t pte;
1014        int refs;
1015
1016        pte_end = (addr + sz) & ~(sz-1);
1017        if (pte_end < end)
1018                end = pte_end;
1019
1020        pte = READ_ONCE(*ptep);
1021        mask = _PAGE_PRESENT | _PAGE_READ;
1022        if (write)
1023                mask |= _PAGE_WRITE;
1024
1025        if ((pte_val(pte) & mask) != mask)
1026                return 0;
1027
1028        /* hugepages are never "special" */
1029        VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1030
1031        refs = 0;
1032        head = pte_page(pte);
1033
1034        page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
1035        do {
1036                VM_BUG_ON(compound_head(page) != head);
1037                pages[*nr] = page;
1038                (*nr)++;
1039                page++;
1040                refs++;
1041        } while (addr += PAGE_SIZE, addr != end);
1042
1043        if (!page_cache_add_speculative(head, refs)) {
1044                *nr -= refs;
1045                return 0;
1046        }
1047
1048        if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1049                /* Could be optimized better */
1050                *nr -= refs;
1051                while (refs--)
1052                        put_page(head);
1053                return 0;
1054        }
1055
1056        return 1;
1057}
1058