linux/arch/s390/kernel/perf_cpum_sf.c
<<
>>
Prefs
   1/*
   2 * Performance event support for the System z CPU-measurement Sampling Facility
   3 *
   4 * Copyright IBM Corp. 2013
   5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License (version 2 only)
   9 * as published by the Free Software Foundation.
  10 */
  11#define KMSG_COMPONENT  "cpum_sf"
  12#define pr_fmt(fmt)     KMSG_COMPONENT ": " fmt
  13
  14#include <linux/kernel.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/perf_event.h>
  17#include <linux/percpu.h>
  18#include <linux/notifier.h>
  19#include <linux/export.h>
  20#include <linux/slab.h>
  21#include <linux/mm.h>
  22#include <linux/moduleparam.h>
  23#include <asm/cpu_mf.h>
  24#include <asm/irq.h>
  25#include <asm/debug.h>
  26#include <asm/timex.h>
  27
  28/* Minimum number of sample-data-block-tables:
  29 * At least one table is required for the sampling buffer structure.
  30 * A single table contains up to 511 pointers to sample-data-blocks.
  31 */
  32#define CPUM_SF_MIN_SDBT        1
  33
  34/* Number of sample-data-blocks per sample-data-block-table (SDBT):
  35 * A table contains SDB pointers (8 bytes) and one table-link entry
  36 * that points to the origin of the next SDBT.
  37 */
  38#define CPUM_SF_SDB_PER_TABLE   ((PAGE_SIZE - 8) / 8)
  39
  40/* Maximum page offset for an SDBT table-link entry:
  41 * If this page offset is reached, a table-link entry to the next SDBT
  42 * must be added.
  43 */
  44#define CPUM_SF_SDBT_TL_OFFSET  (CPUM_SF_SDB_PER_TABLE * 8)
  45static inline int require_table_link(const void *sdbt)
  46{
  47        return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
  48}
  49
  50/* Minimum and maximum sampling buffer sizes:
  51 *
  52 * This number represents the maximum size of the sampling buffer taking
  53 * the number of sample-data-block-tables into account.  Note that these
  54 * numbers apply to the basic-sampling function only.
  55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
  56 * the diagnostic-sampling function is active.
  57 *
  58 * Sampling buffer size         Buffer characteristics
  59 * ---------------------------------------------------
  60 *       64KB               ==    16 pages (4KB per page)
  61 *                                 1 page  for SDB-tables
  62 *                                15 pages for SDBs
  63 *
  64 *  32MB                    ==  8192 pages (4KB per page)
  65 *                                16 pages for SDB-tables
  66 *                              8176 pages for SDBs
  67 */
  68static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
  69static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
  70static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
  71
  72struct sf_buffer {
  73        unsigned long    *sdbt;     /* Sample-data-block-table origin */
  74        /* buffer characteristics (required for buffer increments) */
  75        unsigned long  num_sdb;     /* Number of sample-data-blocks */
  76        unsigned long num_sdbt;     /* Number of sample-data-block-tables */
  77        unsigned long    *tail;     /* last sample-data-block-table */
  78};
  79
  80struct cpu_hw_sf {
  81        /* CPU-measurement sampling information block */
  82        struct hws_qsi_info_block qsi;
  83        /* CPU-measurement sampling control block */
  84        struct hws_lsctl_request_block lsctl;
  85        struct sf_buffer sfb;       /* Sampling buffer */
  86        unsigned int flags;         /* Status flags */
  87        struct perf_event *event;   /* Scheduled perf event */
  88};
  89static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
  90
  91/* Debug feature */
  92static debug_info_t *sfdbg;
  93
  94/*
  95 * sf_disable() - Switch off sampling facility
  96 */
  97static int sf_disable(void)
  98{
  99        struct hws_lsctl_request_block sreq;
 100
 101        memset(&sreq, 0, sizeof(sreq));
 102        return lsctl(&sreq);
 103}
 104
 105/*
 106 * sf_buffer_available() - Check for an allocated sampling buffer
 107 */
 108static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
 109{
 110        return !!cpuhw->sfb.sdbt;
 111}
 112
 113/*
 114 * deallocate sampling facility buffer
 115 */
 116static void free_sampling_buffer(struct sf_buffer *sfb)
 117{
 118        unsigned long *sdbt, *curr;
 119
 120        if (!sfb->sdbt)
 121                return;
 122
 123        sdbt = sfb->sdbt;
 124        curr = sdbt;
 125
 126        /* Free the SDBT after all SDBs are processed... */
 127        while (1) {
 128                if (!*curr || !sdbt)
 129                        break;
 130
 131                /* Process table-link entries */
 132                if (is_link_entry(curr)) {
 133                        curr = get_next_sdbt(curr);
 134                        if (sdbt)
 135                                free_page((unsigned long) sdbt);
 136
 137                        /* If the origin is reached, sampling buffer is freed */
 138                        if (curr == sfb->sdbt)
 139                                break;
 140                        else
 141                                sdbt = curr;
 142                } else {
 143                        /* Process SDB pointer */
 144                        if (*curr) {
 145                                free_page(*curr);
 146                                curr++;
 147                        }
 148                }
 149        }
 150
 151        debug_sprintf_event(sfdbg, 5,
 152                            "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
 153        memset(sfb, 0, sizeof(*sfb));
 154}
 155
 156static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
 157{
 158        unsigned long sdb, *trailer;
 159
 160        /* Allocate and initialize sample-data-block */
 161        sdb = get_zeroed_page(gfp_flags);
 162        if (!sdb)
 163                return -ENOMEM;
 164        trailer = trailer_entry_ptr(sdb);
 165        *trailer = SDB_TE_ALERT_REQ_MASK;
 166
 167        /* Link SDB into the sample-data-block-table */
 168        *sdbt = sdb;
 169
 170        return 0;
 171}
 172
 173/*
 174 * realloc_sampling_buffer() - extend sampler memory
 175 *
 176 * Allocates new sample-data-blocks and adds them to the specified sampling
 177 * buffer memory.
 178 *
 179 * Important: This modifies the sampling buffer and must be called when the
 180 *            sampling facility is disabled.
 181 *
 182 * Returns zero on success, non-zero otherwise.
 183 */
 184static int realloc_sampling_buffer(struct sf_buffer *sfb,
 185                                   unsigned long num_sdb, gfp_t gfp_flags)
 186{
 187        int i, rc;
 188        unsigned long *new, *tail;
 189
 190        if (!sfb->sdbt || !sfb->tail)
 191                return -EINVAL;
 192
 193        if (!is_link_entry(sfb->tail))
 194                return -EINVAL;
 195
 196        /* Append to the existing sampling buffer, overwriting the table-link
 197         * register.
 198         * The tail variables always points to the "tail" (last and table-link)
 199         * entry in an SDB-table.
 200         */
 201        tail = sfb->tail;
 202
 203        /* Do a sanity check whether the table-link entry points to
 204         * the sampling buffer origin.
 205         */
 206        if (sfb->sdbt != get_next_sdbt(tail)) {
 207                debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
 208                                    "sampling buffer is not linked: origin=%p"
 209                                    "tail=%p\n",
 210                                    (void *) sfb->sdbt, (void *) tail);
 211                return -EINVAL;
 212        }
 213
 214        /* Allocate remaining SDBs */
 215        rc = 0;
 216        for (i = 0; i < num_sdb; i++) {
 217                /* Allocate a new SDB-table if it is full. */
 218                if (require_table_link(tail)) {
 219                        new = (unsigned long *) get_zeroed_page(gfp_flags);
 220                        if (!new) {
 221                                rc = -ENOMEM;
 222                                break;
 223                        }
 224                        sfb->num_sdbt++;
 225                        /* Link current page to tail of chain */
 226                        *tail = (unsigned long)(void *) new + 1;
 227                        tail = new;
 228                }
 229
 230                /* Allocate a new sample-data-block.
 231                 * If there is not enough memory, stop the realloc process
 232                 * and simply use what was allocated.  If this is a temporary
 233                 * issue, a new realloc call (if required) might succeed.
 234                 */
 235                rc = alloc_sample_data_block(tail, gfp_flags);
 236                if (rc)
 237                        break;
 238                sfb->num_sdb++;
 239                tail++;
 240        }
 241
 242        /* Link sampling buffer to its origin */
 243        *tail = (unsigned long) sfb->sdbt + 1;
 244        sfb->tail = tail;
 245
 246        debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
 247                            " settings: sdbt=%lu sdb=%lu\n",
 248                            sfb->num_sdbt, sfb->num_sdb);
 249        return rc;
 250}
 251
 252/*
 253 * allocate_sampling_buffer() - allocate sampler memory
 254 *
 255 * Allocates and initializes a sampling buffer structure using the
 256 * specified number of sample-data-blocks (SDB).  For each allocation,
 257 * a 4K page is used.  The number of sample-data-block-tables (SDBT)
 258 * are calculated from SDBs.
 259 * Also set the ALERT_REQ mask in each SDBs trailer.
 260 *
 261 * Returns zero on success, non-zero otherwise.
 262 */
 263static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
 264{
 265        int rc;
 266
 267        if (sfb->sdbt)
 268                return -EINVAL;
 269
 270        /* Allocate the sample-data-block-table origin */
 271        sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
 272        if (!sfb->sdbt)
 273                return -ENOMEM;
 274        sfb->num_sdb = 0;
 275        sfb->num_sdbt = 1;
 276
 277        /* Link the table origin to point to itself to prepare for
 278         * realloc_sampling_buffer() invocation.
 279         */
 280        sfb->tail = sfb->sdbt;
 281        *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
 282
 283        /* Allocate requested number of sample-data-blocks */
 284        rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
 285        if (rc) {
 286                free_sampling_buffer(sfb);
 287                debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
 288                        "realloc_sampling_buffer failed with rc=%i\n", rc);
 289        } else
 290                debug_sprintf_event(sfdbg, 4,
 291                        "alloc_sampling_buffer: tear=%p dear=%p\n",
 292                        sfb->sdbt, (void *) *sfb->sdbt);
 293        return rc;
 294}
 295
 296static void sfb_set_limits(unsigned long min, unsigned long max)
 297{
 298        struct hws_qsi_info_block si;
 299
 300        CPUM_SF_MIN_SDB = min;
 301        CPUM_SF_MAX_SDB = max;
 302
 303        memset(&si, 0, sizeof(si));
 304        if (!qsi(&si))
 305                CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
 306}
 307
 308static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
 309{
 310        return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
 311                                    : CPUM_SF_MAX_SDB;
 312}
 313
 314static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
 315                                        struct hw_perf_event *hwc)
 316{
 317        if (!sfb->sdbt)
 318                return SFB_ALLOC_REG(hwc);
 319        if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
 320                return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
 321        return 0;
 322}
 323
 324static int sfb_has_pending_allocs(struct sf_buffer *sfb,
 325                                   struct hw_perf_event *hwc)
 326{
 327        return sfb_pending_allocs(sfb, hwc) > 0;
 328}
 329
 330static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
 331{
 332        /* Limit the number of SDBs to not exceed the maximum */
 333        num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
 334        if (num)
 335                SFB_ALLOC_REG(hwc) += num;
 336}
 337
 338static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
 339{
 340        SFB_ALLOC_REG(hwc) = 0;
 341        sfb_account_allocs(num, hwc);
 342}
 343
 344static size_t event_sample_size(struct hw_perf_event *hwc)
 345{
 346        struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 347        size_t sample_size;
 348
 349        /* The sample size depends on the sampling function: The basic-sampling
 350         * function must be always enabled, diagnostic-sampling function is
 351         * optional.
 352         */
 353        sample_size = sfr->bsdes;
 354        if (SAMPL_DIAG_MODE(hwc))
 355                sample_size += sfr->dsdes;
 356
 357        return sample_size;
 358}
 359
 360static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
 361{
 362        if (cpuhw->sfb.sdbt)
 363                free_sampling_buffer(&cpuhw->sfb);
 364}
 365
 366static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
 367{
 368        unsigned long n_sdb, freq, factor;
 369        size_t sfr_size, sample_size;
 370        struct sf_raw_sample *sfr;
 371
 372        /* Allocate raw sample buffer
 373         *
 374         *    The raw sample buffer is used to temporarily store sampling data
 375         *    entries for perf raw sample processing.  The buffer size mainly
 376         *    depends on the size of diagnostic-sampling data entries which is
 377         *    machine-specific.  The exact size calculation includes:
 378         *      1. The first 4 bytes of diagnostic-sampling data entries are
 379         *         already reflected in the sf_raw_sample structure.  Subtract
 380         *         these bytes.
 381         *      2. The perf raw sample data must be 8-byte aligned (u64) and
 382         *         perf's internal data size must be considered too.  So add
 383         *         an additional u32 for correct alignment and subtract before
 384         *         allocating the buffer.
 385         *      3. Store the raw sample buffer pointer in the perf event
 386         *         hardware structure.
 387         */
 388        sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
 389                         sizeof(u32), sizeof(u64));
 390        sfr_size -= sizeof(u32);
 391        sfr = kzalloc(sfr_size, GFP_KERNEL);
 392        if (!sfr)
 393                return -ENOMEM;
 394        sfr->size = sfr_size;
 395        sfr->bsdes = cpuhw->qsi.bsdes;
 396        sfr->dsdes = cpuhw->qsi.dsdes;
 397        RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
 398
 399        /* Calculate sampling buffers using 4K pages
 400         *
 401         *    1. Determine the sample data size which depends on the used
 402         *       sampling functions, for example, basic-sampling or
 403         *       basic-sampling with diagnostic-sampling.
 404         *
 405         *    2. Use the sampling frequency as input.  The sampling buffer is
 406         *       designed for almost one second.  This can be adjusted through
 407         *       the "factor" variable.
 408         *       In any case, alloc_sampling_buffer() sets the Alert Request
 409         *       Control indicator to trigger a measurement-alert to harvest
 410         *       sample-data-blocks (sdb).
 411         *
 412         *    3. Compute the number of sample-data-blocks and ensure a minimum
 413         *       of CPUM_SF_MIN_SDB.  Also ensure the upper limit does not
 414         *       exceed a "calculated" maximum.  The symbolic maximum is
 415         *       designed for basic-sampling only and needs to be increased if
 416         *       diagnostic-sampling is active.
 417         *       See also the remarks for these symbolic constants.
 418         *
 419         *    4. Compute the number of sample-data-block-tables (SDBT) and
 420         *       ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
 421         *       to 511 SDBs).
 422         */
 423        sample_size = event_sample_size(hwc);
 424        freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
 425        factor = 1;
 426        n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
 427        if (n_sdb < CPUM_SF_MIN_SDB)
 428                n_sdb = CPUM_SF_MIN_SDB;
 429
 430        /* If there is already a sampling buffer allocated, it is very likely
 431         * that the sampling facility is enabled too.  If the event to be
 432         * initialized requires a greater sampling buffer, the allocation must
 433         * be postponed.  Changing the sampling buffer requires the sampling
 434         * facility to be in the disabled state.  So, account the number of
 435         * required SDBs and let cpumsf_pmu_enable() resize the buffer just
 436         * before the event is started.
 437         */
 438        sfb_init_allocs(n_sdb, hwc);
 439        if (sf_buffer_available(cpuhw))
 440                return 0;
 441
 442        debug_sprintf_event(sfdbg, 3,
 443                            "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
 444                            " sample_size=%lu cpuhw=%p\n",
 445                            SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
 446                            sample_size, cpuhw);
 447
 448        return alloc_sampling_buffer(&cpuhw->sfb,
 449                                     sfb_pending_allocs(&cpuhw->sfb, hwc));
 450}
 451
 452static unsigned long min_percent(unsigned int percent, unsigned long base,
 453                                 unsigned long min)
 454{
 455        return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
 456}
 457
 458static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
 459{
 460        /* Use a percentage-based approach to extend the sampling facility
 461         * buffer.  Accept up to 5% sample data loss.
 462         * Vary the extents between 1% to 5% of the current number of
 463         * sample-data-blocks.
 464         */
 465        if (ratio <= 5)
 466                return 0;
 467        if (ratio <= 25)
 468                return min_percent(1, base, 1);
 469        if (ratio <= 50)
 470                return min_percent(1, base, 1);
 471        if (ratio <= 75)
 472                return min_percent(2, base, 2);
 473        if (ratio <= 100)
 474                return min_percent(3, base, 3);
 475        if (ratio <= 250)
 476                return min_percent(4, base, 4);
 477
 478        return min_percent(5, base, 8);
 479}
 480
 481static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
 482                                  struct hw_perf_event *hwc)
 483{
 484        unsigned long ratio, num;
 485
 486        if (!OVERFLOW_REG(hwc))
 487                return;
 488
 489        /* The sample_overflow contains the average number of sample data
 490         * that has been lost because sample-data-blocks were full.
 491         *
 492         * Calculate the total number of sample data entries that has been
 493         * discarded.  Then calculate the ratio of lost samples to total samples
 494         * per second in percent.
 495         */
 496        ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
 497                             sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
 498
 499        /* Compute number of sample-data-blocks */
 500        num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
 501        if (num)
 502                sfb_account_allocs(num, hwc);
 503
 504        debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
 505                            " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
 506        OVERFLOW_REG(hwc) = 0;
 507}
 508
 509/* extend_sampling_buffer() - Extend sampling buffer
 510 * @sfb:        Sampling buffer structure (for local CPU)
 511 * @hwc:        Perf event hardware structure
 512 *
 513 * Use this function to extend the sampling buffer based on the overflow counter
 514 * and postponed allocation extents stored in the specified Perf event hardware.
 515 *
 516 * Important: This function disables the sampling facility in order to safely
 517 *            change the sampling buffer structure.  Do not call this function
 518 *            when the PMU is active.
 519 */
 520static void extend_sampling_buffer(struct sf_buffer *sfb,
 521                                   struct hw_perf_event *hwc)
 522{
 523        unsigned long num, num_old;
 524        int rc;
 525
 526        num = sfb_pending_allocs(sfb, hwc);
 527        if (!num)
 528                return;
 529        num_old = sfb->num_sdb;
 530
 531        /* Disable the sampling facility to reset any states and also
 532         * clear pending measurement alerts.
 533         */
 534        sf_disable();
 535
 536        /* Extend the sampling buffer.
 537         * This memory allocation typically happens in an atomic context when
 538         * called by perf.  Because this is a reallocation, it is fine if the
 539         * new SDB-request cannot be satisfied immediately.
 540         */
 541        rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
 542        if (rc)
 543                debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
 544                                    "failed with rc=%i\n", rc);
 545
 546        if (sfb_has_pending_allocs(sfb, hwc))
 547                debug_sprintf_event(sfdbg, 5, "sfb: extend: "
 548                                    "req=%lu alloc=%lu remaining=%lu\n",
 549                                    num, sfb->num_sdb - num_old,
 550                                    sfb_pending_allocs(sfb, hwc));
 551}
 552
 553
 554/* Number of perf events counting hardware events */
 555static atomic_t num_events;
 556/* Used to avoid races in calling reserve/release_cpumf_hardware */
 557static DEFINE_MUTEX(pmc_reserve_mutex);
 558
 559#define PMC_INIT      0
 560#define PMC_RELEASE   1
 561#define PMC_FAILURE   2
 562static void setup_pmc_cpu(void *flags)
 563{
 564        int err;
 565        struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
 566
 567        err = 0;
 568        switch (*((int *) flags)) {
 569        case PMC_INIT:
 570                memset(cpusf, 0, sizeof(*cpusf));
 571                err = qsi(&cpusf->qsi);
 572                if (err)
 573                        break;
 574                cpusf->flags |= PMU_F_RESERVED;
 575                err = sf_disable();
 576                if (err)
 577                        pr_err("Switching off the sampling facility failed "
 578                               "with rc=%i\n", err);
 579                debug_sprintf_event(sfdbg, 5,
 580                                    "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
 581                break;
 582        case PMC_RELEASE:
 583                cpusf->flags &= ~PMU_F_RESERVED;
 584                err = sf_disable();
 585                if (err) {
 586                        pr_err("Switching off the sampling facility failed "
 587                               "with rc=%i\n", err);
 588                } else
 589                        deallocate_buffers(cpusf);
 590                debug_sprintf_event(sfdbg, 5,
 591                                    "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
 592                break;
 593        }
 594        if (err)
 595                *((int *) flags) |= PMC_FAILURE;
 596}
 597
 598static void release_pmc_hardware(void)
 599{
 600        int flags = PMC_RELEASE;
 601
 602        irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 603        on_each_cpu(setup_pmc_cpu, &flags, 1);
 604}
 605
 606static int reserve_pmc_hardware(void)
 607{
 608        int flags = PMC_INIT;
 609
 610        on_each_cpu(setup_pmc_cpu, &flags, 1);
 611        if (flags & PMC_FAILURE) {
 612                release_pmc_hardware();
 613                return -ENODEV;
 614        }
 615        irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
 616
 617        return 0;
 618}
 619
 620static void hw_perf_event_destroy(struct perf_event *event)
 621{
 622        /* Free raw sample buffer */
 623        if (RAWSAMPLE_REG(&event->hw))
 624                kfree((void *) RAWSAMPLE_REG(&event->hw));
 625
 626        /* Release PMC if this is the last perf event */
 627        if (!atomic_add_unless(&num_events, -1, 1)) {
 628                mutex_lock(&pmc_reserve_mutex);
 629                if (atomic_dec_return(&num_events) == 0)
 630                        release_pmc_hardware();
 631                mutex_unlock(&pmc_reserve_mutex);
 632        }
 633}
 634
 635static void hw_init_period(struct hw_perf_event *hwc, u64 period)
 636{
 637        hwc->sample_period = period;
 638        hwc->last_period = hwc->sample_period;
 639        local64_set(&hwc->period_left, hwc->sample_period);
 640}
 641
 642static void hw_reset_registers(struct hw_perf_event *hwc,
 643                               unsigned long *sdbt_origin)
 644{
 645        struct sf_raw_sample *sfr;
 646
 647        /* (Re)set to first sample-data-block-table */
 648        TEAR_REG(hwc) = (unsigned long) sdbt_origin;
 649
 650        /* (Re)set raw sampling buffer register */
 651        sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
 652        memset(&sfr->basic, 0, sizeof(sfr->basic));
 653        memset(&sfr->diag, 0, sfr->dsdes);
 654}
 655
 656static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
 657                                   unsigned long rate)
 658{
 659        return clamp_t(unsigned long, rate,
 660                       si->min_sampl_rate, si->max_sampl_rate);
 661}
 662
 663static int __hw_perf_event_init(struct perf_event *event)
 664{
 665        struct cpu_hw_sf *cpuhw;
 666        struct hws_qsi_info_block si;
 667        struct perf_event_attr *attr = &event->attr;
 668        struct hw_perf_event *hwc = &event->hw;
 669        unsigned long rate;
 670        int cpu, err;
 671
 672        /* Reserve CPU-measurement sampling facility */
 673        err = 0;
 674        if (!atomic_inc_not_zero(&num_events)) {
 675                mutex_lock(&pmc_reserve_mutex);
 676                if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
 677                        err = -EBUSY;
 678                else
 679                        atomic_inc(&num_events);
 680                mutex_unlock(&pmc_reserve_mutex);
 681        }
 682        event->destroy = hw_perf_event_destroy;
 683
 684        if (err)
 685                goto out;
 686
 687        /* Access per-CPU sampling information (query sampling info) */
 688        /*
 689         * The event->cpu value can be -1 to count on every CPU, for example,
 690         * when attaching to a task.  If this is specified, use the query
 691         * sampling info from the current CPU, otherwise use event->cpu to
 692         * retrieve the per-CPU information.
 693         * Later, cpuhw indicates whether to allocate sampling buffers for a
 694         * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
 695         */
 696        memset(&si, 0, sizeof(si));
 697        cpuhw = NULL;
 698        if (event->cpu == -1)
 699                qsi(&si);
 700        else {
 701                /* Event is pinned to a particular CPU, retrieve the per-CPU
 702                 * sampling structure for accessing the CPU-specific QSI.
 703                 */
 704                cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
 705                si = cpuhw->qsi;
 706        }
 707
 708        /* Check sampling facility authorization and, if not authorized,
 709         * fall back to other PMUs.  It is safe to check any CPU because
 710         * the authorization is identical for all configured CPUs.
 711         */
 712        if (!si.as) {
 713                err = -ENOENT;
 714                goto out;
 715        }
 716
 717        /* Always enable basic sampling */
 718        SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
 719
 720        /* Check if diagnostic sampling is requested.  Deny if the required
 721         * sampling authorization is missing.
 722         */
 723        if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
 724                if (!si.ad) {
 725                        err = -EPERM;
 726                        goto out;
 727                }
 728                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
 729        }
 730
 731        /* Check and set other sampling flags */
 732        if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
 733                SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
 734
 735        /* The sampling information (si) contains information about the
 736         * min/max sampling intervals and the CPU speed.  So calculate the
 737         * correct sampling interval and avoid the whole period adjust
 738         * feedback loop.
 739         */
 740        rate = 0;
 741        if (attr->freq) {
 742                rate = freq_to_sample_rate(&si, attr->sample_freq);
 743                rate = hw_limit_rate(&si, rate);
 744                attr->freq = 0;
 745                attr->sample_period = rate;
 746        } else {
 747                /* The min/max sampling rates specifies the valid range
 748                 * of sample periods.  If the specified sample period is
 749                 * out of range, limit the period to the range boundary.
 750                 */
 751                rate = hw_limit_rate(&si, hwc->sample_period);
 752
 753                /* The perf core maintains a maximum sample rate that is
 754                 * configurable through the sysctl interface.  Ensure the
 755                 * sampling rate does not exceed this value.  This also helps
 756                 * to avoid throttling when pushing samples with
 757                 * perf_event_overflow().
 758                 */
 759                if (sample_rate_to_freq(&si, rate) >
 760                      sysctl_perf_event_sample_rate) {
 761                        err = -EINVAL;
 762                        debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
 763                        goto out;
 764                }
 765        }
 766        SAMPL_RATE(hwc) = rate;
 767        hw_init_period(hwc, SAMPL_RATE(hwc));
 768
 769        /* Initialize sample data overflow accounting */
 770        hwc->extra_reg.reg = REG_OVERFLOW;
 771        OVERFLOW_REG(hwc) = 0;
 772
 773        /* Allocate the per-CPU sampling buffer using the CPU information
 774         * from the event.  If the event is not pinned to a particular
 775         * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
 776         * buffers for each online CPU.
 777         */
 778        if (cpuhw)
 779                /* Event is pinned to a particular CPU */
 780                err = allocate_buffers(cpuhw, hwc);
 781        else {
 782                /* Event is not pinned, allocate sampling buffer on
 783                 * each online CPU
 784                 */
 785                for_each_online_cpu(cpu) {
 786                        cpuhw = &per_cpu(cpu_hw_sf, cpu);
 787                        err = allocate_buffers(cpuhw, hwc);
 788                        if (err)
 789                                break;
 790                }
 791        }
 792out:
 793        return err;
 794}
 795
 796static int cpumsf_pmu_event_init(struct perf_event *event)
 797{
 798        int err;
 799
 800        /* No support for taken branch sampling */
 801        if (has_branch_stack(event))
 802                return -EOPNOTSUPP;
 803
 804        switch (event->attr.type) {
 805        case PERF_TYPE_RAW:
 806                if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
 807                    (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
 808                        return -ENOENT;
 809                break;
 810        case PERF_TYPE_HARDWARE:
 811                /* Support sampling of CPU cycles in addition to the
 812                 * counter facility.  However, the counter facility
 813                 * is more precise and, hence, restrict this PMU to
 814                 * sampling events only.
 815                 */
 816                if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
 817                        return -ENOENT;
 818                if (!is_sampling_event(event))
 819                        return -ENOENT;
 820                break;
 821        default:
 822                return -ENOENT;
 823        }
 824
 825        /* Check online status of the CPU to which the event is pinned */
 826        if (event->cpu >= nr_cpumask_bits ||
 827            (event->cpu >= 0 && !cpu_online(event->cpu)))
 828                return -ENODEV;
 829
 830        /* Force reset of idle/hv excludes regardless of what the
 831         * user requested.
 832         */
 833        if (event->attr.exclude_hv)
 834                event->attr.exclude_hv = 0;
 835        if (event->attr.exclude_idle)
 836                event->attr.exclude_idle = 0;
 837
 838        err = __hw_perf_event_init(event);
 839        if (unlikely(err))
 840                if (event->destroy)
 841                        event->destroy(event);
 842        return err;
 843}
 844
 845static void cpumsf_pmu_enable(struct pmu *pmu)
 846{
 847        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 848        struct hw_perf_event *hwc;
 849        int err;
 850
 851        if (cpuhw->flags & PMU_F_ENABLED)
 852                return;
 853
 854        if (cpuhw->flags & PMU_F_ERR_MASK)
 855                return;
 856
 857        /* Check whether to extent the sampling buffer.
 858         *
 859         * Two conditions trigger an increase of the sampling buffer for a
 860         * perf event:
 861         *    1. Postponed buffer allocations from the event initialization.
 862         *    2. Sampling overflows that contribute to pending allocations.
 863         *
 864         * Note that the extend_sampling_buffer() function disables the sampling
 865         * facility, but it can be fully re-enabled using sampling controls that
 866         * have been saved in cpumsf_pmu_disable().
 867         */
 868        if (cpuhw->event) {
 869                hwc = &cpuhw->event->hw;
 870                /* Account number of overflow-designated buffer extents */
 871                sfb_account_overflows(cpuhw, hwc);
 872                if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
 873                        extend_sampling_buffer(&cpuhw->sfb, hwc);
 874        }
 875
 876        /* (Re)enable the PMU and sampling facility */
 877        cpuhw->flags |= PMU_F_ENABLED;
 878        barrier();
 879
 880        err = lsctl(&cpuhw->lsctl);
 881        if (err) {
 882                cpuhw->flags &= ~PMU_F_ENABLED;
 883                pr_err("Loading sampling controls failed: op=%i err=%i\n",
 884                        1, err);
 885                return;
 886        }
 887
 888        debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
 889                            "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
 890                            cpuhw->lsctl.ed, cpuhw->lsctl.cd,
 891                            (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
 892}
 893
 894static void cpumsf_pmu_disable(struct pmu *pmu)
 895{
 896        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
 897        struct hws_lsctl_request_block inactive;
 898        struct hws_qsi_info_block si;
 899        int err;
 900
 901        if (!(cpuhw->flags & PMU_F_ENABLED))
 902                return;
 903
 904        if (cpuhw->flags & PMU_F_ERR_MASK)
 905                return;
 906
 907        /* Switch off sampling activation control */
 908        inactive = cpuhw->lsctl;
 909        inactive.cs = 0;
 910        inactive.cd = 0;
 911
 912        err = lsctl(&inactive);
 913        if (err) {
 914                pr_err("Loading sampling controls failed: op=%i err=%i\n",
 915                        2, err);
 916                return;
 917        }
 918
 919        /* Save state of TEAR and DEAR register contents */
 920        if (!qsi(&si)) {
 921                /* TEAR/DEAR values are valid only if the sampling facility is
 922                 * enabled.  Note that cpumsf_pmu_disable() might be called even
 923                 * for a disabled sampling facility because cpumsf_pmu_enable()
 924                 * controls the enable/disable state.
 925                 */
 926                if (si.es) {
 927                        cpuhw->lsctl.tear = si.tear;
 928                        cpuhw->lsctl.dear = si.dear;
 929                }
 930        } else
 931                debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
 932                                    "qsi() failed with err=%i\n", err);
 933
 934        cpuhw->flags &= ~PMU_F_ENABLED;
 935}
 936
 937/* perf_exclude_event() - Filter event
 938 * @event:      The perf event
 939 * @regs:       pt_regs structure
 940 * @sde_regs:   Sample-data-entry (sde) regs structure
 941 *
 942 * Filter perf events according to their exclude specification.
 943 *
 944 * Return non-zero if the event shall be excluded.
 945 */
 946static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
 947                              struct perf_sf_sde_regs *sde_regs)
 948{
 949        if (event->attr.exclude_user && user_mode(regs))
 950                return 1;
 951        if (event->attr.exclude_kernel && !user_mode(regs))
 952                return 1;
 953        if (event->attr.exclude_guest && sde_regs->in_guest)
 954                return 1;
 955        if (event->attr.exclude_host && !sde_regs->in_guest)
 956                return 1;
 957        return 0;
 958}
 959
 960/* perf_push_sample() - Push samples to perf
 961 * @event:      The perf event
 962 * @sample:     Hardware sample data
 963 *
 964 * Use the hardware sample data to create perf event sample.  The sample
 965 * is the pushed to the event subsystem and the function checks for
 966 * possible event overflows.  If an event overflow occurs, the PMU is
 967 * stopped.
 968 *
 969 * Return non-zero if an event overflow occurred.
 970 */
 971static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
 972{
 973        int overflow;
 974        struct pt_regs regs;
 975        struct perf_sf_sde_regs *sde_regs;
 976        struct perf_sample_data data;
 977        struct perf_raw_record raw = {
 978                .frag = {
 979                        .size = sfr->size,
 980                        .data = sfr,
 981                },
 982        };
 983
 984        /* Setup perf sample */
 985        perf_sample_data_init(&data, 0, event->hw.last_period);
 986        data.raw = &raw;
 987
 988        /* Setup pt_regs to look like an CPU-measurement external interrupt
 989         * using the Program Request Alert code.  The regs.int_parm_long
 990         * field which is unused contains additional sample-data-entry related
 991         * indicators.
 992         */
 993        memset(&regs, 0, sizeof(regs));
 994        regs.int_code = 0x1407;
 995        regs.int_parm = CPU_MF_INT_SF_PRA;
 996        sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
 997
 998        regs.psw.addr = sfr->basic.ia;
 999        if (sfr->basic.T)
1000                regs.psw.mask |= PSW_MASK_DAT;
1001        if (sfr->basic.W)
1002                regs.psw.mask |= PSW_MASK_WAIT;
1003        if (sfr->basic.P)
1004                regs.psw.mask |= PSW_MASK_PSTATE;
1005        switch (sfr->basic.AS) {
1006        case 0x0:
1007                regs.psw.mask |= PSW_ASC_PRIMARY;
1008                break;
1009        case 0x1:
1010                regs.psw.mask |= PSW_ASC_ACCREG;
1011                break;
1012        case 0x2:
1013                regs.psw.mask |= PSW_ASC_SECONDARY;
1014                break;
1015        case 0x3:
1016                regs.psw.mask |= PSW_ASC_HOME;
1017                break;
1018        }
1019
1020        /*
1021         * A non-zero guest program parameter indicates a guest
1022         * sample.
1023         * Note that some early samples or samples from guests without
1024         * lpp usage would be misaccounted to the host. We use the asn
1025         * value as a heuristic to detect most of these guest samples.
1026         * If the value differs from the host hpp value, we assume
1027         * it to be a KVM guest.
1028         */
1029        if (sfr->basic.gpp || sfr->basic.prim_asn != (u16) sfr->basic.hpp)
1030                sde_regs->in_guest = 1;
1031
1032        overflow = 0;
1033        if (perf_exclude_event(event, &regs, sde_regs))
1034                goto out;
1035        if (perf_event_overflow(event, &data, &regs)) {
1036                overflow = 1;
1037                event->pmu->stop(event, 0);
1038        }
1039        perf_event_update_userpage(event);
1040out:
1041        return overflow;
1042}
1043
1044static void perf_event_count_update(struct perf_event *event, u64 count)
1045{
1046        local64_add(count, &event->count);
1047}
1048
1049static int sample_format_is_valid(struct hws_combined_entry *sample,
1050                                   unsigned int flags)
1051{
1052        if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1053                /* Only basic-sampling data entries with data-entry-format
1054                 * version of 0x0001 can be processed.
1055                 */
1056                if (sample->basic.def != 0x0001)
1057                        return 0;
1058        if (flags & PERF_CPUM_SF_DIAG_MODE)
1059                /* The data-entry-format number of diagnostic-sampling data
1060                 * entries can vary.  Because diagnostic data is just passed
1061                 * through, do only a sanity check on the DEF.
1062                 */
1063                if (sample->diag.def < 0x8001)
1064                        return 0;
1065        return 1;
1066}
1067
1068static int sample_is_consistent(struct hws_combined_entry *sample,
1069                                unsigned long flags)
1070{
1071        /* This check applies only to basic-sampling data entries of potentially
1072         * combined-sampling data entries.  Invalid entries cannot be processed
1073         * by the PMU and, thus, do not deliver an associated
1074         * diagnostic-sampling data entry.
1075         */
1076        if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
1077                return 0;
1078        /*
1079         * Samples are skipped, if they are invalid or for which the
1080         * instruction address is not predictable, i.e., the wait-state bit is
1081         * set.
1082         */
1083        if (sample->basic.I || sample->basic.W)
1084                return 0;
1085        return 1;
1086}
1087
1088static void reset_sample_slot(struct hws_combined_entry *sample,
1089                              unsigned long flags)
1090{
1091        if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1092                sample->basic.def = 0;
1093        if (flags & PERF_CPUM_SF_DIAG_MODE)
1094                sample->diag.def = 0;
1095}
1096
1097static void sfr_store_sample(struct sf_raw_sample *sfr,
1098                             struct hws_combined_entry *sample)
1099{
1100        if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
1101                sfr->basic = sample->basic;
1102        if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
1103                memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
1104}
1105
1106static void debug_sample_entry(struct hws_combined_entry *sample,
1107                               struct hws_trailer_entry *te,
1108                               unsigned long flags)
1109{
1110        debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1111                            "sampling data entry: te->f=%i basic.def=%04x (%p)"
1112                            " diag.def=%04x (%p)\n", te->f,
1113                            sample->basic.def, &sample->basic,
1114                            (flags & PERF_CPUM_SF_DIAG_MODE)
1115                                        ? sample->diag.def : 0xFFFF,
1116                            (flags & PERF_CPUM_SF_DIAG_MODE)
1117                                        ?  &sample->diag : NULL);
1118}
1119
1120/* hw_collect_samples() - Walk through a sample-data-block and collect samples
1121 * @event:      The perf event
1122 * @sdbt:       Sample-data-block table
1123 * @overflow:   Event overflow counter
1124 *
1125 * Walks through a sample-data-block and collects sampling data entries that are
1126 * then pushed to the perf event subsystem.  Depending on the sampling function,
1127 * there can be either basic-sampling or combined-sampling data entries.  A
1128 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1129 * data entry.  The sampling function is determined by the flags in the perf
1130 * event hardware structure.  The function always works with a combined-sampling
1131 * data entry but ignores the the diagnostic portion if it is not available.
1132 *
1133 * Note that the implementation focuses on basic-sampling data entries and, if
1134 * such an entry is not valid, the entire combined-sampling data entry is
1135 * ignored.
1136 *
1137 * The overflow variables counts the number of samples that has been discarded
1138 * due to a perf event overflow.
1139 */
1140static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1141                               unsigned long long *overflow)
1142{
1143        unsigned long flags = SAMPL_FLAGS(&event->hw);
1144        struct hws_combined_entry *sample;
1145        struct hws_trailer_entry *te;
1146        struct sf_raw_sample *sfr;
1147        size_t sample_size;
1148
1149        /* Prepare and initialize raw sample data */
1150        sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
1151        sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
1152
1153        sample_size = event_sample_size(&event->hw);
1154        te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1155        sample = (struct hws_combined_entry *) *sdbt;
1156        while ((unsigned long *) sample < (unsigned long *) te) {
1157                /* Check for an empty sample */
1158                if (!sample->basic.def)
1159                        break;
1160
1161                /* Update perf event period */
1162                perf_event_count_update(event, SAMPL_RATE(&event->hw));
1163
1164                /* Check sampling data entry */
1165                if (sample_format_is_valid(sample, flags)) {
1166                        /* If an event overflow occurred, the PMU is stopped to
1167                         * throttle event delivery.  Remaining sample data is
1168                         * discarded.
1169                         */
1170                        if (!*overflow) {
1171                                if (sample_is_consistent(sample, flags)) {
1172                                        /* Deliver sample data to perf */
1173                                        sfr_store_sample(sfr, sample);
1174                                        *overflow = perf_push_sample(event, sfr);
1175                                }
1176                        } else
1177                                /* Count discarded samples */
1178                                *overflow += 1;
1179                } else {
1180                        debug_sample_entry(sample, te, flags);
1181                        /* Sample slot is not yet written or other record.
1182                         *
1183                         * This condition can occur if the buffer was reused
1184                         * from a combined basic- and diagnostic-sampling.
1185                         * If only basic-sampling is then active, entries are
1186                         * written into the larger diagnostic entries.
1187                         * This is typically the case for sample-data-blocks
1188                         * that are not full.  Stop processing if the first
1189                         * invalid format was detected.
1190                         */
1191                        if (!te->f)
1192                                break;
1193                }
1194
1195                /* Reset sample slot and advance to next sample */
1196                reset_sample_slot(sample, flags);
1197                sample += sample_size;
1198        }
1199}
1200
1201/* hw_perf_event_update() - Process sampling buffer
1202 * @event:      The perf event
1203 * @flush_all:  Flag to also flush partially filled sample-data-blocks
1204 *
1205 * Processes the sampling buffer and create perf event samples.
1206 * The sampling buffer position are retrieved and saved in the TEAR_REG
1207 * register of the specified perf event.
1208 *
1209 * Only full sample-data-blocks are processed.  Specify the flash_all flag
1210 * to also walk through partially filled sample-data-blocks.  It is ignored
1211 * if PERF_CPUM_SF_FULL_BLOCKS is set.  The PERF_CPUM_SF_FULL_BLOCKS flag
1212 * enforces the processing of full sample-data-blocks only (trailer entries
1213 * with the block-full-indicator bit set).
1214 */
1215static void hw_perf_event_update(struct perf_event *event, int flush_all)
1216{
1217        struct hw_perf_event *hwc = &event->hw;
1218        struct hws_trailer_entry *te;
1219        unsigned long *sdbt;
1220        unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1221        int done;
1222
1223        if (flush_all && SDB_FULL_BLOCKS(hwc))
1224                flush_all = 0;
1225
1226        sdbt = (unsigned long *) TEAR_REG(hwc);
1227        done = event_overflow = sampl_overflow = num_sdb = 0;
1228        while (!done) {
1229                /* Get the trailer entry of the sample-data-block */
1230                te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1231
1232                /* Leave loop if no more work to do (block full indicator) */
1233                if (!te->f) {
1234                        done = 1;
1235                        if (!flush_all)
1236                                break;
1237                }
1238
1239                /* Check the sample overflow count */
1240                if (te->overflow)
1241                        /* Account sample overflows and, if a particular limit
1242                         * is reached, extend the sampling buffer.
1243                         * For details, see sfb_account_overflows().
1244                         */
1245                        sampl_overflow += te->overflow;
1246
1247                /* Timestamps are valid for full sample-data-blocks only */
1248                debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1249                                    "overflow=%llu timestamp=0x%llx\n",
1250                                    sdbt, te->overflow,
1251                                    (te->f) ? trailer_timestamp(te) : 0ULL);
1252
1253                /* Collect all samples from a single sample-data-block and
1254                 * flag if an (perf) event overflow happened.  If so, the PMU
1255                 * is stopped and remaining samples will be discarded.
1256                 */
1257                hw_collect_samples(event, sdbt, &event_overflow);
1258                num_sdb++;
1259
1260                /* Reset trailer (using compare-double-and-swap) */
1261                do {
1262                        te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1263                        te_flags |= SDB_TE_ALERT_REQ_MASK;
1264                } while (!cmpxchg_double(&te->flags, &te->overflow,
1265                                         te->flags, te->overflow,
1266                                         te_flags, 0ULL));
1267
1268                /* Advance to next sample-data-block */
1269                sdbt++;
1270                if (is_link_entry(sdbt))
1271                        sdbt = get_next_sdbt(sdbt);
1272
1273                /* Update event hardware registers */
1274                TEAR_REG(hwc) = (unsigned long) sdbt;
1275
1276                /* Stop processing sample-data if all samples of the current
1277                 * sample-data-block were flushed even if it was not full.
1278                 */
1279                if (flush_all && done)
1280                        break;
1281
1282                /* If an event overflow happened, discard samples by
1283                 * processing any remaining sample-data-blocks.
1284                 */
1285                if (event_overflow)
1286                        flush_all = 1;
1287        }
1288
1289        /* Account sample overflows in the event hardware structure */
1290        if (sampl_overflow)
1291                OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1292                                                 sampl_overflow, 1 + num_sdb);
1293        if (sampl_overflow || event_overflow)
1294                debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1295                                    "overflow stats: sample=%llu event=%llu\n",
1296                                    sampl_overflow, event_overflow);
1297}
1298
1299static void cpumsf_pmu_read(struct perf_event *event)
1300{
1301        /* Nothing to do ... updates are interrupt-driven */
1302}
1303
1304/* Activate sampling control.
1305 * Next call of pmu_enable() starts sampling.
1306 */
1307static void cpumsf_pmu_start(struct perf_event *event, int flags)
1308{
1309        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1310
1311        if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1312                return;
1313
1314        if (flags & PERF_EF_RELOAD)
1315                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1316
1317        perf_pmu_disable(event->pmu);
1318        event->hw.state = 0;
1319        cpuhw->lsctl.cs = 1;
1320        if (SAMPL_DIAG_MODE(&event->hw))
1321                cpuhw->lsctl.cd = 1;
1322        perf_pmu_enable(event->pmu);
1323}
1324
1325/* Deactivate sampling control.
1326 * Next call of pmu_enable() stops sampling.
1327 */
1328static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1329{
1330        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1331
1332        if (event->hw.state & PERF_HES_STOPPED)
1333                return;
1334
1335        perf_pmu_disable(event->pmu);
1336        cpuhw->lsctl.cs = 0;
1337        cpuhw->lsctl.cd = 0;
1338        event->hw.state |= PERF_HES_STOPPED;
1339
1340        if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1341                hw_perf_event_update(event, 1);
1342                event->hw.state |= PERF_HES_UPTODATE;
1343        }
1344        perf_pmu_enable(event->pmu);
1345}
1346
1347static int cpumsf_pmu_add(struct perf_event *event, int flags)
1348{
1349        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1350        int err;
1351
1352        if (cpuhw->flags & PMU_F_IN_USE)
1353                return -EAGAIN;
1354
1355        if (!cpuhw->sfb.sdbt)
1356                return -EINVAL;
1357
1358        err = 0;
1359        perf_pmu_disable(event->pmu);
1360
1361        event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1362
1363        /* Set up sampling controls.  Always program the sampling register
1364         * using the SDB-table start.  Reset TEAR_REG event hardware register
1365         * that is used by hw_perf_event_update() to store the sampling buffer
1366         * position after samples have been flushed.
1367         */
1368        cpuhw->lsctl.s = 0;
1369        cpuhw->lsctl.h = 1;
1370        cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1371        cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1372        cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1373        hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1374
1375        /* Ensure sampling functions are in the disabled state.  If disabled,
1376         * switch on sampling enable control. */
1377        if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1378                err = -EAGAIN;
1379                goto out;
1380        }
1381        cpuhw->lsctl.es = 1;
1382        if (SAMPL_DIAG_MODE(&event->hw))
1383                cpuhw->lsctl.ed = 1;
1384
1385        /* Set in_use flag and store event */
1386        cpuhw->event = event;
1387        cpuhw->flags |= PMU_F_IN_USE;
1388
1389        if (flags & PERF_EF_START)
1390                cpumsf_pmu_start(event, PERF_EF_RELOAD);
1391out:
1392        perf_event_update_userpage(event);
1393        perf_pmu_enable(event->pmu);
1394        return err;
1395}
1396
1397static void cpumsf_pmu_del(struct perf_event *event, int flags)
1398{
1399        struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1400
1401        perf_pmu_disable(event->pmu);
1402        cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1403
1404        cpuhw->lsctl.es = 0;
1405        cpuhw->lsctl.ed = 0;
1406        cpuhw->flags &= ~PMU_F_IN_USE;
1407        cpuhw->event = NULL;
1408
1409        perf_event_update_userpage(event);
1410        perf_pmu_enable(event->pmu);
1411}
1412
1413CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1414CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1415
1416static struct attribute *cpumsf_pmu_events_attr[] = {
1417        CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
1418        NULL,
1419        NULL,
1420};
1421
1422PMU_FORMAT_ATTR(event, "config:0-63");
1423
1424static struct attribute *cpumsf_pmu_format_attr[] = {
1425        &format_attr_event.attr,
1426        NULL,
1427};
1428
1429static struct attribute_group cpumsf_pmu_events_group = {
1430        .name = "events",
1431        .attrs = cpumsf_pmu_events_attr,
1432};
1433static struct attribute_group cpumsf_pmu_format_group = {
1434        .name = "format",
1435        .attrs = cpumsf_pmu_format_attr,
1436};
1437static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1438        &cpumsf_pmu_events_group,
1439        &cpumsf_pmu_format_group,
1440        NULL,
1441};
1442
1443static struct pmu cpumf_sampling = {
1444        .pmu_enable   = cpumsf_pmu_enable,
1445        .pmu_disable  = cpumsf_pmu_disable,
1446
1447        .event_init   = cpumsf_pmu_event_init,
1448        .add          = cpumsf_pmu_add,
1449        .del          = cpumsf_pmu_del,
1450
1451        .start        = cpumsf_pmu_start,
1452        .stop         = cpumsf_pmu_stop,
1453        .read         = cpumsf_pmu_read,
1454
1455        .attr_groups  = cpumsf_pmu_attr_groups,
1456};
1457
1458static void cpumf_measurement_alert(struct ext_code ext_code,
1459                                    unsigned int alert, unsigned long unused)
1460{
1461        struct cpu_hw_sf *cpuhw;
1462
1463        if (!(alert & CPU_MF_INT_SF_MASK))
1464                return;
1465        inc_irq_stat(IRQEXT_CMS);
1466        cpuhw = this_cpu_ptr(&cpu_hw_sf);
1467
1468        /* Measurement alerts are shared and might happen when the PMU
1469         * is not reserved.  Ignore these alerts in this case. */
1470        if (!(cpuhw->flags & PMU_F_RESERVED))
1471                return;
1472
1473        /* The processing below must take care of multiple alert events that
1474         * might be indicated concurrently. */
1475
1476        /* Program alert request */
1477        if (alert & CPU_MF_INT_SF_PRA) {
1478                if (cpuhw->flags & PMU_F_IN_USE)
1479                        hw_perf_event_update(cpuhw->event, 0);
1480                else
1481                        WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1482        }
1483
1484        /* Report measurement alerts only for non-PRA codes */
1485        if (alert != CPU_MF_INT_SF_PRA)
1486                debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1487
1488        /* Sampling authorization change request */
1489        if (alert & CPU_MF_INT_SF_SACA)
1490                qsi(&cpuhw->qsi);
1491
1492        /* Loss of sample data due to high-priority machine activities */
1493        if (alert & CPU_MF_INT_SF_LSDA) {
1494                pr_err("Sample data was lost\n");
1495                cpuhw->flags |= PMU_F_ERR_LSDA;
1496                sf_disable();
1497        }
1498
1499        /* Invalid sampling buffer entry */
1500        if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1501                pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1502                       alert);
1503                cpuhw->flags |= PMU_F_ERR_IBE;
1504                sf_disable();
1505        }
1506}
1507static int cpusf_pmu_setup(unsigned int cpu, int flags)
1508{
1509        /* Ignore the notification if no events are scheduled on the PMU.
1510         * This might be racy...
1511         */
1512        if (!atomic_read(&num_events))
1513                return 0;
1514
1515        local_irq_disable();
1516        setup_pmc_cpu(&flags);
1517        local_irq_enable();
1518        return 0;
1519}
1520
1521static int s390_pmu_sf_online_cpu(unsigned int cpu)
1522{
1523        return cpusf_pmu_setup(cpu, PMC_INIT);
1524}
1525
1526static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1527{
1528        return cpusf_pmu_setup(cpu, PMC_RELEASE);
1529}
1530
1531static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1532{
1533        if (!cpum_sf_avail())
1534                return -ENODEV;
1535        return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1536}
1537
1538static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1539{
1540        int rc;
1541        unsigned long min, max;
1542
1543        if (!cpum_sf_avail())
1544                return -ENODEV;
1545        if (!val || !strlen(val))
1546                return -EINVAL;
1547
1548        /* Valid parameter values: "min,max" or "max" */
1549        min = CPUM_SF_MIN_SDB;
1550        max = CPUM_SF_MAX_SDB;
1551        if (strchr(val, ','))
1552                rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
1553        else
1554                rc = kstrtoul(val, 10, &max);
1555
1556        if (min < 2 || min >= max || max > get_num_physpages())
1557                rc = -EINVAL;
1558        if (rc)
1559                return rc;
1560
1561        sfb_set_limits(min, max);
1562        pr_info("The sampling buffer limits have changed to: "
1563                "min=%lu max=%lu (diag=x%lu)\n",
1564                CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
1565        return 0;
1566}
1567
1568#define param_check_sfb_size(name, p) __param_check(name, p, void)
1569static const struct kernel_param_ops param_ops_sfb_size = {
1570        .set = param_set_sfb_size,
1571        .get = param_get_sfb_size,
1572};
1573
1574#define RS_INIT_FAILURE_QSI       0x0001
1575#define RS_INIT_FAILURE_BSDES     0x0002
1576#define RS_INIT_FAILURE_ALRT      0x0003
1577#define RS_INIT_FAILURE_PERF      0x0004
1578static void __init pr_cpumsf_err(unsigned int reason)
1579{
1580        pr_err("Sampling facility support for perf is not available: "
1581               "reason=%04x\n", reason);
1582}
1583
1584static int __init init_cpum_sampling_pmu(void)
1585{
1586        struct hws_qsi_info_block si;
1587        int err;
1588
1589        if (!cpum_sf_avail())
1590                return -ENODEV;
1591
1592        memset(&si, 0, sizeof(si));
1593        if (qsi(&si)) {
1594                pr_cpumsf_err(RS_INIT_FAILURE_QSI);
1595                return -ENODEV;
1596        }
1597
1598        if (si.bsdes != sizeof(struct hws_basic_entry)) {
1599                pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
1600                return -EINVAL;
1601        }
1602
1603        if (si.ad) {
1604                sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1605                cpumsf_pmu_events_attr[1] =
1606                        CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
1607        }
1608
1609        sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
1610        if (!sfdbg)
1611                pr_err("Registering for s390dbf failed\n");
1612        debug_register_view(sfdbg, &debug_sprintf_view);
1613
1614        err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1615                                    cpumf_measurement_alert);
1616        if (err) {
1617                pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
1618                goto out;
1619        }
1620
1621        err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
1622        if (err) {
1623                pr_cpumsf_err(RS_INIT_FAILURE_PERF);
1624                unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
1625                                        cpumf_measurement_alert);
1626                goto out;
1627        }
1628
1629        cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "AP_PERF_S390_SF_ONLINE",
1630                          s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
1631out:
1632        return err;
1633}
1634arch_initcall(init_cpum_sampling_pmu);
1635core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);
1636