linux/arch/tile/include/asm/page.h
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#ifndef _ASM_TILE_PAGE_H
  16#define _ASM_TILE_PAGE_H
  17
  18#include <linux/const.h>
  19#include <hv/hypervisor.h>
  20#include <arch/chip.h>
  21
  22/* PAGE_SHIFT and HPAGE_SHIFT determine the page sizes. */
  23#if defined(CONFIG_PAGE_SIZE_4KB)  /* tilepro only */
  24#define PAGE_SHIFT      12
  25#define CTX_PAGE_FLAG   HV_CTX_PG_SM_4K
  26#elif defined(CONFIG_PAGE_SIZE_16KB)
  27#define PAGE_SHIFT      14
  28#define CTX_PAGE_FLAG   HV_CTX_PG_SM_16K
  29#elif defined(CONFIG_PAGE_SIZE_64KB)
  30#define PAGE_SHIFT      16
  31#define CTX_PAGE_FLAG   HV_CTX_PG_SM_64K
  32#else
  33#error Page size not specified in Kconfig
  34#endif
  35#define HPAGE_SHIFT     HV_LOG2_DEFAULT_PAGE_SIZE_LARGE
  36
  37#define PAGE_SIZE       (_AC(1, UL) << PAGE_SHIFT)
  38#define HPAGE_SIZE      (_AC(1, UL) << HPAGE_SHIFT)
  39
  40#define PAGE_MASK       (~(PAGE_SIZE - 1))
  41#define HPAGE_MASK      (~(HPAGE_SIZE - 1))
  42
  43/*
  44 * If the Kconfig doesn't specify, set a maximum zone order that
  45 * is enough so that we can create huge pages from small pages given
  46 * the respective sizes of the two page types.  See <linux/mmzone.h>.
  47 */
  48#ifndef CONFIG_FORCE_MAX_ZONEORDER
  49#define CONFIG_FORCE_MAX_ZONEORDER (HPAGE_SHIFT - PAGE_SHIFT + 1)
  50#endif
  51
  52#ifndef __ASSEMBLY__
  53
  54#include <linux/types.h>
  55#include <linux/string.h>
  56
  57struct page;
  58
  59static inline void clear_page(void *page)
  60{
  61        memset(page, 0, PAGE_SIZE);
  62}
  63
  64static inline void copy_page(void *to, void *from)
  65{
  66        memcpy(to, from, PAGE_SIZE);
  67}
  68
  69static inline void clear_user_page(void *page, unsigned long vaddr,
  70                                struct page *pg)
  71{
  72        clear_page(page);
  73}
  74
  75static inline void copy_user_page(void *to, void *from, unsigned long vaddr,
  76                                struct page *topage)
  77{
  78        copy_page(to, from);
  79}
  80
  81/*
  82 * Hypervisor page tables are made of the same basic structure.
  83 */
  84
  85typedef HV_PTE pte_t;
  86typedef HV_PTE pgd_t;
  87typedef HV_PTE pgprot_t;
  88
  89/*
  90 * User L2 page tables are managed as one L2 page table per page,
  91 * because we use the page allocator for them.  This keeps the allocation
  92 * simple, but it's also inefficient, since L2 page tables are much smaller
  93 * than pages (currently 2KB vs 64KB).  So we should revisit this.
  94 */
  95typedef struct page *pgtable_t;
  96
  97/* Must be a macro since it is used to create constants. */
  98#define __pgprot(val) hv_pte(val)
  99
 100/* Rarely-used initializers, typically with a "zero" value. */
 101#define __pte(x) hv_pte(x)
 102#define __pgd(x) hv_pte(x)
 103
 104static inline u64 pgprot_val(pgprot_t pgprot)
 105{
 106        return hv_pte_val(pgprot);
 107}
 108
 109static inline u64 pte_val(pte_t pte)
 110{
 111        return hv_pte_val(pte);
 112}
 113
 114static inline u64 pgd_val(pgd_t pgd)
 115{
 116        return hv_pte_val(pgd);
 117}
 118
 119#ifdef __tilegx__
 120
 121typedef HV_PTE pmd_t;
 122
 123#define __pmd(x) hv_pte(x)
 124
 125static inline u64 pmd_val(pmd_t pmd)
 126{
 127        return hv_pte_val(pmd);
 128}
 129
 130#endif
 131
 132static inline __attribute_const__ int get_order(unsigned long size)
 133{
 134        return BITS_PER_LONG - __builtin_clzl((size - 1) >> PAGE_SHIFT);
 135}
 136
 137#endif /* !__ASSEMBLY__ */
 138
 139#define HUGETLB_PAGE_ORDER      (HPAGE_SHIFT - PAGE_SHIFT)
 140
 141#define HUGE_MAX_HSTATE         6
 142
 143#ifdef CONFIG_HUGETLB_PAGE
 144#define HAVE_ARCH_HUGETLB_UNMAPPED_AREA
 145#endif
 146
 147/* Allow overriding how much VA or PA the kernel will use. */
 148#define MAX_PA_WIDTH CHIP_PA_WIDTH()
 149#define MAX_VA_WIDTH CHIP_VA_WIDTH()
 150
 151/* Each memory controller has PAs distinct in their high bits. */
 152#define NR_PA_HIGHBIT_SHIFT (MAX_PA_WIDTH - CHIP_LOG_NUM_MSHIMS())
 153#define NR_PA_HIGHBIT_VALUES (1 << CHIP_LOG_NUM_MSHIMS())
 154#define __pa_to_highbits(pa) ((phys_addr_t)(pa) >> NR_PA_HIGHBIT_SHIFT)
 155#define __pfn_to_highbits(pfn) ((pfn) >> (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT))
 156
 157#ifdef __tilegx__
 158
 159/*
 160 * We reserve the lower half of memory for user-space programs, and the
 161 * upper half for system code.  We re-map all of physical memory in the
 162 * upper half, which takes a quarter of our VA space.  Then we have
 163 * the vmalloc regions.  The supervisor code lives at the highest address,
 164 * with the hypervisor above that.
 165 *
 166 * Loadable kernel modules are placed immediately after the static
 167 * supervisor code, with each being allocated a 256MB region of
 168 * address space, so we don't have to worry about the range of "jal"
 169 * and other branch instructions.
 170 *
 171 * For now we keep life simple and just allocate one pmd (4GB) for vmalloc.
 172 * Similarly, for now we don't play any struct page mapping games.
 173 */
 174
 175#if MAX_PA_WIDTH + 2 > MAX_VA_WIDTH
 176# error Too much PA to map with the VA available!
 177#endif
 178
 179#define PAGE_OFFSET             (-(_AC(1, UL) << (MAX_VA_WIDTH - 1)))
 180#define KERNEL_HIGH_VADDR       _AC(0xfffffff800000000, UL)  /* high 32GB */
 181#define FIXADDR_BASE            (KERNEL_HIGH_VADDR - 0x300000000) /* 4 GB */
 182#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - 0x200000000) /* 4 GB */
 183#define _VMALLOC_START          FIXADDR_TOP
 184#define MEM_SV_START            (KERNEL_HIGH_VADDR - 0x100000000) /* 256 MB */
 185#define MEM_MODULE_START        (MEM_SV_START + (256*1024*1024)) /* 256 MB */
 186#define MEM_MODULE_END          (MEM_MODULE_START + (256*1024*1024))
 187
 188#else /* !__tilegx__ */
 189
 190/*
 191 * A PAGE_OFFSET of 0xC0000000 means that the kernel has
 192 * a virtual address space of one gigabyte, which limits the
 193 * amount of physical memory you can use to about 768MB.
 194 * If you want more physical memory than this then see the CONFIG_HIGHMEM
 195 * option in the kernel configuration.
 196 *
 197 * The top 16MB chunk in the table below is unavailable to Linux.  Since
 198 * the kernel interrupt vectors must live at ether 0xfe000000 or 0xfd000000
 199 * (depending on whether the kernel is at PL2 or Pl1), we map all of the
 200 * bottom of RAM at this address with a huge page table entry to minimize
 201 * its ITLB footprint (as well as at PAGE_OFFSET).  The last architected
 202 * requirement is that user interrupt vectors live at 0xfc000000, so we
 203 * make that range of memory available to user processes.  The remaining
 204 * regions are sized as shown; the first four addresses use the PL 1
 205 * values, and after that, we show "typical" values, since the actual
 206 * addresses depend on kernel #defines.
 207 *
 208 * MEM_HV_START                    0xfe000000
 209 * MEM_SV_START  (kernel code)     0xfd000000
 210 * MEM_USER_INTRPT (user vector)   0xfc000000
 211 * FIX_KMAP_xxx                    0xfa000000 (via NR_CPUS * KM_TYPE_NR)
 212 * PKMAP_BASE                      0xf9000000 (via LAST_PKMAP)
 213 * VMALLOC_START                   0xf7000000 (via VMALLOC_RESERVE)
 214 * mapped LOWMEM                   0xc0000000
 215 */
 216
 217#define MEM_USER_INTRPT         _AC(0xfc000000, UL)
 218#define MEM_SV_START            _AC(0xfd000000, UL)
 219#define MEM_HV_START            _AC(0xfe000000, UL)
 220
 221#define INTRPT_SIZE             0x4000
 222
 223/* Tolerate page size larger than the architecture interrupt region size. */
 224#if PAGE_SIZE > INTRPT_SIZE
 225#undef INTRPT_SIZE
 226#define INTRPT_SIZE PAGE_SIZE
 227#endif
 228
 229#define KERNEL_HIGH_VADDR       MEM_USER_INTRPT
 230#define FIXADDR_TOP             (KERNEL_HIGH_VADDR - PAGE_SIZE)
 231
 232#define PAGE_OFFSET             _AC(CONFIG_PAGE_OFFSET, UL)
 233
 234/* On 32-bit architectures we mix kernel modules in with other vmaps. */
 235#define MEM_MODULE_START        VMALLOC_START
 236#define MEM_MODULE_END          VMALLOC_END
 237
 238#endif /* __tilegx__ */
 239
 240#if !defined(__ASSEMBLY__) && !defined(VDSO_BUILD)
 241
 242#ifdef CONFIG_HIGHMEM
 243
 244/* Map kernel virtual addresses to page frames, in HPAGE_SIZE chunks. */
 245extern unsigned long pbase_map[];
 246extern void *vbase_map[];
 247
 248static inline unsigned long kaddr_to_pfn(const volatile void *_kaddr)
 249{
 250        unsigned long kaddr = (unsigned long)_kaddr;
 251        return pbase_map[kaddr >> HPAGE_SHIFT] +
 252                ((kaddr & (HPAGE_SIZE - 1)) >> PAGE_SHIFT);
 253}
 254
 255static inline void *pfn_to_kaddr(unsigned long pfn)
 256{
 257        return vbase_map[__pfn_to_highbits(pfn)] + (pfn << PAGE_SHIFT);
 258}
 259
 260static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 261{
 262        unsigned long pfn = kaddr_to_pfn(kaddr);
 263        return ((phys_addr_t)pfn << PAGE_SHIFT) +
 264                ((unsigned long)kaddr & (PAGE_SIZE-1));
 265}
 266
 267static inline void *phys_to_virt(phys_addr_t paddr)
 268{
 269        return pfn_to_kaddr(paddr >> PAGE_SHIFT) + (paddr & (PAGE_SIZE-1));
 270}
 271
 272/* With HIGHMEM, we pack PAGE_OFFSET through high_memory with all valid VAs. */
 273static inline int virt_addr_valid(const volatile void *kaddr)
 274{
 275        extern void *high_memory;  /* copied from <linux/mm.h> */
 276        return ((unsigned long)kaddr >= PAGE_OFFSET && kaddr < high_memory);
 277}
 278
 279#else /* !CONFIG_HIGHMEM */
 280
 281static inline unsigned long kaddr_to_pfn(const volatile void *kaddr)
 282{
 283        return ((unsigned long)kaddr - PAGE_OFFSET) >> PAGE_SHIFT;
 284}
 285
 286static inline void *pfn_to_kaddr(unsigned long pfn)
 287{
 288        return (void *)((pfn << PAGE_SHIFT) + PAGE_OFFSET);
 289}
 290
 291static inline phys_addr_t virt_to_phys(const volatile void *kaddr)
 292{
 293        return (phys_addr_t)((unsigned long)kaddr - PAGE_OFFSET);
 294}
 295
 296static inline void *phys_to_virt(phys_addr_t paddr)
 297{
 298        return (void *)((unsigned long)paddr + PAGE_OFFSET);
 299}
 300
 301/* Check that the given address is within some mapped range of PAs. */
 302#define virt_addr_valid(kaddr) pfn_valid(kaddr_to_pfn(kaddr))
 303
 304#endif /* !CONFIG_HIGHMEM */
 305
 306/* All callers are not consistent in how they call these functions. */
 307#define __pa(kaddr) virt_to_phys((void *)(unsigned long)(kaddr))
 308#define __va(paddr) phys_to_virt((phys_addr_t)(paddr))
 309
 310extern int devmem_is_allowed(unsigned long pagenr);
 311
 312#ifdef CONFIG_FLATMEM
 313static inline int pfn_valid(unsigned long pfn)
 314{
 315        return pfn < max_mapnr;
 316}
 317#endif
 318
 319/* Provide as macros since these require some other headers included. */
 320#define page_to_pa(page) ((phys_addr_t)(page_to_pfn(page)) << PAGE_SHIFT)
 321#define virt_to_page(kaddr) pfn_to_page(kaddr_to_pfn((void *)(kaddr)))
 322#define page_to_virt(page) pfn_to_kaddr(page_to_pfn(page))
 323
 324/*
 325 * The kernel text is mapped at MEM_SV_START as read-only.  To allow
 326 * modifying kernel text, it is also mapped at PAGE_OFFSET as read-write.
 327 * This macro converts a kernel address to its writable kernel text mapping,
 328 * which is used to modify the text code on a running kernel by kgdb,
 329 * ftrace, kprobe, jump label, etc.
 330 */
 331#define ktext_writable_addr(kaddr) \
 332        ((unsigned long)(kaddr) - MEM_SV_START + PAGE_OFFSET)
 333
 334struct mm_struct;
 335extern pte_t *virt_to_pte(struct mm_struct *mm, unsigned long addr);
 336extern pte_t *virt_to_kpte(unsigned long kaddr);
 337
 338#endif /* !__ASSEMBLY__ */
 339
 340#define VM_DATA_DEFAULT_FLAGS \
 341        (VM_READ | VM_WRITE | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
 342
 343#include <asm-generic/memory_model.h>
 344
 345#endif /* _ASM_TILE_PAGE_H */
 346