linux/arch/tile/mm/init.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 1995  Linus Torvalds
   3 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   4 *
   5 *   This program is free software; you can redistribute it and/or
   6 *   modify it under the terms of the GNU General Public License
   7 *   as published by the Free Software Foundation, version 2.
   8 *
   9 *   This program is distributed in the hope that it will be useful, but
  10 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  11 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  12 *   NON INFRINGEMENT.  See the GNU General Public License for
  13 *   more details.
  14 */
  15
  16#include <linux/module.h>
  17#include <linux/signal.h>
  18#include <linux/sched.h>
  19#include <linux/kernel.h>
  20#include <linux/errno.h>
  21#include <linux/string.h>
  22#include <linux/types.h>
  23#include <linux/ptrace.h>
  24#include <linux/mman.h>
  25#include <linux/mm.h>
  26#include <linux/hugetlb.h>
  27#include <linux/swap.h>
  28#include <linux/smp.h>
  29#include <linux/init.h>
  30#include <linux/highmem.h>
  31#include <linux/pagemap.h>
  32#include <linux/poison.h>
  33#include <linux/bootmem.h>
  34#include <linux/slab.h>
  35#include <linux/proc_fs.h>
  36#include <linux/efi.h>
  37#include <linux/memory_hotplug.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/processor.h>
  41#include <asm/pgtable.h>
  42#include <asm/pgalloc.h>
  43#include <asm/dma.h>
  44#include <asm/fixmap.h>
  45#include <asm/tlb.h>
  46#include <asm/tlbflush.h>
  47#include <asm/sections.h>
  48#include <asm/setup.h>
  49#include <asm/homecache.h>
  50#include <hv/hypervisor.h>
  51#include <arch/chip.h>
  52
  53#include "migrate.h"
  54
  55#define clear_pgd(pmdptr) (*(pmdptr) = hv_pte(0))
  56
  57#ifndef __tilegx__
  58unsigned long VMALLOC_RESERVE = CONFIG_VMALLOC_RESERVE;
  59EXPORT_SYMBOL(VMALLOC_RESERVE);
  60#endif
  61
  62/* Create an L2 page table */
  63static pte_t * __init alloc_pte(void)
  64{
  65        return __alloc_bootmem(L2_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
  66}
  67
  68/*
  69 * L2 page tables per controller.  We allocate these all at once from
  70 * the bootmem allocator and store them here.  This saves on kernel L2
  71 * page table memory, compared to allocating a full 64K page per L2
  72 * page table, and also means that in cases where we use huge pages,
  73 * we are guaranteed to later be able to shatter those huge pages and
  74 * switch to using these page tables instead, without requiring
  75 * further allocation.  Each l2_ptes[] entry points to the first page
  76 * table for the first hugepage-size piece of memory on the
  77 * controller; other page tables are just indexed directly, i.e. the
  78 * L2 page tables are contiguous in memory for each controller.
  79 */
  80static pte_t *l2_ptes[MAX_NUMNODES];
  81static int num_l2_ptes[MAX_NUMNODES];
  82
  83static void init_prealloc_ptes(int node, int pages)
  84{
  85        BUG_ON(pages & (PTRS_PER_PTE - 1));
  86        if (pages) {
  87                num_l2_ptes[node] = pages;
  88                l2_ptes[node] = __alloc_bootmem(pages * sizeof(pte_t),
  89                                                HV_PAGE_TABLE_ALIGN, 0);
  90        }
  91}
  92
  93pte_t *get_prealloc_pte(unsigned long pfn)
  94{
  95        int node = pfn_to_nid(pfn);
  96        pfn &= ~(-1UL << (NR_PA_HIGHBIT_SHIFT - PAGE_SHIFT));
  97        BUG_ON(node >= MAX_NUMNODES);
  98        BUG_ON(pfn >= num_l2_ptes[node]);
  99        return &l2_ptes[node][pfn];
 100}
 101
 102/*
 103 * What caching do we expect pages from the heap to have when
 104 * they are allocated during bootup?  (Once we've installed the
 105 * "real" swapper_pg_dir.)
 106 */
 107static int initial_heap_home(void)
 108{
 109        if (hash_default)
 110                return PAGE_HOME_HASH;
 111        return smp_processor_id();
 112}
 113
 114/*
 115 * Place a pointer to an L2 page table in a middle page
 116 * directory entry.
 117 */
 118static void __init assign_pte(pmd_t *pmd, pte_t *page_table)
 119{
 120        phys_addr_t pa = __pa(page_table);
 121        unsigned long l2_ptfn = pa >> HV_LOG2_PAGE_TABLE_ALIGN;
 122        pte_t pteval = hv_pte_set_ptfn(__pgprot(_PAGE_TABLE), l2_ptfn);
 123        BUG_ON((pa & (HV_PAGE_TABLE_ALIGN-1)) != 0);
 124        pteval = pte_set_home(pteval, initial_heap_home());
 125        *(pte_t *)pmd = pteval;
 126        if (page_table != (pte_t *)pmd_page_vaddr(*pmd))
 127                BUG();
 128}
 129
 130#ifdef __tilegx__
 131
 132static inline pmd_t *alloc_pmd(void)
 133{
 134        return __alloc_bootmem(L1_KERNEL_PGTABLE_SIZE, HV_PAGE_TABLE_ALIGN, 0);
 135}
 136
 137static inline void assign_pmd(pud_t *pud, pmd_t *pmd)
 138{
 139        assign_pte((pmd_t *)pud, (pte_t *)pmd);
 140}
 141
 142#endif /* __tilegx__ */
 143
 144/* Replace the given pmd with a full PTE table. */
 145void __init shatter_pmd(pmd_t *pmd)
 146{
 147        pte_t *pte = get_prealloc_pte(pte_pfn(*(pte_t *)pmd));
 148        assign_pte(pmd, pte);
 149}
 150
 151#ifdef __tilegx__
 152static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 153{
 154        pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
 155        if (pud_none(*pud))
 156                assign_pmd(pud, alloc_pmd());
 157        return pmd_offset(pud, va);
 158}
 159#else
 160static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
 161{
 162        return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
 163}
 164#endif
 165
 166/*
 167 * This function initializes a certain range of kernel virtual memory
 168 * with new bootmem page tables, everywhere page tables are missing in
 169 * the given range.
 170 */
 171
 172/*
 173 * NOTE: The pagetables are allocated contiguous on the physical space
 174 * so we can cache the place of the first one and move around without
 175 * checking the pgd every time.
 176 */
 177static void __init page_table_range_init(unsigned long start,
 178                                         unsigned long end, pgd_t *pgd)
 179{
 180        unsigned long vaddr;
 181        start = round_down(start, PMD_SIZE);
 182        end = round_up(end, PMD_SIZE);
 183        for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
 184                pmd_t *pmd = get_pmd(pgd, vaddr);
 185                if (pmd_none(*pmd))
 186                        assign_pte(pmd, alloc_pte());
 187        }
 188}
 189
 190
 191static int __initdata ktext_hash = 1;  /* .text pages */
 192static int __initdata kdata_hash = 1;  /* .data and .bss pages */
 193int __write_once hash_default = 1;     /* kernel allocator pages */
 194EXPORT_SYMBOL(hash_default);
 195int __write_once kstack_hash = 1;      /* if no homecaching, use h4h */
 196
 197/*
 198 * CPUs to use to for striping the pages of kernel data.  If hash-for-home
 199 * is available, this is only relevant if kcache_hash sets up the
 200 * .data and .bss to be page-homed, and we don't want the default mode
 201 * of using the full set of kernel cpus for the striping.
 202 */
 203static __initdata struct cpumask kdata_mask;
 204static __initdata int kdata_arg_seen;
 205
 206int __write_once kdata_huge;       /* if no homecaching, small pages */
 207
 208
 209/* Combine a generic pgprot_t with cache home to get a cache-aware pgprot. */
 210static pgprot_t __init construct_pgprot(pgprot_t prot, int home)
 211{
 212        prot = pte_set_home(prot, home);
 213        if (home == PAGE_HOME_IMMUTABLE) {
 214                if (ktext_hash)
 215                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_HASH_L3);
 216                else
 217                        prot = hv_pte_set_mode(prot, HV_PTE_MODE_CACHE_NO_L3);
 218        }
 219        return prot;
 220}
 221
 222/*
 223 * For a given kernel data VA, how should it be cached?
 224 * We return the complete pgprot_t with caching bits set.
 225 */
 226static pgprot_t __init init_pgprot(ulong address)
 227{
 228        int cpu;
 229        unsigned long page;
 230        enum { CODE_DELTA = MEM_SV_START - PAGE_OFFSET };
 231
 232        /* For kdata=huge, everything is just hash-for-home. */
 233        if (kdata_huge)
 234                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 235
 236        /*
 237         * We map the aliased pages of permanent text so we can
 238         * update them if necessary, for ftrace, etc.
 239         */
 240        if (address < (ulong) _sinittext - CODE_DELTA)
 241                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 242
 243        /* We map read-only data non-coherent for performance. */
 244        if ((address >= (ulong) __start_rodata &&
 245             address < (ulong) __end_rodata) ||
 246            address == (ulong) empty_zero_page) {
 247                return construct_pgprot(PAGE_KERNEL_RO, PAGE_HOME_IMMUTABLE);
 248        }
 249
 250#ifndef __tilegx__
 251        /* Force the atomic_locks[] array page to be hash-for-home. */
 252        if (address == (ulong) atomic_locks)
 253                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 254#endif
 255
 256        /*
 257         * Everything else that isn't data or bss is heap, so mark it
 258         * with the initial heap home (hash-for-home, or this cpu).  This
 259         * includes any addresses after the loaded image and any address before
 260         * __init_end, since we already captured the case of text before
 261         * _sinittext, and __pa(einittext) is approximately __pa(__init_begin).
 262         *
 263         * All the LOWMEM pages that we mark this way will get their
 264         * struct page homecache properly marked later, in set_page_homes().
 265         * The HIGHMEM pages we leave with a default zero for their
 266         * homes, but with a zero free_time we don't have to actually
 267         * do a flush action the first time we use them, either.
 268         */
 269        if (address >= (ulong) _end || address < (ulong) __init_end)
 270                return construct_pgprot(PAGE_KERNEL, initial_heap_home());
 271
 272        /* Use hash-for-home if requested for data/bss. */
 273        if (kdata_hash)
 274                return construct_pgprot(PAGE_KERNEL, PAGE_HOME_HASH);
 275
 276        /*
 277         * Otherwise we just hand out consecutive cpus.  To avoid
 278         * requiring this function to hold state, we just walk forward from
 279         * __end_rodata by PAGE_SIZE, skipping the readonly and init data, to
 280         * reach the requested address, while walking cpu home around
 281         * kdata_mask. This is typically no more than a dozen or so iterations.
 282         */
 283        page = (((ulong)__end_rodata) + PAGE_SIZE - 1) & PAGE_MASK;
 284        BUG_ON(address < page || address >= (ulong)_end);
 285        cpu = cpumask_first(&kdata_mask);
 286        for (; page < address; page += PAGE_SIZE) {
 287                if (page >= (ulong)&init_thread_union &&
 288                    page < (ulong)&init_thread_union + THREAD_SIZE)
 289                        continue;
 290                if (page == (ulong)empty_zero_page)
 291                        continue;
 292#ifndef __tilegx__
 293                if (page == (ulong)atomic_locks)
 294                        continue;
 295#endif
 296                cpu = cpumask_next(cpu, &kdata_mask);
 297                if (cpu == NR_CPUS)
 298                        cpu = cpumask_first(&kdata_mask);
 299        }
 300        return construct_pgprot(PAGE_KERNEL, cpu);
 301}
 302
 303/*
 304 * This function sets up how we cache the kernel text.  If we have
 305 * hash-for-home support, normally that is used instead (see the
 306 * kcache_hash boot flag for more information).  But if we end up
 307 * using a page-based caching technique, this option sets up the
 308 * details of that.  In addition, the "ktext=nocache" option may
 309 * always be used to disable local caching of text pages, if desired.
 310 */
 311
 312static int __initdata ktext_arg_seen;
 313static int __initdata ktext_small;
 314static int __initdata ktext_local;
 315static int __initdata ktext_all;
 316static int __initdata ktext_nondataplane;
 317static int __initdata ktext_nocache;
 318static struct cpumask __initdata ktext_mask;
 319
 320static int __init setup_ktext(char *str)
 321{
 322        if (str == NULL)
 323                return -EINVAL;
 324
 325        /* If you have a leading "nocache", turn off ktext caching */
 326        if (strncmp(str, "nocache", 7) == 0) {
 327                ktext_nocache = 1;
 328                pr_info("ktext: disabling local caching of kernel text\n");
 329                str += 7;
 330                if (*str == ',')
 331                        ++str;
 332                if (*str == '\0')
 333                        return 0;
 334        }
 335
 336        ktext_arg_seen = 1;
 337
 338        /* Default setting: use a huge page */
 339        if (strcmp(str, "huge") == 0)
 340                pr_info("ktext: using one huge locally cached page\n");
 341
 342        /* Pay TLB cost but get no cache benefit: cache small pages locally */
 343        else if (strcmp(str, "local") == 0) {
 344                ktext_small = 1;
 345                ktext_local = 1;
 346                pr_info("ktext: using small pages with local caching\n");
 347        }
 348
 349        /* Neighborhood cache ktext pages on all cpus. */
 350        else if (strcmp(str, "all") == 0) {
 351                ktext_small = 1;
 352                ktext_all = 1;
 353                pr_info("ktext: using maximal caching neighborhood\n");
 354        }
 355
 356
 357        /* Neighborhood ktext pages on specified mask */
 358        else if (cpulist_parse(str, &ktext_mask) == 0) {
 359                if (cpumask_weight(&ktext_mask) > 1) {
 360                        ktext_small = 1;
 361                        pr_info("ktext: using caching neighborhood %*pbl with small pages\n",
 362                                cpumask_pr_args(&ktext_mask));
 363                } else {
 364                        pr_info("ktext: caching on cpu %*pbl with one huge page\n",
 365                                cpumask_pr_args(&ktext_mask));
 366                }
 367        }
 368
 369        else if (*str)
 370                return -EINVAL;
 371
 372        return 0;
 373}
 374
 375early_param("ktext", setup_ktext);
 376
 377
 378static inline pgprot_t ktext_set_nocache(pgprot_t prot)
 379{
 380        if (!ktext_nocache)
 381                prot = hv_pte_set_nc(prot);
 382        else
 383                prot = hv_pte_set_no_alloc_l2(prot);
 384        return prot;
 385}
 386
 387/* Temporary page table we use for staging. */
 388static pgd_t pgtables[PTRS_PER_PGD]
 389 __attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
 390
 391/*
 392 * This maps the physical memory to kernel virtual address space, a total
 393 * of max_low_pfn pages, by creating page tables starting from address
 394 * PAGE_OFFSET.
 395 *
 396 * This routine transitions us from using a set of compiled-in large
 397 * pages to using some more precise caching, including removing access
 398 * to code pages mapped at PAGE_OFFSET (executed only at MEM_SV_START)
 399 * marking read-only data as locally cacheable, striping the remaining
 400 * .data and .bss across all the available tiles, and removing access
 401 * to pages above the top of RAM (thus ensuring a page fault from a bad
 402 * virtual address rather than a hypervisor shoot down for accessing
 403 * memory outside the assigned limits).
 404 */
 405static void __init kernel_physical_mapping_init(pgd_t *pgd_base)
 406{
 407        unsigned long long irqmask;
 408        unsigned long address, pfn;
 409        pmd_t *pmd;
 410        pte_t *pte;
 411        int pte_ofs;
 412        const struct cpumask *my_cpu_mask = cpumask_of(smp_processor_id());
 413        struct cpumask kstripe_mask;
 414        int rc, i;
 415
 416        if (ktext_arg_seen && ktext_hash) {
 417                pr_warn("warning: \"ktext\" boot argument ignored if \"kcache_hash\" sets up text hash-for-home\n");
 418                ktext_small = 0;
 419        }
 420
 421        if (kdata_arg_seen && kdata_hash) {
 422                pr_warn("warning: \"kdata\" boot argument ignored if \"kcache_hash\" sets up data hash-for-home\n");
 423        }
 424
 425        if (kdata_huge && !hash_default) {
 426                pr_warn("warning: disabling \"kdata=huge\"; requires kcache_hash=all or =allbutstack\n");
 427                kdata_huge = 0;
 428        }
 429
 430        /*
 431         * Set up a mask for cpus to use for kernel striping.
 432         * This is normally all cpus, but minus dataplane cpus if any.
 433         * If the dataplane covers the whole chip, we stripe over
 434         * the whole chip too.
 435         */
 436        cpumask_copy(&kstripe_mask, cpu_possible_mask);
 437        if (!kdata_arg_seen)
 438                kdata_mask = kstripe_mask;
 439
 440        /* Allocate and fill in L2 page tables */
 441        for (i = 0; i < MAX_NUMNODES; ++i) {
 442#ifdef CONFIG_HIGHMEM
 443                unsigned long end_pfn = node_lowmem_end_pfn[i];
 444#else
 445                unsigned long end_pfn = node_end_pfn[i];
 446#endif
 447                unsigned long end_huge_pfn = 0;
 448
 449                /* Pre-shatter the last huge page to allow per-cpu pages. */
 450                if (kdata_huge)
 451                        end_huge_pfn = end_pfn - (HPAGE_SIZE >> PAGE_SHIFT);
 452
 453                pfn = node_start_pfn[i];
 454
 455                /* Allocate enough memory to hold L2 page tables for node. */
 456                init_prealloc_ptes(i, end_pfn - pfn);
 457
 458                address = (unsigned long) pfn_to_kaddr(pfn);
 459                while (pfn < end_pfn) {
 460                        BUG_ON(address & (HPAGE_SIZE-1));
 461                        pmd = get_pmd(pgtables, address);
 462                        pte = get_prealloc_pte(pfn);
 463                        if (pfn < end_huge_pfn) {
 464                                pgprot_t prot = init_pgprot(address);
 465                                *(pte_t *)pmd = pte_mkhuge(pfn_pte(pfn, prot));
 466                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 467                                     pfn++, pte_ofs++, address += PAGE_SIZE)
 468                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 469                        } else {
 470                                if (kdata_huge)
 471                                        printk(KERN_DEBUG "pre-shattered huge page at %#lx\n",
 472                                               address);
 473                                for (pte_ofs = 0; pte_ofs < PTRS_PER_PTE;
 474                                     pfn++, pte_ofs++, address += PAGE_SIZE) {
 475                                        pgprot_t prot = init_pgprot(address);
 476                                        pte[pte_ofs] = pfn_pte(pfn, prot);
 477                                }
 478                                assign_pte(pmd, pte);
 479                        }
 480                }
 481        }
 482
 483        /*
 484         * Set or check ktext_map now that we have cpu_possible_mask
 485         * and kstripe_mask to work with.
 486         */
 487        if (ktext_all)
 488                cpumask_copy(&ktext_mask, cpu_possible_mask);
 489        else if (ktext_nondataplane)
 490                ktext_mask = kstripe_mask;
 491        else if (!cpumask_empty(&ktext_mask)) {
 492                /* Sanity-check any mask that was requested */
 493                struct cpumask bad;
 494                cpumask_andnot(&bad, &ktext_mask, cpu_possible_mask);
 495                cpumask_and(&ktext_mask, &ktext_mask, cpu_possible_mask);
 496                if (!cpumask_empty(&bad))
 497                        pr_info("ktext: not using unavailable cpus %*pbl\n",
 498                                cpumask_pr_args(&bad));
 499                if (cpumask_empty(&ktext_mask)) {
 500                        pr_warn("ktext: no valid cpus; caching on %d\n",
 501                                smp_processor_id());
 502                        cpumask_copy(&ktext_mask,
 503                                     cpumask_of(smp_processor_id()));
 504                }
 505        }
 506
 507        address = MEM_SV_START;
 508        pmd = get_pmd(pgtables, address);
 509        pfn = 0;  /* code starts at PA 0 */
 510        if (ktext_small) {
 511                /* Allocate an L2 PTE for the kernel text */
 512                int cpu = 0;
 513                pgprot_t prot = construct_pgprot(PAGE_KERNEL_EXEC,
 514                                                 PAGE_HOME_IMMUTABLE);
 515
 516                if (ktext_local) {
 517                        if (ktext_nocache)
 518                                prot = hv_pte_set_mode(prot,
 519                                                       HV_PTE_MODE_UNCACHED);
 520                        else
 521                                prot = hv_pte_set_mode(prot,
 522                                                       HV_PTE_MODE_CACHE_NO_L3);
 523                } else {
 524                        prot = hv_pte_set_mode(prot,
 525                                               HV_PTE_MODE_CACHE_TILE_L3);
 526                        cpu = cpumask_first(&ktext_mask);
 527
 528                        prot = ktext_set_nocache(prot);
 529                }
 530
 531                BUG_ON(address != (unsigned long)_text);
 532                pte = NULL;
 533                for (; address < (unsigned long)_einittext;
 534                     pfn++, address += PAGE_SIZE) {
 535                        pte_ofs = pte_index(address);
 536                        if (pte_ofs == 0) {
 537                                if (pte)
 538                                        assign_pte(pmd++, pte);
 539                                pte = alloc_pte();
 540                        }
 541                        if (!ktext_local) {
 542                                prot = set_remote_cache_cpu(prot, cpu);
 543                                cpu = cpumask_next(cpu, &ktext_mask);
 544                                if (cpu == NR_CPUS)
 545                                        cpu = cpumask_first(&ktext_mask);
 546                        }
 547                        pte[pte_ofs] = pfn_pte(pfn, prot);
 548                }
 549                if (pte)
 550                        assign_pte(pmd, pte);
 551        } else {
 552                pte_t pteval = pfn_pte(0, PAGE_KERNEL_EXEC);
 553                pteval = pte_mkhuge(pteval);
 554                if (ktext_hash) {
 555                        pteval = hv_pte_set_mode(pteval,
 556                                                 HV_PTE_MODE_CACHE_HASH_L3);
 557                        pteval = ktext_set_nocache(pteval);
 558                } else
 559                if (cpumask_weight(&ktext_mask) == 1) {
 560                        pteval = set_remote_cache_cpu(pteval,
 561                                              cpumask_first(&ktext_mask));
 562                        pteval = hv_pte_set_mode(pteval,
 563                                                 HV_PTE_MODE_CACHE_TILE_L3);
 564                        pteval = ktext_set_nocache(pteval);
 565                } else if (ktext_nocache)
 566                        pteval = hv_pte_set_mode(pteval,
 567                                                 HV_PTE_MODE_UNCACHED);
 568                else
 569                        pteval = hv_pte_set_mode(pteval,
 570                                                 HV_PTE_MODE_CACHE_NO_L3);
 571                for (; address < (unsigned long)_einittext;
 572                     pfn += PFN_DOWN(HPAGE_SIZE), address += HPAGE_SIZE)
 573                        *(pte_t *)(pmd++) = pfn_pte(pfn, pteval);
 574        }
 575
 576        /* Set swapper_pgprot here so it is flushed to memory right away. */
 577        swapper_pgprot = init_pgprot((unsigned long)swapper_pg_dir);
 578
 579        /*
 580         * Since we may be changing the caching of the stack and page
 581         * table itself, we invoke an assembly helper to do the
 582         * following steps:
 583         *
 584         *  - flush the cache so we start with an empty slate
 585         *  - install pgtables[] as the real page table
 586         *  - flush the TLB so the new page table takes effect
 587         */
 588        irqmask = interrupt_mask_save_mask();
 589        interrupt_mask_set_mask(-1ULL);
 590        rc = flush_and_install_context(__pa(pgtables),
 591                                       init_pgprot((unsigned long)pgtables),
 592                                       __this_cpu_read(current_asid),
 593                                       cpumask_bits(my_cpu_mask));
 594        interrupt_mask_restore_mask(irqmask);
 595        BUG_ON(rc != 0);
 596
 597        /* Copy the page table back to the normal swapper_pg_dir. */
 598        memcpy(pgd_base, pgtables, sizeof(pgtables));
 599        __install_page_table(pgd_base, __this_cpu_read(current_asid),
 600                             swapper_pgprot);
 601
 602        /*
 603         * We just read swapper_pgprot and thus brought it into the cache,
 604         * with its new home & caching mode.  When we start the other CPUs,
 605         * they're going to reference swapper_pgprot via their initial fake
 606         * VA-is-PA mappings, which cache everything locally.  At that
 607         * time, if it's in our cache with a conflicting home, the
 608         * simulator's coherence checker will complain.  So, flush it out
 609         * of our cache; we're not going to ever use it again anyway.
 610         */
 611        __insn_finv(&swapper_pgprot);
 612}
 613
 614/*
 615 * devmem_is_allowed() checks to see if /dev/mem access to a certain address
 616 * is valid. The argument is a physical page number.
 617 *
 618 * On Tile, the only valid things for which we can just hand out unchecked
 619 * PTEs are the kernel code and data.  Anything else might change its
 620 * homing with time, and we wouldn't know to adjust the /dev/mem PTEs.
 621 * Note that init_thread_union is released to heap soon after boot,
 622 * so we include it in the init data.
 623 *
 624 * For TILE-Gx, we might want to consider allowing access to PA
 625 * regions corresponding to PCI space, etc.
 626 */
 627int devmem_is_allowed(unsigned long pagenr)
 628{
 629        return pagenr < kaddr_to_pfn(_end) &&
 630                !(pagenr >= kaddr_to_pfn(&init_thread_union) ||
 631                  pagenr < kaddr_to_pfn(__init_end)) &&
 632                !(pagenr >= kaddr_to_pfn(_sinittext) ||
 633                  pagenr <= kaddr_to_pfn(_einittext-1));
 634}
 635
 636#ifdef CONFIG_HIGHMEM
 637static void __init permanent_kmaps_init(pgd_t *pgd_base)
 638{
 639        pgd_t *pgd;
 640        pud_t *pud;
 641        pmd_t *pmd;
 642        pte_t *pte;
 643        unsigned long vaddr;
 644
 645        vaddr = PKMAP_BASE;
 646        page_table_range_init(vaddr, vaddr + PAGE_SIZE*LAST_PKMAP, pgd_base);
 647
 648        pgd = swapper_pg_dir + pgd_index(vaddr);
 649        pud = pud_offset(pgd, vaddr);
 650        pmd = pmd_offset(pud, vaddr);
 651        pte = pte_offset_kernel(pmd, vaddr);
 652        pkmap_page_table = pte;
 653}
 654#endif /* CONFIG_HIGHMEM */
 655
 656
 657#ifndef CONFIG_64BIT
 658static void __init init_free_pfn_range(unsigned long start, unsigned long end)
 659{
 660        unsigned long pfn;
 661        struct page *page = pfn_to_page(start);
 662
 663        for (pfn = start; pfn < end; ) {
 664                /* Optimize by freeing pages in large batches */
 665                int order = __ffs(pfn);
 666                int count, i;
 667                struct page *p;
 668
 669                if (order >= MAX_ORDER)
 670                        order = MAX_ORDER-1;
 671                count = 1 << order;
 672                while (pfn + count > end) {
 673                        count >>= 1;
 674                        --order;
 675                }
 676                for (p = page, i = 0; i < count; ++i, ++p) {
 677                        __ClearPageReserved(p);
 678                        /*
 679                         * Hacky direct set to avoid unnecessary
 680                         * lock take/release for EVERY page here.
 681                         */
 682                        p->_refcount.counter = 0;
 683                        p->_mapcount.counter = -1;
 684                }
 685                init_page_count(page);
 686                __free_pages(page, order);
 687                adjust_managed_page_count(page, count);
 688
 689                page += count;
 690                pfn += count;
 691        }
 692}
 693
 694static void __init set_non_bootmem_pages_init(void)
 695{
 696        struct zone *z;
 697        for_each_zone(z) {
 698                unsigned long start, end;
 699                int nid = z->zone_pgdat->node_id;
 700#ifdef CONFIG_HIGHMEM
 701                int idx = zone_idx(z);
 702#endif
 703
 704                start = z->zone_start_pfn;
 705                end = start + z->spanned_pages;
 706                start = max(start, node_free_pfn[nid]);
 707                start = max(start, max_low_pfn);
 708
 709#ifdef CONFIG_HIGHMEM
 710                if (idx == ZONE_HIGHMEM)
 711                        totalhigh_pages += z->spanned_pages;
 712#endif
 713                if (kdata_huge) {
 714                        unsigned long percpu_pfn = node_percpu_pfn[nid];
 715                        if (start < percpu_pfn && end > percpu_pfn)
 716                                end = percpu_pfn;
 717                }
 718#ifdef CONFIG_PCI
 719                if (start <= pci_reserve_start_pfn &&
 720                    end > pci_reserve_start_pfn) {
 721                        if (end > pci_reserve_end_pfn)
 722                                init_free_pfn_range(pci_reserve_end_pfn, end);
 723                        end = pci_reserve_start_pfn;
 724                }
 725#endif
 726                init_free_pfn_range(start, end);
 727        }
 728}
 729#endif
 730
 731/*
 732 * paging_init() sets up the page tables - note that all of lowmem is
 733 * already mapped by head.S.
 734 */
 735void __init paging_init(void)
 736{
 737#ifdef __tilegx__
 738        pud_t *pud;
 739#endif
 740        pgd_t *pgd_base = swapper_pg_dir;
 741
 742        kernel_physical_mapping_init(pgd_base);
 743
 744        /* Fixed mappings, only the page table structure has to be created. */
 745        page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
 746                              FIXADDR_TOP, pgd_base);
 747
 748#ifdef CONFIG_HIGHMEM
 749        permanent_kmaps_init(pgd_base);
 750#endif
 751
 752#ifdef __tilegx__
 753        /*
 754         * Since GX allocates just one pmd_t array worth of vmalloc space,
 755         * we go ahead and allocate it statically here, then share it
 756         * globally.  As a result we don't have to worry about any task
 757         * changing init_mm once we get up and running, and there's no
 758         * need for e.g. vmalloc_sync_all().
 759         */
 760        BUILD_BUG_ON(pgd_index(VMALLOC_START) != pgd_index(VMALLOC_END - 1));
 761        pud = pud_offset(pgd_base + pgd_index(VMALLOC_START), VMALLOC_START);
 762        assign_pmd(pud, alloc_pmd());
 763#endif
 764}
 765
 766
 767/*
 768 * Walk the kernel page tables and derive the page_home() from
 769 * the PTEs, so that set_pte() can properly validate the caching
 770 * of all PTEs it sees.
 771 */
 772void __init set_page_homes(void)
 773{
 774}
 775
 776static void __init set_max_mapnr_init(void)
 777{
 778#ifdef CONFIG_FLATMEM
 779        max_mapnr = max_low_pfn;
 780#endif
 781}
 782
 783void __init mem_init(void)
 784{
 785        int i;
 786#ifndef __tilegx__
 787        void *last;
 788#endif
 789
 790#ifdef CONFIG_FLATMEM
 791        BUG_ON(!mem_map);
 792#endif
 793
 794#ifdef CONFIG_HIGHMEM
 795        /* check that fixmap and pkmap do not overlap */
 796        if (PKMAP_ADDR(LAST_PKMAP-1) >= FIXADDR_START) {
 797                pr_err("fixmap and kmap areas overlap - this will crash\n");
 798                pr_err("pkstart: %lxh pkend: %lxh fixstart %lxh\n",
 799                       PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP-1), FIXADDR_START);
 800                BUG();
 801        }
 802#endif
 803
 804        set_max_mapnr_init();
 805
 806        /* this will put all bootmem onto the freelists */
 807        free_all_bootmem();
 808
 809#ifndef CONFIG_64BIT
 810        /* count all remaining LOWMEM and give all HIGHMEM to page allocator */
 811        set_non_bootmem_pages_init();
 812#endif
 813
 814        mem_init_print_info(NULL);
 815
 816        /*
 817         * In debug mode, dump some interesting memory mappings.
 818         */
 819#ifdef CONFIG_HIGHMEM
 820        printk(KERN_DEBUG "  KMAP    %#lx - %#lx\n",
 821               FIXADDR_START, FIXADDR_TOP + PAGE_SIZE - 1);
 822        printk(KERN_DEBUG "  PKMAP   %#lx - %#lx\n",
 823               PKMAP_BASE, PKMAP_ADDR(LAST_PKMAP) - 1);
 824#endif
 825        printk(KERN_DEBUG "  VMALLOC %#lx - %#lx\n",
 826               _VMALLOC_START, _VMALLOC_END - 1);
 827#ifdef __tilegx__
 828        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 829                struct pglist_data *node = &node_data[i];
 830                if (node->node_present_pages) {
 831                        unsigned long start = (unsigned long)
 832                                pfn_to_kaddr(node->node_start_pfn);
 833                        unsigned long end = start +
 834                                (node->node_present_pages << PAGE_SHIFT);
 835                        printk(KERN_DEBUG "  MEM%d    %#lx - %#lx\n",
 836                               i, start, end - 1);
 837                }
 838        }
 839#else
 840        last = high_memory;
 841        for (i = MAX_NUMNODES-1; i >= 0; --i) {
 842                if ((unsigned long)vbase_map[i] != -1UL) {
 843                        printk(KERN_DEBUG "  LOWMEM%d %#lx - %#lx\n",
 844                               i, (unsigned long) (vbase_map[i]),
 845                               (unsigned long) (last-1));
 846                        last = vbase_map[i];
 847                }
 848        }
 849#endif
 850
 851#ifndef __tilegx__
 852        /*
 853         * Convert from using one lock for all atomic operations to
 854         * one per cpu.
 855         */
 856        __init_atomic_per_cpu();
 857#endif
 858}
 859
 860/*
 861 * this is for the non-NUMA, single node SMP system case.
 862 * Specifically, in the case of x86, we will always add
 863 * memory to the highmem for now.
 864 */
 865#ifndef CONFIG_NEED_MULTIPLE_NODES
 866int arch_add_memory(u64 start, u64 size, bool for_device)
 867{
 868        struct pglist_data *pgdata = &contig_page_data;
 869        struct zone *zone = pgdata->node_zones + MAX_NR_ZONES-1;
 870        unsigned long start_pfn = start >> PAGE_SHIFT;
 871        unsigned long nr_pages = size >> PAGE_SHIFT;
 872
 873        return __add_pages(zone, start_pfn, nr_pages);
 874}
 875
 876int remove_memory(u64 start, u64 size)
 877{
 878        return -EINVAL;
 879}
 880
 881#ifdef CONFIG_MEMORY_HOTREMOVE
 882int arch_remove_memory(u64 start, u64 size)
 883{
 884        /* TODO */
 885        return -EBUSY;
 886}
 887#endif
 888#endif
 889
 890struct kmem_cache *pgd_cache;
 891
 892void __init pgtable_cache_init(void)
 893{
 894        pgd_cache = kmem_cache_create("pgd", SIZEOF_PGD, SIZEOF_PGD, 0, NULL);
 895        if (!pgd_cache)
 896                panic("pgtable_cache_init(): Cannot create pgd cache");
 897}
 898
 899static long __write_once initfree = 1;
 900static bool __write_once set_initfree_done;
 901
 902/* Select whether to free (1) or mark unusable (0) the __init pages. */
 903static int __init set_initfree(char *str)
 904{
 905        long val;
 906        if (kstrtol(str, 0, &val) == 0) {
 907                set_initfree_done = true;
 908                initfree = val;
 909                pr_info("initfree: %s free init pages\n",
 910                        initfree ? "will" : "won't");
 911        }
 912        return 1;
 913}
 914__setup("initfree=", set_initfree);
 915
 916static void free_init_pages(char *what, unsigned long begin, unsigned long end)
 917{
 918        unsigned long addr = (unsigned long) begin;
 919
 920        /* Prefer user request first */
 921        if (!set_initfree_done) {
 922                if (debug_pagealloc_enabled())
 923                        initfree = 0;
 924        }
 925        if (kdata_huge && !initfree) {
 926                pr_warn("Warning: ignoring initfree=0: incompatible with kdata=huge\n");
 927                initfree = 1;
 928        }
 929        end = (end + PAGE_SIZE - 1) & PAGE_MASK;
 930        local_flush_tlb_pages(NULL, begin, PAGE_SIZE, end - begin);
 931        for (addr = begin; addr < end; addr += PAGE_SIZE) {
 932                /*
 933                 * Note we just reset the home here directly in the
 934                 * page table.  We know this is safe because our caller
 935                 * just flushed the caches on all the other cpus,
 936                 * and they won't be touching any of these pages.
 937                 */
 938                int pfn = kaddr_to_pfn((void *)addr);
 939                struct page *page = pfn_to_page(pfn);
 940                pte_t *ptep = virt_to_kpte(addr);
 941                if (!initfree) {
 942                        /*
 943                         * If debugging page accesses then do not free
 944                         * this memory but mark them not present - any
 945                         * buggy init-section access will create a
 946                         * kernel page fault:
 947                         */
 948                        pte_clear(&init_mm, addr, ptep);
 949                        continue;
 950                }
 951                if (pte_huge(*ptep))
 952                        BUG_ON(!kdata_huge);
 953                else
 954                        set_pte_at(&init_mm, addr, ptep,
 955                                   pfn_pte(pfn, PAGE_KERNEL));
 956                memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
 957                free_reserved_page(page);
 958        }
 959        pr_info("Freeing %s: %ldk freed\n", what, (end - begin) >> 10);
 960}
 961
 962void free_initmem(void)
 963{
 964        const unsigned long text_delta = MEM_SV_START - PAGE_OFFSET;
 965
 966        /*
 967         * Evict the cache on all cores to avoid incoherence.
 968         * We are guaranteed that no one will touch the init pages any more.
 969         */
 970        homecache_evict(&cpu_cacheable_map);
 971
 972        /* Free the data pages that we won't use again after init. */
 973        free_init_pages("unused kernel data",
 974                        (unsigned long)__init_begin,
 975                        (unsigned long)__init_end);
 976
 977        /*
 978         * Free the pages mapped from 0xc0000000 that correspond to code
 979         * pages from MEM_SV_START that we won't use again after init.
 980         */
 981        free_init_pages("unused kernel text",
 982                        (unsigned long)_sinittext - text_delta,
 983                        (unsigned long)_einittext - text_delta);
 984        /* Do a global TLB flush so everyone sees the changes. */
 985        flush_tlb_all();
 986}
 987