linux/arch/x86/events/intel/pt.c
<<
>>
Prefs
   1/*
   2 * Intel(R) Processor Trace PMU driver for perf
   3 * Copyright (c) 2013-2014, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * Intel PT is specified in the Intel Architecture Instruction Set Extensions
  15 * Programming Reference:
  16 * http://software.intel.com/en-us/intel-isa-extensions
  17 */
  18
  19#undef DEBUG
  20
  21#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  22
  23#include <linux/types.h>
  24#include <linux/slab.h>
  25#include <linux/device.h>
  26
  27#include <asm/perf_event.h>
  28#include <asm/insn.h>
  29#include <asm/io.h>
  30#include <asm/intel_pt.h>
  31
  32#include "../perf_event.h"
  33#include "pt.h"
  34
  35static DEFINE_PER_CPU(struct pt, pt_ctx);
  36
  37static struct pt_pmu pt_pmu;
  38
  39enum cpuid_regs {
  40        CR_EAX = 0,
  41        CR_ECX,
  42        CR_EDX,
  43        CR_EBX
  44};
  45
  46/*
  47 * Capabilities of Intel PT hardware, such as number of address bits or
  48 * supported output schemes, are cached and exported to userspace as "caps"
  49 * attribute group of pt pmu device
  50 * (/sys/bus/event_source/devices/intel_pt/caps/) so that userspace can store
  51 * relevant bits together with intel_pt traces.
  52 *
  53 * These are necessary for both trace decoding (payloads_lip, contains address
  54 * width encoded in IP-related packets), and event configuration (bitmasks with
  55 * permitted values for certain bit fields).
  56 */
  57#define PT_CAP(_n, _l, _r, _m)                                          \
  58        [PT_CAP_ ## _n] = { .name = __stringify(_n), .leaf = _l,        \
  59                            .reg = _r, .mask = _m }
  60
  61static struct pt_cap_desc {
  62        const char      *name;
  63        u32             leaf;
  64        u8              reg;
  65        u32             mask;
  66} pt_caps[] = {
  67        PT_CAP(max_subleaf,             0, CR_EAX, 0xffffffff),
  68        PT_CAP(cr3_filtering,           0, CR_EBX, BIT(0)),
  69        PT_CAP(psb_cyc,                 0, CR_EBX, BIT(1)),
  70        PT_CAP(ip_filtering,            0, CR_EBX, BIT(2)),
  71        PT_CAP(mtc,                     0, CR_EBX, BIT(3)),
  72        PT_CAP(topa_output,             0, CR_ECX, BIT(0)),
  73        PT_CAP(topa_multiple_entries,   0, CR_ECX, BIT(1)),
  74        PT_CAP(single_range_output,     0, CR_ECX, BIT(2)),
  75        PT_CAP(payloads_lip,            0, CR_ECX, BIT(31)),
  76        PT_CAP(num_address_ranges,      1, CR_EAX, 0x3),
  77        PT_CAP(mtc_periods,             1, CR_EAX, 0xffff0000),
  78        PT_CAP(cycle_thresholds,        1, CR_EBX, 0xffff),
  79        PT_CAP(psb_periods,             1, CR_EBX, 0xffff0000),
  80};
  81
  82static u32 pt_cap_get(enum pt_capabilities cap)
  83{
  84        struct pt_cap_desc *cd = &pt_caps[cap];
  85        u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
  86        unsigned int shift = __ffs(cd->mask);
  87
  88        return (c & cd->mask) >> shift;
  89}
  90
  91static ssize_t pt_cap_show(struct device *cdev,
  92                           struct device_attribute *attr,
  93                           char *buf)
  94{
  95        struct dev_ext_attribute *ea =
  96                container_of(attr, struct dev_ext_attribute, attr);
  97        enum pt_capabilities cap = (long)ea->var;
  98
  99        return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
 100}
 101
 102static struct attribute_group pt_cap_group = {
 103        .name   = "caps",
 104};
 105
 106PMU_FORMAT_ATTR(cyc,            "config:1"      );
 107PMU_FORMAT_ATTR(mtc,            "config:9"      );
 108PMU_FORMAT_ATTR(tsc,            "config:10"     );
 109PMU_FORMAT_ATTR(noretcomp,      "config:11"     );
 110PMU_FORMAT_ATTR(mtc_period,     "config:14-17"  );
 111PMU_FORMAT_ATTR(cyc_thresh,     "config:19-22"  );
 112PMU_FORMAT_ATTR(psb_period,     "config:24-27"  );
 113
 114static struct attribute *pt_formats_attr[] = {
 115        &format_attr_cyc.attr,
 116        &format_attr_mtc.attr,
 117        &format_attr_tsc.attr,
 118        &format_attr_noretcomp.attr,
 119        &format_attr_mtc_period.attr,
 120        &format_attr_cyc_thresh.attr,
 121        &format_attr_psb_period.attr,
 122        NULL,
 123};
 124
 125static struct attribute_group pt_format_group = {
 126        .name   = "format",
 127        .attrs  = pt_formats_attr,
 128};
 129
 130static ssize_t
 131pt_timing_attr_show(struct device *dev, struct device_attribute *attr,
 132                    char *page)
 133{
 134        struct perf_pmu_events_attr *pmu_attr =
 135                container_of(attr, struct perf_pmu_events_attr, attr);
 136
 137        switch (pmu_attr->id) {
 138        case 0:
 139                return sprintf(page, "%lu\n", pt_pmu.max_nonturbo_ratio);
 140        case 1:
 141                return sprintf(page, "%u:%u\n",
 142                               pt_pmu.tsc_art_num,
 143                               pt_pmu.tsc_art_den);
 144        default:
 145                break;
 146        }
 147
 148        return -EINVAL;
 149}
 150
 151PMU_EVENT_ATTR(max_nonturbo_ratio, timing_attr_max_nonturbo_ratio, 0,
 152               pt_timing_attr_show);
 153PMU_EVENT_ATTR(tsc_art_ratio, timing_attr_tsc_art_ratio, 1,
 154               pt_timing_attr_show);
 155
 156static struct attribute *pt_timing_attr[] = {
 157        &timing_attr_max_nonturbo_ratio.attr.attr,
 158        &timing_attr_tsc_art_ratio.attr.attr,
 159        NULL,
 160};
 161
 162static struct attribute_group pt_timing_group = {
 163        .attrs  = pt_timing_attr,
 164};
 165
 166static const struct attribute_group *pt_attr_groups[] = {
 167        &pt_cap_group,
 168        &pt_format_group,
 169        &pt_timing_group,
 170        NULL,
 171};
 172
 173static int __init pt_pmu_hw_init(void)
 174{
 175        struct dev_ext_attribute *de_attrs;
 176        struct attribute **attrs;
 177        size_t size;
 178        u64 reg;
 179        int ret;
 180        long i;
 181
 182        rdmsrl(MSR_PLATFORM_INFO, reg);
 183        pt_pmu.max_nonturbo_ratio = (reg & 0xff00) >> 8;
 184
 185        /*
 186         * if available, read in TSC to core crystal clock ratio,
 187         * otherwise, zero for numerator stands for "not enumerated"
 188         * as per SDM
 189         */
 190        if (boot_cpu_data.cpuid_level >= CPUID_TSC_LEAF) {
 191                u32 eax, ebx, ecx, edx;
 192
 193                cpuid(CPUID_TSC_LEAF, &eax, &ebx, &ecx, &edx);
 194
 195                pt_pmu.tsc_art_num = ebx;
 196                pt_pmu.tsc_art_den = eax;
 197        }
 198
 199        if (boot_cpu_has(X86_FEATURE_VMX)) {
 200                /*
 201                 * Intel SDM, 36.5 "Tracing post-VMXON" says that
 202                 * "IA32_VMX_MISC[bit 14]" being 1 means PT can trace
 203                 * post-VMXON.
 204                 */
 205                rdmsrl(MSR_IA32_VMX_MISC, reg);
 206                if (reg & BIT(14))
 207                        pt_pmu.vmx = true;
 208        }
 209
 210        attrs = NULL;
 211
 212        for (i = 0; i < PT_CPUID_LEAVES; i++) {
 213                cpuid_count(20, i,
 214                            &pt_pmu.caps[CR_EAX + i*PT_CPUID_REGS_NUM],
 215                            &pt_pmu.caps[CR_EBX + i*PT_CPUID_REGS_NUM],
 216                            &pt_pmu.caps[CR_ECX + i*PT_CPUID_REGS_NUM],
 217                            &pt_pmu.caps[CR_EDX + i*PT_CPUID_REGS_NUM]);
 218        }
 219
 220        ret = -ENOMEM;
 221        size = sizeof(struct attribute *) * (ARRAY_SIZE(pt_caps)+1);
 222        attrs = kzalloc(size, GFP_KERNEL);
 223        if (!attrs)
 224                goto fail;
 225
 226        size = sizeof(struct dev_ext_attribute) * (ARRAY_SIZE(pt_caps)+1);
 227        de_attrs = kzalloc(size, GFP_KERNEL);
 228        if (!de_attrs)
 229                goto fail;
 230
 231        for (i = 0; i < ARRAY_SIZE(pt_caps); i++) {
 232                struct dev_ext_attribute *de_attr = de_attrs + i;
 233
 234                de_attr->attr.attr.name = pt_caps[i].name;
 235
 236                sysfs_attr_init(&de_attr->attr.attr);
 237
 238                de_attr->attr.attr.mode         = S_IRUGO;
 239                de_attr->attr.show              = pt_cap_show;
 240                de_attr->var                    = (void *)i;
 241
 242                attrs[i] = &de_attr->attr.attr;
 243        }
 244
 245        pt_cap_group.attrs = attrs;
 246
 247        return 0;
 248
 249fail:
 250        kfree(attrs);
 251
 252        return ret;
 253}
 254
 255#define RTIT_CTL_CYC_PSB (RTIT_CTL_CYCLEACC     | \
 256                          RTIT_CTL_CYC_THRESH   | \
 257                          RTIT_CTL_PSB_FREQ)
 258
 259#define RTIT_CTL_MTC    (RTIT_CTL_MTC_EN        | \
 260                         RTIT_CTL_MTC_RANGE)
 261
 262#define PT_CONFIG_MASK (RTIT_CTL_TSC_EN         | \
 263                        RTIT_CTL_DISRETC        | \
 264                        RTIT_CTL_CYC_PSB        | \
 265                        RTIT_CTL_MTC)
 266
 267static bool pt_event_valid(struct perf_event *event)
 268{
 269        u64 config = event->attr.config;
 270        u64 allowed, requested;
 271
 272        if ((config & PT_CONFIG_MASK) != config)
 273                return false;
 274
 275        if (config & RTIT_CTL_CYC_PSB) {
 276                if (!pt_cap_get(PT_CAP_psb_cyc))
 277                        return false;
 278
 279                allowed = pt_cap_get(PT_CAP_psb_periods);
 280                requested = (config & RTIT_CTL_PSB_FREQ) >>
 281                        RTIT_CTL_PSB_FREQ_OFFSET;
 282                if (requested && (!(allowed & BIT(requested))))
 283                        return false;
 284
 285                allowed = pt_cap_get(PT_CAP_cycle_thresholds);
 286                requested = (config & RTIT_CTL_CYC_THRESH) >>
 287                        RTIT_CTL_CYC_THRESH_OFFSET;
 288                if (requested && (!(allowed & BIT(requested))))
 289                        return false;
 290        }
 291
 292        if (config & RTIT_CTL_MTC) {
 293                /*
 294                 * In the unlikely case that CPUID lists valid mtc periods,
 295                 * but not the mtc capability, drop out here.
 296                 *
 297                 * Spec says that setting mtc period bits while mtc bit in
 298                 * CPUID is 0 will #GP, so better safe than sorry.
 299                 */
 300                if (!pt_cap_get(PT_CAP_mtc))
 301                        return false;
 302
 303                allowed = pt_cap_get(PT_CAP_mtc_periods);
 304                if (!allowed)
 305                        return false;
 306
 307                requested = (config & RTIT_CTL_MTC_RANGE) >>
 308                        RTIT_CTL_MTC_RANGE_OFFSET;
 309
 310                if (!(allowed & BIT(requested)))
 311                        return false;
 312        }
 313
 314        return true;
 315}
 316
 317/*
 318 * PT configuration helpers
 319 * These all are cpu affine and operate on a local PT
 320 */
 321
 322/* Address ranges and their corresponding msr configuration registers */
 323static const struct pt_address_range {
 324        unsigned long   msr_a;
 325        unsigned long   msr_b;
 326        unsigned int    reg_off;
 327} pt_address_ranges[] = {
 328        {
 329                .msr_a   = MSR_IA32_RTIT_ADDR0_A,
 330                .msr_b   = MSR_IA32_RTIT_ADDR0_B,
 331                .reg_off = RTIT_CTL_ADDR0_OFFSET,
 332        },
 333        {
 334                .msr_a   = MSR_IA32_RTIT_ADDR1_A,
 335                .msr_b   = MSR_IA32_RTIT_ADDR1_B,
 336                .reg_off = RTIT_CTL_ADDR1_OFFSET,
 337        },
 338        {
 339                .msr_a   = MSR_IA32_RTIT_ADDR2_A,
 340                .msr_b   = MSR_IA32_RTIT_ADDR2_B,
 341                .reg_off = RTIT_CTL_ADDR2_OFFSET,
 342        },
 343        {
 344                .msr_a   = MSR_IA32_RTIT_ADDR3_A,
 345                .msr_b   = MSR_IA32_RTIT_ADDR3_B,
 346                .reg_off = RTIT_CTL_ADDR3_OFFSET,
 347        }
 348};
 349
 350static u64 pt_config_filters(struct perf_event *event)
 351{
 352        struct pt_filters *filters = event->hw.addr_filters;
 353        struct pt *pt = this_cpu_ptr(&pt_ctx);
 354        unsigned int range = 0;
 355        u64 rtit_ctl = 0;
 356
 357        if (!filters)
 358                return 0;
 359
 360        perf_event_addr_filters_sync(event);
 361
 362        for (range = 0; range < filters->nr_filters; range++) {
 363                struct pt_filter *filter = &filters->filter[range];
 364
 365                /*
 366                 * Note, if the range has zero start/end addresses due
 367                 * to its dynamic object not being loaded yet, we just
 368                 * go ahead and program zeroed range, which will simply
 369                 * produce no data. Note^2: if executable code at 0x0
 370                 * is a concern, we can set up an "invalid" configuration
 371                 * such as msr_b < msr_a.
 372                 */
 373
 374                /* avoid redundant msr writes */
 375                if (pt->filters.filter[range].msr_a != filter->msr_a) {
 376                        wrmsrl(pt_address_ranges[range].msr_a, filter->msr_a);
 377                        pt->filters.filter[range].msr_a = filter->msr_a;
 378                }
 379
 380                if (pt->filters.filter[range].msr_b != filter->msr_b) {
 381                        wrmsrl(pt_address_ranges[range].msr_b, filter->msr_b);
 382                        pt->filters.filter[range].msr_b = filter->msr_b;
 383                }
 384
 385                rtit_ctl |= filter->config << pt_address_ranges[range].reg_off;
 386        }
 387
 388        return rtit_ctl;
 389}
 390
 391static void pt_config(struct perf_event *event)
 392{
 393        u64 reg;
 394
 395        if (!event->hw.itrace_started) {
 396                event->hw.itrace_started = 1;
 397                wrmsrl(MSR_IA32_RTIT_STATUS, 0);
 398        }
 399
 400        reg = pt_config_filters(event);
 401        reg |= RTIT_CTL_TOPA | RTIT_CTL_BRANCH_EN | RTIT_CTL_TRACEEN;
 402
 403        if (!event->attr.exclude_kernel)
 404                reg |= RTIT_CTL_OS;
 405        if (!event->attr.exclude_user)
 406                reg |= RTIT_CTL_USR;
 407
 408        reg |= (event->attr.config & PT_CONFIG_MASK);
 409
 410        event->hw.config = reg;
 411        wrmsrl(MSR_IA32_RTIT_CTL, reg);
 412}
 413
 414static void pt_config_stop(struct perf_event *event)
 415{
 416        u64 ctl = READ_ONCE(event->hw.config);
 417
 418        /* may be already stopped by a PMI */
 419        if (!(ctl & RTIT_CTL_TRACEEN))
 420                return;
 421
 422        ctl &= ~RTIT_CTL_TRACEEN;
 423        wrmsrl(MSR_IA32_RTIT_CTL, ctl);
 424
 425        WRITE_ONCE(event->hw.config, ctl);
 426
 427        /*
 428         * A wrmsr that disables trace generation serializes other PT
 429         * registers and causes all data packets to be written to memory,
 430         * but a fence is required for the data to become globally visible.
 431         *
 432         * The below WMB, separating data store and aux_head store matches
 433         * the consumer's RMB that separates aux_head load and data load.
 434         */
 435        wmb();
 436}
 437
 438static void pt_config_buffer(void *buf, unsigned int topa_idx,
 439                             unsigned int output_off)
 440{
 441        u64 reg;
 442
 443        wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, virt_to_phys(buf));
 444
 445        reg = 0x7f | ((u64)topa_idx << 7) | ((u64)output_off << 32);
 446
 447        wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, reg);
 448}
 449
 450/*
 451 * Keep ToPA table-related metadata on the same page as the actual table,
 452 * taking up a few words from the top
 453 */
 454
 455#define TENTS_PER_PAGE (((PAGE_SIZE - 40) / sizeof(struct topa_entry)) - 1)
 456
 457/**
 458 * struct topa - page-sized ToPA table with metadata at the top
 459 * @table:      actual ToPA table entries, as understood by PT hardware
 460 * @list:       linkage to struct pt_buffer's list of tables
 461 * @phys:       physical address of this page
 462 * @offset:     offset of the first entry in this table in the buffer
 463 * @size:       total size of all entries in this table
 464 * @last:       index of the last initialized entry in this table
 465 */
 466struct topa {
 467        struct topa_entry       table[TENTS_PER_PAGE];
 468        struct list_head        list;
 469        u64                     phys;
 470        u64                     offset;
 471        size_t                  size;
 472        int                     last;
 473};
 474
 475/* make -1 stand for the last table entry */
 476#define TOPA_ENTRY(t, i) ((i) == -1 ? &(t)->table[(t)->last] : &(t)->table[(i)])
 477
 478/**
 479 * topa_alloc() - allocate page-sized ToPA table
 480 * @cpu:        CPU on which to allocate.
 481 * @gfp:        Allocation flags.
 482 *
 483 * Return:      On success, return the pointer to ToPA table page.
 484 */
 485static struct topa *topa_alloc(int cpu, gfp_t gfp)
 486{
 487        int node = cpu_to_node(cpu);
 488        struct topa *topa;
 489        struct page *p;
 490
 491        p = alloc_pages_node(node, gfp | __GFP_ZERO, 0);
 492        if (!p)
 493                return NULL;
 494
 495        topa = page_address(p);
 496        topa->last = 0;
 497        topa->phys = page_to_phys(p);
 498
 499        /*
 500         * In case of singe-entry ToPA, always put the self-referencing END
 501         * link as the 2nd entry in the table
 502         */
 503        if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
 504                TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
 505                TOPA_ENTRY(topa, 1)->end = 1;
 506        }
 507
 508        return topa;
 509}
 510
 511/**
 512 * topa_free() - free a page-sized ToPA table
 513 * @topa:       Table to deallocate.
 514 */
 515static void topa_free(struct topa *topa)
 516{
 517        free_page((unsigned long)topa);
 518}
 519
 520/**
 521 * topa_insert_table() - insert a ToPA table into a buffer
 522 * @buf:         PT buffer that's being extended.
 523 * @topa:        New topa table to be inserted.
 524 *
 525 * If it's the first table in this buffer, set up buffer's pointers
 526 * accordingly; otherwise, add a END=1 link entry to @topa to the current
 527 * "last" table and adjust the last table pointer to @topa.
 528 */
 529static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
 530{
 531        struct topa *last = buf->last;
 532
 533        list_add_tail(&topa->list, &buf->tables);
 534
 535        if (!buf->first) {
 536                buf->first = buf->last = buf->cur = topa;
 537                return;
 538        }
 539
 540        topa->offset = last->offset + last->size;
 541        buf->last = topa;
 542
 543        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 544                return;
 545
 546        BUG_ON(last->last != TENTS_PER_PAGE - 1);
 547
 548        TOPA_ENTRY(last, -1)->base = topa->phys >> TOPA_SHIFT;
 549        TOPA_ENTRY(last, -1)->end = 1;
 550}
 551
 552/**
 553 * topa_table_full() - check if a ToPA table is filled up
 554 * @topa:       ToPA table.
 555 */
 556static bool topa_table_full(struct topa *topa)
 557{
 558        /* single-entry ToPA is a special case */
 559        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 560                return !!topa->last;
 561
 562        return topa->last == TENTS_PER_PAGE - 1;
 563}
 564
 565/**
 566 * topa_insert_pages() - create a list of ToPA tables
 567 * @buf:        PT buffer being initialized.
 568 * @gfp:        Allocation flags.
 569 *
 570 * This initializes a list of ToPA tables with entries from
 571 * the data_pages provided by rb_alloc_aux().
 572 *
 573 * Return:      0 on success or error code.
 574 */
 575static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
 576{
 577        struct topa *topa = buf->last;
 578        int order = 0;
 579        struct page *p;
 580
 581        p = virt_to_page(buf->data_pages[buf->nr_pages]);
 582        if (PagePrivate(p))
 583                order = page_private(p);
 584
 585        if (topa_table_full(topa)) {
 586                topa = topa_alloc(buf->cpu, gfp);
 587                if (!topa)
 588                        return -ENOMEM;
 589
 590                topa_insert_table(buf, topa);
 591        }
 592
 593        TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
 594        TOPA_ENTRY(topa, -1)->size = order;
 595        if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
 596                TOPA_ENTRY(topa, -1)->intr = 1;
 597                TOPA_ENTRY(topa, -1)->stop = 1;
 598        }
 599
 600        topa->last++;
 601        topa->size += sizes(order);
 602
 603        buf->nr_pages += 1ul << order;
 604
 605        return 0;
 606}
 607
 608/**
 609 * pt_topa_dump() - print ToPA tables and their entries
 610 * @buf:        PT buffer.
 611 */
 612static void pt_topa_dump(struct pt_buffer *buf)
 613{
 614        struct topa *topa;
 615
 616        list_for_each_entry(topa, &buf->tables, list) {
 617                int i;
 618
 619                pr_debug("# table @%p (%016Lx), off %llx size %zx\n", topa->table,
 620                         topa->phys, topa->offset, topa->size);
 621                for (i = 0; i < TENTS_PER_PAGE; i++) {
 622                        pr_debug("# entry @%p (%lx sz %u %c%c%c) raw=%16llx\n",
 623                                 &topa->table[i],
 624                                 (unsigned long)topa->table[i].base << TOPA_SHIFT,
 625                                 sizes(topa->table[i].size),
 626                                 topa->table[i].end ?  'E' : ' ',
 627                                 topa->table[i].intr ? 'I' : ' ',
 628                                 topa->table[i].stop ? 'S' : ' ',
 629                                 *(u64 *)&topa->table[i]);
 630                        if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
 631                             topa->table[i].stop) ||
 632                            topa->table[i].end)
 633                                break;
 634                }
 635        }
 636}
 637
 638/**
 639 * pt_buffer_advance() - advance to the next output region
 640 * @buf:        PT buffer.
 641 *
 642 * Advance the current pointers in the buffer to the next ToPA entry.
 643 */
 644static void pt_buffer_advance(struct pt_buffer *buf)
 645{
 646        buf->output_off = 0;
 647        buf->cur_idx++;
 648
 649        if (buf->cur_idx == buf->cur->last) {
 650                if (buf->cur == buf->last)
 651                        buf->cur = buf->first;
 652                else
 653                        buf->cur = list_entry(buf->cur->list.next, struct topa,
 654                                              list);
 655                buf->cur_idx = 0;
 656        }
 657}
 658
 659/**
 660 * pt_update_head() - calculate current offsets and sizes
 661 * @pt:         Per-cpu pt context.
 662 *
 663 * Update buffer's current write pointer position and data size.
 664 */
 665static void pt_update_head(struct pt *pt)
 666{
 667        struct pt_buffer *buf = perf_get_aux(&pt->handle);
 668        u64 topa_idx, base, old;
 669
 670        /* offset of the first region in this table from the beginning of buf */
 671        base = buf->cur->offset + buf->output_off;
 672
 673        /* offset of the current output region within this table */
 674        for (topa_idx = 0; topa_idx < buf->cur_idx; topa_idx++)
 675                base += sizes(buf->cur->table[topa_idx].size);
 676
 677        if (buf->snapshot) {
 678                local_set(&buf->data_size, base);
 679        } else {
 680                old = (local64_xchg(&buf->head, base) &
 681                       ((buf->nr_pages << PAGE_SHIFT) - 1));
 682                if (base < old)
 683                        base += buf->nr_pages << PAGE_SHIFT;
 684
 685                local_add(base - old, &buf->data_size);
 686        }
 687}
 688
 689/**
 690 * pt_buffer_region() - obtain current output region's address
 691 * @buf:        PT buffer.
 692 */
 693static void *pt_buffer_region(struct pt_buffer *buf)
 694{
 695        return phys_to_virt(buf->cur->table[buf->cur_idx].base << TOPA_SHIFT);
 696}
 697
 698/**
 699 * pt_buffer_region_size() - obtain current output region's size
 700 * @buf:        PT buffer.
 701 */
 702static size_t pt_buffer_region_size(struct pt_buffer *buf)
 703{
 704        return sizes(buf->cur->table[buf->cur_idx].size);
 705}
 706
 707/**
 708 * pt_handle_status() - take care of possible status conditions
 709 * @pt:         Per-cpu pt context.
 710 */
 711static void pt_handle_status(struct pt *pt)
 712{
 713        struct pt_buffer *buf = perf_get_aux(&pt->handle);
 714        int advance = 0;
 715        u64 status;
 716
 717        rdmsrl(MSR_IA32_RTIT_STATUS, status);
 718
 719        if (status & RTIT_STATUS_ERROR) {
 720                pr_err_ratelimited("ToPA ERROR encountered, trying to recover\n");
 721                pt_topa_dump(buf);
 722                status &= ~RTIT_STATUS_ERROR;
 723        }
 724
 725        if (status & RTIT_STATUS_STOPPED) {
 726                status &= ~RTIT_STATUS_STOPPED;
 727
 728                /*
 729                 * On systems that only do single-entry ToPA, hitting STOP
 730                 * means we are already losing data; need to let the decoder
 731                 * know.
 732                 */
 733                if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
 734                    buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
 735                        local_inc(&buf->lost);
 736                        advance++;
 737                }
 738        }
 739
 740        /*
 741         * Also on single-entry ToPA implementations, interrupt will come
 742         * before the output reaches its output region's boundary.
 743         */
 744        if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
 745            pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
 746                void *head = pt_buffer_region(buf);
 747
 748                /* everything within this margin needs to be zeroed out */
 749                memset(head + buf->output_off, 0,
 750                       pt_buffer_region_size(buf) -
 751                       buf->output_off);
 752                advance++;
 753        }
 754
 755        if (advance)
 756                pt_buffer_advance(buf);
 757
 758        wrmsrl(MSR_IA32_RTIT_STATUS, status);
 759}
 760
 761/**
 762 * pt_read_offset() - translate registers into buffer pointers
 763 * @buf:        PT buffer.
 764 *
 765 * Set buffer's output pointers from MSR values.
 766 */
 767static void pt_read_offset(struct pt_buffer *buf)
 768{
 769        u64 offset, base_topa;
 770
 771        rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, base_topa);
 772        buf->cur = phys_to_virt(base_topa);
 773
 774        rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, offset);
 775        /* offset within current output region */
 776        buf->output_off = offset >> 32;
 777        /* index of current output region within this table */
 778        buf->cur_idx = (offset & 0xffffff80) >> 7;
 779}
 780
 781/**
 782 * pt_topa_next_entry() - obtain index of the first page in the next ToPA entry
 783 * @buf:        PT buffer.
 784 * @pg:         Page offset in the buffer.
 785 *
 786 * When advancing to the next output region (ToPA entry), given a page offset
 787 * into the buffer, we need to find the offset of the first page in the next
 788 * region.
 789 */
 790static unsigned int pt_topa_next_entry(struct pt_buffer *buf, unsigned int pg)
 791{
 792        struct topa_entry *te = buf->topa_index[pg];
 793
 794        /* one region */
 795        if (buf->first == buf->last && buf->first->last == 1)
 796                return pg;
 797
 798        do {
 799                pg++;
 800                pg &= buf->nr_pages - 1;
 801        } while (buf->topa_index[pg] == te);
 802
 803        return pg;
 804}
 805
 806/**
 807 * pt_buffer_reset_markers() - place interrupt and stop bits in the buffer
 808 * @buf:        PT buffer.
 809 * @handle:     Current output handle.
 810 *
 811 * Place INT and STOP marks to prevent overwriting old data that the consumer
 812 * hasn't yet collected and waking up the consumer after a certain fraction of
 813 * the buffer has filled up. Only needed and sensible for non-snapshot counters.
 814 *
 815 * This obviously relies on buf::head to figure out buffer markers, so it has
 816 * to be called after pt_buffer_reset_offsets() and before the hardware tracing
 817 * is enabled.
 818 */
 819static int pt_buffer_reset_markers(struct pt_buffer *buf,
 820                                   struct perf_output_handle *handle)
 821
 822{
 823        unsigned long head = local64_read(&buf->head);
 824        unsigned long idx, npages, wakeup;
 825
 826        /* can't stop in the middle of an output region */
 827        if (buf->output_off + handle->size + 1 <
 828            sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size))
 829                return -EINVAL;
 830
 831
 832        /* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
 833        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
 834                return 0;
 835
 836        /* clear STOP and INT from current entry */
 837        buf->topa_index[buf->stop_pos]->stop = 0;
 838        buf->topa_index[buf->stop_pos]->intr = 0;
 839        buf->topa_index[buf->intr_pos]->intr = 0;
 840
 841        /* how many pages till the STOP marker */
 842        npages = handle->size >> PAGE_SHIFT;
 843
 844        /* if it's on a page boundary, fill up one more page */
 845        if (!offset_in_page(head + handle->size + 1))
 846                npages++;
 847
 848        idx = (head >> PAGE_SHIFT) + npages;
 849        idx &= buf->nr_pages - 1;
 850        buf->stop_pos = idx;
 851
 852        wakeup = handle->wakeup >> PAGE_SHIFT;
 853
 854        /* in the worst case, wake up the consumer one page before hard stop */
 855        idx = (head >> PAGE_SHIFT) + npages - 1;
 856        if (idx > wakeup)
 857                idx = wakeup;
 858
 859        idx &= buf->nr_pages - 1;
 860        buf->intr_pos = idx;
 861
 862        buf->topa_index[buf->stop_pos]->stop = 1;
 863        buf->topa_index[buf->stop_pos]->intr = 1;
 864        buf->topa_index[buf->intr_pos]->intr = 1;
 865
 866        return 0;
 867}
 868
 869/**
 870 * pt_buffer_setup_topa_index() - build topa_index[] table of regions
 871 * @buf:        PT buffer.
 872 *
 873 * topa_index[] references output regions indexed by offset into the
 874 * buffer for purposes of quick reverse lookup.
 875 */
 876static void pt_buffer_setup_topa_index(struct pt_buffer *buf)
 877{
 878        struct topa *cur = buf->first, *prev = buf->last;
 879        struct topa_entry *te_cur = TOPA_ENTRY(cur, 0),
 880                *te_prev = TOPA_ENTRY(prev, prev->last - 1);
 881        int pg = 0, idx = 0;
 882
 883        while (pg < buf->nr_pages) {
 884                int tidx;
 885
 886                /* pages within one topa entry */
 887                for (tidx = 0; tidx < 1 << te_cur->size; tidx++, pg++)
 888                        buf->topa_index[pg] = te_prev;
 889
 890                te_prev = te_cur;
 891
 892                if (idx == cur->last - 1) {
 893                        /* advance to next topa table */
 894                        idx = 0;
 895                        cur = list_entry(cur->list.next, struct topa, list);
 896                } else {
 897                        idx++;
 898                }
 899                te_cur = TOPA_ENTRY(cur, idx);
 900        }
 901
 902}
 903
 904/**
 905 * pt_buffer_reset_offsets() - adjust buffer's write pointers from aux_head
 906 * @buf:        PT buffer.
 907 * @head:       Write pointer (aux_head) from AUX buffer.
 908 *
 909 * Find the ToPA table and entry corresponding to given @head and set buffer's
 910 * "current" pointers accordingly. This is done after we have obtained the
 911 * current aux_head position from a successful call to perf_aux_output_begin()
 912 * to make sure the hardware is writing to the right place.
 913 *
 914 * This function modifies buf::{cur,cur_idx,output_off} that will be programmed
 915 * into PT msrs when the tracing is enabled and buf::head and buf::data_size,
 916 * which are used to determine INT and STOP markers' locations by a subsequent
 917 * call to pt_buffer_reset_markers().
 918 */
 919static void pt_buffer_reset_offsets(struct pt_buffer *buf, unsigned long head)
 920{
 921        int pg;
 922
 923        if (buf->snapshot)
 924                head &= (buf->nr_pages << PAGE_SHIFT) - 1;
 925
 926        pg = (head >> PAGE_SHIFT) & (buf->nr_pages - 1);
 927        pg = pt_topa_next_entry(buf, pg);
 928
 929        buf->cur = (struct topa *)((unsigned long)buf->topa_index[pg] & PAGE_MASK);
 930        buf->cur_idx = ((unsigned long)buf->topa_index[pg] -
 931                        (unsigned long)buf->cur) / sizeof(struct topa_entry);
 932        buf->output_off = head & (sizes(buf->cur->table[buf->cur_idx].size) - 1);
 933
 934        local64_set(&buf->head, head);
 935        local_set(&buf->data_size, 0);
 936}
 937
 938/**
 939 * pt_buffer_fini_topa() - deallocate ToPA structure of a buffer
 940 * @buf:        PT buffer.
 941 */
 942static void pt_buffer_fini_topa(struct pt_buffer *buf)
 943{
 944        struct topa *topa, *iter;
 945
 946        list_for_each_entry_safe(topa, iter, &buf->tables, list) {
 947                /*
 948                 * right now, this is in free_aux() path only, so
 949                 * no need to unlink this table from the list
 950                 */
 951                topa_free(topa);
 952        }
 953}
 954
 955/**
 956 * pt_buffer_init_topa() - initialize ToPA table for pt buffer
 957 * @buf:        PT buffer.
 958 * @size:       Total size of all regions within this ToPA.
 959 * @gfp:        Allocation flags.
 960 */
 961static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
 962                               gfp_t gfp)
 963{
 964        struct topa *topa;
 965        int err;
 966
 967        topa = topa_alloc(buf->cpu, gfp);
 968        if (!topa)
 969                return -ENOMEM;
 970
 971        topa_insert_table(buf, topa);
 972
 973        while (buf->nr_pages < nr_pages) {
 974                err = topa_insert_pages(buf, gfp);
 975                if (err) {
 976                        pt_buffer_fini_topa(buf);
 977                        return -ENOMEM;
 978                }
 979        }
 980
 981        pt_buffer_setup_topa_index(buf);
 982
 983        /* link last table to the first one, unless we're double buffering */
 984        if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
 985                TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
 986                TOPA_ENTRY(buf->last, -1)->end = 1;
 987        }
 988
 989        pt_topa_dump(buf);
 990        return 0;
 991}
 992
 993/**
 994 * pt_buffer_setup_aux() - set up topa tables for a PT buffer
 995 * @cpu:        Cpu on which to allocate, -1 means current.
 996 * @pages:      Array of pointers to buffer pages passed from perf core.
 997 * @nr_pages:   Number of pages in the buffer.
 998 * @snapshot:   If this is a snapshot/overwrite counter.
 999 *
1000 * This is a pmu::setup_aux callback that sets up ToPA tables and all the
1001 * bookkeeping for an AUX buffer.
1002 *
1003 * Return:      Our private PT buffer structure.
1004 */
1005static void *
1006pt_buffer_setup_aux(int cpu, void **pages, int nr_pages, bool snapshot)
1007{
1008        struct pt_buffer *buf;
1009        int node, ret;
1010
1011        if (!nr_pages)
1012                return NULL;
1013
1014        if (cpu == -1)
1015                cpu = raw_smp_processor_id();
1016        node = cpu_to_node(cpu);
1017
1018        buf = kzalloc_node(offsetof(struct pt_buffer, topa_index[nr_pages]),
1019                           GFP_KERNEL, node);
1020        if (!buf)
1021                return NULL;
1022
1023        buf->cpu = cpu;
1024        buf->snapshot = snapshot;
1025        buf->data_pages = pages;
1026
1027        INIT_LIST_HEAD(&buf->tables);
1028
1029        ret = pt_buffer_init_topa(buf, nr_pages, GFP_KERNEL);
1030        if (ret) {
1031                kfree(buf);
1032                return NULL;
1033        }
1034
1035        return buf;
1036}
1037
1038/**
1039 * pt_buffer_free_aux() - perf AUX deallocation path callback
1040 * @data:       PT buffer.
1041 */
1042static void pt_buffer_free_aux(void *data)
1043{
1044        struct pt_buffer *buf = data;
1045
1046        pt_buffer_fini_topa(buf);
1047        kfree(buf);
1048}
1049
1050static int pt_addr_filters_init(struct perf_event *event)
1051{
1052        struct pt_filters *filters;
1053        int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
1054
1055        if (!pt_cap_get(PT_CAP_num_address_ranges))
1056                return 0;
1057
1058        filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
1059        if (!filters)
1060                return -ENOMEM;
1061
1062        if (event->parent)
1063                memcpy(filters, event->parent->hw.addr_filters,
1064                       sizeof(*filters));
1065
1066        event->hw.addr_filters = filters;
1067
1068        return 0;
1069}
1070
1071static void pt_addr_filters_fini(struct perf_event *event)
1072{
1073        kfree(event->hw.addr_filters);
1074        event->hw.addr_filters = NULL;
1075}
1076
1077static inline bool valid_kernel_ip(unsigned long ip)
1078{
1079        return virt_addr_valid(ip) && kernel_ip(ip);
1080}
1081
1082static int pt_event_addr_filters_validate(struct list_head *filters)
1083{
1084        struct perf_addr_filter *filter;
1085        int range = 0;
1086
1087        list_for_each_entry(filter, filters, entry) {
1088                /* PT doesn't support single address triggers */
1089                if (!filter->range || !filter->size)
1090                        return -EOPNOTSUPP;
1091
1092                if (!filter->inode) {
1093                        if (!valid_kernel_ip(filter->offset))
1094                                return -EINVAL;
1095
1096                        if (!valid_kernel_ip(filter->offset + filter->size))
1097                                return -EINVAL;
1098                }
1099
1100                if (++range > pt_cap_get(PT_CAP_num_address_ranges))
1101                        return -EOPNOTSUPP;
1102        }
1103
1104        return 0;
1105}
1106
1107static void pt_event_addr_filters_sync(struct perf_event *event)
1108{
1109        struct perf_addr_filters_head *head = perf_event_addr_filters(event);
1110        unsigned long msr_a, msr_b, *offs = event->addr_filters_offs;
1111        struct pt_filters *filters = event->hw.addr_filters;
1112        struct perf_addr_filter *filter;
1113        int range = 0;
1114
1115        if (!filters)
1116                return;
1117
1118        list_for_each_entry(filter, &head->list, entry) {
1119                if (filter->inode && !offs[range]) {
1120                        msr_a = msr_b = 0;
1121                } else {
1122                        /* apply the offset */
1123                        msr_a = filter->offset + offs[range];
1124                        msr_b = filter->size + msr_a - 1;
1125                }
1126
1127                filters->filter[range].msr_a  = msr_a;
1128                filters->filter[range].msr_b  = msr_b;
1129                filters->filter[range].config = filter->filter ? 1 : 2;
1130                range++;
1131        }
1132
1133        filters->nr_filters = range;
1134}
1135
1136/**
1137 * intel_pt_interrupt() - PT PMI handler
1138 */
1139void intel_pt_interrupt(void)
1140{
1141        struct pt *pt = this_cpu_ptr(&pt_ctx);
1142        struct pt_buffer *buf;
1143        struct perf_event *event = pt->handle.event;
1144
1145        /*
1146         * There may be a dangling PT bit in the interrupt status register
1147         * after PT has been disabled by pt_event_stop(). Make sure we don't
1148         * do anything (particularly, re-enable) for this event here.
1149         */
1150        if (!READ_ONCE(pt->handle_nmi))
1151                return;
1152
1153        /*
1154         * If VMX is on and PT does not support it, don't touch anything.
1155         */
1156        if (READ_ONCE(pt->vmx_on))
1157                return;
1158
1159        if (!event)
1160                return;
1161
1162        pt_config_stop(event);
1163
1164        buf = perf_get_aux(&pt->handle);
1165        if (!buf)
1166                return;
1167
1168        pt_read_offset(buf);
1169
1170        pt_handle_status(pt);
1171
1172        pt_update_head(pt);
1173
1174        perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1175                            local_xchg(&buf->lost, 0));
1176
1177        if (!event->hw.state) {
1178                int ret;
1179
1180                buf = perf_aux_output_begin(&pt->handle, event);
1181                if (!buf) {
1182                        event->hw.state = PERF_HES_STOPPED;
1183                        return;
1184                }
1185
1186                pt_buffer_reset_offsets(buf, pt->handle.head);
1187                /* snapshot counters don't use PMI, so it's safe */
1188                ret = pt_buffer_reset_markers(buf, &pt->handle);
1189                if (ret) {
1190                        perf_aux_output_end(&pt->handle, 0, true);
1191                        return;
1192                }
1193
1194                pt_config_buffer(buf->cur->table, buf->cur_idx,
1195                                 buf->output_off);
1196                pt_config(event);
1197        }
1198}
1199
1200void intel_pt_handle_vmx(int on)
1201{
1202        struct pt *pt = this_cpu_ptr(&pt_ctx);
1203        struct perf_event *event;
1204        unsigned long flags;
1205
1206        /* PT plays nice with VMX, do nothing */
1207        if (pt_pmu.vmx)
1208                return;
1209
1210        /*
1211         * VMXON will clear RTIT_CTL.TraceEn; we need to make
1212         * sure to not try to set it while VMX is on. Disable
1213         * interrupts to avoid racing with pmu callbacks;
1214         * concurrent PMI should be handled fine.
1215         */
1216        local_irq_save(flags);
1217        WRITE_ONCE(pt->vmx_on, on);
1218
1219        if (on) {
1220                /* prevent pt_config_stop() from writing RTIT_CTL */
1221                event = pt->handle.event;
1222                if (event)
1223                        event->hw.config = 0;
1224        }
1225        local_irq_restore(flags);
1226}
1227EXPORT_SYMBOL_GPL(intel_pt_handle_vmx);
1228
1229/*
1230 * PMU callbacks
1231 */
1232
1233static void pt_event_start(struct perf_event *event, int mode)
1234{
1235        struct hw_perf_event *hwc = &event->hw;
1236        struct pt *pt = this_cpu_ptr(&pt_ctx);
1237        struct pt_buffer *buf;
1238
1239        if (READ_ONCE(pt->vmx_on))
1240                return;
1241
1242        buf = perf_aux_output_begin(&pt->handle, event);
1243        if (!buf)
1244                goto fail_stop;
1245
1246        pt_buffer_reset_offsets(buf, pt->handle.head);
1247        if (!buf->snapshot) {
1248                if (pt_buffer_reset_markers(buf, &pt->handle))
1249                        goto fail_end_stop;
1250        }
1251
1252        WRITE_ONCE(pt->handle_nmi, 1);
1253        hwc->state = 0;
1254
1255        pt_config_buffer(buf->cur->table, buf->cur_idx,
1256                         buf->output_off);
1257        pt_config(event);
1258
1259        return;
1260
1261fail_end_stop:
1262        perf_aux_output_end(&pt->handle, 0, true);
1263fail_stop:
1264        hwc->state = PERF_HES_STOPPED;
1265}
1266
1267static void pt_event_stop(struct perf_event *event, int mode)
1268{
1269        struct pt *pt = this_cpu_ptr(&pt_ctx);
1270
1271        /*
1272         * Protect against the PMI racing with disabling wrmsr,
1273         * see comment in intel_pt_interrupt().
1274         */
1275        WRITE_ONCE(pt->handle_nmi, 0);
1276
1277        pt_config_stop(event);
1278
1279        if (event->hw.state == PERF_HES_STOPPED)
1280                return;
1281
1282        event->hw.state = PERF_HES_STOPPED;
1283
1284        if (mode & PERF_EF_UPDATE) {
1285                struct pt_buffer *buf = perf_get_aux(&pt->handle);
1286
1287                if (!buf)
1288                        return;
1289
1290                if (WARN_ON_ONCE(pt->handle.event != event))
1291                        return;
1292
1293                pt_read_offset(buf);
1294
1295                pt_handle_status(pt);
1296
1297                pt_update_head(pt);
1298
1299                if (buf->snapshot)
1300                        pt->handle.head =
1301                                local_xchg(&buf->data_size,
1302                                           buf->nr_pages << PAGE_SHIFT);
1303                perf_aux_output_end(&pt->handle, local_xchg(&buf->data_size, 0),
1304                                    local_xchg(&buf->lost, 0));
1305        }
1306}
1307
1308static void pt_event_del(struct perf_event *event, int mode)
1309{
1310        pt_event_stop(event, PERF_EF_UPDATE);
1311}
1312
1313static int pt_event_add(struct perf_event *event, int mode)
1314{
1315        struct pt *pt = this_cpu_ptr(&pt_ctx);
1316        struct hw_perf_event *hwc = &event->hw;
1317        int ret = -EBUSY;
1318
1319        if (pt->handle.event)
1320                goto fail;
1321
1322        if (mode & PERF_EF_START) {
1323                pt_event_start(event, 0);
1324                ret = -EINVAL;
1325                if (hwc->state == PERF_HES_STOPPED)
1326                        goto fail;
1327        } else {
1328                hwc->state = PERF_HES_STOPPED;
1329        }
1330
1331        ret = 0;
1332fail:
1333
1334        return ret;
1335}
1336
1337static void pt_event_read(struct perf_event *event)
1338{
1339}
1340
1341static void pt_event_destroy(struct perf_event *event)
1342{
1343        pt_addr_filters_fini(event);
1344        x86_del_exclusive(x86_lbr_exclusive_pt);
1345}
1346
1347static int pt_event_init(struct perf_event *event)
1348{
1349        if (event->attr.type != pt_pmu.pmu.type)
1350                return -ENOENT;
1351
1352        if (!pt_event_valid(event))
1353                return -EINVAL;
1354
1355        if (x86_add_exclusive(x86_lbr_exclusive_pt))
1356                return -EBUSY;
1357
1358        if (pt_addr_filters_init(event)) {
1359                x86_del_exclusive(x86_lbr_exclusive_pt);
1360                return -ENOMEM;
1361        }
1362
1363        event->destroy = pt_event_destroy;
1364
1365        return 0;
1366}
1367
1368void cpu_emergency_stop_pt(void)
1369{
1370        struct pt *pt = this_cpu_ptr(&pt_ctx);
1371
1372        if (pt->handle.event)
1373                pt_event_stop(pt->handle.event, PERF_EF_UPDATE);
1374}
1375
1376static __init int pt_init(void)
1377{
1378        int ret, cpu, prior_warn = 0;
1379
1380        BUILD_BUG_ON(sizeof(struct topa) > PAGE_SIZE);
1381
1382        if (!boot_cpu_has(X86_FEATURE_INTEL_PT))
1383                return -ENODEV;
1384
1385        get_online_cpus();
1386        for_each_online_cpu(cpu) {
1387                u64 ctl;
1388
1389                ret = rdmsrl_safe_on_cpu(cpu, MSR_IA32_RTIT_CTL, &ctl);
1390                if (!ret && (ctl & RTIT_CTL_TRACEEN))
1391                        prior_warn++;
1392        }
1393        put_online_cpus();
1394
1395        if (prior_warn) {
1396                x86_add_exclusive(x86_lbr_exclusive_pt);
1397                pr_warn("PT is enabled at boot time, doing nothing\n");
1398
1399                return -EBUSY;
1400        }
1401
1402        ret = pt_pmu_hw_init();
1403        if (ret)
1404                return ret;
1405
1406        if (!pt_cap_get(PT_CAP_topa_output)) {
1407                pr_warn("ToPA output is not supported on this CPU\n");
1408                return -ENODEV;
1409        }
1410
1411        if (!pt_cap_get(PT_CAP_topa_multiple_entries))
1412                pt_pmu.pmu.capabilities =
1413                        PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
1414
1415        pt_pmu.pmu.capabilities |= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE;
1416        pt_pmu.pmu.attr_groups           = pt_attr_groups;
1417        pt_pmu.pmu.task_ctx_nr           = perf_sw_context;
1418        pt_pmu.pmu.event_init            = pt_event_init;
1419        pt_pmu.pmu.add                   = pt_event_add;
1420        pt_pmu.pmu.del                   = pt_event_del;
1421        pt_pmu.pmu.start                 = pt_event_start;
1422        pt_pmu.pmu.stop                  = pt_event_stop;
1423        pt_pmu.pmu.read                  = pt_event_read;
1424        pt_pmu.pmu.setup_aux             = pt_buffer_setup_aux;
1425        pt_pmu.pmu.free_aux              = pt_buffer_free_aux;
1426        pt_pmu.pmu.addr_filters_sync     = pt_event_addr_filters_sync;
1427        pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
1428        pt_pmu.pmu.nr_addr_filters       =
1429                pt_cap_get(PT_CAP_num_address_ranges);
1430
1431        ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
1432
1433        return ret;
1434}
1435arch_initcall(pt_init);
1436