linux/arch/x86/kernel/kvmclock.c
<<
>>
Prefs
   1/*  KVM paravirtual clock driver. A clocksource implementation
   2    Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
   3
   4    This program is free software; you can redistribute it and/or modify
   5    it under the terms of the GNU General Public License as published by
   6    the Free Software Foundation; either version 2 of the License, or
   7    (at your option) any later version.
   8
   9    This program is distributed in the hope that it will be useful,
  10    but WITHOUT ANY WARRANTY; without even the implied warranty of
  11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12    GNU General Public License for more details.
  13
  14    You should have received a copy of the GNU General Public License
  15    along with this program; if not, write to the Free Software
  16    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17*/
  18
  19#include <linux/clocksource.h>
  20#include <linux/kvm_para.h>
  21#include <asm/pvclock.h>
  22#include <asm/msr.h>
  23#include <asm/apic.h>
  24#include <linux/percpu.h>
  25#include <linux/hardirq.h>
  26#include <linux/memblock.h>
  27#include <linux/sched.h>
  28
  29#include <asm/x86_init.h>
  30#include <asm/reboot.h>
  31
  32static int kvmclock = 1;
  33static int msr_kvm_system_time = MSR_KVM_SYSTEM_TIME;
  34static int msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK;
  35static cycle_t kvm_sched_clock_offset;
  36
  37static int parse_no_kvmclock(char *arg)
  38{
  39        kvmclock = 0;
  40        return 0;
  41}
  42early_param("no-kvmclock", parse_no_kvmclock);
  43
  44/* The hypervisor will put information about time periodically here */
  45static struct pvclock_vsyscall_time_info *hv_clock;
  46static struct pvclock_wall_clock wall_clock;
  47
  48struct pvclock_vsyscall_time_info *pvclock_pvti_cpu0_va(void)
  49{
  50        return hv_clock;
  51}
  52
  53/*
  54 * The wallclock is the time of day when we booted. Since then, some time may
  55 * have elapsed since the hypervisor wrote the data. So we try to account for
  56 * that with system time
  57 */
  58static void kvm_get_wallclock(struct timespec *now)
  59{
  60        struct pvclock_vcpu_time_info *vcpu_time;
  61        int low, high;
  62        int cpu;
  63
  64        low = (int)__pa_symbol(&wall_clock);
  65        high = ((u64)__pa_symbol(&wall_clock) >> 32);
  66
  67        native_write_msr(msr_kvm_wall_clock, low, high);
  68
  69        cpu = get_cpu();
  70
  71        vcpu_time = &hv_clock[cpu].pvti;
  72        pvclock_read_wallclock(&wall_clock, vcpu_time, now);
  73
  74        put_cpu();
  75}
  76
  77static int kvm_set_wallclock(const struct timespec *now)
  78{
  79        return -1;
  80}
  81
  82static cycle_t kvm_clock_read(void)
  83{
  84        struct pvclock_vcpu_time_info *src;
  85        cycle_t ret;
  86        int cpu;
  87
  88        preempt_disable_notrace();
  89        cpu = smp_processor_id();
  90        src = &hv_clock[cpu].pvti;
  91        ret = pvclock_clocksource_read(src);
  92        preempt_enable_notrace();
  93        return ret;
  94}
  95
  96static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
  97{
  98        return kvm_clock_read();
  99}
 100
 101static cycle_t kvm_sched_clock_read(void)
 102{
 103        return kvm_clock_read() - kvm_sched_clock_offset;
 104}
 105
 106static inline void kvm_sched_clock_init(bool stable)
 107{
 108        if (!stable) {
 109                pv_time_ops.sched_clock = kvm_clock_read;
 110                return;
 111        }
 112
 113        kvm_sched_clock_offset = kvm_clock_read();
 114        pv_time_ops.sched_clock = kvm_sched_clock_read;
 115        set_sched_clock_stable();
 116
 117        printk(KERN_INFO "kvm-clock: using sched offset of %llu cycles\n",
 118                        kvm_sched_clock_offset);
 119
 120        BUILD_BUG_ON(sizeof(kvm_sched_clock_offset) >
 121                 sizeof(((struct pvclock_vcpu_time_info *)NULL)->system_time));
 122}
 123
 124/*
 125 * If we don't do that, there is the possibility that the guest
 126 * will calibrate under heavy load - thus, getting a lower lpj -
 127 * and execute the delays themselves without load. This is wrong,
 128 * because no delay loop can finish beforehand.
 129 * Any heuristics is subject to fail, because ultimately, a large
 130 * poll of guests can be running and trouble each other. So we preset
 131 * lpj here
 132 */
 133static unsigned long kvm_get_tsc_khz(void)
 134{
 135        struct pvclock_vcpu_time_info *src;
 136        int cpu;
 137        unsigned long tsc_khz;
 138
 139        cpu = get_cpu();
 140        src = &hv_clock[cpu].pvti;
 141        tsc_khz = pvclock_tsc_khz(src);
 142        put_cpu();
 143        return tsc_khz;
 144}
 145
 146static void kvm_get_preset_lpj(void)
 147{
 148        unsigned long khz;
 149        u64 lpj;
 150
 151        khz = kvm_get_tsc_khz();
 152
 153        lpj = ((u64)khz * 1000);
 154        do_div(lpj, HZ);
 155        preset_lpj = lpj;
 156}
 157
 158bool kvm_check_and_clear_guest_paused(void)
 159{
 160        bool ret = false;
 161        struct pvclock_vcpu_time_info *src;
 162        int cpu = smp_processor_id();
 163
 164        if (!hv_clock)
 165                return ret;
 166
 167        src = &hv_clock[cpu].pvti;
 168        if ((src->flags & PVCLOCK_GUEST_STOPPED) != 0) {
 169                src->flags &= ~PVCLOCK_GUEST_STOPPED;
 170                pvclock_touch_watchdogs();
 171                ret = true;
 172        }
 173
 174        return ret;
 175}
 176
 177static struct clocksource kvm_clock = {
 178        .name = "kvm-clock",
 179        .read = kvm_clock_get_cycles,
 180        .rating = 400,
 181        .mask = CLOCKSOURCE_MASK(64),
 182        .flags = CLOCK_SOURCE_IS_CONTINUOUS,
 183};
 184
 185int kvm_register_clock(char *txt)
 186{
 187        int cpu = smp_processor_id();
 188        int low, high, ret;
 189        struct pvclock_vcpu_time_info *src;
 190
 191        if (!hv_clock)
 192                return 0;
 193
 194        src = &hv_clock[cpu].pvti;
 195        low = (int)slow_virt_to_phys(src) | 1;
 196        high = ((u64)slow_virt_to_phys(src) >> 32);
 197        ret = native_write_msr_safe(msr_kvm_system_time, low, high);
 198        printk(KERN_INFO "kvm-clock: cpu %d, msr %x:%x, %s\n",
 199               cpu, high, low, txt);
 200
 201        return ret;
 202}
 203
 204static void kvm_save_sched_clock_state(void)
 205{
 206}
 207
 208static void kvm_restore_sched_clock_state(void)
 209{
 210        kvm_register_clock("primary cpu clock, resume");
 211}
 212
 213#ifdef CONFIG_X86_LOCAL_APIC
 214static void kvm_setup_secondary_clock(void)
 215{
 216        /*
 217         * Now that the first cpu already had this clocksource initialized,
 218         * we shouldn't fail.
 219         */
 220        WARN_ON(kvm_register_clock("secondary cpu clock"));
 221}
 222#endif
 223
 224/*
 225 * After the clock is registered, the host will keep writing to the
 226 * registered memory location. If the guest happens to shutdown, this memory
 227 * won't be valid. In cases like kexec, in which you install a new kernel, this
 228 * means a random memory location will be kept being written. So before any
 229 * kind of shutdown from our side, we unregister the clock by writing anything
 230 * that does not have the 'enable' bit set in the msr
 231 */
 232#ifdef CONFIG_KEXEC_CORE
 233static void kvm_crash_shutdown(struct pt_regs *regs)
 234{
 235        native_write_msr(msr_kvm_system_time, 0, 0);
 236        kvm_disable_steal_time();
 237        native_machine_crash_shutdown(regs);
 238}
 239#endif
 240
 241static void kvm_shutdown(void)
 242{
 243        native_write_msr(msr_kvm_system_time, 0, 0);
 244        kvm_disable_steal_time();
 245        native_machine_shutdown();
 246}
 247
 248void __init kvmclock_init(void)
 249{
 250        struct pvclock_vcpu_time_info *vcpu_time;
 251        unsigned long mem;
 252        int size, cpu;
 253        u8 flags;
 254
 255        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 256
 257        if (!kvm_para_available())
 258                return;
 259
 260        if (kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE2)) {
 261                msr_kvm_system_time = MSR_KVM_SYSTEM_TIME_NEW;
 262                msr_kvm_wall_clock = MSR_KVM_WALL_CLOCK_NEW;
 263        } else if (!(kvmclock && kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE)))
 264                return;
 265
 266        printk(KERN_INFO "kvm-clock: Using msrs %x and %x",
 267                msr_kvm_system_time, msr_kvm_wall_clock);
 268
 269        mem = memblock_alloc(size, PAGE_SIZE);
 270        if (!mem)
 271                return;
 272        hv_clock = __va(mem);
 273        memset(hv_clock, 0, size);
 274
 275        if (kvm_register_clock("primary cpu clock")) {
 276                hv_clock = NULL;
 277                memblock_free(mem, size);
 278                return;
 279        }
 280
 281        if (kvm_para_has_feature(KVM_FEATURE_CLOCKSOURCE_STABLE_BIT))
 282                pvclock_set_flags(PVCLOCK_TSC_STABLE_BIT);
 283
 284        cpu = get_cpu();
 285        vcpu_time = &hv_clock[cpu].pvti;
 286        flags = pvclock_read_flags(vcpu_time);
 287
 288        kvm_sched_clock_init(flags & PVCLOCK_TSC_STABLE_BIT);
 289        put_cpu();
 290
 291        x86_platform.calibrate_tsc = kvm_get_tsc_khz;
 292        x86_platform.calibrate_cpu = kvm_get_tsc_khz;
 293        x86_platform.get_wallclock = kvm_get_wallclock;
 294        x86_platform.set_wallclock = kvm_set_wallclock;
 295#ifdef CONFIG_X86_LOCAL_APIC
 296        x86_cpuinit.early_percpu_clock_init =
 297                kvm_setup_secondary_clock;
 298#endif
 299        x86_platform.save_sched_clock_state = kvm_save_sched_clock_state;
 300        x86_platform.restore_sched_clock_state = kvm_restore_sched_clock_state;
 301        machine_ops.shutdown  = kvm_shutdown;
 302#ifdef CONFIG_KEXEC_CORE
 303        machine_ops.crash_shutdown  = kvm_crash_shutdown;
 304#endif
 305        kvm_get_preset_lpj();
 306        clocksource_register_hz(&kvm_clock, NSEC_PER_SEC);
 307        pv_info.name = "KVM";
 308}
 309
 310int __init kvm_setup_vsyscall_timeinfo(void)
 311{
 312#ifdef CONFIG_X86_64
 313        int cpu;
 314        u8 flags;
 315        struct pvclock_vcpu_time_info *vcpu_time;
 316        unsigned int size;
 317
 318        if (!hv_clock)
 319                return 0;
 320
 321        size = PAGE_ALIGN(sizeof(struct pvclock_vsyscall_time_info)*NR_CPUS);
 322
 323        cpu = get_cpu();
 324
 325        vcpu_time = &hv_clock[cpu].pvti;
 326        flags = pvclock_read_flags(vcpu_time);
 327
 328        if (!(flags & PVCLOCK_TSC_STABLE_BIT)) {
 329                put_cpu();
 330                return 1;
 331        }
 332
 333        put_cpu();
 334
 335        kvm_clock.archdata.vclock_mode = VCLOCK_PVCLOCK;
 336#endif
 337        return 0;
 338}
 339