linux/arch/x86/kernel/nmi.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 *  Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
   4 *  Copyright (C) 2011  Don Zickus Red Hat, Inc.
   5 *
   6 *  Pentium III FXSR, SSE support
   7 *      Gareth Hughes <gareth@valinux.com>, May 2000
   8 */
   9
  10/*
  11 * Handle hardware traps and faults.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/kprobes.h>
  15#include <linux/kdebug.h>
  16#include <linux/nmi.h>
  17#include <linux/debugfs.h>
  18#include <linux/delay.h>
  19#include <linux/hardirq.h>
  20#include <linux/ratelimit.h>
  21#include <linux/slab.h>
  22#include <linux/export.h>
  23
  24#if defined(CONFIG_EDAC)
  25#include <linux/edac.h>
  26#endif
  27
  28#include <linux/atomic.h>
  29#include <asm/traps.h>
  30#include <asm/mach_traps.h>
  31#include <asm/nmi.h>
  32#include <asm/x86_init.h>
  33#include <asm/reboot.h>
  34#include <asm/cache.h>
  35
  36#define CREATE_TRACE_POINTS
  37#include <trace/events/nmi.h>
  38
  39struct nmi_desc {
  40        spinlock_t lock;
  41        struct list_head head;
  42};
  43
  44static struct nmi_desc nmi_desc[NMI_MAX] = 
  45{
  46        {
  47                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
  48                .head = LIST_HEAD_INIT(nmi_desc[0].head),
  49        },
  50        {
  51                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
  52                .head = LIST_HEAD_INIT(nmi_desc[1].head),
  53        },
  54        {
  55                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
  56                .head = LIST_HEAD_INIT(nmi_desc[2].head),
  57        },
  58        {
  59                .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
  60                .head = LIST_HEAD_INIT(nmi_desc[3].head),
  61        },
  62
  63};
  64
  65struct nmi_stats {
  66        unsigned int normal;
  67        unsigned int unknown;
  68        unsigned int external;
  69        unsigned int swallow;
  70};
  71
  72static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
  73
  74static int ignore_nmis __read_mostly;
  75
  76int unknown_nmi_panic;
  77/*
  78 * Prevent NMI reason port (0x61) being accessed simultaneously, can
  79 * only be used in NMI handler.
  80 */
  81static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
  82
  83static int __init setup_unknown_nmi_panic(char *str)
  84{
  85        unknown_nmi_panic = 1;
  86        return 1;
  87}
  88__setup("unknown_nmi_panic", setup_unknown_nmi_panic);
  89
  90#define nmi_to_desc(type) (&nmi_desc[type])
  91
  92static u64 nmi_longest_ns = 1 * NSEC_PER_MSEC;
  93
  94static int __init nmi_warning_debugfs(void)
  95{
  96        debugfs_create_u64("nmi_longest_ns", 0644,
  97                        arch_debugfs_dir, &nmi_longest_ns);
  98        return 0;
  99}
 100fs_initcall(nmi_warning_debugfs);
 101
 102static void nmi_max_handler(struct irq_work *w)
 103{
 104        struct nmiaction *a = container_of(w, struct nmiaction, irq_work);
 105        int remainder_ns, decimal_msecs;
 106        u64 whole_msecs = ACCESS_ONCE(a->max_duration);
 107
 108        remainder_ns = do_div(whole_msecs, (1000 * 1000));
 109        decimal_msecs = remainder_ns / 1000;
 110
 111        printk_ratelimited(KERN_INFO
 112                "INFO: NMI handler (%ps) took too long to run: %lld.%03d msecs\n",
 113                a->handler, whole_msecs, decimal_msecs);
 114}
 115
 116static int nmi_handle(unsigned int type, struct pt_regs *regs)
 117{
 118        struct nmi_desc *desc = nmi_to_desc(type);
 119        struct nmiaction *a;
 120        int handled=0;
 121
 122        rcu_read_lock();
 123
 124        /*
 125         * NMIs are edge-triggered, which means if you have enough
 126         * of them concurrently, you can lose some because only one
 127         * can be latched at any given time.  Walk the whole list
 128         * to handle those situations.
 129         */
 130        list_for_each_entry_rcu(a, &desc->head, list) {
 131                int thishandled;
 132                u64 delta;
 133
 134                delta = sched_clock();
 135                thishandled = a->handler(type, regs);
 136                handled += thishandled;
 137                delta = sched_clock() - delta;
 138                trace_nmi_handler(a->handler, (int)delta, thishandled);
 139
 140                if (delta < nmi_longest_ns || delta < a->max_duration)
 141                        continue;
 142
 143                a->max_duration = delta;
 144                irq_work_queue(&a->irq_work);
 145        }
 146
 147        rcu_read_unlock();
 148
 149        /* return total number of NMI events handled */
 150        return handled;
 151}
 152NOKPROBE_SYMBOL(nmi_handle);
 153
 154int __register_nmi_handler(unsigned int type, struct nmiaction *action)
 155{
 156        struct nmi_desc *desc = nmi_to_desc(type);
 157        unsigned long flags;
 158
 159        if (!action->handler)
 160                return -EINVAL;
 161
 162        init_irq_work(&action->irq_work, nmi_max_handler);
 163
 164        spin_lock_irqsave(&desc->lock, flags);
 165
 166        /*
 167         * most handlers of type NMI_UNKNOWN never return because
 168         * they just assume the NMI is theirs.  Just a sanity check
 169         * to manage expectations
 170         */
 171        WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
 172        WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
 173        WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
 174
 175        /*
 176         * some handlers need to be executed first otherwise a fake
 177         * event confuses some handlers (kdump uses this flag)
 178         */
 179        if (action->flags & NMI_FLAG_FIRST)
 180                list_add_rcu(&action->list, &desc->head);
 181        else
 182                list_add_tail_rcu(&action->list, &desc->head);
 183        
 184        spin_unlock_irqrestore(&desc->lock, flags);
 185        return 0;
 186}
 187EXPORT_SYMBOL(__register_nmi_handler);
 188
 189void unregister_nmi_handler(unsigned int type, const char *name)
 190{
 191        struct nmi_desc *desc = nmi_to_desc(type);
 192        struct nmiaction *n;
 193        unsigned long flags;
 194
 195        spin_lock_irqsave(&desc->lock, flags);
 196
 197        list_for_each_entry_rcu(n, &desc->head, list) {
 198                /*
 199                 * the name passed in to describe the nmi handler
 200                 * is used as the lookup key
 201                 */
 202                if (!strcmp(n->name, name)) {
 203                        WARN(in_nmi(),
 204                                "Trying to free NMI (%s) from NMI context!\n", n->name);
 205                        list_del_rcu(&n->list);
 206                        break;
 207                }
 208        }
 209
 210        spin_unlock_irqrestore(&desc->lock, flags);
 211        synchronize_rcu();
 212}
 213EXPORT_SYMBOL_GPL(unregister_nmi_handler);
 214
 215static void
 216pci_serr_error(unsigned char reason, struct pt_regs *regs)
 217{
 218        /* check to see if anyone registered against these types of errors */
 219        if (nmi_handle(NMI_SERR, regs))
 220                return;
 221
 222        pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
 223                 reason, smp_processor_id());
 224
 225        /*
 226         * On some machines, PCI SERR line is used to report memory
 227         * errors. EDAC makes use of it.
 228         */
 229#if defined(CONFIG_EDAC)
 230        if (edac_handler_set()) {
 231                edac_atomic_assert_error();
 232                return;
 233        }
 234#endif
 235
 236        if (panic_on_unrecovered_nmi)
 237                nmi_panic(regs, "NMI: Not continuing");
 238
 239        pr_emerg("Dazed and confused, but trying to continue\n");
 240
 241        /* Clear and disable the PCI SERR error line. */
 242        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
 243        outb(reason, NMI_REASON_PORT);
 244}
 245NOKPROBE_SYMBOL(pci_serr_error);
 246
 247static void
 248io_check_error(unsigned char reason, struct pt_regs *regs)
 249{
 250        unsigned long i;
 251
 252        /* check to see if anyone registered against these types of errors */
 253        if (nmi_handle(NMI_IO_CHECK, regs))
 254                return;
 255
 256        pr_emerg(
 257        "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
 258                 reason, smp_processor_id());
 259        show_regs(regs);
 260
 261        if (panic_on_io_nmi) {
 262                nmi_panic(regs, "NMI IOCK error: Not continuing");
 263
 264                /*
 265                 * If we end up here, it means we have received an NMI while
 266                 * processing panic(). Simply return without delaying and
 267                 * re-enabling NMIs.
 268                 */
 269                return;
 270        }
 271
 272        /* Re-enable the IOCK line, wait for a few seconds */
 273        reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
 274        outb(reason, NMI_REASON_PORT);
 275
 276        i = 20000;
 277        while (--i) {
 278                touch_nmi_watchdog();
 279                udelay(100);
 280        }
 281
 282        reason &= ~NMI_REASON_CLEAR_IOCHK;
 283        outb(reason, NMI_REASON_PORT);
 284}
 285NOKPROBE_SYMBOL(io_check_error);
 286
 287static void
 288unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
 289{
 290        int handled;
 291
 292        /*
 293         * Use 'false' as back-to-back NMIs are dealt with one level up.
 294         * Of course this makes having multiple 'unknown' handlers useless
 295         * as only the first one is ever run (unless it can actually determine
 296         * if it caused the NMI)
 297         */
 298        handled = nmi_handle(NMI_UNKNOWN, regs);
 299        if (handled) {
 300                __this_cpu_add(nmi_stats.unknown, handled);
 301                return;
 302        }
 303
 304        __this_cpu_add(nmi_stats.unknown, 1);
 305
 306        pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
 307                 reason, smp_processor_id());
 308
 309        pr_emerg("Do you have a strange power saving mode enabled?\n");
 310        if (unknown_nmi_panic || panic_on_unrecovered_nmi)
 311                nmi_panic(regs, "NMI: Not continuing");
 312
 313        pr_emerg("Dazed and confused, but trying to continue\n");
 314}
 315NOKPROBE_SYMBOL(unknown_nmi_error);
 316
 317static DEFINE_PER_CPU(bool, swallow_nmi);
 318static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
 319
 320static void default_do_nmi(struct pt_regs *regs)
 321{
 322        unsigned char reason = 0;
 323        int handled;
 324        bool b2b = false;
 325
 326        /*
 327         * CPU-specific NMI must be processed before non-CPU-specific
 328         * NMI, otherwise we may lose it, because the CPU-specific
 329         * NMI can not be detected/processed on other CPUs.
 330         */
 331
 332        /*
 333         * Back-to-back NMIs are interesting because they can either
 334         * be two NMI or more than two NMIs (any thing over two is dropped
 335         * due to NMI being edge-triggered).  If this is the second half
 336         * of the back-to-back NMI, assume we dropped things and process
 337         * more handlers.  Otherwise reset the 'swallow' NMI behaviour
 338         */
 339        if (regs->ip == __this_cpu_read(last_nmi_rip))
 340                b2b = true;
 341        else
 342                __this_cpu_write(swallow_nmi, false);
 343
 344        __this_cpu_write(last_nmi_rip, regs->ip);
 345
 346        handled = nmi_handle(NMI_LOCAL, regs);
 347        __this_cpu_add(nmi_stats.normal, handled);
 348        if (handled) {
 349                /*
 350                 * There are cases when a NMI handler handles multiple
 351                 * events in the current NMI.  One of these events may
 352                 * be queued for in the next NMI.  Because the event is
 353                 * already handled, the next NMI will result in an unknown
 354                 * NMI.  Instead lets flag this for a potential NMI to
 355                 * swallow.
 356                 */
 357                if (handled > 1)
 358                        __this_cpu_write(swallow_nmi, true);
 359                return;
 360        }
 361
 362        /*
 363         * Non-CPU-specific NMI: NMI sources can be processed on any CPU.
 364         *
 365         * Another CPU may be processing panic routines while holding
 366         * nmi_reason_lock. Check if the CPU issued the IPI for crash dumping,
 367         * and if so, call its callback directly.  If there is no CPU preparing
 368         * crash dump, we simply loop here.
 369         */
 370        while (!raw_spin_trylock(&nmi_reason_lock)) {
 371                run_crash_ipi_callback(regs);
 372                cpu_relax();
 373        }
 374
 375        reason = x86_platform.get_nmi_reason();
 376
 377        if (reason & NMI_REASON_MASK) {
 378                if (reason & NMI_REASON_SERR)
 379                        pci_serr_error(reason, regs);
 380                else if (reason & NMI_REASON_IOCHK)
 381                        io_check_error(reason, regs);
 382#ifdef CONFIG_X86_32
 383                /*
 384                 * Reassert NMI in case it became active
 385                 * meanwhile as it's edge-triggered:
 386                 */
 387                reassert_nmi();
 388#endif
 389                __this_cpu_add(nmi_stats.external, 1);
 390                raw_spin_unlock(&nmi_reason_lock);
 391                return;
 392        }
 393        raw_spin_unlock(&nmi_reason_lock);
 394
 395        /*
 396         * Only one NMI can be latched at a time.  To handle
 397         * this we may process multiple nmi handlers at once to
 398         * cover the case where an NMI is dropped.  The downside
 399         * to this approach is we may process an NMI prematurely,
 400         * while its real NMI is sitting latched.  This will cause
 401         * an unknown NMI on the next run of the NMI processing.
 402         *
 403         * We tried to flag that condition above, by setting the
 404         * swallow_nmi flag when we process more than one event.
 405         * This condition is also only present on the second half
 406         * of a back-to-back NMI, so we flag that condition too.
 407         *
 408         * If both are true, we assume we already processed this
 409         * NMI previously and we swallow it.  Otherwise we reset
 410         * the logic.
 411         *
 412         * There are scenarios where we may accidentally swallow
 413         * a 'real' unknown NMI.  For example, while processing
 414         * a perf NMI another perf NMI comes in along with a
 415         * 'real' unknown NMI.  These two NMIs get combined into
 416         * one (as descibed above).  When the next NMI gets
 417         * processed, it will be flagged by perf as handled, but
 418         * noone will know that there was a 'real' unknown NMI sent
 419         * also.  As a result it gets swallowed.  Or if the first
 420         * perf NMI returns two events handled then the second
 421         * NMI will get eaten by the logic below, again losing a
 422         * 'real' unknown NMI.  But this is the best we can do
 423         * for now.
 424         */
 425        if (b2b && __this_cpu_read(swallow_nmi))
 426                __this_cpu_add(nmi_stats.swallow, 1);
 427        else
 428                unknown_nmi_error(reason, regs);
 429}
 430NOKPROBE_SYMBOL(default_do_nmi);
 431
 432/*
 433 * NMIs can page fault or hit breakpoints which will cause it to lose
 434 * its NMI context with the CPU when the breakpoint or page fault does an IRET.
 435 *
 436 * As a result, NMIs can nest if NMIs get unmasked due an IRET during
 437 * NMI processing.  On x86_64, the asm glue protects us from nested NMIs
 438 * if the outer NMI came from kernel mode, but we can still nest if the
 439 * outer NMI came from user mode.
 440 *
 441 * To handle these nested NMIs, we have three states:
 442 *
 443 *  1) not running
 444 *  2) executing
 445 *  3) latched
 446 *
 447 * When no NMI is in progress, it is in the "not running" state.
 448 * When an NMI comes in, it goes into the "executing" state.
 449 * Normally, if another NMI is triggered, it does not interrupt
 450 * the running NMI and the HW will simply latch it so that when
 451 * the first NMI finishes, it will restart the second NMI.
 452 * (Note, the latch is binary, thus multiple NMIs triggering,
 453 *  when one is running, are ignored. Only one NMI is restarted.)
 454 *
 455 * If an NMI executes an iret, another NMI can preempt it. We do not
 456 * want to allow this new NMI to run, but we want to execute it when the
 457 * first one finishes.  We set the state to "latched", and the exit of
 458 * the first NMI will perform a dec_return, if the result is zero
 459 * (NOT_RUNNING), then it will simply exit the NMI handler. If not, the
 460 * dec_return would have set the state to NMI_EXECUTING (what we want it
 461 * to be when we are running). In this case, we simply jump back to
 462 * rerun the NMI handler again, and restart the 'latched' NMI.
 463 *
 464 * No trap (breakpoint or page fault) should be hit before nmi_restart,
 465 * thus there is no race between the first check of state for NOT_RUNNING
 466 * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
 467 * at this point.
 468 *
 469 * In case the NMI takes a page fault, we need to save off the CR2
 470 * because the NMI could have preempted another page fault and corrupt
 471 * the CR2 that is about to be read. As nested NMIs must be restarted
 472 * and they can not take breakpoints or page faults, the update of the
 473 * CR2 must be done before converting the nmi state back to NOT_RUNNING.
 474 * Otherwise, there would be a race of another nested NMI coming in
 475 * after setting state to NOT_RUNNING but before updating the nmi_cr2.
 476 */
 477enum nmi_states {
 478        NMI_NOT_RUNNING = 0,
 479        NMI_EXECUTING,
 480        NMI_LATCHED,
 481};
 482static DEFINE_PER_CPU(enum nmi_states, nmi_state);
 483static DEFINE_PER_CPU(unsigned long, nmi_cr2);
 484
 485#ifdef CONFIG_X86_64
 486/*
 487 * In x86_64, we need to handle breakpoint -> NMI -> breakpoint.  Without
 488 * some care, the inner breakpoint will clobber the outer breakpoint's
 489 * stack.
 490 *
 491 * If a breakpoint is being processed, and the debug stack is being
 492 * used, if an NMI comes in and also hits a breakpoint, the stack
 493 * pointer will be set to the same fixed address as the breakpoint that
 494 * was interrupted, causing that stack to be corrupted. To handle this
 495 * case, check if the stack that was interrupted is the debug stack, and
 496 * if so, change the IDT so that new breakpoints will use the current
 497 * stack and not switch to the fixed address. On return of the NMI,
 498 * switch back to the original IDT.
 499 */
 500static DEFINE_PER_CPU(int, update_debug_stack);
 501#endif
 502
 503dotraplinkage notrace void
 504do_nmi(struct pt_regs *regs, long error_code)
 505{
 506        if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) {
 507                this_cpu_write(nmi_state, NMI_LATCHED);
 508                return;
 509        }
 510        this_cpu_write(nmi_state, NMI_EXECUTING);
 511        this_cpu_write(nmi_cr2, read_cr2());
 512nmi_restart:
 513
 514#ifdef CONFIG_X86_64
 515        /*
 516         * If we interrupted a breakpoint, it is possible that
 517         * the nmi handler will have breakpoints too. We need to
 518         * change the IDT such that breakpoints that happen here
 519         * continue to use the NMI stack.
 520         */
 521        if (unlikely(is_debug_stack(regs->sp))) {
 522                debug_stack_set_zero();
 523                this_cpu_write(update_debug_stack, 1);
 524        }
 525#endif
 526
 527        nmi_enter();
 528
 529        inc_irq_stat(__nmi_count);
 530
 531        if (!ignore_nmis)
 532                default_do_nmi(regs);
 533
 534        nmi_exit();
 535
 536#ifdef CONFIG_X86_64
 537        if (unlikely(this_cpu_read(update_debug_stack))) {
 538                debug_stack_reset();
 539                this_cpu_write(update_debug_stack, 0);
 540        }
 541#endif
 542
 543        if (unlikely(this_cpu_read(nmi_cr2) != read_cr2()))
 544                write_cr2(this_cpu_read(nmi_cr2));
 545        if (this_cpu_dec_return(nmi_state))
 546                goto nmi_restart;
 547}
 548NOKPROBE_SYMBOL(do_nmi);
 549
 550void stop_nmi(void)
 551{
 552        ignore_nmis++;
 553}
 554
 555void restart_nmi(void)
 556{
 557        ignore_nmis--;
 558}
 559
 560/* reset the back-to-back NMI logic */
 561void local_touch_nmi(void)
 562{
 563        __this_cpu_write(last_nmi_rip, 0);
 564}
 565EXPORT_SYMBOL_GPL(local_touch_nmi);
 566