linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22#include "lapic.h"
  23
  24#include <linux/kvm_host.h>
  25#include <linux/module.h>
  26#include <linux/kernel.h>
  27#include <linux/mm.h>
  28#include <linux/highmem.h>
  29#include <linux/sched.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mod_devicetable.h>
  32#include <linux/trace_events.h>
  33#include <linux/slab.h>
  34#include <linux/tboot.h>
  35#include <linux/hrtimer.h>
  36#include "kvm_cache_regs.h"
  37#include "x86.h"
  38
  39#include <asm/cpu.h>
  40#include <asm/io.h>
  41#include <asm/desc.h>
  42#include <asm/vmx.h>
  43#include <asm/virtext.h>
  44#include <asm/mce.h>
  45#include <asm/fpu/internal.h>
  46#include <asm/perf_event.h>
  47#include <asm/debugreg.h>
  48#include <asm/kexec.h>
  49#include <asm/apic.h>
  50#include <asm/irq_remapping.h>
  51
  52#include "trace.h"
  53#include "pmu.h"
  54
  55#define __ex(x) __kvm_handle_fault_on_reboot(x)
  56#define __ex_clear(x, reg) \
  57        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  58
  59MODULE_AUTHOR("Qumranet");
  60MODULE_LICENSE("GPL");
  61
  62static const struct x86_cpu_id vmx_cpu_id[] = {
  63        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  64        {}
  65};
  66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  67
  68static bool __read_mostly enable_vpid = 1;
  69module_param_named(vpid, enable_vpid, bool, 0444);
  70
  71static bool __read_mostly flexpriority_enabled = 1;
  72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  73
  74static bool __read_mostly enable_ept = 1;
  75module_param_named(ept, enable_ept, bool, S_IRUGO);
  76
  77static bool __read_mostly enable_unrestricted_guest = 1;
  78module_param_named(unrestricted_guest,
  79                        enable_unrestricted_guest, bool, S_IRUGO);
  80
  81static bool __read_mostly enable_ept_ad_bits = 1;
  82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  83
  84static bool __read_mostly emulate_invalid_guest_state = true;
  85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  86
  87static bool __read_mostly vmm_exclusive = 1;
  88module_param(vmm_exclusive, bool, S_IRUGO);
  89
  90static bool __read_mostly fasteoi = 1;
  91module_param(fasteoi, bool, S_IRUGO);
  92
  93static bool __read_mostly enable_apicv = 1;
  94module_param(enable_apicv, bool, S_IRUGO);
  95
  96static bool __read_mostly enable_shadow_vmcs = 1;
  97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  98/*
  99 * If nested=1, nested virtualization is supported, i.e., guests may use
 100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
 101 * use VMX instructions.
 102 */
 103static bool __read_mostly nested = 0;
 104module_param(nested, bool, S_IRUGO);
 105
 106static u64 __read_mostly host_xss;
 107
 108static bool __read_mostly enable_pml = 1;
 109module_param_named(pml, enable_pml, bool, S_IRUGO);
 110
 111#define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
 112
 113/* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
 114static int __read_mostly cpu_preemption_timer_multi;
 115static bool __read_mostly enable_preemption_timer = 1;
 116#ifdef CONFIG_X86_64
 117module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
 118#endif
 119
 120#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 121#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 122#define KVM_VM_CR0_ALWAYS_ON                                            \
 123        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 124#define KVM_CR4_GUEST_OWNED_BITS                                      \
 125        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 126         | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
 127
 128#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 129#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 130
 131#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 132
 133#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
 134
 135/*
 136 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 137 * ple_gap:    upper bound on the amount of time between two successive
 138 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 139 *             According to test, this time is usually smaller than 128 cycles.
 140 * ple_window: upper bound on the amount of time a guest is allowed to execute
 141 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 142 *             less than 2^12 cycles
 143 * Time is measured based on a counter that runs at the same rate as the TSC,
 144 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 145 */
 146#define KVM_VMX_DEFAULT_PLE_GAP           128
 147#define KVM_VMX_DEFAULT_PLE_WINDOW        4096
 148#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW   2
 149#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
 150#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX    \
 151                INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
 152
 153static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 154module_param(ple_gap, int, S_IRUGO);
 155
 156static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 157module_param(ple_window, int, S_IRUGO);
 158
 159/* Default doubles per-vcpu window every exit. */
 160static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
 161module_param(ple_window_grow, int, S_IRUGO);
 162
 163/* Default resets per-vcpu window every exit to ple_window. */
 164static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
 165module_param(ple_window_shrink, int, S_IRUGO);
 166
 167/* Default is to compute the maximum so we can never overflow. */
 168static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 169static int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
 170module_param(ple_window_max, int, S_IRUGO);
 171
 172extern const ulong vmx_return;
 173
 174#define NR_AUTOLOAD_MSRS 8
 175#define VMCS02_POOL_SIZE 1
 176
 177struct vmcs {
 178        u32 revision_id;
 179        u32 abort;
 180        char data[0];
 181};
 182
 183/*
 184 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 185 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 186 * loaded on this CPU (so we can clear them if the CPU goes down).
 187 */
 188struct loaded_vmcs {
 189        struct vmcs *vmcs;
 190        int cpu;
 191        int launched;
 192        struct list_head loaded_vmcss_on_cpu_link;
 193};
 194
 195struct shared_msr_entry {
 196        unsigned index;
 197        u64 data;
 198        u64 mask;
 199};
 200
 201/*
 202 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 203 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 204 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 205 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 206 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 207 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 208 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 209 * underlying hardware which will be used to run L2.
 210 * This structure is packed to ensure that its layout is identical across
 211 * machines (necessary for live migration).
 212 * If there are changes in this struct, VMCS12_REVISION must be changed.
 213 */
 214typedef u64 natural_width;
 215struct __packed vmcs12 {
 216        /* According to the Intel spec, a VMCS region must start with the
 217         * following two fields. Then follow implementation-specific data.
 218         */
 219        u32 revision_id;
 220        u32 abort;
 221
 222        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 223        u32 padding[7]; /* room for future expansion */
 224
 225        u64 io_bitmap_a;
 226        u64 io_bitmap_b;
 227        u64 msr_bitmap;
 228        u64 vm_exit_msr_store_addr;
 229        u64 vm_exit_msr_load_addr;
 230        u64 vm_entry_msr_load_addr;
 231        u64 tsc_offset;
 232        u64 virtual_apic_page_addr;
 233        u64 apic_access_addr;
 234        u64 posted_intr_desc_addr;
 235        u64 ept_pointer;
 236        u64 eoi_exit_bitmap0;
 237        u64 eoi_exit_bitmap1;
 238        u64 eoi_exit_bitmap2;
 239        u64 eoi_exit_bitmap3;
 240        u64 xss_exit_bitmap;
 241        u64 guest_physical_address;
 242        u64 vmcs_link_pointer;
 243        u64 guest_ia32_debugctl;
 244        u64 guest_ia32_pat;
 245        u64 guest_ia32_efer;
 246        u64 guest_ia32_perf_global_ctrl;
 247        u64 guest_pdptr0;
 248        u64 guest_pdptr1;
 249        u64 guest_pdptr2;
 250        u64 guest_pdptr3;
 251        u64 guest_bndcfgs;
 252        u64 host_ia32_pat;
 253        u64 host_ia32_efer;
 254        u64 host_ia32_perf_global_ctrl;
 255        u64 padding64[8]; /* room for future expansion */
 256        /*
 257         * To allow migration of L1 (complete with its L2 guests) between
 258         * machines of different natural widths (32 or 64 bit), we cannot have
 259         * unsigned long fields with no explict size. We use u64 (aliased
 260         * natural_width) instead. Luckily, x86 is little-endian.
 261         */
 262        natural_width cr0_guest_host_mask;
 263        natural_width cr4_guest_host_mask;
 264        natural_width cr0_read_shadow;
 265        natural_width cr4_read_shadow;
 266        natural_width cr3_target_value0;
 267        natural_width cr3_target_value1;
 268        natural_width cr3_target_value2;
 269        natural_width cr3_target_value3;
 270        natural_width exit_qualification;
 271        natural_width guest_linear_address;
 272        natural_width guest_cr0;
 273        natural_width guest_cr3;
 274        natural_width guest_cr4;
 275        natural_width guest_es_base;
 276        natural_width guest_cs_base;
 277        natural_width guest_ss_base;
 278        natural_width guest_ds_base;
 279        natural_width guest_fs_base;
 280        natural_width guest_gs_base;
 281        natural_width guest_ldtr_base;
 282        natural_width guest_tr_base;
 283        natural_width guest_gdtr_base;
 284        natural_width guest_idtr_base;
 285        natural_width guest_dr7;
 286        natural_width guest_rsp;
 287        natural_width guest_rip;
 288        natural_width guest_rflags;
 289        natural_width guest_pending_dbg_exceptions;
 290        natural_width guest_sysenter_esp;
 291        natural_width guest_sysenter_eip;
 292        natural_width host_cr0;
 293        natural_width host_cr3;
 294        natural_width host_cr4;
 295        natural_width host_fs_base;
 296        natural_width host_gs_base;
 297        natural_width host_tr_base;
 298        natural_width host_gdtr_base;
 299        natural_width host_idtr_base;
 300        natural_width host_ia32_sysenter_esp;
 301        natural_width host_ia32_sysenter_eip;
 302        natural_width host_rsp;
 303        natural_width host_rip;
 304        natural_width paddingl[8]; /* room for future expansion */
 305        u32 pin_based_vm_exec_control;
 306        u32 cpu_based_vm_exec_control;
 307        u32 exception_bitmap;
 308        u32 page_fault_error_code_mask;
 309        u32 page_fault_error_code_match;
 310        u32 cr3_target_count;
 311        u32 vm_exit_controls;
 312        u32 vm_exit_msr_store_count;
 313        u32 vm_exit_msr_load_count;
 314        u32 vm_entry_controls;
 315        u32 vm_entry_msr_load_count;
 316        u32 vm_entry_intr_info_field;
 317        u32 vm_entry_exception_error_code;
 318        u32 vm_entry_instruction_len;
 319        u32 tpr_threshold;
 320        u32 secondary_vm_exec_control;
 321        u32 vm_instruction_error;
 322        u32 vm_exit_reason;
 323        u32 vm_exit_intr_info;
 324        u32 vm_exit_intr_error_code;
 325        u32 idt_vectoring_info_field;
 326        u32 idt_vectoring_error_code;
 327        u32 vm_exit_instruction_len;
 328        u32 vmx_instruction_info;
 329        u32 guest_es_limit;
 330        u32 guest_cs_limit;
 331        u32 guest_ss_limit;
 332        u32 guest_ds_limit;
 333        u32 guest_fs_limit;
 334        u32 guest_gs_limit;
 335        u32 guest_ldtr_limit;
 336        u32 guest_tr_limit;
 337        u32 guest_gdtr_limit;
 338        u32 guest_idtr_limit;
 339        u32 guest_es_ar_bytes;
 340        u32 guest_cs_ar_bytes;
 341        u32 guest_ss_ar_bytes;
 342        u32 guest_ds_ar_bytes;
 343        u32 guest_fs_ar_bytes;
 344        u32 guest_gs_ar_bytes;
 345        u32 guest_ldtr_ar_bytes;
 346        u32 guest_tr_ar_bytes;
 347        u32 guest_interruptibility_info;
 348        u32 guest_activity_state;
 349        u32 guest_sysenter_cs;
 350        u32 host_ia32_sysenter_cs;
 351        u32 vmx_preemption_timer_value;
 352        u32 padding32[7]; /* room for future expansion */
 353        u16 virtual_processor_id;
 354        u16 posted_intr_nv;
 355        u16 guest_es_selector;
 356        u16 guest_cs_selector;
 357        u16 guest_ss_selector;
 358        u16 guest_ds_selector;
 359        u16 guest_fs_selector;
 360        u16 guest_gs_selector;
 361        u16 guest_ldtr_selector;
 362        u16 guest_tr_selector;
 363        u16 guest_intr_status;
 364        u16 host_es_selector;
 365        u16 host_cs_selector;
 366        u16 host_ss_selector;
 367        u16 host_ds_selector;
 368        u16 host_fs_selector;
 369        u16 host_gs_selector;
 370        u16 host_tr_selector;
 371};
 372
 373/*
 374 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 375 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 376 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 377 */
 378#define VMCS12_REVISION 0x11e57ed0
 379
 380/*
 381 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 382 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 383 * current implementation, 4K are reserved to avoid future complications.
 384 */
 385#define VMCS12_SIZE 0x1000
 386
 387/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 388struct vmcs02_list {
 389        struct list_head list;
 390        gpa_t vmptr;
 391        struct loaded_vmcs vmcs02;
 392};
 393
 394/*
 395 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 396 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 397 */
 398struct nested_vmx {
 399        /* Has the level1 guest done vmxon? */
 400        bool vmxon;
 401        gpa_t vmxon_ptr;
 402
 403        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 404        gpa_t current_vmptr;
 405        /* The host-usable pointer to the above */
 406        struct page *current_vmcs12_page;
 407        struct vmcs12 *current_vmcs12;
 408        /*
 409         * Cache of the guest's VMCS, existing outside of guest memory.
 410         * Loaded from guest memory during VMPTRLD. Flushed to guest
 411         * memory during VMXOFF, VMCLEAR, VMPTRLD.
 412         */
 413        struct vmcs12 *cached_vmcs12;
 414        struct vmcs *current_shadow_vmcs;
 415        /*
 416         * Indicates if the shadow vmcs must be updated with the
 417         * data hold by vmcs12
 418         */
 419        bool sync_shadow_vmcs;
 420
 421        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 422        struct list_head vmcs02_pool;
 423        int vmcs02_num;
 424        u64 vmcs01_tsc_offset;
 425        bool change_vmcs01_virtual_x2apic_mode;
 426        /* L2 must run next, and mustn't decide to exit to L1. */
 427        bool nested_run_pending;
 428        /*
 429         * Guest pages referred to in vmcs02 with host-physical pointers, so
 430         * we must keep them pinned while L2 runs.
 431         */
 432        struct page *apic_access_page;
 433        struct page *virtual_apic_page;
 434        struct page *pi_desc_page;
 435        struct pi_desc *pi_desc;
 436        bool pi_pending;
 437        u16 posted_intr_nv;
 438
 439        unsigned long *msr_bitmap;
 440
 441        struct hrtimer preemption_timer;
 442        bool preemption_timer_expired;
 443
 444        /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
 445        u64 vmcs01_debugctl;
 446
 447        u16 vpid02;
 448        u16 last_vpid;
 449
 450        u32 nested_vmx_procbased_ctls_low;
 451        u32 nested_vmx_procbased_ctls_high;
 452        u32 nested_vmx_true_procbased_ctls_low;
 453        u32 nested_vmx_secondary_ctls_low;
 454        u32 nested_vmx_secondary_ctls_high;
 455        u32 nested_vmx_pinbased_ctls_low;
 456        u32 nested_vmx_pinbased_ctls_high;
 457        u32 nested_vmx_exit_ctls_low;
 458        u32 nested_vmx_exit_ctls_high;
 459        u32 nested_vmx_true_exit_ctls_low;
 460        u32 nested_vmx_entry_ctls_low;
 461        u32 nested_vmx_entry_ctls_high;
 462        u32 nested_vmx_true_entry_ctls_low;
 463        u32 nested_vmx_misc_low;
 464        u32 nested_vmx_misc_high;
 465        u32 nested_vmx_ept_caps;
 466        u32 nested_vmx_vpid_caps;
 467};
 468
 469#define POSTED_INTR_ON  0
 470#define POSTED_INTR_SN  1
 471
 472/* Posted-Interrupt Descriptor */
 473struct pi_desc {
 474        u32 pir[8];     /* Posted interrupt requested */
 475        union {
 476                struct {
 477                                /* bit 256 - Outstanding Notification */
 478                        u16     on      : 1,
 479                                /* bit 257 - Suppress Notification */
 480                                sn      : 1,
 481                                /* bit 271:258 - Reserved */
 482                                rsvd_1  : 14;
 483                                /* bit 279:272 - Notification Vector */
 484                        u8      nv;
 485                                /* bit 287:280 - Reserved */
 486                        u8      rsvd_2;
 487                                /* bit 319:288 - Notification Destination */
 488                        u32     ndst;
 489                };
 490                u64 control;
 491        };
 492        u32 rsvd[6];
 493} __aligned(64);
 494
 495static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 496{
 497        return test_and_set_bit(POSTED_INTR_ON,
 498                        (unsigned long *)&pi_desc->control);
 499}
 500
 501static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 502{
 503        return test_and_clear_bit(POSTED_INTR_ON,
 504                        (unsigned long *)&pi_desc->control);
 505}
 506
 507static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 508{
 509        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 510}
 511
 512static inline void pi_clear_sn(struct pi_desc *pi_desc)
 513{
 514        return clear_bit(POSTED_INTR_SN,
 515                        (unsigned long *)&pi_desc->control);
 516}
 517
 518static inline void pi_set_sn(struct pi_desc *pi_desc)
 519{
 520        return set_bit(POSTED_INTR_SN,
 521                        (unsigned long *)&pi_desc->control);
 522}
 523
 524static inline int pi_test_on(struct pi_desc *pi_desc)
 525{
 526        return test_bit(POSTED_INTR_ON,
 527                        (unsigned long *)&pi_desc->control);
 528}
 529
 530static inline int pi_test_sn(struct pi_desc *pi_desc)
 531{
 532        return test_bit(POSTED_INTR_SN,
 533                        (unsigned long *)&pi_desc->control);
 534}
 535
 536struct vcpu_vmx {
 537        struct kvm_vcpu       vcpu;
 538        unsigned long         host_rsp;
 539        u8                    fail;
 540        bool                  nmi_known_unmasked;
 541        u32                   exit_intr_info;
 542        u32                   idt_vectoring_info;
 543        ulong                 rflags;
 544        struct shared_msr_entry *guest_msrs;
 545        int                   nmsrs;
 546        int                   save_nmsrs;
 547        unsigned long         host_idt_base;
 548#ifdef CONFIG_X86_64
 549        u64                   msr_host_kernel_gs_base;
 550        u64                   msr_guest_kernel_gs_base;
 551#endif
 552        u32 vm_entry_controls_shadow;
 553        u32 vm_exit_controls_shadow;
 554        /*
 555         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 556         * non-nested (L1) guest, it always points to vmcs01. For a nested
 557         * guest (L2), it points to a different VMCS.
 558         */
 559        struct loaded_vmcs    vmcs01;
 560        struct loaded_vmcs   *loaded_vmcs;
 561        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 562        struct msr_autoload {
 563                unsigned nr;
 564                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 565                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 566        } msr_autoload;
 567        struct {
 568                int           loaded;
 569                u16           fs_sel, gs_sel, ldt_sel;
 570#ifdef CONFIG_X86_64
 571                u16           ds_sel, es_sel;
 572#endif
 573                int           gs_ldt_reload_needed;
 574                int           fs_reload_needed;
 575                u64           msr_host_bndcfgs;
 576                unsigned long vmcs_host_cr4;    /* May not match real cr4 */
 577        } host_state;
 578        struct {
 579                int vm86_active;
 580                ulong save_rflags;
 581                struct kvm_segment segs[8];
 582        } rmode;
 583        struct {
 584                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 585                struct kvm_save_segment {
 586                        u16 selector;
 587                        unsigned long base;
 588                        u32 limit;
 589                        u32 ar;
 590                } seg[8];
 591        } segment_cache;
 592        int vpid;
 593        bool emulation_required;
 594
 595        /* Support for vnmi-less CPUs */
 596        int soft_vnmi_blocked;
 597        ktime_t entry_time;
 598        s64 vnmi_blocked_time;
 599        u32 exit_reason;
 600
 601        /* Posted interrupt descriptor */
 602        struct pi_desc pi_desc;
 603
 604        /* Support for a guest hypervisor (nested VMX) */
 605        struct nested_vmx nested;
 606
 607        /* Dynamic PLE window. */
 608        int ple_window;
 609        bool ple_window_dirty;
 610
 611        /* Support for PML */
 612#define PML_ENTITY_NUM          512
 613        struct page *pml_pg;
 614
 615        /* apic deadline value in host tsc */
 616        u64 hv_deadline_tsc;
 617
 618        u64 current_tsc_ratio;
 619
 620        bool guest_pkru_valid;
 621        u32 guest_pkru;
 622        u32 host_pkru;
 623
 624        /*
 625         * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
 626         * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
 627         * in msr_ia32_feature_control_valid_bits.
 628         */
 629        u64 msr_ia32_feature_control;
 630        u64 msr_ia32_feature_control_valid_bits;
 631};
 632
 633enum segment_cache_field {
 634        SEG_FIELD_SEL = 0,
 635        SEG_FIELD_BASE = 1,
 636        SEG_FIELD_LIMIT = 2,
 637        SEG_FIELD_AR = 3,
 638
 639        SEG_FIELD_NR = 4
 640};
 641
 642static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 643{
 644        return container_of(vcpu, struct vcpu_vmx, vcpu);
 645}
 646
 647static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
 648{
 649        return &(to_vmx(vcpu)->pi_desc);
 650}
 651
 652#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 653#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 654#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 655                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 656
 657
 658static unsigned long shadow_read_only_fields[] = {
 659        /*
 660         * We do NOT shadow fields that are modified when L0
 661         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 662         * VMXON...) executed by L1.
 663         * For example, VM_INSTRUCTION_ERROR is read
 664         * by L1 if a vmx instruction fails (part of the error path).
 665         * Note the code assumes this logic. If for some reason
 666         * we start shadowing these fields then we need to
 667         * force a shadow sync when L0 emulates vmx instructions
 668         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 669         * by nested_vmx_failValid)
 670         */
 671        VM_EXIT_REASON,
 672        VM_EXIT_INTR_INFO,
 673        VM_EXIT_INSTRUCTION_LEN,
 674        IDT_VECTORING_INFO_FIELD,
 675        IDT_VECTORING_ERROR_CODE,
 676        VM_EXIT_INTR_ERROR_CODE,
 677        EXIT_QUALIFICATION,
 678        GUEST_LINEAR_ADDRESS,
 679        GUEST_PHYSICAL_ADDRESS
 680};
 681static int max_shadow_read_only_fields =
 682        ARRAY_SIZE(shadow_read_only_fields);
 683
 684static unsigned long shadow_read_write_fields[] = {
 685        TPR_THRESHOLD,
 686        GUEST_RIP,
 687        GUEST_RSP,
 688        GUEST_CR0,
 689        GUEST_CR3,
 690        GUEST_CR4,
 691        GUEST_INTERRUPTIBILITY_INFO,
 692        GUEST_RFLAGS,
 693        GUEST_CS_SELECTOR,
 694        GUEST_CS_AR_BYTES,
 695        GUEST_CS_LIMIT,
 696        GUEST_CS_BASE,
 697        GUEST_ES_BASE,
 698        GUEST_BNDCFGS,
 699        CR0_GUEST_HOST_MASK,
 700        CR0_READ_SHADOW,
 701        CR4_READ_SHADOW,
 702        TSC_OFFSET,
 703        EXCEPTION_BITMAP,
 704        CPU_BASED_VM_EXEC_CONTROL,
 705        VM_ENTRY_EXCEPTION_ERROR_CODE,
 706        VM_ENTRY_INTR_INFO_FIELD,
 707        VM_ENTRY_INSTRUCTION_LEN,
 708        VM_ENTRY_EXCEPTION_ERROR_CODE,
 709        HOST_FS_BASE,
 710        HOST_GS_BASE,
 711        HOST_FS_SELECTOR,
 712        HOST_GS_SELECTOR
 713};
 714static int max_shadow_read_write_fields =
 715        ARRAY_SIZE(shadow_read_write_fields);
 716
 717static const unsigned short vmcs_field_to_offset_table[] = {
 718        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 719        FIELD(POSTED_INTR_NV, posted_intr_nv),
 720        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 721        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 722        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 723        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 724        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 725        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 726        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 727        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 728        FIELD(GUEST_INTR_STATUS, guest_intr_status),
 729        FIELD(HOST_ES_SELECTOR, host_es_selector),
 730        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 731        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 732        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 733        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 734        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 735        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 736        FIELD64(IO_BITMAP_A, io_bitmap_a),
 737        FIELD64(IO_BITMAP_B, io_bitmap_b),
 738        FIELD64(MSR_BITMAP, msr_bitmap),
 739        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 740        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 741        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 742        FIELD64(TSC_OFFSET, tsc_offset),
 743        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 744        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 745        FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
 746        FIELD64(EPT_POINTER, ept_pointer),
 747        FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
 748        FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
 749        FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
 750        FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
 751        FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
 752        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 753        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 754        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 755        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 756        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 757        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 758        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 759        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 760        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 761        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 762        FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
 763        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 764        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 765        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 766        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 767        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 768        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 769        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 770        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 771        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 772        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 773        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 774        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 775        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 776        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 777        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 778        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 779        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 780        FIELD(TPR_THRESHOLD, tpr_threshold),
 781        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 782        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 783        FIELD(VM_EXIT_REASON, vm_exit_reason),
 784        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 785        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 786        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 787        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 788        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 789        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 790        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 791        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 792        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 793        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 794        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 795        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 796        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 797        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 798        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 799        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 800        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 801        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 802        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 803        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 804        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 805        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 806        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 807        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 808        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 809        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 810        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 811        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 812        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 813        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 814        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 815        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 816        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 817        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 818        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 819        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 820        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 821        FIELD(EXIT_QUALIFICATION, exit_qualification),
 822        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 823        FIELD(GUEST_CR0, guest_cr0),
 824        FIELD(GUEST_CR3, guest_cr3),
 825        FIELD(GUEST_CR4, guest_cr4),
 826        FIELD(GUEST_ES_BASE, guest_es_base),
 827        FIELD(GUEST_CS_BASE, guest_cs_base),
 828        FIELD(GUEST_SS_BASE, guest_ss_base),
 829        FIELD(GUEST_DS_BASE, guest_ds_base),
 830        FIELD(GUEST_FS_BASE, guest_fs_base),
 831        FIELD(GUEST_GS_BASE, guest_gs_base),
 832        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 833        FIELD(GUEST_TR_BASE, guest_tr_base),
 834        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 835        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 836        FIELD(GUEST_DR7, guest_dr7),
 837        FIELD(GUEST_RSP, guest_rsp),
 838        FIELD(GUEST_RIP, guest_rip),
 839        FIELD(GUEST_RFLAGS, guest_rflags),
 840        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 841        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 842        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 843        FIELD(HOST_CR0, host_cr0),
 844        FIELD(HOST_CR3, host_cr3),
 845        FIELD(HOST_CR4, host_cr4),
 846        FIELD(HOST_FS_BASE, host_fs_base),
 847        FIELD(HOST_GS_BASE, host_gs_base),
 848        FIELD(HOST_TR_BASE, host_tr_base),
 849        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 850        FIELD(HOST_IDTR_BASE, host_idtr_base),
 851        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 852        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 853        FIELD(HOST_RSP, host_rsp),
 854        FIELD(HOST_RIP, host_rip),
 855};
 856
 857static inline short vmcs_field_to_offset(unsigned long field)
 858{
 859        BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
 860
 861        if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
 862            vmcs_field_to_offset_table[field] == 0)
 863                return -ENOENT;
 864
 865        return vmcs_field_to_offset_table[field];
 866}
 867
 868static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 869{
 870        return to_vmx(vcpu)->nested.cached_vmcs12;
 871}
 872
 873static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
 874{
 875        struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
 876        if (is_error_page(page))
 877                return NULL;
 878
 879        return page;
 880}
 881
 882static void nested_release_page(struct page *page)
 883{
 884        kvm_release_page_dirty(page);
 885}
 886
 887static void nested_release_page_clean(struct page *page)
 888{
 889        kvm_release_page_clean(page);
 890}
 891
 892static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
 893static u64 construct_eptp(unsigned long root_hpa);
 894static void kvm_cpu_vmxon(u64 addr);
 895static void kvm_cpu_vmxoff(void);
 896static bool vmx_xsaves_supported(void);
 897static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 898static void vmx_set_segment(struct kvm_vcpu *vcpu,
 899                            struct kvm_segment *var, int seg);
 900static void vmx_get_segment(struct kvm_vcpu *vcpu,
 901                            struct kvm_segment *var, int seg);
 902static bool guest_state_valid(struct kvm_vcpu *vcpu);
 903static u32 vmx_segment_access_rights(struct kvm_segment *var);
 904static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 905static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 906static int alloc_identity_pagetable(struct kvm *kvm);
 907
 908static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 909static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 910/*
 911 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 912 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 913 */
 914static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 915static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 916
 917/*
 918 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
 919 * can find which vCPU should be waken up.
 920 */
 921static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
 922static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
 923
 924static unsigned long *vmx_io_bitmap_a;
 925static unsigned long *vmx_io_bitmap_b;
 926static unsigned long *vmx_msr_bitmap_legacy;
 927static unsigned long *vmx_msr_bitmap_longmode;
 928static unsigned long *vmx_msr_bitmap_legacy_x2apic;
 929static unsigned long *vmx_msr_bitmap_longmode_x2apic;
 930static unsigned long *vmx_vmread_bitmap;
 931static unsigned long *vmx_vmwrite_bitmap;
 932
 933static bool cpu_has_load_ia32_efer;
 934static bool cpu_has_load_perf_global_ctrl;
 935
 936static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 937static DEFINE_SPINLOCK(vmx_vpid_lock);
 938
 939static struct vmcs_config {
 940        int size;
 941        int order;
 942        u32 revision_id;
 943        u32 pin_based_exec_ctrl;
 944        u32 cpu_based_exec_ctrl;
 945        u32 cpu_based_2nd_exec_ctrl;
 946        u32 vmexit_ctrl;
 947        u32 vmentry_ctrl;
 948} vmcs_config;
 949
 950static struct vmx_capability {
 951        u32 ept;
 952        u32 vpid;
 953} vmx_capability;
 954
 955#define VMX_SEGMENT_FIELD(seg)                                  \
 956        [VCPU_SREG_##seg] = {                                   \
 957                .selector = GUEST_##seg##_SELECTOR,             \
 958                .base = GUEST_##seg##_BASE,                     \
 959                .limit = GUEST_##seg##_LIMIT,                   \
 960                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 961        }
 962
 963static const struct kvm_vmx_segment_field {
 964        unsigned selector;
 965        unsigned base;
 966        unsigned limit;
 967        unsigned ar_bytes;
 968} kvm_vmx_segment_fields[] = {
 969        VMX_SEGMENT_FIELD(CS),
 970        VMX_SEGMENT_FIELD(DS),
 971        VMX_SEGMENT_FIELD(ES),
 972        VMX_SEGMENT_FIELD(FS),
 973        VMX_SEGMENT_FIELD(GS),
 974        VMX_SEGMENT_FIELD(SS),
 975        VMX_SEGMENT_FIELD(TR),
 976        VMX_SEGMENT_FIELD(LDTR),
 977};
 978
 979static u64 host_efer;
 980
 981static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 982
 983/*
 984 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 985 * away by decrementing the array size.
 986 */
 987static const u32 vmx_msr_index[] = {
 988#ifdef CONFIG_X86_64
 989        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 990#endif
 991        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 992};
 993
 994static inline bool is_exception_n(u32 intr_info, u8 vector)
 995{
 996        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 997                             INTR_INFO_VALID_MASK)) ==
 998                (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
 999}
1000
1001static inline bool is_debug(u32 intr_info)
1002{
1003        return is_exception_n(intr_info, DB_VECTOR);
1004}
1005
1006static inline bool is_breakpoint(u32 intr_info)
1007{
1008        return is_exception_n(intr_info, BP_VECTOR);
1009}
1010
1011static inline bool is_page_fault(u32 intr_info)
1012{
1013        return is_exception_n(intr_info, PF_VECTOR);
1014}
1015
1016static inline bool is_no_device(u32 intr_info)
1017{
1018        return is_exception_n(intr_info, NM_VECTOR);
1019}
1020
1021static inline bool is_invalid_opcode(u32 intr_info)
1022{
1023        return is_exception_n(intr_info, UD_VECTOR);
1024}
1025
1026static inline bool is_external_interrupt(u32 intr_info)
1027{
1028        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1029                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1030}
1031
1032static inline bool is_machine_check(u32 intr_info)
1033{
1034        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1035                             INTR_INFO_VALID_MASK)) ==
1036                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1037}
1038
1039static inline bool cpu_has_vmx_msr_bitmap(void)
1040{
1041        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
1042}
1043
1044static inline bool cpu_has_vmx_tpr_shadow(void)
1045{
1046        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
1047}
1048
1049static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
1050{
1051        return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
1052}
1053
1054static inline bool cpu_has_secondary_exec_ctrls(void)
1055{
1056        return vmcs_config.cpu_based_exec_ctrl &
1057                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1058}
1059
1060static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
1061{
1062        return vmcs_config.cpu_based_2nd_exec_ctrl &
1063                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1064}
1065
1066static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1067{
1068        return vmcs_config.cpu_based_2nd_exec_ctrl &
1069                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1070}
1071
1072static inline bool cpu_has_vmx_apic_register_virt(void)
1073{
1074        return vmcs_config.cpu_based_2nd_exec_ctrl &
1075                SECONDARY_EXEC_APIC_REGISTER_VIRT;
1076}
1077
1078static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1079{
1080        return vmcs_config.cpu_based_2nd_exec_ctrl &
1081                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1082}
1083
1084/*
1085 * Comment's format: document - errata name - stepping - processor name.
1086 * Refer from
1087 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1088 */
1089static u32 vmx_preemption_cpu_tfms[] = {
1090/* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
10910x000206E6,
1092/* 323056.pdf - AAX65  - C2 - Xeon L3406 */
1093/* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1094/* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
10950x00020652,
1096/* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
10970x00020655,
1098/* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
1099/* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
1100/*
1101 * 320767.pdf - AAP86  - B1 -
1102 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1103 */
11040x000106E5,
1105/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
11060x000106A0,
1107/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
11080x000106A1,
1109/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
11100x000106A4,
1111 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1112 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1113 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
11140x000106A5,
1115};
1116
1117static inline bool cpu_has_broken_vmx_preemption_timer(void)
1118{
1119        u32 eax = cpuid_eax(0x00000001), i;
1120
1121        /* Clear the reserved bits */
1122        eax &= ~(0x3U << 14 | 0xfU << 28);
1123        for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
1124                if (eax == vmx_preemption_cpu_tfms[i])
1125                        return true;
1126
1127        return false;
1128}
1129
1130static inline bool cpu_has_vmx_preemption_timer(void)
1131{
1132        return vmcs_config.pin_based_exec_ctrl &
1133                PIN_BASED_VMX_PREEMPTION_TIMER;
1134}
1135
1136static inline bool cpu_has_vmx_posted_intr(void)
1137{
1138        return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1139                vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
1140}
1141
1142static inline bool cpu_has_vmx_apicv(void)
1143{
1144        return cpu_has_vmx_apic_register_virt() &&
1145                cpu_has_vmx_virtual_intr_delivery() &&
1146                cpu_has_vmx_posted_intr();
1147}
1148
1149static inline bool cpu_has_vmx_flexpriority(void)
1150{
1151        return cpu_has_vmx_tpr_shadow() &&
1152                cpu_has_vmx_virtualize_apic_accesses();
1153}
1154
1155static inline bool cpu_has_vmx_ept_execute_only(void)
1156{
1157        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
1158}
1159
1160static inline bool cpu_has_vmx_ept_2m_page(void)
1161{
1162        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
1163}
1164
1165static inline bool cpu_has_vmx_ept_1g_page(void)
1166{
1167        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
1168}
1169
1170static inline bool cpu_has_vmx_ept_4levels(void)
1171{
1172        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1173}
1174
1175static inline bool cpu_has_vmx_ept_ad_bits(void)
1176{
1177        return vmx_capability.ept & VMX_EPT_AD_BIT;
1178}
1179
1180static inline bool cpu_has_vmx_invept_context(void)
1181{
1182        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
1183}
1184
1185static inline bool cpu_has_vmx_invept_global(void)
1186{
1187        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
1188}
1189
1190static inline bool cpu_has_vmx_invvpid_single(void)
1191{
1192        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1193}
1194
1195static inline bool cpu_has_vmx_invvpid_global(void)
1196{
1197        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1198}
1199
1200static inline bool cpu_has_vmx_ept(void)
1201{
1202        return vmcs_config.cpu_based_2nd_exec_ctrl &
1203                SECONDARY_EXEC_ENABLE_EPT;
1204}
1205
1206static inline bool cpu_has_vmx_unrestricted_guest(void)
1207{
1208        return vmcs_config.cpu_based_2nd_exec_ctrl &
1209                SECONDARY_EXEC_UNRESTRICTED_GUEST;
1210}
1211
1212static inline bool cpu_has_vmx_ple(void)
1213{
1214        return vmcs_config.cpu_based_2nd_exec_ctrl &
1215                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1216}
1217
1218static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
1219{
1220        return flexpriority_enabled && lapic_in_kernel(vcpu);
1221}
1222
1223static inline bool cpu_has_vmx_vpid(void)
1224{
1225        return vmcs_config.cpu_based_2nd_exec_ctrl &
1226                SECONDARY_EXEC_ENABLE_VPID;
1227}
1228
1229static inline bool cpu_has_vmx_rdtscp(void)
1230{
1231        return vmcs_config.cpu_based_2nd_exec_ctrl &
1232                SECONDARY_EXEC_RDTSCP;
1233}
1234
1235static inline bool cpu_has_vmx_invpcid(void)
1236{
1237        return vmcs_config.cpu_based_2nd_exec_ctrl &
1238                SECONDARY_EXEC_ENABLE_INVPCID;
1239}
1240
1241static inline bool cpu_has_virtual_nmis(void)
1242{
1243        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1244}
1245
1246static inline bool cpu_has_vmx_wbinvd_exit(void)
1247{
1248        return vmcs_config.cpu_based_2nd_exec_ctrl &
1249                SECONDARY_EXEC_WBINVD_EXITING;
1250}
1251
1252static inline bool cpu_has_vmx_shadow_vmcs(void)
1253{
1254        u64 vmx_msr;
1255        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1256        /* check if the cpu supports writing r/o exit information fields */
1257        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1258                return false;
1259
1260        return vmcs_config.cpu_based_2nd_exec_ctrl &
1261                SECONDARY_EXEC_SHADOW_VMCS;
1262}
1263
1264static inline bool cpu_has_vmx_pml(void)
1265{
1266        return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1267}
1268
1269static inline bool cpu_has_vmx_tsc_scaling(void)
1270{
1271        return vmcs_config.cpu_based_2nd_exec_ctrl &
1272                SECONDARY_EXEC_TSC_SCALING;
1273}
1274
1275static inline bool report_flexpriority(void)
1276{
1277        return flexpriority_enabled;
1278}
1279
1280static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1281{
1282        return vmcs12->cpu_based_vm_exec_control & bit;
1283}
1284
1285static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1286{
1287        return (vmcs12->cpu_based_vm_exec_control &
1288                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1289                (vmcs12->secondary_vm_exec_control & bit);
1290}
1291
1292static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1293{
1294        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1295}
1296
1297static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1298{
1299        return vmcs12->pin_based_vm_exec_control &
1300                PIN_BASED_VMX_PREEMPTION_TIMER;
1301}
1302
1303static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1304{
1305        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1306}
1307
1308static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1309{
1310        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1311                vmx_xsaves_supported();
1312}
1313
1314static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1315{
1316        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1317}
1318
1319static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1320{
1321        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1322}
1323
1324static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1325{
1326        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1327}
1328
1329static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1330{
1331        return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1332}
1333
1334static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1335{
1336        return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1337}
1338
1339static inline bool is_exception(u32 intr_info)
1340{
1341        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1342                == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1343}
1344
1345static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1346                              u32 exit_intr_info,
1347                              unsigned long exit_qualification);
1348static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1349                        struct vmcs12 *vmcs12,
1350                        u32 reason, unsigned long qualification);
1351
1352static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1353{
1354        int i;
1355
1356        for (i = 0; i < vmx->nmsrs; ++i)
1357                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1358                        return i;
1359        return -1;
1360}
1361
1362static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1363{
1364    struct {
1365        u64 vpid : 16;
1366        u64 rsvd : 48;
1367        u64 gva;
1368    } operand = { vpid, 0, gva };
1369
1370    asm volatile (__ex(ASM_VMX_INVVPID)
1371                  /* CF==1 or ZF==1 --> rc = -1 */
1372                  "; ja 1f ; ud2 ; 1:"
1373                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1374}
1375
1376static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1377{
1378        struct {
1379                u64 eptp, gpa;
1380        } operand = {eptp, gpa};
1381
1382        asm volatile (__ex(ASM_VMX_INVEPT)
1383                        /* CF==1 or ZF==1 --> rc = -1 */
1384                        "; ja 1f ; ud2 ; 1:\n"
1385                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1386}
1387
1388static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1389{
1390        int i;
1391
1392        i = __find_msr_index(vmx, msr);
1393        if (i >= 0)
1394                return &vmx->guest_msrs[i];
1395        return NULL;
1396}
1397
1398static void vmcs_clear(struct vmcs *vmcs)
1399{
1400        u64 phys_addr = __pa(vmcs);
1401        u8 error;
1402
1403        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1404                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1405                      : "cc", "memory");
1406        if (error)
1407                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1408                       vmcs, phys_addr);
1409}
1410
1411static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1412{
1413        vmcs_clear(loaded_vmcs->vmcs);
1414        loaded_vmcs->cpu = -1;
1415        loaded_vmcs->launched = 0;
1416}
1417
1418static void vmcs_load(struct vmcs *vmcs)
1419{
1420        u64 phys_addr = __pa(vmcs);
1421        u8 error;
1422
1423        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1424                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1425                        : "cc", "memory");
1426        if (error)
1427                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1428                       vmcs, phys_addr);
1429}
1430
1431#ifdef CONFIG_KEXEC_CORE
1432/*
1433 * This bitmap is used to indicate whether the vmclear
1434 * operation is enabled on all cpus. All disabled by
1435 * default.
1436 */
1437static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1438
1439static inline void crash_enable_local_vmclear(int cpu)
1440{
1441        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1442}
1443
1444static inline void crash_disable_local_vmclear(int cpu)
1445{
1446        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1447}
1448
1449static inline int crash_local_vmclear_enabled(int cpu)
1450{
1451        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1452}
1453
1454static void crash_vmclear_local_loaded_vmcss(void)
1455{
1456        int cpu = raw_smp_processor_id();
1457        struct loaded_vmcs *v;
1458
1459        if (!crash_local_vmclear_enabled(cpu))
1460                return;
1461
1462        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1463                            loaded_vmcss_on_cpu_link)
1464                vmcs_clear(v->vmcs);
1465}
1466#else
1467static inline void crash_enable_local_vmclear(int cpu) { }
1468static inline void crash_disable_local_vmclear(int cpu) { }
1469#endif /* CONFIG_KEXEC_CORE */
1470
1471static void __loaded_vmcs_clear(void *arg)
1472{
1473        struct loaded_vmcs *loaded_vmcs = arg;
1474        int cpu = raw_smp_processor_id();
1475
1476        if (loaded_vmcs->cpu != cpu)
1477                return; /* vcpu migration can race with cpu offline */
1478        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1479                per_cpu(current_vmcs, cpu) = NULL;
1480        crash_disable_local_vmclear(cpu);
1481        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1482
1483        /*
1484         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1485         * is before setting loaded_vmcs->vcpu to -1 which is done in
1486         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1487         * then adds the vmcs into percpu list before it is deleted.
1488         */
1489        smp_wmb();
1490
1491        loaded_vmcs_init(loaded_vmcs);
1492        crash_enable_local_vmclear(cpu);
1493}
1494
1495static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1496{
1497        int cpu = loaded_vmcs->cpu;
1498
1499        if (cpu != -1)
1500                smp_call_function_single(cpu,
1501                         __loaded_vmcs_clear, loaded_vmcs, 1);
1502}
1503
1504static inline void vpid_sync_vcpu_single(int vpid)
1505{
1506        if (vpid == 0)
1507                return;
1508
1509        if (cpu_has_vmx_invvpid_single())
1510                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
1511}
1512
1513static inline void vpid_sync_vcpu_global(void)
1514{
1515        if (cpu_has_vmx_invvpid_global())
1516                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1517}
1518
1519static inline void vpid_sync_context(int vpid)
1520{
1521        if (cpu_has_vmx_invvpid_single())
1522                vpid_sync_vcpu_single(vpid);
1523        else
1524                vpid_sync_vcpu_global();
1525}
1526
1527static inline void ept_sync_global(void)
1528{
1529        if (cpu_has_vmx_invept_global())
1530                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1531}
1532
1533static inline void ept_sync_context(u64 eptp)
1534{
1535        if (enable_ept) {
1536                if (cpu_has_vmx_invept_context())
1537                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1538                else
1539                        ept_sync_global();
1540        }
1541}
1542
1543static __always_inline void vmcs_check16(unsigned long field)
1544{
1545        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1546                         "16-bit accessor invalid for 64-bit field");
1547        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1548                         "16-bit accessor invalid for 64-bit high field");
1549        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1550                         "16-bit accessor invalid for 32-bit high field");
1551        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1552                         "16-bit accessor invalid for natural width field");
1553}
1554
1555static __always_inline void vmcs_check32(unsigned long field)
1556{
1557        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1558                         "32-bit accessor invalid for 16-bit field");
1559        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1560                         "32-bit accessor invalid for natural width field");
1561}
1562
1563static __always_inline void vmcs_check64(unsigned long field)
1564{
1565        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1566                         "64-bit accessor invalid for 16-bit field");
1567        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1568                         "64-bit accessor invalid for 64-bit high field");
1569        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1570                         "64-bit accessor invalid for 32-bit field");
1571        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1572                         "64-bit accessor invalid for natural width field");
1573}
1574
1575static __always_inline void vmcs_checkl(unsigned long field)
1576{
1577        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1578                         "Natural width accessor invalid for 16-bit field");
1579        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1580                         "Natural width accessor invalid for 64-bit field");
1581        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1582                         "Natural width accessor invalid for 64-bit high field");
1583        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1584                         "Natural width accessor invalid for 32-bit field");
1585}
1586
1587static __always_inline unsigned long __vmcs_readl(unsigned long field)
1588{
1589        unsigned long value;
1590
1591        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1592                      : "=a"(value) : "d"(field) : "cc");
1593        return value;
1594}
1595
1596static __always_inline u16 vmcs_read16(unsigned long field)
1597{
1598        vmcs_check16(field);
1599        return __vmcs_readl(field);
1600}
1601
1602static __always_inline u32 vmcs_read32(unsigned long field)
1603{
1604        vmcs_check32(field);
1605        return __vmcs_readl(field);
1606}
1607
1608static __always_inline u64 vmcs_read64(unsigned long field)
1609{
1610        vmcs_check64(field);
1611#ifdef CONFIG_X86_64
1612        return __vmcs_readl(field);
1613#else
1614        return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
1615#endif
1616}
1617
1618static __always_inline unsigned long vmcs_readl(unsigned long field)
1619{
1620        vmcs_checkl(field);
1621        return __vmcs_readl(field);
1622}
1623
1624static noinline void vmwrite_error(unsigned long field, unsigned long value)
1625{
1626        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1627               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1628        dump_stack();
1629}
1630
1631static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
1632{
1633        u8 error;
1634
1635        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1636                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1637        if (unlikely(error))
1638                vmwrite_error(field, value);
1639}
1640
1641static __always_inline void vmcs_write16(unsigned long field, u16 value)
1642{
1643        vmcs_check16(field);
1644        __vmcs_writel(field, value);
1645}
1646
1647static __always_inline void vmcs_write32(unsigned long field, u32 value)
1648{
1649        vmcs_check32(field);
1650        __vmcs_writel(field, value);
1651}
1652
1653static __always_inline void vmcs_write64(unsigned long field, u64 value)
1654{
1655        vmcs_check64(field);
1656        __vmcs_writel(field, value);
1657#ifndef CONFIG_X86_64
1658        asm volatile ("");
1659        __vmcs_writel(field+1, value >> 32);
1660#endif
1661}
1662
1663static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
1664{
1665        vmcs_checkl(field);
1666        __vmcs_writel(field, value);
1667}
1668
1669static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
1670{
1671        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1672                         "vmcs_clear_bits does not support 64-bit fields");
1673        __vmcs_writel(field, __vmcs_readl(field) & ~mask);
1674}
1675
1676static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
1677{
1678        BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1679                         "vmcs_set_bits does not support 64-bit fields");
1680        __vmcs_writel(field, __vmcs_readl(field) | mask);
1681}
1682
1683static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1684{
1685        vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1686}
1687
1688static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1689{
1690        vmcs_write32(VM_ENTRY_CONTROLS, val);
1691        vmx->vm_entry_controls_shadow = val;
1692}
1693
1694static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1695{
1696        if (vmx->vm_entry_controls_shadow != val)
1697                vm_entry_controls_init(vmx, val);
1698}
1699
1700static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1701{
1702        return vmx->vm_entry_controls_shadow;
1703}
1704
1705
1706static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1707{
1708        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1709}
1710
1711static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1712{
1713        vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1714}
1715
1716static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1717{
1718        vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1719}
1720
1721static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1722{
1723        vmcs_write32(VM_EXIT_CONTROLS, val);
1724        vmx->vm_exit_controls_shadow = val;
1725}
1726
1727static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1728{
1729        if (vmx->vm_exit_controls_shadow != val)
1730                vm_exit_controls_init(vmx, val);
1731}
1732
1733static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1734{
1735        return vmx->vm_exit_controls_shadow;
1736}
1737
1738
1739static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1740{
1741        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1742}
1743
1744static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1745{
1746        vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1747}
1748
1749static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1750{
1751        vmx->segment_cache.bitmask = 0;
1752}
1753
1754static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1755                                       unsigned field)
1756{
1757        bool ret;
1758        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1759
1760        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1761                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1762                vmx->segment_cache.bitmask = 0;
1763        }
1764        ret = vmx->segment_cache.bitmask & mask;
1765        vmx->segment_cache.bitmask |= mask;
1766        return ret;
1767}
1768
1769static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1770{
1771        u16 *p = &vmx->segment_cache.seg[seg].selector;
1772
1773        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1774                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1775        return *p;
1776}
1777
1778static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1779{
1780        ulong *p = &vmx->segment_cache.seg[seg].base;
1781
1782        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1783                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1784        return *p;
1785}
1786
1787static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1788{
1789        u32 *p = &vmx->segment_cache.seg[seg].limit;
1790
1791        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1792                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1793        return *p;
1794}
1795
1796static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1797{
1798        u32 *p = &vmx->segment_cache.seg[seg].ar;
1799
1800        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1801                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1802        return *p;
1803}
1804
1805static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1806{
1807        u32 eb;
1808
1809        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1810             (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
1811        if ((vcpu->guest_debug &
1812             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1813            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1814                eb |= 1u << BP_VECTOR;
1815        if (to_vmx(vcpu)->rmode.vm86_active)
1816                eb = ~0;
1817        if (enable_ept)
1818                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1819        if (vcpu->fpu_active)
1820                eb &= ~(1u << NM_VECTOR);
1821
1822        /* When we are running a nested L2 guest and L1 specified for it a
1823         * certain exception bitmap, we must trap the same exceptions and pass
1824         * them to L1. When running L2, we will only handle the exceptions
1825         * specified above if L1 did not want them.
1826         */
1827        if (is_guest_mode(vcpu))
1828                eb |= get_vmcs12(vcpu)->exception_bitmap;
1829
1830        vmcs_write32(EXCEPTION_BITMAP, eb);
1831}
1832
1833static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1834                unsigned long entry, unsigned long exit)
1835{
1836        vm_entry_controls_clearbit(vmx, entry);
1837        vm_exit_controls_clearbit(vmx, exit);
1838}
1839
1840static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1841{
1842        unsigned i;
1843        struct msr_autoload *m = &vmx->msr_autoload;
1844
1845        switch (msr) {
1846        case MSR_EFER:
1847                if (cpu_has_load_ia32_efer) {
1848                        clear_atomic_switch_msr_special(vmx,
1849                                        VM_ENTRY_LOAD_IA32_EFER,
1850                                        VM_EXIT_LOAD_IA32_EFER);
1851                        return;
1852                }
1853                break;
1854        case MSR_CORE_PERF_GLOBAL_CTRL:
1855                if (cpu_has_load_perf_global_ctrl) {
1856                        clear_atomic_switch_msr_special(vmx,
1857                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1858                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1859                        return;
1860                }
1861                break;
1862        }
1863
1864        for (i = 0; i < m->nr; ++i)
1865                if (m->guest[i].index == msr)
1866                        break;
1867
1868        if (i == m->nr)
1869                return;
1870        --m->nr;
1871        m->guest[i] = m->guest[m->nr];
1872        m->host[i] = m->host[m->nr];
1873        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1874        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1875}
1876
1877static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1878                unsigned long entry, unsigned long exit,
1879                unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1880                u64 guest_val, u64 host_val)
1881{
1882        vmcs_write64(guest_val_vmcs, guest_val);
1883        vmcs_write64(host_val_vmcs, host_val);
1884        vm_entry_controls_setbit(vmx, entry);
1885        vm_exit_controls_setbit(vmx, exit);
1886}
1887
1888static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1889                                  u64 guest_val, u64 host_val)
1890{
1891        unsigned i;
1892        struct msr_autoload *m = &vmx->msr_autoload;
1893
1894        switch (msr) {
1895        case MSR_EFER:
1896                if (cpu_has_load_ia32_efer) {
1897                        add_atomic_switch_msr_special(vmx,
1898                                        VM_ENTRY_LOAD_IA32_EFER,
1899                                        VM_EXIT_LOAD_IA32_EFER,
1900                                        GUEST_IA32_EFER,
1901                                        HOST_IA32_EFER,
1902                                        guest_val, host_val);
1903                        return;
1904                }
1905                break;
1906        case MSR_CORE_PERF_GLOBAL_CTRL:
1907                if (cpu_has_load_perf_global_ctrl) {
1908                        add_atomic_switch_msr_special(vmx,
1909                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1910                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1911                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1912                                        HOST_IA32_PERF_GLOBAL_CTRL,
1913                                        guest_val, host_val);
1914                        return;
1915                }
1916                break;
1917        case MSR_IA32_PEBS_ENABLE:
1918                /* PEBS needs a quiescent period after being disabled (to write
1919                 * a record).  Disabling PEBS through VMX MSR swapping doesn't
1920                 * provide that period, so a CPU could write host's record into
1921                 * guest's memory.
1922                 */
1923                wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
1924        }
1925
1926        for (i = 0; i < m->nr; ++i)
1927                if (m->guest[i].index == msr)
1928                        break;
1929
1930        if (i == NR_AUTOLOAD_MSRS) {
1931                printk_once(KERN_WARNING "Not enough msr switch entries. "
1932                                "Can't add msr %x\n", msr);
1933                return;
1934        } else if (i == m->nr) {
1935                ++m->nr;
1936                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1937                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1938        }
1939
1940        m->guest[i].index = msr;
1941        m->guest[i].value = guest_val;
1942        m->host[i].index = msr;
1943        m->host[i].value = host_val;
1944}
1945
1946static void reload_tss(void)
1947{
1948        /*
1949         * VT restores TR but not its size.  Useless.
1950         */
1951        struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
1952        struct desc_struct *descs;
1953
1954        descs = (void *)gdt->address;
1955        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1956        load_TR_desc();
1957}
1958
1959static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1960{
1961        u64 guest_efer = vmx->vcpu.arch.efer;
1962        u64 ignore_bits = 0;
1963
1964        if (!enable_ept) {
1965                /*
1966                 * NX is needed to handle CR0.WP=1, CR4.SMEP=1.  Testing
1967                 * host CPUID is more efficient than testing guest CPUID
1968                 * or CR4.  Host SMEP is anyway a requirement for guest SMEP.
1969                 */
1970                if (boot_cpu_has(X86_FEATURE_SMEP))
1971                        guest_efer |= EFER_NX;
1972                else if (!(guest_efer & EFER_NX))
1973                        ignore_bits |= EFER_NX;
1974        }
1975
1976        /*
1977         * LMA and LME handled by hardware; SCE meaningless outside long mode.
1978         */
1979        ignore_bits |= EFER_SCE;
1980#ifdef CONFIG_X86_64
1981        ignore_bits |= EFER_LMA | EFER_LME;
1982        /* SCE is meaningful only in long mode on Intel */
1983        if (guest_efer & EFER_LMA)
1984                ignore_bits &= ~(u64)EFER_SCE;
1985#endif
1986
1987        clear_atomic_switch_msr(vmx, MSR_EFER);
1988
1989        /*
1990         * On EPT, we can't emulate NX, so we must switch EFER atomically.
1991         * On CPUs that support "load IA32_EFER", always switch EFER
1992         * atomically, since it's faster than switching it manually.
1993         */
1994        if (cpu_has_load_ia32_efer ||
1995            (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
1996                if (!(guest_efer & EFER_LMA))
1997                        guest_efer &= ~EFER_LME;
1998                if (guest_efer != host_efer)
1999                        add_atomic_switch_msr(vmx, MSR_EFER,
2000                                              guest_efer, host_efer);
2001                return false;
2002        } else {
2003                guest_efer &= ~ignore_bits;
2004                guest_efer |= host_efer & ignore_bits;
2005
2006                vmx->guest_msrs[efer_offset].data = guest_efer;
2007                vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
2008
2009                return true;
2010        }
2011}
2012
2013static unsigned long segment_base(u16 selector)
2014{
2015        struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2016        struct desc_struct *d;
2017        unsigned long table_base;
2018        unsigned long v;
2019
2020        if (!(selector & ~3))
2021                return 0;
2022
2023        table_base = gdt->address;
2024
2025        if (selector & 4) {           /* from ldt */
2026                u16 ldt_selector = kvm_read_ldt();
2027
2028                if (!(ldt_selector & ~3))
2029                        return 0;
2030
2031                table_base = segment_base(ldt_selector);
2032        }
2033        d = (struct desc_struct *)(table_base + (selector & ~7));
2034        v = get_desc_base(d);
2035#ifdef CONFIG_X86_64
2036       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
2037               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
2038#endif
2039        return v;
2040}
2041
2042static inline unsigned long kvm_read_tr_base(void)
2043{
2044        u16 tr;
2045        asm("str %0" : "=g"(tr));
2046        return segment_base(tr);
2047}
2048
2049static void vmx_save_host_state(struct kvm_vcpu *vcpu)
2050{
2051        struct vcpu_vmx *vmx = to_vmx(vcpu);
2052        int i;
2053
2054        if (vmx->host_state.loaded)
2055                return;
2056
2057        vmx->host_state.loaded = 1;
2058        /*
2059         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
2060         * allow segment selectors with cpl > 0 or ti == 1.
2061         */
2062        vmx->host_state.ldt_sel = kvm_read_ldt();
2063        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
2064        savesegment(fs, vmx->host_state.fs_sel);
2065        if (!(vmx->host_state.fs_sel & 7)) {
2066                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
2067                vmx->host_state.fs_reload_needed = 0;
2068        } else {
2069                vmcs_write16(HOST_FS_SELECTOR, 0);
2070                vmx->host_state.fs_reload_needed = 1;
2071        }
2072        savesegment(gs, vmx->host_state.gs_sel);
2073        if (!(vmx->host_state.gs_sel & 7))
2074                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
2075        else {
2076                vmcs_write16(HOST_GS_SELECTOR, 0);
2077                vmx->host_state.gs_ldt_reload_needed = 1;
2078        }
2079
2080#ifdef CONFIG_X86_64
2081        savesegment(ds, vmx->host_state.ds_sel);
2082        savesegment(es, vmx->host_state.es_sel);
2083#endif
2084
2085#ifdef CONFIG_X86_64
2086        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2087        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2088#else
2089        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2090        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
2091#endif
2092
2093#ifdef CONFIG_X86_64
2094        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2095        if (is_long_mode(&vmx->vcpu))
2096                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2097#endif
2098        if (boot_cpu_has(X86_FEATURE_MPX))
2099                rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2100        for (i = 0; i < vmx->save_nmsrs; ++i)
2101                kvm_set_shared_msr(vmx->guest_msrs[i].index,
2102                                   vmx->guest_msrs[i].data,
2103                                   vmx->guest_msrs[i].mask);
2104}
2105
2106static void __vmx_load_host_state(struct vcpu_vmx *vmx)
2107{
2108        if (!vmx->host_state.loaded)
2109                return;
2110
2111        ++vmx->vcpu.stat.host_state_reload;
2112        vmx->host_state.loaded = 0;
2113#ifdef CONFIG_X86_64
2114        if (is_long_mode(&vmx->vcpu))
2115                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2116#endif
2117        if (vmx->host_state.gs_ldt_reload_needed) {
2118                kvm_load_ldt(vmx->host_state.ldt_sel);
2119#ifdef CONFIG_X86_64
2120                load_gs_index(vmx->host_state.gs_sel);
2121#else
2122                loadsegment(gs, vmx->host_state.gs_sel);
2123#endif
2124        }
2125        if (vmx->host_state.fs_reload_needed)
2126                loadsegment(fs, vmx->host_state.fs_sel);
2127#ifdef CONFIG_X86_64
2128        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2129                loadsegment(ds, vmx->host_state.ds_sel);
2130                loadsegment(es, vmx->host_state.es_sel);
2131        }
2132#endif
2133        reload_tss();
2134#ifdef CONFIG_X86_64
2135        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2136#endif
2137        if (vmx->host_state.msr_host_bndcfgs)
2138                wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
2139        /*
2140         * If the FPU is not active (through the host task or
2141         * the guest vcpu), then restore the cr0.TS bit.
2142         */
2143        if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
2144                stts();
2145        load_gdt(this_cpu_ptr(&host_gdt));
2146}
2147
2148static void vmx_load_host_state(struct vcpu_vmx *vmx)
2149{
2150        preempt_disable();
2151        __vmx_load_host_state(vmx);
2152        preempt_enable();
2153}
2154
2155static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2156{
2157        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2158        struct pi_desc old, new;
2159        unsigned int dest;
2160
2161        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2162                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2163                !kvm_vcpu_apicv_active(vcpu))
2164                return;
2165
2166        do {
2167                old.control = new.control = pi_desc->control;
2168
2169                /*
2170                 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2171                 * are two possible cases:
2172                 * 1. After running 'pre_block', context switch
2173                 *    happened. For this case, 'sn' was set in
2174                 *    vmx_vcpu_put(), so we need to clear it here.
2175                 * 2. After running 'pre_block', we were blocked,
2176                 *    and woken up by some other guy. For this case,
2177                 *    we don't need to do anything, 'pi_post_block'
2178                 *    will do everything for us. However, we cannot
2179                 *    check whether it is case #1 or case #2 here
2180                 *    (maybe, not needed), so we also clear sn here,
2181                 *    I think it is not a big deal.
2182                 */
2183                if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2184                        if (vcpu->cpu != cpu) {
2185                                dest = cpu_physical_id(cpu);
2186
2187                                if (x2apic_enabled())
2188                                        new.ndst = dest;
2189                                else
2190                                        new.ndst = (dest << 8) & 0xFF00;
2191                        }
2192
2193                        /* set 'NV' to 'notification vector' */
2194                        new.nv = POSTED_INTR_VECTOR;
2195                }
2196
2197                /* Allow posting non-urgent interrupts */
2198                new.sn = 0;
2199        } while (cmpxchg(&pi_desc->control, old.control,
2200                        new.control) != old.control);
2201}
2202
2203static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2204{
2205        vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2206        vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2207}
2208
2209/*
2210 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2211 * vcpu mutex is already taken.
2212 */
2213static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2214{
2215        struct vcpu_vmx *vmx = to_vmx(vcpu);
2216        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2217        bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
2218
2219        if (!vmm_exclusive)
2220                kvm_cpu_vmxon(phys_addr);
2221        else if (!already_loaded)
2222                loaded_vmcs_clear(vmx->loaded_vmcs);
2223
2224        if (!already_loaded) {
2225                local_irq_disable();
2226                crash_disable_local_vmclear(cpu);
2227
2228                /*
2229                 * Read loaded_vmcs->cpu should be before fetching
2230                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2231                 * See the comments in __loaded_vmcs_clear().
2232                 */
2233                smp_rmb();
2234
2235                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2236                         &per_cpu(loaded_vmcss_on_cpu, cpu));
2237                crash_enable_local_vmclear(cpu);
2238                local_irq_enable();
2239        }
2240
2241        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2242                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2243                vmcs_load(vmx->loaded_vmcs->vmcs);
2244        }
2245
2246        if (!already_loaded) {
2247                struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2248                unsigned long sysenter_esp;
2249
2250                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2251
2252                /*
2253                 * Linux uses per-cpu TSS and GDT, so set these when switching
2254                 * processors.
2255                 */
2256                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
2257                vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
2258
2259                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2260                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
2261
2262                vmx->loaded_vmcs->cpu = cpu;
2263        }
2264
2265        /* Setup TSC multiplier */
2266        if (kvm_has_tsc_control &&
2267            vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2268                decache_tsc_multiplier(vmx);
2269
2270        vmx_vcpu_pi_load(vcpu, cpu);
2271        vmx->host_pkru = read_pkru();
2272}
2273
2274static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2275{
2276        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2277
2278        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2279                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
2280                !kvm_vcpu_apicv_active(vcpu))
2281                return;
2282
2283        /* Set SN when the vCPU is preempted */
2284        if (vcpu->preempted)
2285                pi_set_sn(pi_desc);
2286}
2287
2288static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2289{
2290        vmx_vcpu_pi_put(vcpu);
2291
2292        __vmx_load_host_state(to_vmx(vcpu));
2293        if (!vmm_exclusive) {
2294                __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2295                vcpu->cpu = -1;
2296                kvm_cpu_vmxoff();
2297        }
2298}
2299
2300static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2301{
2302        ulong cr0;
2303
2304        if (vcpu->fpu_active)
2305                return;
2306        vcpu->fpu_active = 1;
2307        cr0 = vmcs_readl(GUEST_CR0);
2308        cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2309        cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2310        vmcs_writel(GUEST_CR0, cr0);
2311        update_exception_bitmap(vcpu);
2312        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
2313        if (is_guest_mode(vcpu))
2314                vcpu->arch.cr0_guest_owned_bits &=
2315                        ~get_vmcs12(vcpu)->cr0_guest_host_mask;
2316        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2317}
2318
2319static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2320
2321/*
2322 * Return the cr0 value that a nested guest would read. This is a combination
2323 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2324 * its hypervisor (cr0_read_shadow).
2325 */
2326static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2327{
2328        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2329                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2330}
2331static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2332{
2333        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2334                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2335}
2336
2337static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2338{
2339        /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2340         * set this *before* calling this function.
2341         */
2342        vmx_decache_cr0_guest_bits(vcpu);
2343        vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
2344        update_exception_bitmap(vcpu);
2345        vcpu->arch.cr0_guest_owned_bits = 0;
2346        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2347        if (is_guest_mode(vcpu)) {
2348                /*
2349                 * L1's specified read shadow might not contain the TS bit,
2350                 * so now that we turned on shadowing of this bit, we need to
2351                 * set this bit of the shadow. Like in nested_vmx_run we need
2352                 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2353                 * up-to-date here because we just decached cr0.TS (and we'll
2354                 * only update vmcs12->guest_cr0 on nested exit).
2355                 */
2356                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2357                vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2358                        (vcpu->arch.cr0 & X86_CR0_TS);
2359                vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2360        } else
2361                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
2362}
2363
2364static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2365{
2366        unsigned long rflags, save_rflags;
2367
2368        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2369                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2370                rflags = vmcs_readl(GUEST_RFLAGS);
2371                if (to_vmx(vcpu)->rmode.vm86_active) {
2372                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2373                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2374                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2375                }
2376                to_vmx(vcpu)->rflags = rflags;
2377        }
2378        return to_vmx(vcpu)->rflags;
2379}
2380
2381static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2382{
2383        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2384        to_vmx(vcpu)->rflags = rflags;
2385        if (to_vmx(vcpu)->rmode.vm86_active) {
2386                to_vmx(vcpu)->rmode.save_rflags = rflags;
2387                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2388        }
2389        vmcs_writel(GUEST_RFLAGS, rflags);
2390}
2391
2392static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2393{
2394        return to_vmx(vcpu)->guest_pkru;
2395}
2396
2397static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2398{
2399        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2400        int ret = 0;
2401
2402        if (interruptibility & GUEST_INTR_STATE_STI)
2403                ret |= KVM_X86_SHADOW_INT_STI;
2404        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
2405                ret |= KVM_X86_SHADOW_INT_MOV_SS;
2406
2407        return ret;
2408}
2409
2410static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2411{
2412        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2413        u32 interruptibility = interruptibility_old;
2414
2415        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2416
2417        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2418                interruptibility |= GUEST_INTR_STATE_MOV_SS;
2419        else if (mask & KVM_X86_SHADOW_INT_STI)
2420                interruptibility |= GUEST_INTR_STATE_STI;
2421
2422        if ((interruptibility != interruptibility_old))
2423                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2424}
2425
2426static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2427{
2428        unsigned long rip;
2429
2430        rip = kvm_rip_read(vcpu);
2431        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2432        kvm_rip_write(vcpu, rip);
2433
2434        /* skipping an emulated instruction also counts */
2435        vmx_set_interrupt_shadow(vcpu, 0);
2436}
2437
2438/*
2439 * KVM wants to inject page-faults which it got to the guest. This function
2440 * checks whether in a nested guest, we need to inject them to L1 or L2.
2441 */
2442static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
2443{
2444        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2445
2446        if (!(vmcs12->exception_bitmap & (1u << nr)))
2447                return 0;
2448
2449        nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2450                          vmcs_read32(VM_EXIT_INTR_INFO),
2451                          vmcs_readl(EXIT_QUALIFICATION));
2452        return 1;
2453}
2454
2455static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
2456                                bool has_error_code, u32 error_code,
2457                                bool reinject)
2458{
2459        struct vcpu_vmx *vmx = to_vmx(vcpu);
2460        u32 intr_info = nr | INTR_INFO_VALID_MASK;
2461
2462        if (!reinject && is_guest_mode(vcpu) &&
2463            nested_vmx_check_exception(vcpu, nr))
2464                return;
2465
2466        if (has_error_code) {
2467                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
2468                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2469        }
2470
2471        if (vmx->rmode.vm86_active) {
2472                int inc_eip = 0;
2473                if (kvm_exception_is_soft(nr))
2474                        inc_eip = vcpu->arch.event_exit_inst_len;
2475                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
2476                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2477                return;
2478        }
2479
2480        if (kvm_exception_is_soft(nr)) {
2481                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2482                             vmx->vcpu.arch.event_exit_inst_len);
2483                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2484        } else
2485                intr_info |= INTR_TYPE_HARD_EXCEPTION;
2486
2487        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
2488}
2489
2490static bool vmx_rdtscp_supported(void)
2491{
2492        return cpu_has_vmx_rdtscp();
2493}
2494
2495static bool vmx_invpcid_supported(void)
2496{
2497        return cpu_has_vmx_invpcid() && enable_ept;
2498}
2499
2500/*
2501 * Swap MSR entry in host/guest MSR entry array.
2502 */
2503static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
2504{
2505        struct shared_msr_entry tmp;
2506
2507        tmp = vmx->guest_msrs[to];
2508        vmx->guest_msrs[to] = vmx->guest_msrs[from];
2509        vmx->guest_msrs[from] = tmp;
2510}
2511
2512static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2513{
2514        unsigned long *msr_bitmap;
2515
2516        if (is_guest_mode(vcpu))
2517                msr_bitmap = to_vmx(vcpu)->nested.msr_bitmap;
2518        else if (cpu_has_secondary_exec_ctrls() &&
2519                 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
2520                  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
2521                if (is_long_mode(vcpu))
2522                        msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2523                else
2524                        msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2525        } else {
2526                if (is_long_mode(vcpu))
2527                        msr_bitmap = vmx_msr_bitmap_longmode;
2528                else
2529                        msr_bitmap = vmx_msr_bitmap_legacy;
2530        }
2531
2532        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2533}
2534
2535/*
2536 * Set up the vmcs to automatically save and restore system
2537 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
2538 * mode, as fiddling with msrs is very expensive.
2539 */
2540static void setup_msrs(struct vcpu_vmx *vmx)
2541{
2542        int save_nmsrs, index;
2543
2544        save_nmsrs = 0;
2545#ifdef CONFIG_X86_64
2546        if (is_long_mode(&vmx->vcpu)) {
2547                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2548                if (index >= 0)
2549                        move_msr_up(vmx, index, save_nmsrs++);
2550                index = __find_msr_index(vmx, MSR_LSTAR);
2551                if (index >= 0)
2552                        move_msr_up(vmx, index, save_nmsrs++);
2553                index = __find_msr_index(vmx, MSR_CSTAR);
2554                if (index >= 0)
2555                        move_msr_up(vmx, index, save_nmsrs++);
2556                index = __find_msr_index(vmx, MSR_TSC_AUX);
2557                if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
2558                        move_msr_up(vmx, index, save_nmsrs++);
2559                /*
2560                 * MSR_STAR is only needed on long mode guests, and only
2561                 * if efer.sce is enabled.
2562                 */
2563                index = __find_msr_index(vmx, MSR_STAR);
2564                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2565                        move_msr_up(vmx, index, save_nmsrs++);
2566        }
2567#endif
2568        index = __find_msr_index(vmx, MSR_EFER);
2569        if (index >= 0 && update_transition_efer(vmx, index))
2570                move_msr_up(vmx, index, save_nmsrs++);
2571
2572        vmx->save_nmsrs = save_nmsrs;
2573
2574        if (cpu_has_vmx_msr_bitmap())
2575                vmx_set_msr_bitmap(&vmx->vcpu);
2576}
2577
2578/*
2579 * reads and returns guest's timestamp counter "register"
2580 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2581 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
2582 */
2583static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
2584{
2585        u64 host_tsc, tsc_offset;
2586
2587        host_tsc = rdtsc();
2588        tsc_offset = vmcs_read64(TSC_OFFSET);
2589        return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
2590}
2591
2592/*
2593 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2594 * counter, even if a nested guest (L2) is currently running.
2595 */
2596static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2597{
2598        u64 tsc_offset;
2599
2600        tsc_offset = is_guest_mode(vcpu) ?
2601                to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2602                vmcs_read64(TSC_OFFSET);
2603        return host_tsc + tsc_offset;
2604}
2605
2606static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2607{
2608        return vmcs_read64(TSC_OFFSET);
2609}
2610
2611/*
2612 * writes 'offset' into guest's timestamp counter offset register
2613 */
2614static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2615{
2616        if (is_guest_mode(vcpu)) {
2617                /*
2618                 * We're here if L1 chose not to trap WRMSR to TSC. According
2619                 * to the spec, this should set L1's TSC; The offset that L1
2620                 * set for L2 remains unchanged, and still needs to be added
2621                 * to the newly set TSC to get L2's TSC.
2622                 */
2623                struct vmcs12 *vmcs12;
2624                to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2625                /* recalculate vmcs02.TSC_OFFSET: */
2626                vmcs12 = get_vmcs12(vcpu);
2627                vmcs_write64(TSC_OFFSET, offset +
2628                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2629                         vmcs12->tsc_offset : 0));
2630        } else {
2631                trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2632                                           vmcs_read64(TSC_OFFSET), offset);
2633                vmcs_write64(TSC_OFFSET, offset);
2634        }
2635}
2636
2637static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
2638{
2639        u64 offset = vmcs_read64(TSC_OFFSET);
2640
2641        vmcs_write64(TSC_OFFSET, offset + adjustment);
2642        if (is_guest_mode(vcpu)) {
2643                /* Even when running L2, the adjustment needs to apply to L1 */
2644                to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2645        } else
2646                trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2647                                           offset + adjustment);
2648}
2649
2650static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2651{
2652        struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2653        return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2654}
2655
2656/*
2657 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2658 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2659 * all guests if the "nested" module option is off, and can also be disabled
2660 * for a single guest by disabling its VMX cpuid bit.
2661 */
2662static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2663{
2664        return nested && guest_cpuid_has_vmx(vcpu);
2665}
2666
2667/*
2668 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2669 * returned for the various VMX controls MSRs when nested VMX is enabled.
2670 * The same values should also be used to verify that vmcs12 control fields are
2671 * valid during nested entry from L1 to L2.
2672 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2673 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2674 * bit in the high half is on if the corresponding bit in the control field
2675 * may be on. See also vmx_control_verify().
2676 */
2677static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
2678{
2679        /*
2680         * Note that as a general rule, the high half of the MSRs (bits in
2681         * the control fields which may be 1) should be initialized by the
2682         * intersection of the underlying hardware's MSR (i.e., features which
2683         * can be supported) and the list of features we want to expose -
2684         * because they are known to be properly supported in our code.
2685         * Also, usually, the low half of the MSRs (bits which must be 1) can
2686         * be set to 0, meaning that L1 may turn off any of these bits. The
2687         * reason is that if one of these bits is necessary, it will appear
2688         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2689         * fields of vmcs01 and vmcs02, will turn these bits off - and
2690         * nested_vmx_exit_handled() will not pass related exits to L1.
2691         * These rules have exceptions below.
2692         */
2693
2694        /* pin-based controls */
2695        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2696                vmx->nested.nested_vmx_pinbased_ctls_low,
2697                vmx->nested.nested_vmx_pinbased_ctls_high);
2698        vmx->nested.nested_vmx_pinbased_ctls_low |=
2699                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2700        vmx->nested.nested_vmx_pinbased_ctls_high &=
2701                PIN_BASED_EXT_INTR_MASK |
2702                PIN_BASED_NMI_EXITING |
2703                PIN_BASED_VIRTUAL_NMIS;
2704        vmx->nested.nested_vmx_pinbased_ctls_high |=
2705                PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2706                PIN_BASED_VMX_PREEMPTION_TIMER;
2707        if (kvm_vcpu_apicv_active(&vmx->vcpu))
2708                vmx->nested.nested_vmx_pinbased_ctls_high |=
2709                        PIN_BASED_POSTED_INTR;
2710
2711        /* exit controls */
2712        rdmsr(MSR_IA32_VMX_EXIT_CTLS,
2713                vmx->nested.nested_vmx_exit_ctls_low,
2714                vmx->nested.nested_vmx_exit_ctls_high);
2715        vmx->nested.nested_vmx_exit_ctls_low =
2716                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2717
2718        vmx->nested.nested_vmx_exit_ctls_high &=
2719#ifdef CONFIG_X86_64
2720                VM_EXIT_HOST_ADDR_SPACE_SIZE |
2721#endif
2722                VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
2723        vmx->nested.nested_vmx_exit_ctls_high |=
2724                VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
2725                VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
2726                VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2727
2728        if (kvm_mpx_supported())
2729                vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
2730
2731        /* We support free control of debug control saving. */
2732        vmx->nested.nested_vmx_true_exit_ctls_low =
2733                vmx->nested.nested_vmx_exit_ctls_low &
2734                ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2735
2736        /* entry controls */
2737        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2738                vmx->nested.nested_vmx_entry_ctls_low,
2739                vmx->nested.nested_vmx_entry_ctls_high);
2740        vmx->nested.nested_vmx_entry_ctls_low =
2741                VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2742        vmx->nested.nested_vmx_entry_ctls_high &=
2743#ifdef CONFIG_X86_64
2744                VM_ENTRY_IA32E_MODE |
2745#endif
2746                VM_ENTRY_LOAD_IA32_PAT;
2747        vmx->nested.nested_vmx_entry_ctls_high |=
2748                (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
2749        if (kvm_mpx_supported())
2750                vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
2751
2752        /* We support free control of debug control loading. */
2753        vmx->nested.nested_vmx_true_entry_ctls_low =
2754                vmx->nested.nested_vmx_entry_ctls_low &
2755                ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2756
2757        /* cpu-based controls */
2758        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2759                vmx->nested.nested_vmx_procbased_ctls_low,
2760                vmx->nested.nested_vmx_procbased_ctls_high);
2761        vmx->nested.nested_vmx_procbased_ctls_low =
2762                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2763        vmx->nested.nested_vmx_procbased_ctls_high &=
2764                CPU_BASED_VIRTUAL_INTR_PENDING |
2765                CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2766                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2767                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2768                CPU_BASED_CR3_STORE_EXITING |
2769#ifdef CONFIG_X86_64
2770                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2771#endif
2772                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2773                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2774                CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2775                CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2776                CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2777        /*
2778         * We can allow some features even when not supported by the
2779         * hardware. For example, L1 can specify an MSR bitmap - and we
2780         * can use it to avoid exits to L1 - even when L0 runs L2
2781         * without MSR bitmaps.
2782         */
2783        vmx->nested.nested_vmx_procbased_ctls_high |=
2784                CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
2785                CPU_BASED_USE_MSR_BITMAPS;
2786
2787        /* We support free control of CR3 access interception. */
2788        vmx->nested.nested_vmx_true_procbased_ctls_low =
2789                vmx->nested.nested_vmx_procbased_ctls_low &
2790                ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2791
2792        /* secondary cpu-based controls */
2793        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2794                vmx->nested.nested_vmx_secondary_ctls_low,
2795                vmx->nested.nested_vmx_secondary_ctls_high);
2796        vmx->nested.nested_vmx_secondary_ctls_low = 0;
2797        vmx->nested.nested_vmx_secondary_ctls_high &=
2798                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2799                SECONDARY_EXEC_RDTSCP |
2800                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2801                SECONDARY_EXEC_ENABLE_VPID |
2802                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2803                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2804                SECONDARY_EXEC_WBINVD_EXITING |
2805                SECONDARY_EXEC_XSAVES;
2806
2807        if (enable_ept) {
2808                /* nested EPT: emulate EPT also to L1 */
2809                vmx->nested.nested_vmx_secondary_ctls_high |=
2810                        SECONDARY_EXEC_ENABLE_EPT;
2811                vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
2812                         VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2813                         VMX_EPT_INVEPT_BIT;
2814                if (cpu_has_vmx_ept_execute_only())
2815                        vmx->nested.nested_vmx_ept_caps |=
2816                                VMX_EPT_EXECUTE_ONLY_BIT;
2817                vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
2818                vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
2819                        VMX_EPT_EXTENT_CONTEXT_BIT;
2820        } else
2821                vmx->nested.nested_vmx_ept_caps = 0;
2822
2823        /*
2824         * Old versions of KVM use the single-context version without
2825         * checking for support, so declare that it is supported even
2826         * though it is treated as global context.  The alternative is
2827         * not failing the single-context invvpid, and it is worse.
2828         */
2829        if (enable_vpid)
2830                vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
2831                                VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
2832                                VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2833        else
2834                vmx->nested.nested_vmx_vpid_caps = 0;
2835
2836        if (enable_unrestricted_guest)
2837                vmx->nested.nested_vmx_secondary_ctls_high |=
2838                        SECONDARY_EXEC_UNRESTRICTED_GUEST;
2839
2840        /* miscellaneous data */
2841        rdmsr(MSR_IA32_VMX_MISC,
2842                vmx->nested.nested_vmx_misc_low,
2843                vmx->nested.nested_vmx_misc_high);
2844        vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2845        vmx->nested.nested_vmx_misc_low |=
2846                VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
2847                VMX_MISC_ACTIVITY_HLT;
2848        vmx->nested.nested_vmx_misc_high = 0;
2849}
2850
2851static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2852{
2853        /*
2854         * Bits 0 in high must be 0, and bits 1 in low must be 1.
2855         */
2856        return ((control & high) | low) == control;
2857}
2858
2859static inline u64 vmx_control_msr(u32 low, u32 high)
2860{
2861        return low | ((u64)high << 32);
2862}
2863
2864/* Returns 0 on success, non-0 otherwise. */
2865static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2866{
2867        struct vcpu_vmx *vmx = to_vmx(vcpu);
2868
2869        switch (msr_index) {
2870        case MSR_IA32_VMX_BASIC:
2871                /*
2872                 * This MSR reports some information about VMX support. We
2873                 * should return information about the VMX we emulate for the
2874                 * guest, and the VMCS structure we give it - not about the
2875                 * VMX support of the underlying hardware.
2876                 */
2877                *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
2878                           ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2879                           (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2880                break;
2881        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2882        case MSR_IA32_VMX_PINBASED_CTLS:
2883                *pdata = vmx_control_msr(
2884                        vmx->nested.nested_vmx_pinbased_ctls_low,
2885                        vmx->nested.nested_vmx_pinbased_ctls_high);
2886                break;
2887        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2888                *pdata = vmx_control_msr(
2889                        vmx->nested.nested_vmx_true_procbased_ctls_low,
2890                        vmx->nested.nested_vmx_procbased_ctls_high);
2891                break;
2892        case MSR_IA32_VMX_PROCBASED_CTLS:
2893                *pdata = vmx_control_msr(
2894                        vmx->nested.nested_vmx_procbased_ctls_low,
2895                        vmx->nested.nested_vmx_procbased_ctls_high);
2896                break;
2897        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2898                *pdata = vmx_control_msr(
2899                        vmx->nested.nested_vmx_true_exit_ctls_low,
2900                        vmx->nested.nested_vmx_exit_ctls_high);
2901                break;
2902        case MSR_IA32_VMX_EXIT_CTLS:
2903                *pdata = vmx_control_msr(
2904                        vmx->nested.nested_vmx_exit_ctls_low,
2905                        vmx->nested.nested_vmx_exit_ctls_high);
2906                break;
2907        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2908                *pdata = vmx_control_msr(
2909                        vmx->nested.nested_vmx_true_entry_ctls_low,
2910                        vmx->nested.nested_vmx_entry_ctls_high);
2911                break;
2912        case MSR_IA32_VMX_ENTRY_CTLS:
2913                *pdata = vmx_control_msr(
2914                        vmx->nested.nested_vmx_entry_ctls_low,
2915                        vmx->nested.nested_vmx_entry_ctls_high);
2916                break;
2917        case MSR_IA32_VMX_MISC:
2918                *pdata = vmx_control_msr(
2919                        vmx->nested.nested_vmx_misc_low,
2920                        vmx->nested.nested_vmx_misc_high);
2921                break;
2922        /*
2923         * These MSRs specify bits which the guest must keep fixed (on or off)
2924         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2925         * We picked the standard core2 setting.
2926         */
2927#define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2928#define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2929        case MSR_IA32_VMX_CR0_FIXED0:
2930                *pdata = VMXON_CR0_ALWAYSON;
2931                break;
2932        case MSR_IA32_VMX_CR0_FIXED1:
2933                *pdata = -1ULL;
2934                break;
2935        case MSR_IA32_VMX_CR4_FIXED0:
2936                *pdata = VMXON_CR4_ALWAYSON;
2937                break;
2938        case MSR_IA32_VMX_CR4_FIXED1:
2939                *pdata = -1ULL;
2940                break;
2941        case MSR_IA32_VMX_VMCS_ENUM:
2942                *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
2943                break;
2944        case MSR_IA32_VMX_PROCBASED_CTLS2:
2945                *pdata = vmx_control_msr(
2946                        vmx->nested.nested_vmx_secondary_ctls_low,
2947                        vmx->nested.nested_vmx_secondary_ctls_high);
2948                break;
2949        case MSR_IA32_VMX_EPT_VPID_CAP:
2950                *pdata = vmx->nested.nested_vmx_ept_caps |
2951                        ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
2952                break;
2953        default:
2954                return 1;
2955        }
2956
2957        return 0;
2958}
2959
2960static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
2961                                                 uint64_t val)
2962{
2963        uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
2964
2965        return !(val & ~valid_bits);
2966}
2967
2968/*
2969 * Reads an msr value (of 'msr_index') into 'pdata'.
2970 * Returns 0 on success, non-0 otherwise.
2971 * Assumes vcpu_load() was already called.
2972 */
2973static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2974{
2975        struct shared_msr_entry *msr;
2976
2977        switch (msr_info->index) {
2978#ifdef CONFIG_X86_64
2979        case MSR_FS_BASE:
2980                msr_info->data = vmcs_readl(GUEST_FS_BASE);
2981                break;
2982        case MSR_GS_BASE:
2983                msr_info->data = vmcs_readl(GUEST_GS_BASE);
2984                break;
2985        case MSR_KERNEL_GS_BASE:
2986                vmx_load_host_state(to_vmx(vcpu));
2987                msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2988                break;
2989#endif
2990        case MSR_EFER:
2991                return kvm_get_msr_common(vcpu, msr_info);
2992        case MSR_IA32_TSC:
2993                msr_info->data = guest_read_tsc(vcpu);
2994                break;
2995        case MSR_IA32_SYSENTER_CS:
2996                msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
2997                break;
2998        case MSR_IA32_SYSENTER_EIP:
2999                msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
3000                break;
3001        case MSR_IA32_SYSENTER_ESP:
3002                msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
3003                break;
3004        case MSR_IA32_BNDCFGS:
3005                if (!kvm_mpx_supported())
3006                        return 1;
3007                msr_info->data = vmcs_read64(GUEST_BNDCFGS);
3008                break;
3009        case MSR_IA32_MCG_EXT_CTL:
3010                if (!msr_info->host_initiated &&
3011                    !(to_vmx(vcpu)->msr_ia32_feature_control &
3012                      FEATURE_CONTROL_LMCE))
3013                        return 1;
3014                msr_info->data = vcpu->arch.mcg_ext_ctl;
3015                break;
3016        case MSR_IA32_FEATURE_CONTROL:
3017                msr_info->data = to_vmx(vcpu)->msr_ia32_feature_control;
3018                break;
3019        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3020                if (!nested_vmx_allowed(vcpu))
3021                        return 1;
3022                return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
3023        case MSR_IA32_XSS:
3024                if (!vmx_xsaves_supported())
3025                        return 1;
3026                msr_info->data = vcpu->arch.ia32_xss;
3027                break;
3028        case MSR_TSC_AUX:
3029                if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3030                        return 1;
3031                /* Otherwise falls through */
3032        default:
3033                msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3034                if (msr) {
3035                        msr_info->data = msr->data;
3036                        break;
3037                }
3038                return kvm_get_msr_common(vcpu, msr_info);
3039        }
3040
3041        return 0;
3042}
3043
3044static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3045
3046/*
3047 * Writes msr value into into the appropriate "register".
3048 * Returns 0 on success, non-0 otherwise.
3049 * Assumes vcpu_load() was already called.
3050 */
3051static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3052{
3053        struct vcpu_vmx *vmx = to_vmx(vcpu);
3054        struct shared_msr_entry *msr;
3055        int ret = 0;
3056        u32 msr_index = msr_info->index;
3057        u64 data = msr_info->data;
3058
3059        switch (msr_index) {
3060        case MSR_EFER:
3061                ret = kvm_set_msr_common(vcpu, msr_info);
3062                break;
3063#ifdef CONFIG_X86_64
3064        case MSR_FS_BASE:
3065                vmx_segment_cache_clear(vmx);
3066                vmcs_writel(GUEST_FS_BASE, data);
3067                break;
3068        case MSR_GS_BASE:
3069                vmx_segment_cache_clear(vmx);
3070                vmcs_writel(GUEST_GS_BASE, data);
3071                break;
3072        case MSR_KERNEL_GS_BASE:
3073                vmx_load_host_state(vmx);
3074                vmx->msr_guest_kernel_gs_base = data;
3075                break;
3076#endif
3077        case MSR_IA32_SYSENTER_CS:
3078                vmcs_write32(GUEST_SYSENTER_CS, data);
3079                break;
3080        case MSR_IA32_SYSENTER_EIP:
3081                vmcs_writel(GUEST_SYSENTER_EIP, data);
3082                break;
3083        case MSR_IA32_SYSENTER_ESP:
3084                vmcs_writel(GUEST_SYSENTER_ESP, data);
3085                break;
3086        case MSR_IA32_BNDCFGS:
3087                if (!kvm_mpx_supported())
3088                        return 1;
3089                vmcs_write64(GUEST_BNDCFGS, data);
3090                break;
3091        case MSR_IA32_TSC:
3092                kvm_write_tsc(vcpu, msr_info);
3093                break;
3094        case MSR_IA32_CR_PAT:
3095                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3096                        if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3097                                return 1;
3098                        vmcs_write64(GUEST_IA32_PAT, data);
3099                        vcpu->arch.pat = data;
3100                        break;
3101                }
3102                ret = kvm_set_msr_common(vcpu, msr_info);
3103                break;
3104        case MSR_IA32_TSC_ADJUST:
3105                ret = kvm_set_msr_common(vcpu, msr_info);
3106                break;
3107        case MSR_IA32_MCG_EXT_CTL:
3108                if ((!msr_info->host_initiated &&
3109                     !(to_vmx(vcpu)->msr_ia32_feature_control &
3110                       FEATURE_CONTROL_LMCE)) ||
3111                    (data & ~MCG_EXT_CTL_LMCE_EN))
3112                        return 1;
3113                vcpu->arch.mcg_ext_ctl = data;
3114                break;
3115        case MSR_IA32_FEATURE_CONTROL:
3116                if (!vmx_feature_control_msr_valid(vcpu, data) ||
3117                    (to_vmx(vcpu)->msr_ia32_feature_control &
3118                     FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3119                        return 1;
3120                vmx->msr_ia32_feature_control = data;
3121                if (msr_info->host_initiated && data == 0)
3122                        vmx_leave_nested(vcpu);
3123                break;
3124        case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3125                return 1; /* they are read-only */
3126        case MSR_IA32_XSS:
3127                if (!vmx_xsaves_supported())
3128                        return 1;
3129                /*
3130                 * The only supported bit as of Skylake is bit 8, but
3131                 * it is not supported on KVM.
3132                 */
3133                if (data != 0)
3134                        return 1;
3135                vcpu->arch.ia32_xss = data;
3136                if (vcpu->arch.ia32_xss != host_xss)
3137                        add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3138                                vcpu->arch.ia32_xss, host_xss);
3139                else
3140                        clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3141                break;
3142        case MSR_TSC_AUX:
3143                if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
3144                        return 1;
3145                /* Check reserved bit, higher 32 bits should be zero */
3146                if ((data >> 32) != 0)
3147                        return 1;
3148                /* Otherwise falls through */
3149        default:
3150                msr = find_msr_entry(vmx, msr_index);
3151                if (msr) {
3152                        u64 old_msr_data = msr->data;
3153                        msr->data = data;
3154                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3155                                preempt_disable();
3156                                ret = kvm_set_shared_msr(msr->index, msr->data,
3157                                                         msr->mask);
3158                                preempt_enable();
3159                                if (ret)
3160                                        msr->data = old_msr_data;
3161                        }
3162                        break;
3163                }
3164                ret = kvm_set_msr_common(vcpu, msr_info);
3165        }
3166
3167        return ret;
3168}
3169
3170static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
3171{
3172        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3173        switch (reg) {
3174        case VCPU_REGS_RSP:
3175                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3176                break;
3177        case VCPU_REGS_RIP:
3178                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3179                break;
3180        case VCPU_EXREG_PDPTR:
3181                if (enable_ept)
3182                        ept_save_pdptrs(vcpu);
3183                break;
3184        default:
3185                break;
3186        }
3187}
3188
3189static __init int cpu_has_kvm_support(void)
3190{
3191        return cpu_has_vmx();
3192}
3193
3194static __init int vmx_disabled_by_bios(void)
3195{
3196        u64 msr;
3197
3198        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
3199        if (msr & FEATURE_CONTROL_LOCKED) {
3200                /* launched w/ TXT and VMX disabled */
3201                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3202                        && tboot_enabled())
3203                        return 1;
3204                /* launched w/o TXT and VMX only enabled w/ TXT */
3205                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3206                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3207                        && !tboot_enabled()) {
3208                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
3209                                "activate TXT before enabling KVM\n");
3210                        return 1;
3211                }
3212                /* launched w/o TXT and VMX disabled */
3213                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3214                        && !tboot_enabled())
3215                        return 1;
3216        }
3217
3218        return 0;
3219}
3220
3221static void kvm_cpu_vmxon(u64 addr)
3222{
3223        intel_pt_handle_vmx(1);
3224
3225        asm volatile (ASM_VMX_VMXON_RAX
3226                        : : "a"(&addr), "m"(addr)
3227                        : "memory", "cc");
3228}
3229
3230static int hardware_enable(void)
3231{
3232        int cpu = raw_smp_processor_id();
3233        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
3234        u64 old, test_bits;
3235
3236        if (cr4_read_shadow() & X86_CR4_VMXE)
3237                return -EBUSY;
3238
3239        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
3240        INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3241        spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
3242
3243        /*
3244         * Now we can enable the vmclear operation in kdump
3245         * since the loaded_vmcss_on_cpu list on this cpu
3246         * has been initialized.
3247         *
3248         * Though the cpu is not in VMX operation now, there
3249         * is no problem to enable the vmclear operation
3250         * for the loaded_vmcss_on_cpu list is empty!
3251         */
3252        crash_enable_local_vmclear(cpu);
3253
3254        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
3255
3256        test_bits = FEATURE_CONTROL_LOCKED;
3257        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3258        if (tboot_enabled())
3259                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3260
3261        if ((old & test_bits) != test_bits) {
3262                /* enable and lock */
3263                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3264        }
3265        cr4_set_bits(X86_CR4_VMXE);
3266
3267        if (vmm_exclusive) {
3268                kvm_cpu_vmxon(phys_addr);
3269                ept_sync_global();
3270        }
3271
3272        native_store_gdt(this_cpu_ptr(&host_gdt));
3273
3274        return 0;
3275}
3276
3277static void vmclear_local_loaded_vmcss(void)
3278{
3279        int cpu = raw_smp_processor_id();
3280        struct loaded_vmcs *v, *n;
3281
3282        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3283                                 loaded_vmcss_on_cpu_link)
3284                __loaded_vmcs_clear(v);
3285}
3286
3287
3288/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3289 * tricks.
3290 */
3291static void kvm_cpu_vmxoff(void)
3292{
3293        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
3294
3295        intel_pt_handle_vmx(0);
3296}
3297
3298static void hardware_disable(void)
3299{
3300        if (vmm_exclusive) {
3301                vmclear_local_loaded_vmcss();
3302                kvm_cpu_vmxoff();
3303        }
3304        cr4_clear_bits(X86_CR4_VMXE);
3305}
3306
3307static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
3308                                      u32 msr, u32 *result)
3309{
3310        u32 vmx_msr_low, vmx_msr_high;
3311        u32 ctl = ctl_min | ctl_opt;
3312
3313        rdmsr(msr, vmx_msr_low, vmx_msr_high);
3314
3315        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3316        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
3317
3318        /* Ensure minimum (required) set of control bits are supported. */
3319        if (ctl_min & ~ctl)
3320                return -EIO;
3321
3322        *result = ctl;
3323        return 0;
3324}
3325
3326static __init bool allow_1_setting(u32 msr, u32 ctl)
3327{
3328        u32 vmx_msr_low, vmx_msr_high;
3329
3330        rdmsr(msr, vmx_msr_low, vmx_msr_high);
3331        return vmx_msr_high & ctl;
3332}
3333
3334static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
3335{
3336        u32 vmx_msr_low, vmx_msr_high;
3337        u32 min, opt, min2, opt2;
3338        u32 _pin_based_exec_control = 0;
3339        u32 _cpu_based_exec_control = 0;
3340        u32 _cpu_based_2nd_exec_control = 0;
3341        u32 _vmexit_control = 0;
3342        u32 _vmentry_control = 0;
3343
3344        min = CPU_BASED_HLT_EXITING |
3345#ifdef CONFIG_X86_64
3346              CPU_BASED_CR8_LOAD_EXITING |
3347              CPU_BASED_CR8_STORE_EXITING |
3348#endif
3349              CPU_BASED_CR3_LOAD_EXITING |
3350              CPU_BASED_CR3_STORE_EXITING |
3351              CPU_BASED_USE_IO_BITMAPS |
3352              CPU_BASED_MOV_DR_EXITING |
3353              CPU_BASED_USE_TSC_OFFSETING |
3354              CPU_BASED_MWAIT_EXITING |
3355              CPU_BASED_MONITOR_EXITING |
3356              CPU_BASED_INVLPG_EXITING |
3357              CPU_BASED_RDPMC_EXITING;
3358
3359        opt = CPU_BASED_TPR_SHADOW |
3360              CPU_BASED_USE_MSR_BITMAPS |
3361              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
3362        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3363                                &_cpu_based_exec_control) < 0)
3364                return -EIO;
3365#ifdef CONFIG_X86_64
3366        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3367                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3368                                           ~CPU_BASED_CR8_STORE_EXITING;
3369#endif
3370        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
3371                min2 = 0;
3372                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
3373                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3374                        SECONDARY_EXEC_WBINVD_EXITING |
3375                        SECONDARY_EXEC_ENABLE_VPID |
3376                        SECONDARY_EXEC_ENABLE_EPT |
3377                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
3378                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
3379                        SECONDARY_EXEC_RDTSCP |
3380                        SECONDARY_EXEC_ENABLE_INVPCID |
3381                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
3382                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3383                        SECONDARY_EXEC_SHADOW_VMCS |
3384                        SECONDARY_EXEC_XSAVES |
3385                        SECONDARY_EXEC_ENABLE_PML |
3386                        SECONDARY_EXEC_TSC_SCALING;
3387                if (adjust_vmx_controls(min2, opt2,
3388                                        MSR_IA32_VMX_PROCBASED_CTLS2,
3389                                        &_cpu_based_2nd_exec_control) < 0)
3390                        return -EIO;
3391        }
3392#ifndef CONFIG_X86_64
3393        if (!(_cpu_based_2nd_exec_control &
3394                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3395                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3396#endif
3397
3398        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3399                _cpu_based_2nd_exec_control &= ~(
3400                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
3401                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3402                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
3403
3404        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
3405                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3406                   enabled */
3407                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3408                                             CPU_BASED_CR3_STORE_EXITING |
3409                                             CPU_BASED_INVLPG_EXITING);
3410                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3411                      vmx_capability.ept, vmx_capability.vpid);
3412        }
3413
3414        min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
3415#ifdef CONFIG_X86_64
3416        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3417#endif
3418        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
3419                VM_EXIT_CLEAR_BNDCFGS;
3420        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3421                                &_vmexit_control) < 0)
3422                return -EIO;
3423
3424        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3425        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
3426                 PIN_BASED_VMX_PREEMPTION_TIMER;
3427        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3428                                &_pin_based_exec_control) < 0)
3429                return -EIO;
3430
3431        if (cpu_has_broken_vmx_preemption_timer())
3432                _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
3433        if (!(_cpu_based_2nd_exec_control &
3434                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
3435                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3436
3437        min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
3438        opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
3439        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3440                                &_vmentry_control) < 0)
3441                return -EIO;
3442
3443        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
3444
3445        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3446        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
3447                return -EIO;
3448
3449#ifdef CONFIG_X86_64
3450        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3451        if (vmx_msr_high & (1u<<16))
3452                return -EIO;
3453#endif
3454
3455        /* Require Write-Back (WB) memory type for VMCS accesses. */
3456        if (((vmx_msr_high >> 18) & 15) != 6)
3457                return -EIO;
3458
3459        vmcs_conf->size = vmx_msr_high & 0x1fff;
3460        vmcs_conf->order = get_order(vmcs_config.size);
3461        vmcs_conf->revision_id = vmx_msr_low;
3462
3463        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3464        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
3465        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
3466        vmcs_conf->vmexit_ctrl         = _vmexit_control;
3467        vmcs_conf->vmentry_ctrl        = _vmentry_control;
3468
3469        cpu_has_load_ia32_efer =
3470                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3471                                VM_ENTRY_LOAD_IA32_EFER)
3472                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3473                                   VM_EXIT_LOAD_IA32_EFER);
3474
3475        cpu_has_load_perf_global_ctrl =
3476                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3477                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3478                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3479                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3480
3481        /*
3482         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3483         * but due to errata below it can't be used. Workaround is to use
3484         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3485         *
3486         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3487         *
3488         * AAK155             (model 26)
3489         * AAP115             (model 30)
3490         * AAT100             (model 37)
3491         * BC86,AAY89,BD102   (model 44)
3492         * BA97               (model 46)
3493         *
3494         */
3495        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3496                switch (boot_cpu_data.x86_model) {
3497                case 26:
3498                case 30:
3499                case 37:
3500                case 44:
3501                case 46:
3502                        cpu_has_load_perf_global_ctrl = false;
3503                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3504                                        "does not work properly. Using workaround\n");
3505                        break;
3506                default:
3507                        break;
3508                }
3509        }
3510
3511        if (boot_cpu_has(X86_FEATURE_XSAVES))
3512                rdmsrl(MSR_IA32_XSS, host_xss);
3513
3514        return 0;
3515}
3516
3517static struct vmcs *alloc_vmcs_cpu(int cpu)
3518{
3519        int node = cpu_to_node(cpu);
3520        struct page *pages;
3521        struct vmcs *vmcs;
3522
3523        pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
3524        if (!pages)
3525                return NULL;
3526        vmcs = page_address(pages);
3527        memset(vmcs, 0, vmcs_config.size);
3528        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
3529        return vmcs;
3530}
3531
3532static struct vmcs *alloc_vmcs(void)
3533{
3534        return alloc_vmcs_cpu(raw_smp_processor_id());
3535}
3536
3537static void free_vmcs(struct vmcs *vmcs)
3538{
3539        free_pages((unsigned long)vmcs, vmcs_config.order);
3540}
3541
3542/*
3543 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3544 */
3545static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3546{
3547        if (!loaded_vmcs->vmcs)
3548                return;
3549        loaded_vmcs_clear(loaded_vmcs);
3550        free_vmcs(loaded_vmcs->vmcs);
3551        loaded_vmcs->vmcs = NULL;
3552}
3553
3554static void free_kvm_area(void)
3555{
3556        int cpu;
3557
3558        for_each_possible_cpu(cpu) {
3559                free_vmcs(per_cpu(vmxarea, cpu));
3560                per_cpu(vmxarea, cpu) = NULL;
3561        }
3562}
3563
3564static void init_vmcs_shadow_fields(void)
3565{
3566        int i, j;
3567
3568        /* No checks for read only fields yet */
3569
3570        for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3571                switch (shadow_read_write_fields[i]) {
3572                case GUEST_BNDCFGS:
3573                        if (!kvm_mpx_supported())
3574                                continue;
3575                        break;
3576                default:
3577                        break;
3578                }
3579
3580                if (j < i)
3581                        shadow_read_write_fields[j] =
3582                                shadow_read_write_fields[i];
3583                j++;
3584        }
3585        max_shadow_read_write_fields = j;
3586
3587        /* shadowed fields guest access without vmexit */
3588        for (i = 0; i < max_shadow_read_write_fields; i++) {
3589                clear_bit(shadow_read_write_fields[i],
3590                          vmx_vmwrite_bitmap);
3591                clear_bit(shadow_read_write_fields[i],
3592                          vmx_vmread_bitmap);
3593        }
3594        for (i = 0; i < max_shadow_read_only_fields; i++)
3595                clear_bit(shadow_read_only_fields[i],
3596                          vmx_vmread_bitmap);
3597}
3598
3599static __init int alloc_kvm_area(void)
3600{
3601        int cpu;
3602
3603        for_each_possible_cpu(cpu) {
3604                struct vmcs *vmcs;
3605
3606                vmcs = alloc_vmcs_cpu(cpu);
3607                if (!vmcs) {
3608                        free_kvm_area();
3609                        return -ENOMEM;
3610                }
3611
3612                per_cpu(vmxarea, cpu) = vmcs;
3613        }
3614        return 0;
3615}
3616
3617static bool emulation_required(struct kvm_vcpu *vcpu)
3618{
3619        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3620}
3621
3622static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
3623                struct kvm_segment *save)
3624{
3625        if (!emulate_invalid_guest_state) {
3626                /*
3627                 * CS and SS RPL should be equal during guest entry according
3628                 * to VMX spec, but in reality it is not always so. Since vcpu
3629                 * is in the middle of the transition from real mode to
3630                 * protected mode it is safe to assume that RPL 0 is a good
3631                 * default value.
3632                 */
3633                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
3634                        save->selector &= ~SEGMENT_RPL_MASK;
3635                save->dpl = save->selector & SEGMENT_RPL_MASK;
3636                save->s = 1;
3637        }
3638        vmx_set_segment(vcpu, save, seg);
3639}
3640
3641static void enter_pmode(struct kvm_vcpu *vcpu)
3642{
3643        unsigned long flags;
3644        struct vcpu_vmx *vmx = to_vmx(vcpu);
3645
3646        /*
3647         * Update real mode segment cache. It may be not up-to-date if sement
3648         * register was written while vcpu was in a guest mode.
3649         */
3650        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3651        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3652        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3653        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3654        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3655        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3656
3657        vmx->rmode.vm86_active = 0;
3658
3659        vmx_segment_cache_clear(vmx);
3660
3661        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3662
3663        flags = vmcs_readl(GUEST_RFLAGS);
3664        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3665        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3666        vmcs_writel(GUEST_RFLAGS, flags);
3667
3668        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3669                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3670
3671        update_exception_bitmap(vcpu);
3672
3673        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3674        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3675        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3676        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3677        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3678        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3679}
3680
3681static void fix_rmode_seg(int seg, struct kvm_segment *save)
3682{
3683        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3684        struct kvm_segment var = *save;
3685
3686        var.dpl = 0x3;
3687        if (seg == VCPU_SREG_CS)
3688                var.type = 0x3;
3689
3690        if (!emulate_invalid_guest_state) {
3691                var.selector = var.base >> 4;
3692                var.base = var.base & 0xffff0;
3693                var.limit = 0xffff;
3694                var.g = 0;
3695                var.db = 0;
3696                var.present = 1;
3697                var.s = 1;
3698                var.l = 0;
3699                var.unusable = 0;
3700                var.type = 0x3;
3701                var.avl = 0;
3702                if (save->base & 0xf)
3703                        printk_once(KERN_WARNING "kvm: segment base is not "
3704                                        "paragraph aligned when entering "
3705                                        "protected mode (seg=%d)", seg);
3706        }
3707
3708        vmcs_write16(sf->selector, var.selector);
3709        vmcs_write32(sf->base, var.base);
3710        vmcs_write32(sf->limit, var.limit);
3711        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3712}
3713
3714static void enter_rmode(struct kvm_vcpu *vcpu)
3715{
3716        unsigned long flags;
3717        struct vcpu_vmx *vmx = to_vmx(vcpu);
3718
3719        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3720        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3721        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3722        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3723        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3724        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3725        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3726
3727        vmx->rmode.vm86_active = 1;
3728
3729        /*
3730         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3731         * vcpu. Warn the user that an update is overdue.
3732         */
3733        if (!vcpu->kvm->arch.tss_addr)
3734                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3735                             "called before entering vcpu\n");
3736
3737        vmx_segment_cache_clear(vmx);
3738
3739        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3740        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3741        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3742
3743        flags = vmcs_readl(GUEST_RFLAGS);
3744        vmx->rmode.save_rflags = flags;
3745
3746        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3747
3748        vmcs_writel(GUEST_RFLAGS, flags);
3749        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3750        update_exception_bitmap(vcpu);
3751
3752        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3753        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3754        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3755        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3756        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3757        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3758
3759        kvm_mmu_reset_context(vcpu);
3760}
3761
3762static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3763{
3764        struct vcpu_vmx *vmx = to_vmx(vcpu);
3765        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3766
3767        if (!msr)
3768                return;
3769
3770        /*
3771         * Force kernel_gs_base reloading before EFER changes, as control
3772         * of this msr depends on is_long_mode().
3773         */
3774        vmx_load_host_state(to_vmx(vcpu));
3775        vcpu->arch.efer = efer;
3776        if (efer & EFER_LMA) {
3777                vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3778                msr->data = efer;
3779        } else {
3780                vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3781
3782                msr->data = efer & ~EFER_LME;
3783        }
3784        setup_msrs(vmx);
3785}
3786
3787#ifdef CONFIG_X86_64
3788
3789static void enter_lmode(struct kvm_vcpu *vcpu)
3790{
3791        u32 guest_tr_ar;
3792
3793        vmx_segment_cache_clear(to_vmx(vcpu));
3794
3795        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3796        if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
3797                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3798                                     __func__);
3799                vmcs_write32(GUEST_TR_AR_BYTES,
3800                             (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3801                             | VMX_AR_TYPE_BUSY_64_TSS);
3802        }
3803        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3804}
3805
3806static void exit_lmode(struct kvm_vcpu *vcpu)
3807{
3808        vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
3809        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3810}
3811
3812#endif
3813
3814static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
3815{
3816        vpid_sync_context(vpid);
3817        if (enable_ept) {
3818                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3819                        return;
3820                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3821        }
3822}
3823
3824static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3825{
3826        __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3827}
3828
3829static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3830{
3831        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3832
3833        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3834        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3835}
3836
3837static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3838{
3839        if (enable_ept && is_paging(vcpu))
3840                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3841        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3842}
3843
3844static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3845{
3846        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3847
3848        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3849        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3850}
3851
3852static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3853{
3854        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3855
3856        if (!test_bit(VCPU_EXREG_PDPTR,
3857                      (unsigned long *)&vcpu->arch.regs_dirty))
3858                return;
3859
3860        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3861                vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3862                vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3863                vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3864                vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
3865        }
3866}
3867
3868static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3869{
3870        struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3871
3872        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3873                mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3874                mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3875                mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3876                mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3877        }
3878
3879        __set_bit(VCPU_EXREG_PDPTR,
3880                  (unsigned long *)&vcpu->arch.regs_avail);
3881        __set_bit(VCPU_EXREG_PDPTR,
3882                  (unsigned long *)&vcpu->arch.regs_dirty);
3883}
3884
3885static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3886
3887static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3888                                        unsigned long cr0,
3889                                        struct kvm_vcpu *vcpu)
3890{
3891        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3892                vmx_decache_cr3(vcpu);
3893        if (!(cr0 & X86_CR0_PG)) {
3894                /* From paging/starting to nonpaging */
3895                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3896                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3897                             (CPU_BASED_CR3_LOAD_EXITING |
3898                              CPU_BASED_CR3_STORE_EXITING));
3899                vcpu->arch.cr0 = cr0;
3900                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3901        } else if (!is_paging(vcpu)) {
3902                /* From nonpaging to paging */
3903                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3904                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3905                             ~(CPU_BASED_CR3_LOAD_EXITING |
3906                               CPU_BASED_CR3_STORE_EXITING));
3907                vcpu->arch.cr0 = cr0;
3908                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3909        }
3910
3911        if (!(cr0 & X86_CR0_WP))
3912                *hw_cr0 &= ~X86_CR0_WP;
3913}
3914
3915static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3916{
3917        struct vcpu_vmx *vmx = to_vmx(vcpu);
3918        unsigned long hw_cr0;
3919
3920        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3921        if (enable_unrestricted_guest)
3922                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3923        else {
3924                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3925
3926                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3927                        enter_pmode(vcpu);
3928
3929                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3930                        enter_rmode(vcpu);
3931        }
3932
3933#ifdef CONFIG_X86_64
3934        if (vcpu->arch.efer & EFER_LME) {
3935                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3936                        enter_lmode(vcpu);
3937                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3938                        exit_lmode(vcpu);
3939        }
3940#endif
3941
3942        if (enable_ept)
3943                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3944
3945        if (!vcpu->fpu_active)
3946                hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3947
3948        vmcs_writel(CR0_READ_SHADOW, cr0);
3949        vmcs_writel(GUEST_CR0, hw_cr0);
3950        vcpu->arch.cr0 = cr0;
3951
3952        /* depends on vcpu->arch.cr0 to be set to a new value */
3953        vmx->emulation_required = emulation_required(vcpu);
3954}
3955
3956static u64 construct_eptp(unsigned long root_hpa)
3957{
3958        u64 eptp;
3959
3960        /* TODO write the value reading from MSR */
3961        eptp = VMX_EPT_DEFAULT_MT |
3962                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3963        if (enable_ept_ad_bits)
3964                eptp |= VMX_EPT_AD_ENABLE_BIT;
3965        eptp |= (root_hpa & PAGE_MASK);
3966
3967        return eptp;
3968}
3969
3970static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3971{
3972        unsigned long guest_cr3;
3973        u64 eptp;
3974
3975        guest_cr3 = cr3;
3976        if (enable_ept) {
3977                eptp = construct_eptp(cr3);
3978                vmcs_write64(EPT_POINTER, eptp);
3979                if (is_paging(vcpu) || is_guest_mode(vcpu))
3980                        guest_cr3 = kvm_read_cr3(vcpu);
3981                else
3982                        guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
3983                ept_load_pdptrs(vcpu);
3984        }
3985
3986        vmx_flush_tlb(vcpu);
3987        vmcs_writel(GUEST_CR3, guest_cr3);
3988}
3989
3990static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3991{
3992        /*
3993         * Pass through host's Machine Check Enable value to hw_cr4, which
3994         * is in force while we are in guest mode.  Do not let guests control
3995         * this bit, even if host CR4.MCE == 0.
3996         */
3997        unsigned long hw_cr4 =
3998                (cr4_read_shadow() & X86_CR4_MCE) |
3999                (cr4 & ~X86_CR4_MCE) |
4000                (to_vmx(vcpu)->rmode.vm86_active ?
4001                 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
4002
4003        if (cr4 & X86_CR4_VMXE) {
4004                /*
4005                 * To use VMXON (and later other VMX instructions), a guest
4006                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4007                 * So basically the check on whether to allow nested VMX
4008                 * is here.
4009                 */
4010                if (!nested_vmx_allowed(vcpu))
4011                        return 1;
4012        }
4013        if (to_vmx(vcpu)->nested.vmxon &&
4014            ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
4015                return 1;
4016
4017        vcpu->arch.cr4 = cr4;
4018        if (enable_ept) {
4019                if (!is_paging(vcpu)) {
4020                        hw_cr4 &= ~X86_CR4_PAE;
4021                        hw_cr4 |= X86_CR4_PSE;
4022                } else if (!(cr4 & X86_CR4_PAE)) {
4023                        hw_cr4 &= ~X86_CR4_PAE;
4024                }
4025        }
4026
4027        if (!enable_unrestricted_guest && !is_paging(vcpu))
4028                /*
4029                 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4030                 * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
4031                 * to be manually disabled when guest switches to non-paging
4032                 * mode.
4033                 *
4034                 * If !enable_unrestricted_guest, the CPU is always running
4035                 * with CR0.PG=1 and CR4 needs to be modified.
4036                 * If enable_unrestricted_guest, the CPU automatically
4037                 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
4038                 */
4039                hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4040
4041        vmcs_writel(CR4_READ_SHADOW, cr4);
4042        vmcs_writel(GUEST_CR4, hw_cr4);
4043        return 0;
4044}
4045
4046static void vmx_get_segment(struct kvm_vcpu *vcpu,
4047                            struct kvm_segment *var, int seg)
4048{
4049        struct vcpu_vmx *vmx = to_vmx(vcpu);
4050        u32 ar;
4051
4052        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4053                *var = vmx->rmode.segs[seg];
4054                if (seg == VCPU_SREG_TR
4055                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
4056                        return;
4057                var->base = vmx_read_guest_seg_base(vmx, seg);
4058                var->selector = vmx_read_guest_seg_selector(vmx, seg);
4059                return;
4060        }
4061        var->base = vmx_read_guest_seg_base(vmx, seg);
4062        var->limit = vmx_read_guest_seg_limit(vmx, seg);
4063        var->selector = vmx_read_guest_seg_selector(vmx, seg);
4064        ar = vmx_read_guest_seg_ar(vmx, seg);
4065        var->unusable = (ar >> 16) & 1;
4066        var->type = ar & 15;
4067        var->s = (ar >> 4) & 1;
4068        var->dpl = (ar >> 5) & 3;
4069        /*
4070         * Some userspaces do not preserve unusable property. Since usable
4071         * segment has to be present according to VMX spec we can use present
4072         * property to amend userspace bug by making unusable segment always
4073         * nonpresent. vmx_segment_access_rights() already marks nonpresent
4074         * segment as unusable.
4075         */
4076        var->present = !var->unusable;
4077        var->avl = (ar >> 12) & 1;
4078        var->l = (ar >> 13) & 1;
4079        var->db = (ar >> 14) & 1;
4080        var->g = (ar >> 15) & 1;
4081}
4082
4083static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4084{
4085        struct kvm_segment s;
4086
4087        if (to_vmx(vcpu)->rmode.vm86_active) {
4088                vmx_get_segment(vcpu, &s, seg);
4089                return s.base;
4090        }
4091        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
4092}
4093
4094static int vmx_get_cpl(struct kvm_vcpu *vcpu)
4095{
4096        struct vcpu_vmx *vmx = to_vmx(vcpu);
4097
4098        if (unlikely(vmx->rmode.vm86_active))
4099                return 0;
4100        else {
4101                int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4102                return VMX_AR_DPL(ar);
4103        }
4104}
4105
4106static u32 vmx_segment_access_rights(struct kvm_segment *var)
4107{
4108        u32 ar;
4109
4110        if (var->unusable || !var->present)
4111                ar = 1 << 16;
4112        else {
4113                ar = var->type & 15;
4114                ar |= (var->s & 1) << 4;
4115                ar |= (var->dpl & 3) << 5;
4116                ar |= (var->present & 1) << 7;
4117                ar |= (var->avl & 1) << 12;
4118                ar |= (var->l & 1) << 13;
4119                ar |= (var->db & 1) << 14;
4120                ar |= (var->g & 1) << 15;
4121        }
4122
4123        return ar;
4124}
4125
4126static void vmx_set_segment(struct kvm_vcpu *vcpu,
4127                            struct kvm_segment *var, int seg)
4128{
4129        struct vcpu_vmx *vmx = to_vmx(vcpu);
4130        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4131
4132        vmx_segment_cache_clear(vmx);
4133
4134        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4135                vmx->rmode.segs[seg] = *var;
4136                if (seg == VCPU_SREG_TR)
4137                        vmcs_write16(sf->selector, var->selector);
4138                else if (var->s)
4139                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
4140                goto out;
4141        }
4142
4143        vmcs_writel(sf->base, var->base);
4144        vmcs_write32(sf->limit, var->limit);
4145        vmcs_write16(sf->selector, var->selector);
4146
4147        /*
4148         *   Fix the "Accessed" bit in AR field of segment registers for older
4149         * qemu binaries.
4150         *   IA32 arch specifies that at the time of processor reset the
4151         * "Accessed" bit in the AR field of segment registers is 1. And qemu
4152         * is setting it to 0 in the userland code. This causes invalid guest
4153         * state vmexit when "unrestricted guest" mode is turned on.
4154         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
4155         * tree. Newer qemu binaries with that qemu fix would not need this
4156         * kvm hack.
4157         */
4158        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
4159                var->type |= 0x1; /* Accessed */
4160
4161        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
4162
4163out:
4164        vmx->emulation_required = emulation_required(vcpu);
4165}
4166
4167static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4168{
4169        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
4170
4171        *db = (ar >> 14) & 1;
4172        *l = (ar >> 13) & 1;
4173}
4174
4175static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4176{
4177        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4178        dt->address = vmcs_readl(GUEST_IDTR_BASE);
4179}
4180
4181static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4182{
4183        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4184        vmcs_writel(GUEST_IDTR_BASE, dt->address);
4185}
4186
4187static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4188{
4189        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4190        dt->address = vmcs_readl(GUEST_GDTR_BASE);
4191}
4192
4193static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
4194{
4195        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4196        vmcs_writel(GUEST_GDTR_BASE, dt->address);
4197}
4198
4199static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4200{
4201        struct kvm_segment var;
4202        u32 ar;
4203
4204        vmx_get_segment(vcpu, &var, seg);
4205        var.dpl = 0x3;
4206        if (seg == VCPU_SREG_CS)
4207                var.type = 0x3;
4208        ar = vmx_segment_access_rights(&var);
4209
4210        if (var.base != (var.selector << 4))
4211                return false;
4212        if (var.limit != 0xffff)
4213                return false;
4214        if (ar != 0xf3)
4215                return false;
4216
4217        return true;
4218}
4219
4220static bool code_segment_valid(struct kvm_vcpu *vcpu)
4221{
4222        struct kvm_segment cs;
4223        unsigned int cs_rpl;
4224
4225        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4226        cs_rpl = cs.selector & SEGMENT_RPL_MASK;
4227
4228        if (cs.unusable)
4229                return false;
4230        if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
4231                return false;
4232        if (!cs.s)
4233                return false;
4234        if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
4235                if (cs.dpl > cs_rpl)
4236                        return false;
4237        } else {
4238                if (cs.dpl != cs_rpl)
4239                        return false;
4240        }
4241        if (!cs.present)
4242                return false;
4243
4244        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4245        return true;
4246}
4247
4248static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4249{
4250        struct kvm_segment ss;
4251        unsigned int ss_rpl;
4252
4253        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4254        ss_rpl = ss.selector & SEGMENT_RPL_MASK;
4255
4256        if (ss.unusable)
4257                return true;
4258        if (ss.type != 3 && ss.type != 7)
4259                return false;
4260        if (!ss.s)
4261                return false;
4262        if (ss.dpl != ss_rpl) /* DPL != RPL */
4263                return false;
4264        if (!ss.present)
4265                return false;
4266
4267        return true;
4268}
4269
4270static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4271{
4272        struct kvm_segment var;
4273        unsigned int rpl;
4274
4275        vmx_get_segment(vcpu, &var, seg);
4276        rpl = var.selector & SEGMENT_RPL_MASK;
4277
4278        if (var.unusable)
4279                return true;
4280        if (!var.s)
4281                return false;
4282        if (!var.present)
4283                return false;
4284        if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
4285                if (var.dpl < rpl) /* DPL < RPL */
4286                        return false;
4287        }
4288
4289        /* TODO: Add other members to kvm_segment_field to allow checking for other access
4290         * rights flags
4291         */
4292        return true;
4293}
4294
4295static bool tr_valid(struct kvm_vcpu *vcpu)
4296{
4297        struct kvm_segment tr;
4298
4299        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4300
4301        if (tr.unusable)
4302                return false;
4303        if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
4304                return false;
4305        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
4306                return false;
4307        if (!tr.present)
4308                return false;
4309
4310        return true;
4311}
4312
4313static bool ldtr_valid(struct kvm_vcpu *vcpu)
4314{
4315        struct kvm_segment ldtr;
4316
4317        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4318
4319        if (ldtr.unusable)
4320                return true;
4321        if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
4322                return false;
4323        if (ldtr.type != 2)
4324                return false;
4325        if (!ldtr.present)
4326                return false;
4327
4328        return true;
4329}
4330
4331static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4332{
4333        struct kvm_segment cs, ss;
4334
4335        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4336        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4337
4338        return ((cs.selector & SEGMENT_RPL_MASK) ==
4339                 (ss.selector & SEGMENT_RPL_MASK));
4340}
4341
4342/*
4343 * Check if guest state is valid. Returns true if valid, false if
4344 * not.
4345 * We assume that registers are always usable
4346 */
4347static bool guest_state_valid(struct kvm_vcpu *vcpu)
4348{
4349        if (enable_unrestricted_guest)
4350                return true;
4351
4352        /* real mode guest state checks */
4353        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
4354                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4355                        return false;
4356                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4357                        return false;
4358                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4359                        return false;
4360                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4361                        return false;
4362                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4363                        return false;
4364                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4365                        return false;
4366        } else {
4367        /* protected mode guest state checks */
4368                if (!cs_ss_rpl_check(vcpu))
4369                        return false;
4370                if (!code_segment_valid(vcpu))
4371                        return false;
4372                if (!stack_segment_valid(vcpu))
4373                        return false;
4374                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4375                        return false;
4376                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4377                        return false;
4378                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4379                        return false;
4380                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4381                        return false;
4382                if (!tr_valid(vcpu))
4383                        return false;
4384                if (!ldtr_valid(vcpu))
4385                        return false;
4386        }
4387        /* TODO:
4388         * - Add checks on RIP
4389         * - Add checks on RFLAGS
4390         */
4391
4392        return true;
4393}
4394
4395static int init_rmode_tss(struct kvm *kvm)
4396{
4397        gfn_t fn;
4398        u16 data = 0;
4399        int idx, r;
4400
4401        idx = srcu_read_lock(&kvm->srcu);
4402        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
4403        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4404        if (r < 0)
4405                goto out;
4406        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
4407        r = kvm_write_guest_page(kvm, fn++, &data,
4408                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
4409        if (r < 0)
4410                goto out;
4411        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4412        if (r < 0)
4413                goto out;
4414        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4415        if (r < 0)
4416                goto out;
4417        data = ~0;
4418        r = kvm_write_guest_page(kvm, fn, &data,
4419                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4420                                 sizeof(u8));
4421out:
4422        srcu_read_unlock(&kvm->srcu, idx);
4423        return r;
4424}
4425
4426static int init_rmode_identity_map(struct kvm *kvm)
4427{
4428        int i, idx, r = 0;
4429        kvm_pfn_t identity_map_pfn;
4430        u32 tmp;
4431
4432        if (!enable_ept)
4433                return 0;
4434
4435        /* Protect kvm->arch.ept_identity_pagetable_done. */
4436        mutex_lock(&kvm->slots_lock);
4437
4438        if (likely(kvm->arch.ept_identity_pagetable_done))
4439                goto out2;
4440
4441        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
4442
4443        r = alloc_identity_pagetable(kvm);
4444        if (r < 0)
4445                goto out2;
4446
4447        idx = srcu_read_lock(&kvm->srcu);
4448        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4449        if (r < 0)
4450                goto out;
4451        /* Set up identity-mapping pagetable for EPT in real mode */
4452        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4453                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4454                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4455                r = kvm_write_guest_page(kvm, identity_map_pfn,
4456                                &tmp, i * sizeof(tmp), sizeof(tmp));
4457                if (r < 0)
4458                        goto out;
4459        }
4460        kvm->arch.ept_identity_pagetable_done = true;
4461
4462out:
4463        srcu_read_unlock(&kvm->srcu, idx);
4464
4465out2:
4466        mutex_unlock(&kvm->slots_lock);
4467        return r;
4468}
4469
4470static void seg_setup(int seg)
4471{
4472        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
4473        unsigned int ar;
4474
4475        vmcs_write16(sf->selector, 0);
4476        vmcs_writel(sf->base, 0);
4477        vmcs_write32(sf->limit, 0xffff);
4478        ar = 0x93;
4479        if (seg == VCPU_SREG_CS)
4480                ar |= 0x08; /* code segment */
4481
4482        vmcs_write32(sf->ar_bytes, ar);
4483}
4484
4485static int alloc_apic_access_page(struct kvm *kvm)
4486{
4487        struct page *page;
4488        int r = 0;
4489
4490        mutex_lock(&kvm->slots_lock);
4491        if (kvm->arch.apic_access_page_done)
4492                goto out;
4493        r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4494                                    APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
4495        if (r)
4496                goto out;
4497
4498        page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4499        if (is_error_page(page)) {
4500                r = -EFAULT;
4501                goto out;
4502        }
4503
4504        /*
4505         * Do not pin the page in memory, so that memory hot-unplug
4506         * is able to migrate it.
4507         */
4508        put_page(page);
4509        kvm->arch.apic_access_page_done = true;
4510out:
4511        mutex_unlock(&kvm->slots_lock);
4512        return r;
4513}
4514
4515static int alloc_identity_pagetable(struct kvm *kvm)
4516{
4517        /* Called with kvm->slots_lock held. */
4518
4519        int r = 0;
4520
4521        BUG_ON(kvm->arch.ept_identity_pagetable_done);
4522
4523        r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4524                                    kvm->arch.ept_identity_map_addr, PAGE_SIZE);
4525
4526        return r;
4527}
4528
4529static int allocate_vpid(void)
4530{
4531        int vpid;
4532
4533        if (!enable_vpid)
4534                return 0;
4535        spin_lock(&vmx_vpid_lock);
4536        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
4537        if (vpid < VMX_NR_VPIDS)
4538                __set_bit(vpid, vmx_vpid_bitmap);
4539        else
4540                vpid = 0;
4541        spin_unlock(&vmx_vpid_lock);
4542        return vpid;
4543}
4544
4545static void free_vpid(int vpid)
4546{
4547        if (!enable_vpid || vpid == 0)
4548                return;
4549        spin_lock(&vmx_vpid_lock);
4550        __clear_bit(vpid, vmx_vpid_bitmap);
4551        spin_unlock(&vmx_vpid_lock);
4552}
4553
4554#define MSR_TYPE_R      1
4555#define MSR_TYPE_W      2
4556static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4557                                                u32 msr, int type)
4558{
4559        int f = sizeof(unsigned long);
4560
4561        if (!cpu_has_vmx_msr_bitmap())
4562                return;
4563
4564        /*
4565         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4566         * have the write-low and read-high bitmap offsets the wrong way round.
4567         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4568         */
4569        if (msr <= 0x1fff) {
4570                if (type & MSR_TYPE_R)
4571                        /* read-low */
4572                        __clear_bit(msr, msr_bitmap + 0x000 / f);
4573
4574                if (type & MSR_TYPE_W)
4575                        /* write-low */
4576                        __clear_bit(msr, msr_bitmap + 0x800 / f);
4577
4578        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4579                msr &= 0x1fff;
4580                if (type & MSR_TYPE_R)
4581                        /* read-high */
4582                        __clear_bit(msr, msr_bitmap + 0x400 / f);
4583
4584                if (type & MSR_TYPE_W)
4585                        /* write-high */
4586                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
4587
4588        }
4589}
4590
4591static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4592                                                u32 msr, int type)
4593{
4594        int f = sizeof(unsigned long);
4595
4596        if (!cpu_has_vmx_msr_bitmap())
4597                return;
4598
4599        /*
4600         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4601         * have the write-low and read-high bitmap offsets the wrong way round.
4602         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4603         */
4604        if (msr <= 0x1fff) {
4605                if (type & MSR_TYPE_R)
4606                        /* read-low */
4607                        __set_bit(msr, msr_bitmap + 0x000 / f);
4608
4609                if (type & MSR_TYPE_W)
4610                        /* write-low */
4611                        __set_bit(msr, msr_bitmap + 0x800 / f);
4612
4613        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4614                msr &= 0x1fff;
4615                if (type & MSR_TYPE_R)
4616                        /* read-high */
4617                        __set_bit(msr, msr_bitmap + 0x400 / f);
4618
4619                if (type & MSR_TYPE_W)
4620                        /* write-high */
4621                        __set_bit(msr, msr_bitmap + 0xc00 / f);
4622
4623        }
4624}
4625
4626/*
4627 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4628 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4629 */
4630static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4631                                               unsigned long *msr_bitmap_nested,
4632                                               u32 msr, int type)
4633{
4634        int f = sizeof(unsigned long);
4635
4636        if (!cpu_has_vmx_msr_bitmap()) {
4637                WARN_ON(1);
4638                return;
4639        }
4640
4641        /*
4642         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4643         * have the write-low and read-high bitmap offsets the wrong way round.
4644         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4645         */
4646        if (msr <= 0x1fff) {
4647                if (type & MSR_TYPE_R &&
4648                   !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4649                        /* read-low */
4650                        __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4651
4652                if (type & MSR_TYPE_W &&
4653                   !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4654                        /* write-low */
4655                        __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4656
4657        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4658                msr &= 0x1fff;
4659                if (type & MSR_TYPE_R &&
4660                   !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4661                        /* read-high */
4662                        __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4663
4664                if (type & MSR_TYPE_W &&
4665                   !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4666                        /* write-high */
4667                        __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4668
4669        }
4670}
4671
4672static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4673{
4674        if (!longmode_only)
4675                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4676                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4677        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4678                                                msr, MSR_TYPE_R | MSR_TYPE_W);
4679}
4680
4681static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4682{
4683        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4684                        msr, MSR_TYPE_R);
4685        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4686                        msr, MSR_TYPE_R);
4687}
4688
4689static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4690{
4691        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4692                        msr, MSR_TYPE_R);
4693        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4694                        msr, MSR_TYPE_R);
4695}
4696
4697static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4698{
4699        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4700                        msr, MSR_TYPE_W);
4701        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4702                        msr, MSR_TYPE_W);
4703}
4704
4705static bool vmx_get_enable_apicv(void)
4706{
4707        return enable_apicv;
4708}
4709
4710static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4711{
4712        struct vcpu_vmx *vmx = to_vmx(vcpu);
4713        int max_irr;
4714        void *vapic_page;
4715        u16 status;
4716
4717        if (vmx->nested.pi_desc &&
4718            vmx->nested.pi_pending) {
4719                vmx->nested.pi_pending = false;
4720                if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4721                        return 0;
4722
4723                max_irr = find_last_bit(
4724                        (unsigned long *)vmx->nested.pi_desc->pir, 256);
4725
4726                if (max_irr == 256)
4727                        return 0;
4728
4729                vapic_page = kmap(vmx->nested.virtual_apic_page);
4730                if (!vapic_page) {
4731                        WARN_ON(1);
4732                        return -ENOMEM;
4733                }
4734                __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4735                kunmap(vmx->nested.virtual_apic_page);
4736
4737                status = vmcs_read16(GUEST_INTR_STATUS);
4738                if ((u8)max_irr > ((u8)status & 0xff)) {
4739                        status &= ~0xff;
4740                        status |= (u8)max_irr;
4741                        vmcs_write16(GUEST_INTR_STATUS, status);
4742                }
4743        }
4744        return 0;
4745}
4746
4747static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4748{
4749#ifdef CONFIG_SMP
4750        if (vcpu->mode == IN_GUEST_MODE) {
4751                struct vcpu_vmx *vmx = to_vmx(vcpu);
4752
4753                /*
4754                 * Currently, we don't support urgent interrupt,
4755                 * all interrupts are recognized as non-urgent
4756                 * interrupt, so we cannot post interrupts when
4757                 * 'SN' is set.
4758                 *
4759                 * If the vcpu is in guest mode, it means it is
4760                 * running instead of being scheduled out and
4761                 * waiting in the run queue, and that's the only
4762                 * case when 'SN' is set currently, warning if
4763                 * 'SN' is set.
4764                 */
4765                WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4766
4767                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4768                                POSTED_INTR_VECTOR);
4769                return true;
4770        }
4771#endif
4772        return false;
4773}
4774
4775static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4776                                                int vector)
4777{
4778        struct vcpu_vmx *vmx = to_vmx(vcpu);
4779
4780        if (is_guest_mode(vcpu) &&
4781            vector == vmx->nested.posted_intr_nv) {
4782                /* the PIR and ON have been set by L1. */
4783                kvm_vcpu_trigger_posted_interrupt(vcpu);
4784                /*
4785                 * If a posted intr is not recognized by hardware,
4786                 * we will accomplish it in the next vmentry.
4787                 */
4788                vmx->nested.pi_pending = true;
4789                kvm_make_request(KVM_REQ_EVENT, vcpu);
4790                return 0;
4791        }
4792        return -1;
4793}
4794/*
4795 * Send interrupt to vcpu via posted interrupt way.
4796 * 1. If target vcpu is running(non-root mode), send posted interrupt
4797 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4798 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4799 * interrupt from PIR in next vmentry.
4800 */
4801static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4802{
4803        struct vcpu_vmx *vmx = to_vmx(vcpu);
4804        int r;
4805
4806        r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4807        if (!r)
4808                return;
4809
4810        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4811                return;
4812
4813        r = pi_test_and_set_on(&vmx->pi_desc);
4814        kvm_make_request(KVM_REQ_EVENT, vcpu);
4815        if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
4816                kvm_vcpu_kick(vcpu);
4817}
4818
4819static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4820{
4821        struct vcpu_vmx *vmx = to_vmx(vcpu);
4822
4823        if (!pi_test_and_clear_on(&vmx->pi_desc))
4824                return;
4825
4826        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4827}
4828
4829/*
4830 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4831 * will not change in the lifetime of the guest.
4832 * Note that host-state that does change is set elsewhere. E.g., host-state
4833 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4834 */
4835static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4836{
4837        u32 low32, high32;
4838        unsigned long tmpl;
4839        struct desc_ptr dt;
4840        unsigned long cr4;
4841
4842        vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4843        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4844
4845        /* Save the most likely value for this task's CR4 in the VMCS. */
4846        cr4 = cr4_read_shadow();
4847        vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4848        vmx->host_state.vmcs_host_cr4 = cr4;
4849
4850        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4851#ifdef CONFIG_X86_64
4852        /*
4853         * Load null selectors, so we can avoid reloading them in
4854         * __vmx_load_host_state(), in case userspace uses the null selectors
4855         * too (the expected case).
4856         */
4857        vmcs_write16(HOST_DS_SELECTOR, 0);
4858        vmcs_write16(HOST_ES_SELECTOR, 0);
4859#else
4860        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4861        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4862#endif
4863        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4864        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4865
4866        native_store_idt(&dt);
4867        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4868        vmx->host_idt_base = dt.address;
4869
4870        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4871
4872        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4873        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4874        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4875        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4876
4877        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4878                rdmsr(MSR_IA32_CR_PAT, low32, high32);
4879                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4880        }
4881}
4882
4883static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4884{
4885        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4886        if (enable_ept)
4887                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4888        if (is_guest_mode(&vmx->vcpu))
4889                vmx->vcpu.arch.cr4_guest_owned_bits &=
4890                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4891        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4892}
4893
4894static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4895{
4896        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4897
4898        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4899                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4900        /* Enable the preemption timer dynamically */
4901        pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4902        return pin_based_exec_ctrl;
4903}
4904
4905static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4906{
4907        struct vcpu_vmx *vmx = to_vmx(vcpu);
4908
4909        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4910        if (cpu_has_secondary_exec_ctrls()) {
4911                if (kvm_vcpu_apicv_active(vcpu))
4912                        vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4913                                      SECONDARY_EXEC_APIC_REGISTER_VIRT |
4914                                      SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4915                else
4916                        vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4917                                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
4918                                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4919        }
4920
4921        if (cpu_has_vmx_msr_bitmap())
4922                vmx_set_msr_bitmap(vcpu);
4923}
4924
4925static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4926{
4927        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4928
4929        if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4930                exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4931
4932        if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4933                exec_control &= ~CPU_BASED_TPR_SHADOW;
4934#ifdef CONFIG_X86_64
4935                exec_control |= CPU_BASED_CR8_STORE_EXITING |
4936                                CPU_BASED_CR8_LOAD_EXITING;
4937#endif
4938        }
4939        if (!enable_ept)
4940                exec_control |= CPU_BASED_CR3_STORE_EXITING |
4941                                CPU_BASED_CR3_LOAD_EXITING  |
4942                                CPU_BASED_INVLPG_EXITING;
4943        return exec_control;
4944}
4945
4946static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4947{
4948        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4949        if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
4950                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4951        if (vmx->vpid == 0)
4952                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4953        if (!enable_ept) {
4954                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4955                enable_unrestricted_guest = 0;
4956                /* Enable INVPCID for non-ept guests may cause performance regression. */
4957                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4958        }
4959        if (!enable_unrestricted_guest)
4960                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4961        if (!ple_gap)
4962                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4963        if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4964                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4965                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4966        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4967        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4968           (handle_vmptrld).
4969           We can NOT enable shadow_vmcs here because we don't have yet
4970           a current VMCS12
4971        */
4972        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4973
4974        if (!enable_pml)
4975                exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4976
4977        return exec_control;
4978}
4979
4980static void ept_set_mmio_spte_mask(void)
4981{
4982        /*
4983         * EPT Misconfigurations can be generated if the value of bits 2:0
4984         * of an EPT paging-structure entry is 110b (write/execute).
4985         * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
4986         * spte.
4987         */
4988        kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
4989}
4990
4991#define VMX_XSS_EXIT_BITMAP 0
4992/*
4993 * Sets up the vmcs for emulated real mode.
4994 */
4995static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4996{
4997#ifdef CONFIG_X86_64
4998        unsigned long a;
4999#endif
5000        int i;
5001
5002        /* I/O */
5003        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
5004        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
5005
5006        if (enable_shadow_vmcs) {
5007                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5008                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5009        }
5010        if (cpu_has_vmx_msr_bitmap())
5011                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
5012
5013        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5014
5015        /* Control */
5016        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
5017        vmx->hv_deadline_tsc = -1;
5018
5019        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
5020
5021        if (cpu_has_secondary_exec_ctrls()) {
5022                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
5023                                vmx_secondary_exec_control(vmx));
5024        }
5025
5026        if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
5027                vmcs_write64(EOI_EXIT_BITMAP0, 0);
5028                vmcs_write64(EOI_EXIT_BITMAP1, 0);
5029                vmcs_write64(EOI_EXIT_BITMAP2, 0);
5030                vmcs_write64(EOI_EXIT_BITMAP3, 0);
5031
5032                vmcs_write16(GUEST_INTR_STATUS, 0);
5033
5034                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
5035                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
5036        }
5037
5038        if (ple_gap) {
5039                vmcs_write32(PLE_GAP, ple_gap);
5040                vmx->ple_window = ple_window;
5041                vmx->ple_window_dirty = true;
5042        }
5043
5044        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5045        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
5046        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
5047
5048        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
5049        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
5050        vmx_set_constant_host_state(vmx);
5051#ifdef CONFIG_X86_64
5052        rdmsrl(MSR_FS_BASE, a);
5053        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5054        rdmsrl(MSR_GS_BASE, a);
5055        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5056#else
5057        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5058        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5059#endif
5060
5061        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
5062        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
5063        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
5064        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
5065        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
5066
5067        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
5068                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
5069
5070        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
5071                u32 index = vmx_msr_index[i];
5072                u32 data_low, data_high;
5073                int j = vmx->nmsrs;
5074
5075                if (rdmsr_safe(index, &data_low, &data_high) < 0)
5076                        continue;
5077                if (wrmsr_safe(index, data_low, data_high) < 0)
5078                        continue;
5079                vmx->guest_msrs[j].index = i;
5080                vmx->guest_msrs[j].data = 0;
5081                vmx->guest_msrs[j].mask = -1ull;
5082                ++vmx->nmsrs;
5083        }
5084
5085
5086        vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
5087
5088        /* 22.2.1, 20.8.1 */
5089        vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
5090
5091        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
5092        set_cr4_guest_host_mask(vmx);
5093
5094        if (vmx_xsaves_supported())
5095                vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
5096
5097        if (enable_pml) {
5098                ASSERT(vmx->pml_pg);
5099                vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
5100                vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5101        }
5102
5103        return 0;
5104}
5105
5106static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
5107{
5108        struct vcpu_vmx *vmx = to_vmx(vcpu);
5109        struct msr_data apic_base_msr;
5110        u64 cr0;
5111
5112        vmx->rmode.vm86_active = 0;
5113
5114        vmx->soft_vnmi_blocked = 0;
5115
5116        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
5117        kvm_set_cr8(vcpu, 0);
5118
5119        if (!init_event) {
5120                apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
5121                                     MSR_IA32_APICBASE_ENABLE;
5122                if (kvm_vcpu_is_reset_bsp(vcpu))
5123                        apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
5124                apic_base_msr.host_initiated = true;
5125                kvm_set_apic_base(vcpu, &apic_base_msr);
5126        }
5127
5128        vmx_segment_cache_clear(vmx);
5129
5130        seg_setup(VCPU_SREG_CS);
5131        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
5132        vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
5133
5134        seg_setup(VCPU_SREG_DS);
5135        seg_setup(VCPU_SREG_ES);
5136        seg_setup(VCPU_SREG_FS);
5137        seg_setup(VCPU_SREG_GS);
5138        seg_setup(VCPU_SREG_SS);
5139
5140        vmcs_write16(GUEST_TR_SELECTOR, 0);
5141        vmcs_writel(GUEST_TR_BASE, 0);
5142        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5143        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5144
5145        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5146        vmcs_writel(GUEST_LDTR_BASE, 0);
5147        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5148        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5149
5150        if (!init_event) {
5151                vmcs_write32(GUEST_SYSENTER_CS, 0);
5152                vmcs_writel(GUEST_SYSENTER_ESP, 0);
5153                vmcs_writel(GUEST_SYSENTER_EIP, 0);
5154                vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5155        }
5156
5157        vmcs_writel(GUEST_RFLAGS, 0x02);
5158        kvm_rip_write(vcpu, 0xfff0);
5159
5160        vmcs_writel(GUEST_GDTR_BASE, 0);
5161        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5162
5163        vmcs_writel(GUEST_IDTR_BASE, 0);
5164        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5165
5166        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
5167        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
5168        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
5169
5170        setup_msrs(vmx);
5171
5172        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
5173
5174        if (cpu_has_vmx_tpr_shadow() && !init_event) {
5175                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
5176                if (cpu_need_tpr_shadow(vcpu))
5177                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
5178                                     __pa(vcpu->arch.apic->regs));
5179                vmcs_write32(TPR_THRESHOLD, 0);
5180        }
5181
5182        kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
5183
5184        if (kvm_vcpu_apicv_active(vcpu))
5185                memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5186
5187        if (vmx->vpid != 0)
5188                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5189
5190        cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5191        vmx->vcpu.arch.cr0 = cr0;
5192        vmx_set_cr0(vcpu, cr0); /* enter rmode */
5193        vmx_set_cr4(vcpu, 0);
5194        vmx_set_efer(vcpu, 0);
5195        vmx_fpu_activate(vcpu);
5196        update_exception_bitmap(vcpu);
5197
5198        vpid_sync_context(vmx->vpid);
5199}
5200
5201/*
5202 * In nested virtualization, check if L1 asked to exit on external interrupts.
5203 * For most existing hypervisors, this will always return true.
5204 */
5205static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5206{
5207        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5208                PIN_BASED_EXT_INTR_MASK;
5209}
5210
5211/*
5212 * In nested virtualization, check if L1 has set
5213 * VM_EXIT_ACK_INTR_ON_EXIT
5214 */
5215static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5216{
5217        return get_vmcs12(vcpu)->vm_exit_controls &
5218                VM_EXIT_ACK_INTR_ON_EXIT;
5219}
5220
5221static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5222{
5223        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5224                PIN_BASED_NMI_EXITING;
5225}
5226
5227static void enable_irq_window(struct kvm_vcpu *vcpu)
5228{
5229        u32 cpu_based_vm_exec_control;
5230
5231        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5232        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5233        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5234}
5235
5236static void enable_nmi_window(struct kvm_vcpu *vcpu)
5237{
5238        u32 cpu_based_vm_exec_control;
5239
5240        if (!cpu_has_virtual_nmis() ||
5241            vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5242                enable_irq_window(vcpu);
5243                return;
5244        }
5245
5246        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5247        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5248        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5249}
5250
5251static void vmx_inject_irq(struct kvm_vcpu *vcpu)
5252{
5253        struct vcpu_vmx *vmx = to_vmx(vcpu);
5254        uint32_t intr;
5255        int irq = vcpu->arch.interrupt.nr;
5256
5257        trace_kvm_inj_virq(irq);
5258
5259        ++vcpu->stat.irq_injections;
5260        if (vmx->rmode.vm86_active) {
5261                int inc_eip = 0;
5262                if (vcpu->arch.interrupt.soft)
5263                        inc_eip = vcpu->arch.event_exit_inst_len;
5264                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
5265                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5266                return;
5267        }
5268        intr = irq | INTR_INFO_VALID_MASK;
5269        if (vcpu->arch.interrupt.soft) {
5270                intr |= INTR_TYPE_SOFT_INTR;
5271                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5272                             vmx->vcpu.arch.event_exit_inst_len);
5273        } else
5274                intr |= INTR_TYPE_EXT_INTR;
5275        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
5276}
5277
5278static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5279{
5280        struct vcpu_vmx *vmx = to_vmx(vcpu);
5281
5282        if (is_guest_mode(vcpu))
5283                return;
5284
5285        if (!cpu_has_virtual_nmis()) {
5286                /*
5287                 * Tracking the NMI-blocked state in software is built upon
5288                 * finding the next open IRQ window. This, in turn, depends on
5289                 * well-behaving guests: They have to keep IRQs disabled at
5290                 * least as long as the NMI handler runs. Otherwise we may
5291                 * cause NMI nesting, maybe breaking the guest. But as this is
5292                 * highly unlikely, we can live with the residual risk.
5293                 */
5294                vmx->soft_vnmi_blocked = 1;
5295                vmx->vnmi_blocked_time = 0;
5296        }
5297
5298        ++vcpu->stat.nmi_injections;
5299        vmx->nmi_known_unmasked = false;
5300        if (vmx->rmode.vm86_active) {
5301                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
5302                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5303                return;
5304        }
5305        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5306                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
5307}
5308
5309static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5310{
5311        if (!cpu_has_virtual_nmis())
5312                return to_vmx(vcpu)->soft_vnmi_blocked;
5313        if (to_vmx(vcpu)->nmi_known_unmasked)
5314                return false;
5315        return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
5316}
5317
5318static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5319{
5320        struct vcpu_vmx *vmx = to_vmx(vcpu);
5321
5322        if (!cpu_has_virtual_nmis()) {
5323                if (vmx->soft_vnmi_blocked != masked) {
5324                        vmx->soft_vnmi_blocked = masked;
5325                        vmx->vnmi_blocked_time = 0;
5326                }
5327        } else {
5328                vmx->nmi_known_unmasked = !masked;
5329                if (masked)
5330                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5331                                      GUEST_INTR_STATE_NMI);
5332                else
5333                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5334                                        GUEST_INTR_STATE_NMI);
5335        }
5336}
5337
5338static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5339{
5340        if (to_vmx(vcpu)->nested.nested_run_pending)
5341                return 0;
5342
5343        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5344                return 0;
5345
5346        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5347                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5348                   | GUEST_INTR_STATE_NMI));
5349}
5350
5351static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5352{
5353        return (!to_vmx(vcpu)->nested.nested_run_pending &&
5354                vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
5355                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5356                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
5357}
5358
5359static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5360{
5361        int ret;
5362
5363        ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5364                                    PAGE_SIZE * 3);
5365        if (ret)
5366                return ret;
5367        kvm->arch.tss_addr = addr;
5368        return init_rmode_tss(kvm);
5369}
5370
5371static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
5372{
5373        switch (vec) {
5374        case BP_VECTOR:
5375                /*
5376                 * Update instruction length as we may reinject the exception
5377                 * from user space while in guest debugging mode.
5378                 */
5379                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5380                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5381                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5382                        return false;
5383                /* fall through */
5384        case DB_VECTOR:
5385                if (vcpu->guest_debug &
5386                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5387                        return false;
5388                /* fall through */
5389        case DE_VECTOR:
5390        case OF_VECTOR:
5391        case BR_VECTOR:
5392        case UD_VECTOR:
5393        case DF_VECTOR:
5394        case SS_VECTOR:
5395        case GP_VECTOR:
5396        case MF_VECTOR:
5397                return true;
5398        break;
5399        }
5400        return false;
5401}
5402
5403static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5404                                  int vec, u32 err_code)
5405{
5406        /*
5407         * Instruction with address size override prefix opcode 0x67
5408         * Cause the #SS fault with 0 error code in VM86 mode.
5409         */
5410        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5411                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5412                        if (vcpu->arch.halt_request) {
5413                                vcpu->arch.halt_request = 0;
5414                                return kvm_vcpu_halt(vcpu);
5415                        }
5416                        return 1;
5417                }
5418                return 0;
5419        }
5420
5421        /*
5422         * Forward all other exceptions that are valid in real mode.
5423         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5424         *        the required debugging infrastructure rework.
5425         */
5426        kvm_queue_exception(vcpu, vec);
5427        return 1;
5428}
5429
5430/*
5431 * Trigger machine check on the host. We assume all the MSRs are already set up
5432 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5433 * We pass a fake environment to the machine check handler because we want
5434 * the guest to be always treated like user space, no matter what context
5435 * it used internally.
5436 */
5437static void kvm_machine_check(void)
5438{
5439#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5440        struct pt_regs regs = {
5441                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5442                .flags = X86_EFLAGS_IF,
5443        };
5444
5445        do_machine_check(&regs, 0);
5446#endif
5447}
5448
5449static int handle_machine_check(struct kvm_vcpu *vcpu)
5450{
5451        /* already handled by vcpu_run */
5452        return 1;
5453}
5454
5455static int handle_exception(struct kvm_vcpu *vcpu)
5456{
5457        struct vcpu_vmx *vmx = to_vmx(vcpu);
5458        struct kvm_run *kvm_run = vcpu->run;
5459        u32 intr_info, ex_no, error_code;
5460        unsigned long cr2, rip, dr6;
5461        u32 vect_info;
5462        enum emulation_result er;
5463
5464        vect_info = vmx->idt_vectoring_info;
5465        intr_info = vmx->exit_intr_info;
5466
5467        if (is_machine_check(intr_info))
5468                return handle_machine_check(vcpu);
5469
5470        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
5471                return 1;  /* already handled by vmx_vcpu_run() */
5472
5473        if (is_no_device(intr_info)) {
5474                vmx_fpu_activate(vcpu);
5475                return 1;
5476        }
5477
5478        if (is_invalid_opcode(intr_info)) {
5479                if (is_guest_mode(vcpu)) {
5480                        kvm_queue_exception(vcpu, UD_VECTOR);
5481                        return 1;
5482                }
5483                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
5484                if (er != EMULATE_DONE)
5485                        kvm_queue_exception(vcpu, UD_VECTOR);
5486                return 1;
5487        }
5488
5489        error_code = 0;
5490        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
5491                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5492
5493        /*
5494         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5495         * MMIO, it is better to report an internal error.
5496         * See the comments in vmx_handle_exit.
5497         */
5498        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5499            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5500                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5501                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
5502                vcpu->run->internal.ndata = 3;
5503                vcpu->run->internal.data[0] = vect_info;
5504                vcpu->run->internal.data[1] = intr_info;
5505                vcpu->run->internal.data[2] = error_code;
5506                return 0;
5507        }
5508
5509        if (is_page_fault(intr_info)) {
5510                /* EPT won't cause page fault directly */
5511                BUG_ON(enable_ept);
5512                cr2 = vmcs_readl(EXIT_QUALIFICATION);
5513                trace_kvm_page_fault(cr2, error_code);
5514
5515                if (kvm_event_needs_reinjection(vcpu))
5516                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
5517                return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
5518        }
5519
5520        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
5521
5522        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5523                return handle_rmode_exception(vcpu, ex_no, error_code);
5524
5525        switch (ex_no) {
5526        case AC_VECTOR:
5527                kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5528                return 1;
5529        case DB_VECTOR:
5530                dr6 = vmcs_readl(EXIT_QUALIFICATION);
5531                if (!(vcpu->guest_debug &
5532                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
5533                        vcpu->arch.dr6 &= ~15;
5534                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5535                        if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5536                                skip_emulated_instruction(vcpu);
5537
5538                        kvm_queue_exception(vcpu, DB_VECTOR);
5539                        return 1;
5540                }
5541                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5542                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5543                /* fall through */
5544        case BP_VECTOR:
5545                /*
5546                 * Update instruction length as we may reinject #BP from
5547                 * user space while in guest debugging mode. Reading it for
5548                 * #DB as well causes no harm, it is not used in that case.
5549                 */
5550                vmx->vcpu.arch.event_exit_inst_len =
5551                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5552                kvm_run->exit_reason = KVM_EXIT_DEBUG;
5553                rip = kvm_rip_read(vcpu);
5554                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5555                kvm_run->debug.arch.exception = ex_no;
5556                break;
5557        default:
5558                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5559                kvm_run->ex.exception = ex_no;
5560                kvm_run->ex.error_code = error_code;
5561                break;
5562        }
5563        return 0;
5564}
5565
5566static int handle_external_interrupt(struct kvm_vcpu *vcpu)
5567{
5568        ++vcpu->stat.irq_exits;
5569        return 1;
5570}
5571
5572static int handle_triple_fault(struct kvm_vcpu *vcpu)
5573{
5574        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5575        return 0;
5576}
5577
5578static int handle_io(struct kvm_vcpu *vcpu)
5579{
5580        unsigned long exit_qualification;
5581        int size, in, string;
5582        unsigned port;
5583
5584        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5585        string = (exit_qualification & 16) != 0;
5586        in = (exit_qualification & 8) != 0;
5587
5588        ++vcpu->stat.io_exits;
5589
5590        if (string || in)
5591                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5592
5593        port = exit_qualification >> 16;
5594        size = (exit_qualification & 7) + 1;
5595        skip_emulated_instruction(vcpu);
5596
5597        return kvm_fast_pio_out(vcpu, size, port);
5598}
5599
5600static void
5601vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5602{
5603        /*
5604         * Patch in the VMCALL instruction:
5605         */
5606        hypercall[0] = 0x0f;
5607        hypercall[1] = 0x01;
5608        hypercall[2] = 0xc1;
5609}
5610
5611static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
5612{
5613        unsigned long always_on = VMXON_CR0_ALWAYSON;
5614        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5615
5616        if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
5617                SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5618            nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5619                always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5620        return (val & always_on) == always_on;
5621}
5622
5623/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
5624static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5625{
5626        if (is_guest_mode(vcpu)) {
5627                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5628                unsigned long orig_val = val;
5629
5630                /*
5631                 * We get here when L2 changed cr0 in a way that did not change
5632                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
5633                 * but did change L0 shadowed bits. So we first calculate the
5634                 * effective cr0 value that L1 would like to write into the
5635                 * hardware. It consists of the L2-owned bits from the new
5636                 * value combined with the L1-owned bits from L1's guest_cr0.
5637                 */
5638                val = (val & ~vmcs12->cr0_guest_host_mask) |
5639                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5640
5641                if (!nested_cr0_valid(vcpu, val))
5642                        return 1;
5643
5644                if (kvm_set_cr0(vcpu, val))
5645                        return 1;
5646                vmcs_writel(CR0_READ_SHADOW, orig_val);
5647                return 0;
5648        } else {
5649                if (to_vmx(vcpu)->nested.vmxon &&
5650                    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5651                        return 1;
5652                return kvm_set_cr0(vcpu, val);
5653        }
5654}
5655
5656static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5657{
5658        if (is_guest_mode(vcpu)) {
5659                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5660                unsigned long orig_val = val;
5661
5662                /* analogously to handle_set_cr0 */
5663                val = (val & ~vmcs12->cr4_guest_host_mask) |
5664                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5665                if (kvm_set_cr4(vcpu, val))
5666                        return 1;
5667                vmcs_writel(CR4_READ_SHADOW, orig_val);
5668                return 0;
5669        } else
5670                return kvm_set_cr4(vcpu, val);
5671}
5672
5673/* called to set cr0 as appropriate for clts instruction exit. */
5674static void handle_clts(struct kvm_vcpu *vcpu)
5675{
5676        if (is_guest_mode(vcpu)) {
5677                /*
5678                 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5679                 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5680                 * just pretend it's off (also in arch.cr0 for fpu_activate).
5681                 */
5682                vmcs_writel(CR0_READ_SHADOW,
5683                        vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5684                vcpu->arch.cr0 &= ~X86_CR0_TS;
5685        } else
5686                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5687}
5688
5689static int handle_cr(struct kvm_vcpu *vcpu)
5690{
5691        unsigned long exit_qualification, val;
5692        int cr;
5693        int reg;
5694        int err;
5695
5696        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5697        cr = exit_qualification & 15;
5698        reg = (exit_qualification >> 8) & 15;
5699        switch ((exit_qualification >> 4) & 3) {
5700        case 0: /* mov to cr */
5701                val = kvm_register_readl(vcpu, reg);
5702                trace_kvm_cr_write(cr, val);
5703                switch (cr) {
5704                case 0:
5705                        err = handle_set_cr0(vcpu, val);
5706                        kvm_complete_insn_gp(vcpu, err);
5707                        return 1;
5708                case 3:
5709                        err = kvm_set_cr3(vcpu, val);
5710                        kvm_complete_insn_gp(vcpu, err);
5711                        return 1;
5712                case 4:
5713                        err = handle_set_cr4(vcpu, val);
5714                        kvm_complete_insn_gp(vcpu, err);
5715                        return 1;
5716                case 8: {
5717                                u8 cr8_prev = kvm_get_cr8(vcpu);
5718                                u8 cr8 = (u8)val;
5719                                err = kvm_set_cr8(vcpu, cr8);
5720                                kvm_complete_insn_gp(vcpu, err);
5721                                if (lapic_in_kernel(vcpu))
5722                                        return 1;
5723                                if (cr8_prev <= cr8)
5724                                        return 1;
5725                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5726                                return 0;
5727                        }
5728                }
5729                break;
5730        case 2: /* clts */
5731                handle_clts(vcpu);
5732                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
5733                skip_emulated_instruction(vcpu);
5734                vmx_fpu_activate(vcpu);
5735                return 1;
5736        case 1: /*mov from cr*/
5737                switch (cr) {
5738                case 3:
5739                        val = kvm_read_cr3(vcpu);
5740                        kvm_register_write(vcpu, reg, val);
5741                        trace_kvm_cr_read(cr, val);
5742                        skip_emulated_instruction(vcpu);
5743                        return 1;
5744                case 8:
5745                        val = kvm_get_cr8(vcpu);
5746                        kvm_register_write(vcpu, reg, val);
5747                        trace_kvm_cr_read(cr, val);
5748                        skip_emulated_instruction(vcpu);
5749                        return 1;
5750                }
5751                break;
5752        case 3: /* lmsw */
5753                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5754                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5755                kvm_lmsw(vcpu, val);
5756
5757                skip_emulated_instruction(vcpu);
5758                return 1;
5759        default:
5760                break;
5761        }
5762        vcpu->run->exit_reason = 0;
5763        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5764               (int)(exit_qualification >> 4) & 3, cr);
5765        return 0;
5766}
5767
5768static int handle_dr(struct kvm_vcpu *vcpu)
5769{
5770        unsigned long exit_qualification;
5771        int dr, dr7, reg;
5772
5773        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5774        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5775
5776        /* First, if DR does not exist, trigger UD */
5777        if (!kvm_require_dr(vcpu, dr))
5778                return 1;
5779
5780        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
5781        if (!kvm_require_cpl(vcpu, 0))
5782                return 1;
5783        dr7 = vmcs_readl(GUEST_DR7);
5784        if (dr7 & DR7_GD) {
5785                /*
5786                 * As the vm-exit takes precedence over the debug trap, we
5787                 * need to emulate the latter, either for the host or the
5788                 * guest debugging itself.
5789                 */
5790                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5791                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
5792                        vcpu->run->debug.arch.dr7 = dr7;
5793                        vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5794                        vcpu->run->debug.arch.exception = DB_VECTOR;
5795                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5796                        return 0;
5797                } else {
5798                        vcpu->arch.dr6 &= ~15;
5799                        vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
5800                        kvm_queue_exception(vcpu, DB_VECTOR);
5801                        return 1;
5802                }
5803        }
5804
5805        if (vcpu->guest_debug == 0) {
5806                vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5807                                CPU_BASED_MOV_DR_EXITING);
5808
5809                /*
5810                 * No more DR vmexits; force a reload of the debug registers
5811                 * and reenter on this instruction.  The next vmexit will
5812                 * retrieve the full state of the debug registers.
5813                 */
5814                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5815                return 1;
5816        }
5817
5818        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5819        if (exit_qualification & TYPE_MOV_FROM_DR) {
5820                unsigned long val;
5821
5822                if (kvm_get_dr(vcpu, dr, &val))
5823                        return 1;
5824                kvm_register_write(vcpu, reg, val);
5825        } else
5826                if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
5827                        return 1;
5828
5829        skip_emulated_instruction(vcpu);
5830        return 1;
5831}
5832
5833static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5834{
5835        return vcpu->arch.dr6;
5836}
5837
5838static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5839{
5840}
5841
5842static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5843{
5844        get_debugreg(vcpu->arch.db[0], 0);
5845        get_debugreg(vcpu->arch.db[1], 1);
5846        get_debugreg(vcpu->arch.db[2], 2);
5847        get_debugreg(vcpu->arch.db[3], 3);
5848        get_debugreg(vcpu->arch.dr6, 6);
5849        vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5850
5851        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5852        vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
5853}
5854
5855static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5856{
5857        vmcs_writel(GUEST_DR7, val);
5858}
5859
5860static int handle_cpuid(struct kvm_vcpu *vcpu)
5861{
5862        kvm_emulate_cpuid(vcpu);
5863        return 1;
5864}
5865
5866static int handle_rdmsr(struct kvm_vcpu *vcpu)
5867{
5868        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5869        struct msr_data msr_info;
5870
5871        msr_info.index = ecx;
5872        msr_info.host_initiated = false;
5873        if (vmx_get_msr(vcpu, &msr_info)) {
5874                trace_kvm_msr_read_ex(ecx);
5875                kvm_inject_gp(vcpu, 0);
5876                return 1;
5877        }
5878
5879        trace_kvm_msr_read(ecx, msr_info.data);
5880
5881        /* FIXME: handling of bits 32:63 of rax, rdx */
5882        vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5883        vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
5884        skip_emulated_instruction(vcpu);
5885        return 1;
5886}
5887
5888static int handle_wrmsr(struct kvm_vcpu *vcpu)
5889{
5890        struct msr_data msr;
5891        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5892        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5893                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5894
5895        msr.data = data;
5896        msr.index = ecx;
5897        msr.host_initiated = false;
5898        if (kvm_set_msr(vcpu, &msr) != 0) {
5899                trace_kvm_msr_write_ex(ecx, data);
5900                kvm_inject_gp(vcpu, 0);
5901                return 1;
5902        }
5903
5904        trace_kvm_msr_write(ecx, data);
5905        skip_emulated_instruction(vcpu);
5906        return 1;
5907}
5908
5909static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5910{
5911        kvm_make_request(KVM_REQ_EVENT, vcpu);
5912        return 1;
5913}
5914
5915static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5916{
5917        u32 cpu_based_vm_exec_control;
5918
5919        /* clear pending irq */
5920        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5921        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5922        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5923
5924        kvm_make_request(KVM_REQ_EVENT, vcpu);
5925
5926        ++vcpu->stat.irq_window_exits;
5927        return 1;
5928}
5929
5930static int handle_halt(struct kvm_vcpu *vcpu)
5931{
5932        return kvm_emulate_halt(vcpu);
5933}
5934
5935static int handle_vmcall(struct kvm_vcpu *vcpu)
5936{
5937        return kvm_emulate_hypercall(vcpu);
5938}
5939
5940static int handle_invd(struct kvm_vcpu *vcpu)
5941{
5942        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5943}
5944
5945static int handle_invlpg(struct kvm_vcpu *vcpu)
5946{
5947        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5948
5949        kvm_mmu_invlpg(vcpu, exit_qualification);
5950        skip_emulated_instruction(vcpu);
5951        return 1;
5952}
5953
5954static int handle_rdpmc(struct kvm_vcpu *vcpu)
5955{
5956        int err;
5957
5958        err = kvm_rdpmc(vcpu);
5959        kvm_complete_insn_gp(vcpu, err);
5960
5961        return 1;
5962}
5963
5964static int handle_wbinvd(struct kvm_vcpu *vcpu)
5965{
5966        kvm_emulate_wbinvd(vcpu);
5967        return 1;
5968}
5969
5970static int handle_xsetbv(struct kvm_vcpu *vcpu)
5971{
5972        u64 new_bv = kvm_read_edx_eax(vcpu);
5973        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5974
5975        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5976                skip_emulated_instruction(vcpu);
5977        return 1;
5978}
5979
5980static int handle_xsaves(struct kvm_vcpu *vcpu)
5981{
5982        skip_emulated_instruction(vcpu);
5983        WARN(1, "this should never happen\n");
5984        return 1;
5985}
5986
5987static int handle_xrstors(struct kvm_vcpu *vcpu)
5988{
5989        skip_emulated_instruction(vcpu);
5990        WARN(1, "this should never happen\n");
5991        return 1;
5992}
5993
5994static int handle_apic_access(struct kvm_vcpu *vcpu)
5995{
5996        if (likely(fasteoi)) {
5997                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5998                int access_type, offset;
5999
6000                access_type = exit_qualification & APIC_ACCESS_TYPE;
6001                offset = exit_qualification & APIC_ACCESS_OFFSET;
6002                /*
6003                 * Sane guest uses MOV to write EOI, with written value
6004                 * not cared. So make a short-circuit here by avoiding
6005                 * heavy instruction emulation.
6006                 */
6007                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6008                    (offset == APIC_EOI)) {
6009                        kvm_lapic_set_eoi(vcpu);
6010                        skip_emulated_instruction(vcpu);
6011                        return 1;
6012                }
6013        }
6014        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6015}
6016
6017static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6018{
6019        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6020        int vector = exit_qualification & 0xff;
6021
6022        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6023        kvm_apic_set_eoi_accelerated(vcpu, vector);
6024        return 1;
6025}
6026
6027static int handle_apic_write(struct kvm_vcpu *vcpu)
6028{
6029        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6030        u32 offset = exit_qualification & 0xfff;
6031
6032        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6033        kvm_apic_write_nodecode(vcpu, offset);
6034        return 1;
6035}
6036
6037static int handle_task_switch(struct kvm_vcpu *vcpu)
6038{
6039        struct vcpu_vmx *vmx = to_vmx(vcpu);
6040        unsigned long exit_qualification;
6041        bool has_error_code = false;
6042        u32 error_code = 0;
6043        u16 tss_selector;
6044        int reason, type, idt_v, idt_index;
6045
6046        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
6047        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
6048        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
6049
6050        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6051
6052        reason = (u32)exit_qualification >> 30;
6053        if (reason == TASK_SWITCH_GATE && idt_v) {
6054                switch (type) {
6055                case INTR_TYPE_NMI_INTR:
6056                        vcpu->arch.nmi_injected = false;
6057                        vmx_set_nmi_mask(vcpu, true);
6058                        break;
6059                case INTR_TYPE_EXT_INTR:
6060                case INTR_TYPE_SOFT_INTR:
6061                        kvm_clear_interrupt_queue(vcpu);
6062                        break;
6063                case INTR_TYPE_HARD_EXCEPTION:
6064                        if (vmx->idt_vectoring_info &
6065                            VECTORING_INFO_DELIVER_CODE_MASK) {
6066                                has_error_code = true;
6067                                error_code =
6068                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
6069                        }
6070                        /* fall through */
6071                case INTR_TYPE_SOFT_EXCEPTION:
6072                        kvm_clear_exception_queue(vcpu);
6073                        break;
6074                default:
6075                        break;
6076                }
6077        }
6078        tss_selector = exit_qualification;
6079
6080        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6081                       type != INTR_TYPE_EXT_INTR &&
6082                       type != INTR_TYPE_NMI_INTR))
6083                skip_emulated_instruction(vcpu);
6084
6085        if (kvm_task_switch(vcpu, tss_selector,
6086                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
6087                            has_error_code, error_code) == EMULATE_FAIL) {
6088                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6089                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6090                vcpu->run->internal.ndata = 0;
6091                return 0;
6092        }
6093
6094        /*
6095         * TODO: What about debug traps on tss switch?
6096         *       Are we supposed to inject them and update dr6?
6097         */
6098
6099        return 1;
6100}
6101
6102static int handle_ept_violation(struct kvm_vcpu *vcpu)
6103{
6104        unsigned long exit_qualification;
6105        gpa_t gpa;
6106        u32 error_code;
6107        int gla_validity;
6108
6109        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6110
6111        gla_validity = (exit_qualification >> 7) & 0x3;
6112        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
6113                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
6114                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
6115                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
6116                        vmcs_readl(GUEST_LINEAR_ADDRESS));
6117                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
6118                        (long unsigned int)exit_qualification);
6119                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6120                vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
6121                return 0;
6122        }
6123
6124        /*
6125         * EPT violation happened while executing iret from NMI,
6126         * "blocked by NMI" bit has to be set before next VM entry.
6127         * There are errata that may cause this bit to not be set:
6128         * AAK134, BY25.
6129         */
6130        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
6131                        cpu_has_virtual_nmis() &&
6132                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
6133                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
6134
6135        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6136        trace_kvm_page_fault(gpa, exit_qualification);
6137
6138        /* it is a read fault? */
6139        error_code = (exit_qualification << 2) & PFERR_USER_MASK;
6140        /* it is a write fault? */
6141        error_code |= exit_qualification & PFERR_WRITE_MASK;
6142        /* It is a fetch fault? */
6143        error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
6144        /* ept page table is present? */
6145        error_code |= (exit_qualification & 0x38) != 0;
6146
6147        vcpu->arch.exit_qualification = exit_qualification;
6148
6149        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
6150}
6151
6152static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
6153{
6154        int ret;
6155        gpa_t gpa;
6156
6157        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
6158        if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
6159                skip_emulated_instruction(vcpu);
6160                trace_kvm_fast_mmio(gpa);
6161                return 1;
6162        }
6163
6164        ret = handle_mmio_page_fault(vcpu, gpa, true);
6165        if (likely(ret == RET_MMIO_PF_EMULATE))
6166                return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6167                                              EMULATE_DONE;
6168
6169        if (unlikely(ret == RET_MMIO_PF_INVALID))
6170                return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6171
6172        if (unlikely(ret == RET_MMIO_PF_RETRY))
6173                return 1;
6174
6175        /* It is the real ept misconfig */
6176        WARN_ON(1);
6177
6178        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6179        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
6180
6181        return 0;
6182}
6183
6184static int handle_nmi_window(struct kvm_vcpu *vcpu)
6185{
6186        u32 cpu_based_vm_exec_control;
6187
6188        /* clear pending NMI */
6189        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6190        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6191        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6192        ++vcpu->stat.nmi_window_exits;
6193        kvm_make_request(KVM_REQ_EVENT, vcpu);
6194
6195        return 1;
6196}
6197
6198static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
6199{
6200        struct vcpu_vmx *vmx = to_vmx(vcpu);
6201        enum emulation_result err = EMULATE_DONE;
6202        int ret = 1;
6203        u32 cpu_exec_ctrl;
6204        bool intr_window_requested;
6205        unsigned count = 130;
6206
6207        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6208        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
6209
6210        while (vmx->emulation_required && count-- != 0) {
6211                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
6212                        return handle_interrupt_window(&vmx->vcpu);
6213
6214                if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6215                        return 1;
6216
6217                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
6218
6219                if (err == EMULATE_USER_EXIT) {
6220                        ++vcpu->stat.mmio_exits;
6221                        ret = 0;
6222                        goto out;
6223                }
6224
6225                if (err != EMULATE_DONE) {
6226                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6227                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6228                        vcpu->run->internal.ndata = 0;
6229                        return 0;
6230                }
6231
6232                if (vcpu->arch.halt_request) {
6233                        vcpu->arch.halt_request = 0;
6234                        ret = kvm_vcpu_halt(vcpu);
6235                        goto out;
6236                }
6237
6238                if (signal_pending(current))
6239                        goto out;
6240                if (need_resched())
6241                        schedule();
6242        }
6243
6244out:
6245        return ret;
6246}
6247
6248static int __grow_ple_window(int val)
6249{
6250        if (ple_window_grow < 1)
6251                return ple_window;
6252
6253        val = min(val, ple_window_actual_max);
6254
6255        if (ple_window_grow < ple_window)
6256                val *= ple_window_grow;
6257        else
6258                val += ple_window_grow;
6259
6260        return val;
6261}
6262
6263static int __shrink_ple_window(int val, int modifier, int minimum)
6264{
6265        if (modifier < 1)
6266                return ple_window;
6267
6268        if (modifier < ple_window)
6269                val /= modifier;
6270        else
6271                val -= modifier;
6272
6273        return max(val, minimum);
6274}
6275
6276static void grow_ple_window(struct kvm_vcpu *vcpu)
6277{
6278        struct vcpu_vmx *vmx = to_vmx(vcpu);
6279        int old = vmx->ple_window;
6280
6281        vmx->ple_window = __grow_ple_window(old);
6282
6283        if (vmx->ple_window != old)
6284                vmx->ple_window_dirty = true;
6285
6286        trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
6287}
6288
6289static void shrink_ple_window(struct kvm_vcpu *vcpu)
6290{
6291        struct vcpu_vmx *vmx = to_vmx(vcpu);
6292        int old = vmx->ple_window;
6293
6294        vmx->ple_window = __shrink_ple_window(old,
6295                                              ple_window_shrink, ple_window);
6296
6297        if (vmx->ple_window != old)
6298                vmx->ple_window_dirty = true;
6299
6300        trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
6301}
6302
6303/*
6304 * ple_window_actual_max is computed to be one grow_ple_window() below
6305 * ple_window_max. (See __grow_ple_window for the reason.)
6306 * This prevents overflows, because ple_window_max is int.
6307 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6308 * this process.
6309 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6310 */
6311static void update_ple_window_actual_max(void)
6312{
6313        ple_window_actual_max =
6314                        __shrink_ple_window(max(ple_window_max, ple_window),
6315                                            ple_window_grow, INT_MIN);
6316}
6317
6318/*
6319 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6320 */
6321static void wakeup_handler(void)
6322{
6323        struct kvm_vcpu *vcpu;
6324        int cpu = smp_processor_id();
6325
6326        spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6327        list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6328                        blocked_vcpu_list) {
6329                struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6330
6331                if (pi_test_on(pi_desc) == 1)
6332                        kvm_vcpu_kick(vcpu);
6333        }
6334        spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6335}
6336
6337static __init int hardware_setup(void)
6338{
6339        int r = -ENOMEM, i, msr;
6340
6341        rdmsrl_safe(MSR_EFER, &host_efer);
6342
6343        for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6344                kvm_define_shared_msr(i, vmx_msr_index[i]);
6345
6346        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6347        if (!vmx_io_bitmap_a)
6348                return r;
6349
6350        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6351        if (!vmx_io_bitmap_b)
6352                goto out;
6353
6354        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6355        if (!vmx_msr_bitmap_legacy)
6356                goto out1;
6357
6358        vmx_msr_bitmap_legacy_x2apic =
6359                                (unsigned long *)__get_free_page(GFP_KERNEL);
6360        if (!vmx_msr_bitmap_legacy_x2apic)
6361                goto out2;
6362
6363        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6364        if (!vmx_msr_bitmap_longmode)
6365                goto out3;
6366
6367        vmx_msr_bitmap_longmode_x2apic =
6368                                (unsigned long *)__get_free_page(GFP_KERNEL);
6369        if (!vmx_msr_bitmap_longmode_x2apic)
6370                goto out4;
6371
6372        vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6373        if (!vmx_vmread_bitmap)
6374                goto out6;
6375
6376        vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6377        if (!vmx_vmwrite_bitmap)
6378                goto out7;
6379
6380        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6381        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6382
6383        /*
6384         * Allow direct access to the PC debug port (it is often used for I/O
6385         * delays, but the vmexits simply slow things down).
6386         */
6387        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6388        clear_bit(0x80, vmx_io_bitmap_a);
6389
6390        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6391
6392        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6393        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
6394
6395        if (setup_vmcs_config(&vmcs_config) < 0) {
6396                r = -EIO;
6397                goto out8;
6398        }
6399
6400        if (boot_cpu_has(X86_FEATURE_NX))
6401                kvm_enable_efer_bits(EFER_NX);
6402
6403        if (!cpu_has_vmx_vpid())
6404                enable_vpid = 0;
6405        if (!cpu_has_vmx_shadow_vmcs())
6406                enable_shadow_vmcs = 0;
6407        if (enable_shadow_vmcs)
6408                init_vmcs_shadow_fields();
6409
6410        if (!cpu_has_vmx_ept() ||
6411            !cpu_has_vmx_ept_4levels()) {
6412                enable_ept = 0;
6413                enable_unrestricted_guest = 0;
6414                enable_ept_ad_bits = 0;
6415        }
6416
6417        if (!cpu_has_vmx_ept_ad_bits())
6418                enable_ept_ad_bits = 0;
6419
6420        if (!cpu_has_vmx_unrestricted_guest())
6421                enable_unrestricted_guest = 0;
6422
6423        if (!cpu_has_vmx_flexpriority())
6424                flexpriority_enabled = 0;
6425
6426        /*
6427         * set_apic_access_page_addr() is used to reload apic access
6428         * page upon invalidation.  No need to do anything if not
6429         * using the APIC_ACCESS_ADDR VMCS field.
6430         */
6431        if (!flexpriority_enabled)
6432                kvm_x86_ops->set_apic_access_page_addr = NULL;
6433
6434        if (!cpu_has_vmx_tpr_shadow())
6435                kvm_x86_ops->update_cr8_intercept = NULL;
6436
6437        if (enable_ept && !cpu_has_vmx_ept_2m_page())
6438                kvm_disable_largepages();
6439
6440        if (!cpu_has_vmx_ple())
6441                ple_gap = 0;
6442
6443        if (!cpu_has_vmx_apicv())
6444                enable_apicv = 0;
6445
6446        if (cpu_has_vmx_tsc_scaling()) {
6447                kvm_has_tsc_control = true;
6448                kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6449                kvm_tsc_scaling_ratio_frac_bits = 48;
6450        }
6451
6452        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6453        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6454        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6455        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6456        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6457        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6458        vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6459
6460        memcpy(vmx_msr_bitmap_legacy_x2apic,
6461                        vmx_msr_bitmap_legacy, PAGE_SIZE);
6462        memcpy(vmx_msr_bitmap_longmode_x2apic,
6463                        vmx_msr_bitmap_longmode, PAGE_SIZE);
6464
6465        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6466
6467        for (msr = 0x800; msr <= 0x8ff; msr++)
6468                vmx_disable_intercept_msr_read_x2apic(msr);
6469
6470        /* TMCCT */
6471        vmx_enable_intercept_msr_read_x2apic(0x839);
6472        /* TPR */
6473        vmx_disable_intercept_msr_write_x2apic(0x808);
6474        /* EOI */
6475        vmx_disable_intercept_msr_write_x2apic(0x80b);
6476        /* SELF-IPI */
6477        vmx_disable_intercept_msr_write_x2apic(0x83f);
6478
6479        if (enable_ept) {
6480                kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
6481                        (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6482                        (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6483                        0ull, VMX_EPT_EXECUTABLE_MASK,
6484                        cpu_has_vmx_ept_execute_only() ?
6485                                      0ull : VMX_EPT_READABLE_MASK);
6486                ept_set_mmio_spte_mask();
6487                kvm_enable_tdp();
6488        } else
6489                kvm_disable_tdp();
6490
6491        update_ple_window_actual_max();
6492
6493        /*
6494         * Only enable PML when hardware supports PML feature, and both EPT
6495         * and EPT A/D bit features are enabled -- PML depends on them to work.
6496         */
6497        if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6498                enable_pml = 0;
6499
6500        if (!enable_pml) {
6501                kvm_x86_ops->slot_enable_log_dirty = NULL;
6502                kvm_x86_ops->slot_disable_log_dirty = NULL;
6503                kvm_x86_ops->flush_log_dirty = NULL;
6504                kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6505        }
6506
6507        if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
6508                u64 vmx_msr;
6509
6510                rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
6511                cpu_preemption_timer_multi =
6512                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
6513        } else {
6514                kvm_x86_ops->set_hv_timer = NULL;
6515                kvm_x86_ops->cancel_hv_timer = NULL;
6516        }
6517
6518        kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6519
6520        kvm_mce_cap_supported |= MCG_LMCE_P;
6521
6522        return alloc_kvm_area();
6523
6524out8:
6525        free_page((unsigned long)vmx_vmwrite_bitmap);
6526out7:
6527        free_page((unsigned long)vmx_vmread_bitmap);
6528out6:
6529        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6530out4:
6531        free_page((unsigned long)vmx_msr_bitmap_longmode);
6532out3:
6533        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6534out2:
6535        free_page((unsigned long)vmx_msr_bitmap_legacy);
6536out1:
6537        free_page((unsigned long)vmx_io_bitmap_b);
6538out:
6539        free_page((unsigned long)vmx_io_bitmap_a);
6540
6541    return r;
6542}
6543
6544static __exit void hardware_unsetup(void)
6545{
6546        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6547        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6548        free_page((unsigned long)vmx_msr_bitmap_legacy);
6549        free_page((unsigned long)vmx_msr_bitmap_longmode);
6550        free_page((unsigned long)vmx_io_bitmap_b);
6551        free_page((unsigned long)vmx_io_bitmap_a);
6552        free_page((unsigned long)vmx_vmwrite_bitmap);
6553        free_page((unsigned long)vmx_vmread_bitmap);
6554
6555        free_kvm_area();
6556}
6557
6558/*
6559 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6560 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6561 */
6562static int handle_pause(struct kvm_vcpu *vcpu)
6563{
6564        if (ple_gap)
6565                grow_ple_window(vcpu);
6566
6567        skip_emulated_instruction(vcpu);
6568        kvm_vcpu_on_spin(vcpu);
6569
6570        return 1;
6571}
6572
6573static int handle_nop(struct kvm_vcpu *vcpu)
6574{
6575        skip_emulated_instruction(vcpu);
6576        return 1;
6577}
6578
6579static int handle_mwait(struct kvm_vcpu *vcpu)
6580{
6581        printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6582        return handle_nop(vcpu);
6583}
6584
6585static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6586{
6587        return 1;
6588}
6589
6590static int handle_monitor(struct kvm_vcpu *vcpu)
6591{
6592        printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6593        return handle_nop(vcpu);
6594}
6595
6596/*
6597 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6598 * We could reuse a single VMCS for all the L2 guests, but we also want the
6599 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6600 * allows keeping them loaded on the processor, and in the future will allow
6601 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6602 * every entry if they never change.
6603 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6604 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6605 *
6606 * The following functions allocate and free a vmcs02 in this pool.
6607 */
6608
6609/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6610static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6611{
6612        struct vmcs02_list *item;
6613        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6614                if (item->vmptr == vmx->nested.current_vmptr) {
6615                        list_move(&item->list, &vmx->nested.vmcs02_pool);
6616                        return &item->vmcs02;
6617                }
6618
6619        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6620                /* Recycle the least recently used VMCS. */
6621                item = list_last_entry(&vmx->nested.vmcs02_pool,
6622                                       struct vmcs02_list, list);
6623                item->vmptr = vmx->nested.current_vmptr;
6624                list_move(&item->list, &vmx->nested.vmcs02_pool);
6625                return &item->vmcs02;
6626        }
6627
6628        /* Create a new VMCS */
6629        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
6630        if (!item)
6631                return NULL;
6632        item->vmcs02.vmcs = alloc_vmcs();
6633        if (!item->vmcs02.vmcs) {
6634                kfree(item);
6635                return NULL;
6636        }
6637        loaded_vmcs_init(&item->vmcs02);
6638        item->vmptr = vmx->nested.current_vmptr;
6639        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6640        vmx->nested.vmcs02_num++;
6641        return &item->vmcs02;
6642}
6643
6644/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6645static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6646{
6647        struct vmcs02_list *item;
6648        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6649                if (item->vmptr == vmptr) {
6650                        free_loaded_vmcs(&item->vmcs02);
6651                        list_del(&item->list);
6652                        kfree(item);
6653                        vmx->nested.vmcs02_num--;
6654                        return;
6655                }
6656}
6657
6658/*
6659 * Free all VMCSs saved for this vcpu, except the one pointed by
6660 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6661 * must be &vmx->vmcs01.
6662 */
6663static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6664{
6665        struct vmcs02_list *item, *n;
6666
6667        WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
6668        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
6669                /*
6670                 * Something will leak if the above WARN triggers.  Better than
6671                 * a use-after-free.
6672                 */
6673                if (vmx->loaded_vmcs == &item->vmcs02)
6674                        continue;
6675
6676                free_loaded_vmcs(&item->vmcs02);
6677                list_del(&item->list);
6678                kfree(item);
6679                vmx->nested.vmcs02_num--;
6680        }
6681}
6682
6683/*
6684 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6685 * set the success or error code of an emulated VMX instruction, as specified
6686 * by Vol 2B, VMX Instruction Reference, "Conventions".
6687 */
6688static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6689{
6690        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6691                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6692                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6693}
6694
6695static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6696{
6697        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6698                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6699                            X86_EFLAGS_SF | X86_EFLAGS_OF))
6700                        | X86_EFLAGS_CF);
6701}
6702
6703static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
6704                                        u32 vm_instruction_error)
6705{
6706        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6707                /*
6708                 * failValid writes the error number to the current VMCS, which
6709                 * can't be done there isn't a current VMCS.
6710                 */
6711                nested_vmx_failInvalid(vcpu);
6712                return;
6713        }
6714        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6715                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6716                            X86_EFLAGS_SF | X86_EFLAGS_OF))
6717                        | X86_EFLAGS_ZF);
6718        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6719        /*
6720         * We don't need to force a shadow sync because
6721         * VM_INSTRUCTION_ERROR is not shadowed
6722         */
6723}
6724
6725static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6726{
6727        /* TODO: not to reset guest simply here. */
6728        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6729        pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6730}
6731
6732static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6733{
6734        struct vcpu_vmx *vmx =
6735                container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6736
6737        vmx->nested.preemption_timer_expired = true;
6738        kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6739        kvm_vcpu_kick(&vmx->vcpu);
6740
6741        return HRTIMER_NORESTART;
6742}
6743
6744/*
6745 * Decode the memory-address operand of a vmx instruction, as recorded on an
6746 * exit caused by such an instruction (run by a guest hypervisor).
6747 * On success, returns 0. When the operand is invalid, returns 1 and throws
6748 * #UD or #GP.
6749 */
6750static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6751                                 unsigned long exit_qualification,
6752                                 u32 vmx_instruction_info, bool wr, gva_t *ret)
6753{
6754        gva_t off;
6755        bool exn;
6756        struct kvm_segment s;
6757
6758        /*
6759         * According to Vol. 3B, "Information for VM Exits Due to Instruction
6760         * Execution", on an exit, vmx_instruction_info holds most of the
6761         * addressing components of the operand. Only the displacement part
6762         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6763         * For how an actual address is calculated from all these components,
6764         * refer to Vol. 1, "Operand Addressing".
6765         */
6766        int  scaling = vmx_instruction_info & 3;
6767        int  addr_size = (vmx_instruction_info >> 7) & 7;
6768        bool is_reg = vmx_instruction_info & (1u << 10);
6769        int  seg_reg = (vmx_instruction_info >> 15) & 7;
6770        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
6771        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6772        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
6773        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
6774
6775        if (is_reg) {
6776                kvm_queue_exception(vcpu, UD_VECTOR);
6777                return 1;
6778        }
6779
6780        /* Addr = segment_base + offset */
6781        /* offset = base + [index * scale] + displacement */
6782        off = exit_qualification; /* holds the displacement */
6783        if (base_is_valid)
6784                off += kvm_register_read(vcpu, base_reg);
6785        if (index_is_valid)
6786                off += kvm_register_read(vcpu, index_reg)<<scaling;
6787        vmx_get_segment(vcpu, &s, seg_reg);
6788        *ret = s.base + off;
6789
6790        if (addr_size == 1) /* 32 bit */
6791                *ret &= 0xffffffff;
6792
6793        /* Checks for #GP/#SS exceptions. */
6794        exn = false;
6795        if (is_long_mode(vcpu)) {
6796                /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6797                 * non-canonical form. This is the only check on the memory
6798                 * destination for long mode!
6799                 */
6800                exn = is_noncanonical_address(*ret);
6801        } else if (is_protmode(vcpu)) {
6802                /* Protected mode: apply checks for segment validity in the
6803                 * following order:
6804                 * - segment type check (#GP(0) may be thrown)
6805                 * - usability check (#GP(0)/#SS(0))
6806                 * - limit check (#GP(0)/#SS(0))
6807                 */
6808                if (wr)
6809                        /* #GP(0) if the destination operand is located in a
6810                         * read-only data segment or any code segment.
6811                         */
6812                        exn = ((s.type & 0xa) == 0 || (s.type & 8));
6813                else
6814                        /* #GP(0) if the source operand is located in an
6815                         * execute-only code segment
6816                         */
6817                        exn = ((s.type & 0xa) == 8);
6818                if (exn) {
6819                        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6820                        return 1;
6821                }
6822                /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6823                 */
6824                exn = (s.unusable != 0);
6825                /* Protected mode: #GP(0)/#SS(0) if the memory
6826                 * operand is outside the segment limit.
6827                 */
6828                exn = exn || (off + sizeof(u64) > s.limit);
6829        }
6830        if (exn) {
6831                kvm_queue_exception_e(vcpu,
6832                                      seg_reg == VCPU_SREG_SS ?
6833                                                SS_VECTOR : GP_VECTOR,
6834                                      0);
6835                return 1;
6836        }
6837
6838        return 0;
6839}
6840
6841/*
6842 * This function performs the various checks including
6843 * - if it's 4KB aligned
6844 * - No bits beyond the physical address width are set
6845 * - Returns 0 on success or else 1
6846 * (Intel SDM Section 30.3)
6847 */
6848static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6849                                  gpa_t *vmpointer)
6850{
6851        gva_t gva;
6852        gpa_t vmptr;
6853        struct x86_exception e;
6854        struct page *page;
6855        struct vcpu_vmx *vmx = to_vmx(vcpu);
6856        int maxphyaddr = cpuid_maxphyaddr(vcpu);
6857
6858        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6859                        vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
6860                return 1;
6861
6862        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6863                                sizeof(vmptr), &e)) {
6864                kvm_inject_page_fault(vcpu, &e);
6865                return 1;
6866        }
6867
6868        switch (exit_reason) {
6869        case EXIT_REASON_VMON:
6870                /*
6871                 * SDM 3: 24.11.5
6872                 * The first 4 bytes of VMXON region contain the supported
6873                 * VMCS revision identifier
6874                 *
6875                 * Note - IA32_VMX_BASIC[48] will never be 1
6876                 * for the nested case;
6877                 * which replaces physical address width with 32
6878                 *
6879                 */
6880                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6881                        nested_vmx_failInvalid(vcpu);
6882                        skip_emulated_instruction(vcpu);
6883                        return 1;
6884                }
6885
6886                page = nested_get_page(vcpu, vmptr);
6887                if (page == NULL ||
6888                    *(u32 *)kmap(page) != VMCS12_REVISION) {
6889                        nested_vmx_failInvalid(vcpu);
6890                        kunmap(page);
6891                        skip_emulated_instruction(vcpu);
6892                        return 1;
6893                }
6894                kunmap(page);
6895                vmx->nested.vmxon_ptr = vmptr;
6896                break;
6897        case EXIT_REASON_VMCLEAR:
6898                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6899                        nested_vmx_failValid(vcpu,
6900                                             VMXERR_VMCLEAR_INVALID_ADDRESS);
6901                        skip_emulated_instruction(vcpu);
6902                        return 1;
6903                }
6904
6905                if (vmptr == vmx->nested.vmxon_ptr) {
6906                        nested_vmx_failValid(vcpu,
6907                                             VMXERR_VMCLEAR_VMXON_POINTER);
6908                        skip_emulated_instruction(vcpu);
6909                        return 1;
6910                }
6911                break;
6912        case EXIT_REASON_VMPTRLD:
6913                if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
6914                        nested_vmx_failValid(vcpu,
6915                                             VMXERR_VMPTRLD_INVALID_ADDRESS);
6916                        skip_emulated_instruction(vcpu);
6917                        return 1;
6918                }
6919
6920                if (vmptr == vmx->nested.vmxon_ptr) {
6921                        nested_vmx_failValid(vcpu,
6922                                             VMXERR_VMCLEAR_VMXON_POINTER);
6923                        skip_emulated_instruction(vcpu);
6924                        return 1;
6925                }
6926                break;
6927        default:
6928                return 1; /* shouldn't happen */
6929        }
6930
6931        if (vmpointer)
6932                *vmpointer = vmptr;
6933        return 0;
6934}
6935
6936/*
6937 * Emulate the VMXON instruction.
6938 * Currently, we just remember that VMX is active, and do not save or even
6939 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6940 * do not currently need to store anything in that guest-allocated memory
6941 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6942 * argument is different from the VMXON pointer (which the spec says they do).
6943 */
6944static int handle_vmon(struct kvm_vcpu *vcpu)
6945{
6946        struct kvm_segment cs;
6947        struct vcpu_vmx *vmx = to_vmx(vcpu);
6948        struct vmcs *shadow_vmcs;
6949        const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6950                | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
6951
6952        /* The Intel VMX Instruction Reference lists a bunch of bits that
6953         * are prerequisite to running VMXON, most notably cr4.VMXE must be
6954         * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6955         * Otherwise, we should fail with #UD. We test these now:
6956         */
6957        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6958            !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6959            (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6960                kvm_queue_exception(vcpu, UD_VECTOR);
6961                return 1;
6962        }
6963
6964        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6965        if (is_long_mode(vcpu) && !cs.l) {
6966                kvm_queue_exception(vcpu, UD_VECTOR);
6967                return 1;
6968        }
6969
6970        if (vmx_get_cpl(vcpu)) {
6971                kvm_inject_gp(vcpu, 0);
6972                return 1;
6973        }
6974
6975        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
6976                return 1;
6977
6978        if (vmx->nested.vmxon) {
6979                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6980                skip_emulated_instruction(vcpu);
6981                return 1;
6982        }
6983
6984        if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6985                        != VMXON_NEEDED_FEATURES) {
6986                kvm_inject_gp(vcpu, 0);
6987                return 1;
6988        }
6989
6990        if (cpu_has_vmx_msr_bitmap()) {
6991                vmx->nested.msr_bitmap =
6992                                (unsigned long *)__get_free_page(GFP_KERNEL);
6993                if (!vmx->nested.msr_bitmap)
6994                        goto out_msr_bitmap;
6995        }
6996
6997        vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
6998        if (!vmx->nested.cached_vmcs12)
6999                goto out_cached_vmcs12;
7000
7001        if (enable_shadow_vmcs) {
7002                shadow_vmcs = alloc_vmcs();
7003                if (!shadow_vmcs)
7004                        goto out_shadow_vmcs;
7005                /* mark vmcs as shadow */
7006                shadow_vmcs->revision_id |= (1u << 31);
7007                /* init shadow vmcs */
7008                vmcs_clear(shadow_vmcs);
7009                vmx->nested.current_shadow_vmcs = shadow_vmcs;
7010        }
7011
7012        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
7013        vmx->nested.vmcs02_num = 0;
7014
7015        hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7016                     HRTIMER_MODE_REL);
7017        vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7018
7019        vmx->nested.vmxon = true;
7020
7021        skip_emulated_instruction(vcpu);
7022        nested_vmx_succeed(vcpu);
7023        return 1;
7024
7025out_shadow_vmcs:
7026        kfree(vmx->nested.cached_vmcs12);
7027
7028out_cached_vmcs12:
7029        free_page((unsigned long)vmx->nested.msr_bitmap);
7030
7031out_msr_bitmap:
7032        return -ENOMEM;
7033}
7034
7035/*
7036 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7037 * for running VMX instructions (except VMXON, whose prerequisites are
7038 * slightly different). It also specifies what exception to inject otherwise.
7039 */
7040static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7041{
7042        struct kvm_segment cs;
7043        struct vcpu_vmx *vmx = to_vmx(vcpu);
7044
7045        if (!vmx->nested.vmxon) {
7046                kvm_queue_exception(vcpu, UD_VECTOR);
7047                return 0;
7048        }
7049
7050        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
7051        if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
7052            (is_long_mode(vcpu) && !cs.l)) {
7053                kvm_queue_exception(vcpu, UD_VECTOR);
7054                return 0;
7055        }
7056
7057        if (vmx_get_cpl(vcpu)) {
7058                kvm_inject_gp(vcpu, 0);
7059                return 0;
7060        }
7061
7062        return 1;
7063}
7064
7065static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7066{
7067        if (vmx->nested.current_vmptr == -1ull)
7068                return;
7069
7070        /* current_vmptr and current_vmcs12 are always set/reset together */
7071        if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
7072                return;
7073
7074        if (enable_shadow_vmcs) {
7075                /* copy to memory all shadowed fields in case
7076                   they were modified */
7077                copy_shadow_to_vmcs12(vmx);
7078                vmx->nested.sync_shadow_vmcs = false;
7079                vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
7080                                SECONDARY_EXEC_SHADOW_VMCS);
7081                vmcs_write64(VMCS_LINK_POINTER, -1ull);
7082        }
7083        vmx->nested.posted_intr_nv = -1;
7084
7085        /* Flush VMCS12 to guest memory */
7086        memcpy(vmx->nested.current_vmcs12, vmx->nested.cached_vmcs12,
7087               VMCS12_SIZE);
7088
7089        kunmap(vmx->nested.current_vmcs12_page);
7090        nested_release_page(vmx->nested.current_vmcs12_page);
7091        vmx->nested.current_vmptr = -1ull;
7092        vmx->nested.current_vmcs12 = NULL;
7093}
7094
7095/*
7096 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7097 * just stops using VMX.
7098 */
7099static void free_nested(struct vcpu_vmx *vmx)
7100{
7101        if (!vmx->nested.vmxon)
7102                return;
7103
7104        vmx->nested.vmxon = false;
7105        free_vpid(vmx->nested.vpid02);
7106        nested_release_vmcs12(vmx);
7107        if (vmx->nested.msr_bitmap) {
7108                free_page((unsigned long)vmx->nested.msr_bitmap);
7109                vmx->nested.msr_bitmap = NULL;
7110        }
7111        if (enable_shadow_vmcs)
7112                free_vmcs(vmx->nested.current_shadow_vmcs);
7113        kfree(vmx->nested.cached_vmcs12);
7114        /* Unpin physical memory we referred to in current vmcs02 */
7115        if (vmx->nested.apic_access_page) {
7116                nested_release_page(vmx->nested.apic_access_page);
7117                vmx->nested.apic_access_page = NULL;
7118        }
7119        if (vmx->nested.virtual_apic_page) {
7120                nested_release_page(vmx->nested.virtual_apic_page);
7121                vmx->nested.virtual_apic_page = NULL;
7122        }
7123        if (vmx->nested.pi_desc_page) {
7124                kunmap(vmx->nested.pi_desc_page);
7125                nested_release_page(vmx->nested.pi_desc_page);
7126                vmx->nested.pi_desc_page = NULL;
7127                vmx->nested.pi_desc = NULL;
7128        }
7129
7130        nested_free_all_saved_vmcss(vmx);
7131}
7132
7133/* Emulate the VMXOFF instruction */
7134static int handle_vmoff(struct kvm_vcpu *vcpu)
7135{
7136        if (!nested_vmx_check_permission(vcpu))
7137                return 1;
7138        free_nested(to_vmx(vcpu));
7139        skip_emulated_instruction(vcpu);
7140        nested_vmx_succeed(vcpu);
7141        return 1;
7142}
7143
7144/* Emulate the VMCLEAR instruction */
7145static int handle_vmclear(struct kvm_vcpu *vcpu)
7146{
7147        struct vcpu_vmx *vmx = to_vmx(vcpu);
7148        gpa_t vmptr;
7149        struct vmcs12 *vmcs12;
7150        struct page *page;
7151
7152        if (!nested_vmx_check_permission(vcpu))
7153                return 1;
7154
7155        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
7156                return 1;
7157
7158        if (vmptr == vmx->nested.current_vmptr)
7159                nested_release_vmcs12(vmx);
7160
7161        page = nested_get_page(vcpu, vmptr);
7162        if (page == NULL) {
7163                /*
7164                 * For accurate processor emulation, VMCLEAR beyond available
7165                 * physical memory should do nothing at all. However, it is
7166                 * possible that a nested vmx bug, not a guest hypervisor bug,
7167                 * resulted in this case, so let's shut down before doing any
7168                 * more damage:
7169                 */
7170                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7171                return 1;
7172        }
7173        vmcs12 = kmap(page);
7174        vmcs12->launch_state = 0;
7175        kunmap(page);
7176        nested_release_page(page);
7177
7178        nested_free_vmcs02(vmx, vmptr);
7179
7180        skip_emulated_instruction(vcpu);
7181        nested_vmx_succeed(vcpu);
7182        return 1;
7183}
7184
7185static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7186
7187/* Emulate the VMLAUNCH instruction */
7188static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7189{
7190        return nested_vmx_run(vcpu, true);
7191}
7192
7193/* Emulate the VMRESUME instruction */
7194static int handle_vmresume(struct kvm_vcpu *vcpu)
7195{
7196
7197        return nested_vmx_run(vcpu, false);
7198}
7199
7200enum vmcs_field_type {
7201        VMCS_FIELD_TYPE_U16 = 0,
7202        VMCS_FIELD_TYPE_U64 = 1,
7203        VMCS_FIELD_TYPE_U32 = 2,
7204        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7205};
7206
7207static inline int vmcs_field_type(unsigned long field)
7208{
7209        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
7210                return VMCS_FIELD_TYPE_U32;
7211        return (field >> 13) & 0x3 ;
7212}
7213
7214static inline int vmcs_field_readonly(unsigned long field)
7215{
7216        return (((field >> 10) & 0x3) == 1);
7217}
7218
7219/*
7220 * Read a vmcs12 field. Since these can have varying lengths and we return
7221 * one type, we chose the biggest type (u64) and zero-extend the return value
7222 * to that size. Note that the caller, handle_vmread, might need to use only
7223 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7224 * 64-bit fields are to be returned).
7225 */
7226static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7227                                  unsigned long field, u64 *ret)
7228{
7229        short offset = vmcs_field_to_offset(field);
7230        char *p;
7231
7232        if (offset < 0)
7233                return offset;
7234
7235        p = ((char *)(get_vmcs12(vcpu))) + offset;
7236
7237        switch (vmcs_field_type(field)) {
7238        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7239                *ret = *((natural_width *)p);
7240                return 0;
7241        case VMCS_FIELD_TYPE_U16:
7242                *ret = *((u16 *)p);
7243                return 0;
7244        case VMCS_FIELD_TYPE_U32:
7245                *ret = *((u32 *)p);
7246                return 0;
7247        case VMCS_FIELD_TYPE_U64:
7248                *ret = *((u64 *)p);
7249                return 0;
7250        default:
7251                WARN_ON(1);
7252                return -ENOENT;
7253        }
7254}
7255
7256
7257static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7258                                   unsigned long field, u64 field_value){
7259        short offset = vmcs_field_to_offset(field);
7260        char *p = ((char *) get_vmcs12(vcpu)) + offset;
7261        if (offset < 0)
7262                return offset;
7263
7264        switch (vmcs_field_type(field)) {
7265        case VMCS_FIELD_TYPE_U16:
7266                *(u16 *)p = field_value;
7267                return 0;
7268        case VMCS_FIELD_TYPE_U32:
7269                *(u32 *)p = field_value;
7270                return 0;
7271        case VMCS_FIELD_TYPE_U64:
7272                *(u64 *)p = field_value;
7273                return 0;
7274        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7275                *(natural_width *)p = field_value;
7276                return 0;
7277        default:
7278                WARN_ON(1);
7279                return -ENOENT;
7280        }
7281
7282}
7283
7284static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7285{
7286        int i;
7287        unsigned long field;
7288        u64 field_value;
7289        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7290        const unsigned long *fields = shadow_read_write_fields;
7291        const int num_fields = max_shadow_read_write_fields;
7292
7293        preempt_disable();
7294
7295        vmcs_load(shadow_vmcs);
7296
7297        for (i = 0; i < num_fields; i++) {
7298                field = fields[i];
7299                switch (vmcs_field_type(field)) {
7300                case VMCS_FIELD_TYPE_U16:
7301                        field_value = vmcs_read16(field);
7302                        break;
7303                case VMCS_FIELD_TYPE_U32:
7304                        field_value = vmcs_read32(field);
7305                        break;
7306                case VMCS_FIELD_TYPE_U64:
7307                        field_value = vmcs_read64(field);
7308                        break;
7309                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7310                        field_value = vmcs_readl(field);
7311                        break;
7312                default:
7313                        WARN_ON(1);
7314                        continue;
7315                }
7316                vmcs12_write_any(&vmx->vcpu, field, field_value);
7317        }
7318
7319        vmcs_clear(shadow_vmcs);
7320        vmcs_load(vmx->loaded_vmcs->vmcs);
7321
7322        preempt_enable();
7323}
7324
7325static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7326{
7327        const unsigned long *fields[] = {
7328                shadow_read_write_fields,
7329                shadow_read_only_fields
7330        };
7331        const int max_fields[] = {
7332                max_shadow_read_write_fields,
7333                max_shadow_read_only_fields
7334        };
7335        int i, q;
7336        unsigned long field;
7337        u64 field_value = 0;
7338        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7339
7340        vmcs_load(shadow_vmcs);
7341
7342        for (q = 0; q < ARRAY_SIZE(fields); q++) {
7343                for (i = 0; i < max_fields[q]; i++) {
7344                        field = fields[q][i];
7345                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
7346
7347                        switch (vmcs_field_type(field)) {
7348                        case VMCS_FIELD_TYPE_U16:
7349                                vmcs_write16(field, (u16)field_value);
7350                                break;
7351                        case VMCS_FIELD_TYPE_U32:
7352                                vmcs_write32(field, (u32)field_value);
7353                                break;
7354                        case VMCS_FIELD_TYPE_U64:
7355                                vmcs_write64(field, (u64)field_value);
7356                                break;
7357                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7358                                vmcs_writel(field, (long)field_value);
7359                                break;
7360                        default:
7361                                WARN_ON(1);
7362                                break;
7363                        }
7364                }
7365        }
7366
7367        vmcs_clear(shadow_vmcs);
7368        vmcs_load(vmx->loaded_vmcs->vmcs);
7369}
7370
7371/*
7372 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7373 * used before) all generate the same failure when it is missing.
7374 */
7375static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7376{
7377        struct vcpu_vmx *vmx = to_vmx(vcpu);
7378        if (vmx->nested.current_vmptr == -1ull) {
7379                nested_vmx_failInvalid(vcpu);
7380                skip_emulated_instruction(vcpu);
7381                return 0;
7382        }
7383        return 1;
7384}
7385
7386static int handle_vmread(struct kvm_vcpu *vcpu)
7387{
7388        unsigned long field;
7389        u64 field_value;
7390        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7391        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7392        gva_t gva = 0;
7393
7394        if (!nested_vmx_check_permission(vcpu) ||
7395            !nested_vmx_check_vmcs12(vcpu))
7396                return 1;
7397
7398        /* Decode instruction info and find the field to read */
7399        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7400        /* Read the field, zero-extended to a u64 field_value */
7401        if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
7402                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7403                skip_emulated_instruction(vcpu);
7404                return 1;
7405        }
7406        /*
7407         * Now copy part of this value to register or memory, as requested.
7408         * Note that the number of bits actually copied is 32 or 64 depending
7409         * on the guest's mode (32 or 64 bit), not on the given field's length.
7410         */
7411        if (vmx_instruction_info & (1u << 10)) {
7412                kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
7413                        field_value);
7414        } else {
7415                if (get_vmx_mem_address(vcpu, exit_qualification,
7416                                vmx_instruction_info, true, &gva))
7417                        return 1;
7418                /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7419                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7420                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7421        }
7422
7423        nested_vmx_succeed(vcpu);
7424        skip_emulated_instruction(vcpu);
7425        return 1;
7426}
7427
7428
7429static int handle_vmwrite(struct kvm_vcpu *vcpu)
7430{
7431        unsigned long field;
7432        gva_t gva;
7433        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7434        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7435        /* The value to write might be 32 or 64 bits, depending on L1's long
7436         * mode, and eventually we need to write that into a field of several
7437         * possible lengths. The code below first zero-extends the value to 64
7438         * bit (field_value), and then copies only the appropriate number of
7439         * bits into the vmcs12 field.
7440         */
7441        u64 field_value = 0;
7442        struct x86_exception e;
7443
7444        if (!nested_vmx_check_permission(vcpu) ||
7445            !nested_vmx_check_vmcs12(vcpu))
7446                return 1;
7447
7448        if (vmx_instruction_info & (1u << 10))
7449                field_value = kvm_register_readl(vcpu,
7450                        (((vmx_instruction_info) >> 3) & 0xf));
7451        else {
7452                if (get_vmx_mem_address(vcpu, exit_qualification,
7453                                vmx_instruction_info, false, &gva))
7454                        return 1;
7455                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
7456                           &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
7457                        kvm_inject_page_fault(vcpu, &e);
7458                        return 1;
7459                }
7460        }
7461
7462
7463        field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
7464        if (vmcs_field_readonly(field)) {
7465                nested_vmx_failValid(vcpu,
7466                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7467                skip_emulated_instruction(vcpu);
7468                return 1;
7469        }
7470
7471        if (vmcs12_write_any(vcpu, field, field_value) < 0) {
7472                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7473                skip_emulated_instruction(vcpu);
7474                return 1;
7475        }
7476
7477        nested_vmx_succeed(vcpu);
7478        skip_emulated_instruction(vcpu);
7479        return 1;
7480}
7481
7482/* Emulate the VMPTRLD instruction */
7483static int handle_vmptrld(struct kvm_vcpu *vcpu)
7484{
7485        struct vcpu_vmx *vmx = to_vmx(vcpu);
7486        gpa_t vmptr;
7487
7488        if (!nested_vmx_check_permission(vcpu))
7489                return 1;
7490
7491        if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
7492                return 1;
7493
7494        if (vmx->nested.current_vmptr != vmptr) {
7495                struct vmcs12 *new_vmcs12;
7496                struct page *page;
7497                page = nested_get_page(vcpu, vmptr);
7498                if (page == NULL) {
7499                        nested_vmx_failInvalid(vcpu);
7500                        skip_emulated_instruction(vcpu);
7501                        return 1;
7502                }
7503                new_vmcs12 = kmap(page);
7504                if (new_vmcs12->revision_id != VMCS12_REVISION) {
7505                        kunmap(page);
7506                        nested_release_page_clean(page);
7507                        nested_vmx_failValid(vcpu,
7508                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7509                        skip_emulated_instruction(vcpu);
7510                        return 1;
7511                }
7512
7513                nested_release_vmcs12(vmx);
7514                vmx->nested.current_vmptr = vmptr;
7515                vmx->nested.current_vmcs12 = new_vmcs12;
7516                vmx->nested.current_vmcs12_page = page;
7517                /*
7518                 * Load VMCS12 from guest memory since it is not already
7519                 * cached.
7520                 */
7521                memcpy(vmx->nested.cached_vmcs12,
7522                       vmx->nested.current_vmcs12, VMCS12_SIZE);
7523
7524                if (enable_shadow_vmcs) {
7525                        vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7526                                      SECONDARY_EXEC_SHADOW_VMCS);
7527                        vmcs_write64(VMCS_LINK_POINTER,
7528                                     __pa(vmx->nested.current_shadow_vmcs));
7529                        vmx->nested.sync_shadow_vmcs = true;
7530                }
7531        }
7532
7533        nested_vmx_succeed(vcpu);
7534        skip_emulated_instruction(vcpu);
7535        return 1;
7536}
7537
7538/* Emulate the VMPTRST instruction */
7539static int handle_vmptrst(struct kvm_vcpu *vcpu)
7540{
7541        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7542        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7543        gva_t vmcs_gva;
7544        struct x86_exception e;
7545
7546        if (!nested_vmx_check_permission(vcpu))
7547                return 1;
7548
7549        if (get_vmx_mem_address(vcpu, exit_qualification,
7550                        vmx_instruction_info, true, &vmcs_gva))
7551                return 1;
7552        /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7553        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7554                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7555                                 sizeof(u64), &e)) {
7556                kvm_inject_page_fault(vcpu, &e);
7557                return 1;
7558        }
7559        nested_vmx_succeed(vcpu);
7560        skip_emulated_instruction(vcpu);
7561        return 1;
7562}
7563
7564/* Emulate the INVEPT instruction */
7565static int handle_invept(struct kvm_vcpu *vcpu)
7566{
7567        struct vcpu_vmx *vmx = to_vmx(vcpu);
7568        u32 vmx_instruction_info, types;
7569        unsigned long type;
7570        gva_t gva;
7571        struct x86_exception e;
7572        struct {
7573                u64 eptp, gpa;
7574        } operand;
7575
7576        if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7577              SECONDARY_EXEC_ENABLE_EPT) ||
7578            !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
7579                kvm_queue_exception(vcpu, UD_VECTOR);
7580                return 1;
7581        }
7582
7583        if (!nested_vmx_check_permission(vcpu))
7584                return 1;
7585
7586        if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7587                kvm_queue_exception(vcpu, UD_VECTOR);
7588                return 1;
7589        }
7590
7591        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7592        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7593
7594        types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
7595
7596        if (!(types & (1UL << type))) {
7597                nested_vmx_failValid(vcpu,
7598                                VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7599                skip_emulated_instruction(vcpu);
7600                return 1;
7601        }
7602
7603        /* According to the Intel VMX instruction reference, the memory
7604         * operand is read even if it isn't needed (e.g., for type==global)
7605         */
7606        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7607                        vmx_instruction_info, false, &gva))
7608                return 1;
7609        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7610                                sizeof(operand), &e)) {
7611                kvm_inject_page_fault(vcpu, &e);
7612                return 1;
7613        }
7614
7615        switch (type) {
7616        case VMX_EPT_EXTENT_GLOBAL:
7617        /*
7618         * TODO: track mappings and invalidate
7619         * single context requests appropriately
7620         */
7621        case VMX_EPT_EXTENT_CONTEXT:
7622                kvm_mmu_sync_roots(vcpu);
7623                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
7624                nested_vmx_succeed(vcpu);
7625                break;
7626        default:
7627                BUG_ON(1);
7628                break;
7629        }
7630
7631        skip_emulated_instruction(vcpu);
7632        return 1;
7633}
7634
7635static int handle_invvpid(struct kvm_vcpu *vcpu)
7636{
7637        struct vcpu_vmx *vmx = to_vmx(vcpu);
7638        u32 vmx_instruction_info;
7639        unsigned long type, types;
7640        gva_t gva;
7641        struct x86_exception e;
7642        int vpid;
7643
7644        if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7645              SECONDARY_EXEC_ENABLE_VPID) ||
7646                        !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7647                kvm_queue_exception(vcpu, UD_VECTOR);
7648                return 1;
7649        }
7650
7651        if (!nested_vmx_check_permission(vcpu))
7652                return 1;
7653
7654        vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7655        type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7656
7657        types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7658
7659        if (!(types & (1UL << type))) {
7660                nested_vmx_failValid(vcpu,
7661                        VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
7662                skip_emulated_instruction(vcpu);
7663                return 1;
7664        }
7665
7666        /* according to the intel vmx instruction reference, the memory
7667         * operand is read even if it isn't needed (e.g., for type==global)
7668         */
7669        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7670                        vmx_instruction_info, false, &gva))
7671                return 1;
7672        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7673                                sizeof(u32), &e)) {
7674                kvm_inject_page_fault(vcpu, &e);
7675                return 1;
7676        }
7677
7678        switch (type) {
7679        case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7680                /*
7681                 * Old versions of KVM use the single-context version so we
7682                 * have to support it; just treat it the same as all-context.
7683                 */
7684        case VMX_VPID_EXTENT_ALL_CONTEXT:
7685                __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
7686                nested_vmx_succeed(vcpu);
7687                break;
7688        default:
7689                /* Trap individual address invalidation invvpid calls */
7690                BUG_ON(1);
7691                break;
7692        }
7693
7694        skip_emulated_instruction(vcpu);
7695        return 1;
7696}
7697
7698static int handle_pml_full(struct kvm_vcpu *vcpu)
7699{
7700        unsigned long exit_qualification;
7701
7702        trace_kvm_pml_full(vcpu->vcpu_id);
7703
7704        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7705
7706        /*
7707         * PML buffer FULL happened while executing iret from NMI,
7708         * "blocked by NMI" bit has to be set before next VM entry.
7709         */
7710        if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7711                        cpu_has_virtual_nmis() &&
7712                        (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7713                vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7714                                GUEST_INTR_STATE_NMI);
7715
7716        /*
7717         * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7718         * here.., and there's no userspace involvement needed for PML.
7719         */
7720        return 1;
7721}
7722
7723static int handle_preemption_timer(struct kvm_vcpu *vcpu)
7724{
7725        kvm_lapic_expired_hv_timer(vcpu);
7726        return 1;
7727}
7728
7729/*
7730 * The exit handlers return 1 if the exit was handled fully and guest execution
7731 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
7732 * to be done to userspace and return 0.
7733 */
7734static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
7735        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
7736        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
7737        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
7738        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
7739        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
7740        [EXIT_REASON_CR_ACCESS]               = handle_cr,
7741        [EXIT_REASON_DR_ACCESS]               = handle_dr,
7742        [EXIT_REASON_CPUID]                   = handle_cpuid,
7743        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
7744        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
7745        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
7746        [EXIT_REASON_HLT]                     = handle_halt,
7747        [EXIT_REASON_INVD]                    = handle_invd,
7748        [EXIT_REASON_INVLPG]                  = handle_invlpg,
7749        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
7750        [EXIT_REASON_VMCALL]                  = handle_vmcall,
7751        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
7752        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
7753        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
7754        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
7755        [EXIT_REASON_VMREAD]                  = handle_vmread,
7756        [EXIT_REASON_VMRESUME]                = handle_vmresume,
7757        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
7758        [EXIT_REASON_VMOFF]                   = handle_vmoff,
7759        [EXIT_REASON_VMON]                    = handle_vmon,
7760        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
7761        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
7762        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
7763        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
7764        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
7765        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
7766        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
7767        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
7768        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
7769        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
7770        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
7771        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_mwait,
7772        [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
7773        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_monitor,
7774        [EXIT_REASON_INVEPT]                  = handle_invept,
7775        [EXIT_REASON_INVVPID]                 = handle_invvpid,
7776        [EXIT_REASON_XSAVES]                  = handle_xsaves,
7777        [EXIT_REASON_XRSTORS]                 = handle_xrstors,
7778        [EXIT_REASON_PML_FULL]                = handle_pml_full,
7779        [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
7780};
7781
7782static const int kvm_vmx_max_exit_handlers =
7783        ARRAY_SIZE(kvm_vmx_exit_handlers);
7784
7785static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7786                                       struct vmcs12 *vmcs12)
7787{
7788        unsigned long exit_qualification;
7789        gpa_t bitmap, last_bitmap;
7790        unsigned int port;
7791        int size;
7792        u8 b;
7793
7794        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7795                return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
7796
7797        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7798
7799        port = exit_qualification >> 16;
7800        size = (exit_qualification & 7) + 1;
7801
7802        last_bitmap = (gpa_t)-1;
7803        b = -1;
7804
7805        while (size > 0) {
7806                if (port < 0x8000)
7807                        bitmap = vmcs12->io_bitmap_a;
7808                else if (port < 0x10000)
7809                        bitmap = vmcs12->io_bitmap_b;
7810                else
7811                        return true;
7812                bitmap += (port & 0x7fff) / 8;
7813
7814                if (last_bitmap != bitmap)
7815                        if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
7816                                return true;
7817                if (b & (1 << (port & 7)))
7818                        return true;
7819
7820                port++;
7821                size--;
7822                last_bitmap = bitmap;
7823        }
7824
7825        return false;
7826}
7827
7828/*
7829 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7830 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7831 * disinterest in the current event (read or write a specific MSR) by using an
7832 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7833 */
7834static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7835        struct vmcs12 *vmcs12, u32 exit_reason)
7836{
7837        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7838        gpa_t bitmap;
7839
7840        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
7841                return true;
7842
7843        /*
7844         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7845         * for the four combinations of read/write and low/high MSR numbers.
7846         * First we need to figure out which of the four to use:
7847         */
7848        bitmap = vmcs12->msr_bitmap;
7849        if (exit_reason == EXIT_REASON_MSR_WRITE)
7850                bitmap += 2048;
7851        if (msr_index >= 0xc0000000) {
7852                msr_index -= 0xc0000000;
7853                bitmap += 1024;
7854        }
7855
7856        /* Then read the msr_index'th bit from this bitmap: */
7857        if (msr_index < 1024*8) {
7858                unsigned char b;
7859                if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
7860                        return true;
7861                return 1 & (b >> (msr_index & 7));
7862        } else
7863                return true; /* let L1 handle the wrong parameter */
7864}
7865
7866/*
7867 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7868 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7869 * intercept (via guest_host_mask etc.) the current event.
7870 */
7871static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7872        struct vmcs12 *vmcs12)
7873{
7874        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7875        int cr = exit_qualification & 15;
7876        int reg = (exit_qualification >> 8) & 15;
7877        unsigned long val = kvm_register_readl(vcpu, reg);
7878
7879        switch ((exit_qualification >> 4) & 3) {
7880        case 0: /* mov to cr */
7881                switch (cr) {
7882                case 0:
7883                        if (vmcs12->cr0_guest_host_mask &
7884                            (val ^ vmcs12->cr0_read_shadow))
7885                                return true;
7886                        break;
7887                case 3:
7888                        if ((vmcs12->cr3_target_count >= 1 &&
7889                                        vmcs12->cr3_target_value0 == val) ||
7890                                (vmcs12->cr3_target_count >= 2 &&
7891                                        vmcs12->cr3_target_value1 == val) ||
7892                                (vmcs12->cr3_target_count >= 3 &&
7893                                        vmcs12->cr3_target_value2 == val) ||
7894                                (vmcs12->cr3_target_count >= 4 &&
7895                                        vmcs12->cr3_target_value3 == val))
7896                                return false;
7897                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
7898                                return true;
7899                        break;
7900                case 4:
7901                        if (vmcs12->cr4_guest_host_mask &
7902                            (vmcs12->cr4_read_shadow ^ val))
7903                                return true;
7904                        break;
7905                case 8:
7906                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
7907                                return true;
7908                        break;
7909                }
7910                break;
7911        case 2: /* clts */
7912                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7913                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
7914                        return true;
7915                break;
7916        case 1: /* mov from cr */
7917                switch (cr) {
7918                case 3:
7919                        if (vmcs12->cpu_based_vm_exec_control &
7920                            CPU_BASED_CR3_STORE_EXITING)
7921                                return true;
7922                        break;
7923                case 8:
7924                        if (vmcs12->cpu_based_vm_exec_control &
7925                            CPU_BASED_CR8_STORE_EXITING)
7926                                return true;
7927                        break;
7928                }
7929                break;
7930        case 3: /* lmsw */
7931                /*
7932                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7933                 * cr0. Other attempted changes are ignored, with no exit.
7934                 */
7935                if (vmcs12->cr0_guest_host_mask & 0xe &
7936                    (val ^ vmcs12->cr0_read_shadow))
7937                        return true;
7938                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7939                    !(vmcs12->cr0_read_shadow & 0x1) &&
7940                    (val & 0x1))
7941                        return true;
7942                break;
7943        }
7944        return false;
7945}
7946
7947/*
7948 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7949 * should handle it ourselves in L0 (and then continue L2). Only call this
7950 * when in is_guest_mode (L2).
7951 */
7952static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7953{
7954        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7955        struct vcpu_vmx *vmx = to_vmx(vcpu);
7956        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7957        u32 exit_reason = vmx->exit_reason;
7958
7959        trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7960                                vmcs_readl(EXIT_QUALIFICATION),
7961                                vmx->idt_vectoring_info,
7962                                intr_info,
7963                                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7964                                KVM_ISA_VMX);
7965
7966        if (vmx->nested.nested_run_pending)
7967                return false;
7968
7969        if (unlikely(vmx->fail)) {
7970                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7971                                    vmcs_read32(VM_INSTRUCTION_ERROR));
7972                return true;
7973        }
7974
7975        switch (exit_reason) {
7976        case EXIT_REASON_EXCEPTION_NMI:
7977                if (!is_exception(intr_info))
7978                        return false;
7979                else if (is_page_fault(intr_info))
7980                        return enable_ept;
7981                else if (is_no_device(intr_info) &&
7982                         !(vmcs12->guest_cr0 & X86_CR0_TS))
7983                        return false;
7984                else if (is_debug(intr_info) &&
7985                         vcpu->guest_debug &
7986                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7987                        return false;
7988                else if (is_breakpoint(intr_info) &&
7989                         vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7990                        return false;
7991                return vmcs12->exception_bitmap &
7992                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7993        case EXIT_REASON_EXTERNAL_INTERRUPT:
7994                return false;
7995        case EXIT_REASON_TRIPLE_FAULT:
7996                return true;
7997        case EXIT_REASON_PENDING_INTERRUPT:
7998                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
7999        case EXIT_REASON_NMI_WINDOW:
8000                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
8001        case EXIT_REASON_TASK_SWITCH:
8002                return true;
8003        case EXIT_REASON_CPUID:
8004                if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
8005                        return false;
8006                return true;
8007        case EXIT_REASON_HLT:
8008                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8009        case EXIT_REASON_INVD:
8010                return true;
8011        case EXIT_REASON_INVLPG:
8012                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8013        case EXIT_REASON_RDPMC:
8014                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
8015        case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
8016                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8017        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8018        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8019        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8020        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8021        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
8022        case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
8023                /*
8024                 * VMX instructions trap unconditionally. This allows L1 to
8025                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8026                 */
8027                return true;
8028        case EXIT_REASON_CR_ACCESS:
8029                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8030        case EXIT_REASON_DR_ACCESS:
8031                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8032        case EXIT_REASON_IO_INSTRUCTION:
8033                return nested_vmx_exit_handled_io(vcpu, vmcs12);
8034        case EXIT_REASON_MSR_READ:
8035        case EXIT_REASON_MSR_WRITE:
8036                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8037        case EXIT_REASON_INVALID_STATE:
8038                return true;
8039        case EXIT_REASON_MWAIT_INSTRUCTION:
8040                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
8041        case EXIT_REASON_MONITOR_TRAP_FLAG:
8042                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
8043        case EXIT_REASON_MONITOR_INSTRUCTION:
8044                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8045        case EXIT_REASON_PAUSE_INSTRUCTION:
8046                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8047                        nested_cpu_has2(vmcs12,
8048                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8049        case EXIT_REASON_MCE_DURING_VMENTRY:
8050                return false;
8051        case EXIT_REASON_TPR_BELOW_THRESHOLD:
8052                return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
8053        case EXIT_REASON_APIC_ACCESS:
8054                return nested_cpu_has2(vmcs12,
8055                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
8056        case EXIT_REASON_APIC_WRITE:
8057        case EXIT_REASON_EOI_INDUCED:
8058                /* apic_write and eoi_induced should exit unconditionally. */
8059                return true;
8060        case EXIT_REASON_EPT_VIOLATION:
8061                /*
8062                 * L0 always deals with the EPT violation. If nested EPT is
8063                 * used, and the nested mmu code discovers that the address is
8064                 * missing in the guest EPT table (EPT12), the EPT violation
8065                 * will be injected with nested_ept_inject_page_fault()
8066                 */
8067                return false;
8068        case EXIT_REASON_EPT_MISCONFIG:
8069                /*
8070                 * L2 never uses directly L1's EPT, but rather L0's own EPT
8071                 * table (shadow on EPT) or a merged EPT table that L0 built
8072                 * (EPT on EPT). So any problems with the structure of the
8073                 * table is L0's fault.
8074                 */
8075                return false;
8076        case EXIT_REASON_WBINVD:
8077                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8078        case EXIT_REASON_XSETBV:
8079                return true;
8080        case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8081                /*
8082                 * This should never happen, since it is not possible to
8083                 * set XSS to a non-zero value---neither in L1 nor in L2.
8084                 * If if it were, XSS would have to be checked against
8085                 * the XSS exit bitmap in vmcs12.
8086                 */
8087                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8088        case EXIT_REASON_PREEMPTION_TIMER:
8089                return false;
8090        default:
8091                return true;
8092        }
8093}
8094
8095static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8096{
8097        *info1 = vmcs_readl(EXIT_QUALIFICATION);
8098        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8099}
8100
8101static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
8102{
8103        if (vmx->pml_pg) {
8104                __free_page(vmx->pml_pg);
8105                vmx->pml_pg = NULL;
8106        }
8107}
8108
8109static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
8110{
8111        struct vcpu_vmx *vmx = to_vmx(vcpu);
8112        u64 *pml_buf;
8113        u16 pml_idx;
8114
8115        pml_idx = vmcs_read16(GUEST_PML_INDEX);
8116
8117        /* Do nothing if PML buffer is empty */
8118        if (pml_idx == (PML_ENTITY_NUM - 1))
8119                return;
8120
8121        /* PML index always points to next available PML buffer entity */
8122        if (pml_idx >= PML_ENTITY_NUM)
8123                pml_idx = 0;
8124        else
8125                pml_idx++;
8126
8127        pml_buf = page_address(vmx->pml_pg);
8128        for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8129                u64 gpa;
8130
8131                gpa = pml_buf[pml_idx];
8132                WARN_ON(gpa & (PAGE_SIZE - 1));
8133                kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
8134        }
8135
8136        /* reset PML index */
8137        vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8138}
8139
8140/*
8141 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8142 * Called before reporting dirty_bitmap to userspace.
8143 */
8144static void kvm_flush_pml_buffers(struct kvm *kvm)
8145{
8146        int i;
8147        struct kvm_vcpu *vcpu;
8148        /*
8149         * We only need to kick vcpu out of guest mode here, as PML buffer
8150         * is flushed at beginning of all VMEXITs, and it's obvious that only
8151         * vcpus running in guest are possible to have unflushed GPAs in PML
8152         * buffer.
8153         */
8154        kvm_for_each_vcpu(i, vcpu, kvm)
8155                kvm_vcpu_kick(vcpu);
8156}
8157
8158static void vmx_dump_sel(char *name, uint32_t sel)
8159{
8160        pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8161               name, vmcs_read32(sel),
8162               vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8163               vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8164               vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8165}
8166
8167static void vmx_dump_dtsel(char *name, uint32_t limit)
8168{
8169        pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
8170               name, vmcs_read32(limit),
8171               vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8172}
8173
8174static void dump_vmcs(void)
8175{
8176        u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8177        u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8178        u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8179        u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8180        u32 secondary_exec_control = 0;
8181        unsigned long cr4 = vmcs_readl(GUEST_CR4);
8182        u64 efer = vmcs_read64(GUEST_IA32_EFER);
8183        int i, n;
8184
8185        if (cpu_has_secondary_exec_ctrls())
8186                secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8187
8188        pr_err("*** Guest State ***\n");
8189        pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8190               vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8191               vmcs_readl(CR0_GUEST_HOST_MASK));
8192        pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8193               cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8194        pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8195        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8196            (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8197        {
8198                pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
8199                       vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8200                pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
8201                       vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
8202        }
8203        pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
8204               vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8205        pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
8206               vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8207        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8208               vmcs_readl(GUEST_SYSENTER_ESP),
8209               vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8210        vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
8211        vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
8212        vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
8213        vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
8214        vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
8215        vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
8216        vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8217        vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8218        vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8219        vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
8220        if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8221            (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
8222                pr_err("EFER =     0x%016llx  PAT = 0x%016llx\n",
8223                       efer, vmcs_read64(GUEST_IA32_PAT));
8224        pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
8225               vmcs_read64(GUEST_IA32_DEBUGCTL),
8226               vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8227        if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
8228                pr_err("PerfGlobCtl = 0x%016llx\n",
8229                       vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
8230        if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
8231                pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
8232        pr_err("Interruptibility = %08x  ActivityState = %08x\n",
8233               vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8234               vmcs_read32(GUEST_ACTIVITY_STATE));
8235        if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8236                pr_err("InterruptStatus = %04x\n",
8237                       vmcs_read16(GUEST_INTR_STATUS));
8238
8239        pr_err("*** Host State ***\n");
8240        pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
8241               vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8242        pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8243               vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8244               vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8245               vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8246               vmcs_read16(HOST_TR_SELECTOR));
8247        pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8248               vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8249               vmcs_readl(HOST_TR_BASE));
8250        pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8251               vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8252        pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8253               vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8254               vmcs_readl(HOST_CR4));
8255        pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8256               vmcs_readl(HOST_IA32_SYSENTER_ESP),
8257               vmcs_read32(HOST_IA32_SYSENTER_CS),
8258               vmcs_readl(HOST_IA32_SYSENTER_EIP));
8259        if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
8260                pr_err("EFER = 0x%016llx  PAT = 0x%016llx\n",
8261                       vmcs_read64(HOST_IA32_EFER),
8262                       vmcs_read64(HOST_IA32_PAT));
8263        if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8264                pr_err("PerfGlobCtl = 0x%016llx\n",
8265                       vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
8266
8267        pr_err("*** Control State ***\n");
8268        pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8269               pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8270        pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8271        pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8272               vmcs_read32(EXCEPTION_BITMAP),
8273               vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8274               vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8275        pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8276               vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8277               vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8278               vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8279        pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8280               vmcs_read32(VM_EXIT_INTR_INFO),
8281               vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8282               vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8283        pr_err("        reason=%08x qualification=%016lx\n",
8284               vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8285        pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8286               vmcs_read32(IDT_VECTORING_INFO_FIELD),
8287               vmcs_read32(IDT_VECTORING_ERROR_CODE));
8288        pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8289        if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
8290                pr_err("TSC Multiplier = 0x%016llx\n",
8291                       vmcs_read64(TSC_MULTIPLIER));
8292        if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8293                pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8294        if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8295                pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8296        if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
8297                pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
8298        n = vmcs_read32(CR3_TARGET_COUNT);
8299        for (i = 0; i + 1 < n; i += 4)
8300                pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8301                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8302                       i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8303        if (i < n)
8304                pr_err("CR3 target%u=%016lx\n",
8305                       i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8306        if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8307                pr_err("PLE Gap=%08x Window=%08x\n",
8308                       vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8309        if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8310                pr_err("Virtual processor ID = 0x%04x\n",
8311                       vmcs_read16(VIRTUAL_PROCESSOR_ID));
8312}
8313
8314/*
8315 * The guest has exited.  See if we can fix it or if we need userspace
8316 * assistance.
8317 */
8318static int vmx_handle_exit(struct kvm_vcpu *vcpu)
8319{
8320        struct vcpu_vmx *vmx = to_vmx(vcpu);
8321        u32 exit_reason = vmx->exit_reason;
8322        u32 vectoring_info = vmx->idt_vectoring_info;
8323
8324        trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8325
8326        /*
8327         * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8328         * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8329         * querying dirty_bitmap, we only need to kick all vcpus out of guest
8330         * mode as if vcpus is in root mode, the PML buffer must has been
8331         * flushed already.
8332         */
8333        if (enable_pml)
8334                vmx_flush_pml_buffer(vcpu);
8335
8336        /* If guest state is invalid, start emulating */
8337        if (vmx->emulation_required)
8338                return handle_invalid_guest_state(vcpu);
8339
8340        if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
8341                nested_vmx_vmexit(vcpu, exit_reason,
8342                                  vmcs_read32(VM_EXIT_INTR_INFO),
8343                                  vmcs_readl(EXIT_QUALIFICATION));
8344                return 1;
8345        }
8346
8347        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
8348                dump_vmcs();
8349                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8350                vcpu->run->fail_entry.hardware_entry_failure_reason
8351                        = exit_reason;
8352                return 0;
8353        }
8354
8355        if (unlikely(vmx->fail)) {
8356                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8357                vcpu->run->fail_entry.hardware_entry_failure_reason
8358                        = vmcs_read32(VM_INSTRUCTION_ERROR);
8359                return 0;
8360        }
8361
8362        /*
8363         * Note:
8364         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8365         * delivery event since it indicates guest is accessing MMIO.
8366         * The vm-exit can be triggered again after return to guest that
8367         * will cause infinite loop.
8368         */
8369        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
8370                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
8371                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
8372                        exit_reason != EXIT_REASON_PML_FULL &&
8373                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
8374                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8375                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8376                vcpu->run->internal.ndata = 2;
8377                vcpu->run->internal.data[0] = vectoring_info;
8378                vcpu->run->internal.data[1] = exit_reason;
8379                return 0;
8380        }
8381
8382        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8383            !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
8384                                        get_vmcs12(vcpu))))) {
8385                if (vmx_interrupt_allowed(vcpu)) {
8386                        vmx->soft_vnmi_blocked = 0;
8387                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
8388                           vcpu->arch.nmi_pending) {
8389                        /*
8390                         * This CPU don't support us in finding the end of an
8391                         * NMI-blocked window if the guest runs with IRQs
8392                         * disabled. So we pull the trigger after 1 s of
8393                         * futile waiting, but inform the user about this.
8394                         */
8395                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8396                               "state on VCPU %d after 1 s timeout\n",
8397                               __func__, vcpu->vcpu_id);
8398                        vmx->soft_vnmi_blocked = 0;
8399                }
8400        }
8401
8402        if (exit_reason < kvm_vmx_max_exit_handlers
8403            && kvm_vmx_exit_handlers[exit_reason])
8404                return kvm_vmx_exit_handlers[exit_reason](vcpu);
8405        else {
8406                WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8407                kvm_queue_exception(vcpu, UD_VECTOR);
8408                return 1;
8409        }
8410}
8411
8412static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
8413{
8414        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8415
8416        if (is_guest_mode(vcpu) &&
8417                nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8418                return;
8419
8420        if (irr == -1 || tpr < irr) {
8421                vmcs_write32(TPR_THRESHOLD, 0);
8422                return;
8423        }
8424
8425        vmcs_write32(TPR_THRESHOLD, irr);
8426}
8427
8428static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8429{
8430        u32 sec_exec_control;
8431
8432        /* Postpone execution until vmcs01 is the current VMCS. */
8433        if (is_guest_mode(vcpu)) {
8434                to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
8435                return;
8436        }
8437
8438        /*
8439         * There is not point to enable virtualize x2apic without enable
8440         * apicv
8441         */
8442        if (!cpu_has_vmx_virtualize_x2apic_mode() ||
8443                                !kvm_vcpu_apicv_active(vcpu))
8444                return;
8445
8446        if (!cpu_need_tpr_shadow(vcpu))
8447                return;
8448
8449        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8450
8451        if (set) {
8452                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8453                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8454        } else {
8455                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8456                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8457        }
8458        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8459
8460        vmx_set_msr_bitmap(vcpu);
8461}
8462
8463static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8464{
8465        struct vcpu_vmx *vmx = to_vmx(vcpu);
8466
8467        /*
8468         * Currently we do not handle the nested case where L2 has an
8469         * APIC access page of its own; that page is still pinned.
8470         * Hence, we skip the case where the VCPU is in guest mode _and_
8471         * L1 prepared an APIC access page for L2.
8472         *
8473         * For the case where L1 and L2 share the same APIC access page
8474         * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8475         * in the vmcs12), this function will only update either the vmcs01
8476         * or the vmcs02.  If the former, the vmcs02 will be updated by
8477         * prepare_vmcs02.  If the latter, the vmcs01 will be updated in
8478         * the next L2->L1 exit.
8479         */
8480        if (!is_guest_mode(vcpu) ||
8481            !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
8482                             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8483                vmcs_write64(APIC_ACCESS_ADDR, hpa);
8484}
8485
8486static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
8487{
8488        u16 status;
8489        u8 old;
8490
8491        if (max_isr == -1)
8492                max_isr = 0;
8493
8494        status = vmcs_read16(GUEST_INTR_STATUS);
8495        old = status >> 8;
8496        if (max_isr != old) {
8497                status &= 0xff;
8498                status |= max_isr << 8;
8499                vmcs_write16(GUEST_INTR_STATUS, status);
8500        }
8501}
8502
8503static void vmx_set_rvi(int vector)
8504{
8505        u16 status;
8506        u8 old;
8507
8508        if (vector == -1)
8509                vector = 0;
8510
8511        status = vmcs_read16(GUEST_INTR_STATUS);
8512        old = (u8)status & 0xff;
8513        if ((u8)vector != old) {
8514                status &= ~0xff;
8515                status |= (u8)vector;
8516                vmcs_write16(GUEST_INTR_STATUS, status);
8517        }
8518}
8519
8520static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8521{
8522        if (!is_guest_mode(vcpu)) {
8523                vmx_set_rvi(max_irr);
8524                return;
8525        }
8526
8527        if (max_irr == -1)
8528                return;
8529
8530        /*
8531         * In guest mode.  If a vmexit is needed, vmx_check_nested_events
8532         * handles it.
8533         */
8534        if (nested_exit_on_intr(vcpu))
8535                return;
8536
8537        /*
8538         * Else, fall back to pre-APICv interrupt injection since L2
8539         * is run without virtual interrupt delivery.
8540         */
8541        if (!kvm_event_needs_reinjection(vcpu) &&
8542            vmx_interrupt_allowed(vcpu)) {
8543                kvm_queue_interrupt(vcpu, max_irr, false);
8544                vmx_inject_irq(vcpu);
8545        }
8546}
8547
8548static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
8549{
8550        if (!kvm_vcpu_apicv_active(vcpu))
8551                return;
8552
8553        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8554        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8555        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8556        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8557}
8558
8559static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
8560{
8561        u32 exit_intr_info;
8562
8563        if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8564              || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8565                return;
8566
8567        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8568        exit_intr_info = vmx->exit_intr_info;
8569
8570        /* Handle machine checks before interrupts are enabled */
8571        if (is_machine_check(exit_intr_info))
8572                kvm_machine_check();
8573
8574        /* We need to handle NMIs before interrupts are enabled */
8575        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
8576            (exit_intr_info & INTR_INFO_VALID_MASK)) {
8577                kvm_before_handle_nmi(&vmx->vcpu);
8578                asm("int $2");
8579                kvm_after_handle_nmi(&vmx->vcpu);
8580        }
8581}
8582
8583static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8584{
8585        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8586        register void *__sp asm(_ASM_SP);
8587
8588        /*
8589         * If external interrupt exists, IF bit is set in rflags/eflags on the
8590         * interrupt stack frame, and interrupt will be enabled on a return
8591         * from interrupt handler.
8592         */
8593        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8594                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8595                unsigned int vector;
8596                unsigned long entry;
8597                gate_desc *desc;
8598                struct vcpu_vmx *vmx = to_vmx(vcpu);
8599#ifdef CONFIG_X86_64
8600                unsigned long tmp;
8601#endif
8602
8603                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
8604                desc = (gate_desc *)vmx->host_idt_base + vector;
8605                entry = gate_offset(*desc);
8606                asm volatile(
8607#ifdef CONFIG_X86_64
8608                        "mov %%" _ASM_SP ", %[sp]\n\t"
8609                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8610                        "push $%c[ss]\n\t"
8611                        "push %[sp]\n\t"
8612#endif
8613                        "pushf\n\t"
8614                        __ASM_SIZE(push) " $%c[cs]\n\t"
8615                        "call *%[entry]\n\t"
8616                        :
8617#ifdef CONFIG_X86_64
8618                        [sp]"=&r"(tmp),
8619#endif
8620                        "+r"(__sp)
8621                        :
8622                        [entry]"r"(entry),
8623                        [ss]"i"(__KERNEL_DS),
8624                        [cs]"i"(__KERNEL_CS)
8625                        );
8626        }
8627}
8628
8629static bool vmx_has_high_real_mode_segbase(void)
8630{
8631        return enable_unrestricted_guest || emulate_invalid_guest_state;
8632}
8633
8634static bool vmx_mpx_supported(void)
8635{
8636        return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8637                (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8638}
8639
8640static bool vmx_xsaves_supported(void)
8641{
8642        return vmcs_config.cpu_based_2nd_exec_ctrl &
8643                SECONDARY_EXEC_XSAVES;
8644}
8645
8646static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8647{
8648        u32 exit_intr_info;
8649        bool unblock_nmi;
8650        u8 vector;
8651        bool idtv_info_valid;
8652
8653        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8654
8655        if (cpu_has_virtual_nmis()) {
8656                if (vmx->nmi_known_unmasked)
8657                        return;
8658                /*
8659                 * Can't use vmx->exit_intr_info since we're not sure what
8660                 * the exit reason is.
8661                 */
8662                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8663                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8664                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8665                /*
8666                 * SDM 3: 27.7.1.2 (September 2008)
8667                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8668                 * a guest IRET fault.
8669                 * SDM 3: 23.2.2 (September 2008)
8670                 * Bit 12 is undefined in any of the following cases:
8671                 *  If the VM exit sets the valid bit in the IDT-vectoring
8672                 *   information field.
8673                 *  If the VM exit is due to a double fault.
8674                 */
8675                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8676                    vector != DF_VECTOR && !idtv_info_valid)
8677                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8678                                      GUEST_INTR_STATE_NMI);
8679                else
8680                        vmx->nmi_known_unmasked =
8681                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8682                                  & GUEST_INTR_STATE_NMI);
8683        } else if (unlikely(vmx->soft_vnmi_blocked))
8684                vmx->vnmi_blocked_time +=
8685                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
8686}
8687
8688static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
8689                                      u32 idt_vectoring_info,
8690                                      int instr_len_field,
8691                                      int error_code_field)
8692{
8693        u8 vector;
8694        int type;
8695        bool idtv_info_valid;
8696
8697        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
8698
8699        vcpu->arch.nmi_injected = false;
8700        kvm_clear_exception_queue(vcpu);
8701        kvm_clear_interrupt_queue(vcpu);
8702
8703        if (!idtv_info_valid)
8704                return;
8705
8706        kvm_make_request(KVM_REQ_EVENT, vcpu);
8707
8708        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8709        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
8710
8711        switch (type) {
8712        case INTR_TYPE_NMI_INTR:
8713                vcpu->arch.nmi_injected = true;
8714                /*
8715                 * SDM 3: 27.7.1.2 (September 2008)
8716                 * Clear bit "block by NMI" before VM entry if a NMI
8717                 * delivery faulted.
8718                 */
8719                vmx_set_nmi_mask(vcpu, false);
8720                break;
8721        case INTR_TYPE_SOFT_EXCEPTION:
8722                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8723                /* fall through */
8724        case INTR_TYPE_HARD_EXCEPTION:
8725                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
8726                        u32 err = vmcs_read32(error_code_field);
8727                        kvm_requeue_exception_e(vcpu, vector, err);
8728                } else
8729                        kvm_requeue_exception(vcpu, vector);
8730                break;
8731        case INTR_TYPE_SOFT_INTR:
8732                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
8733                /* fall through */
8734        case INTR_TYPE_EXT_INTR:
8735                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
8736                break;
8737        default:
8738                break;
8739        }
8740}
8741
8742static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8743{
8744        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
8745                                  VM_EXIT_INSTRUCTION_LEN,
8746                                  IDT_VECTORING_ERROR_CODE);
8747}
8748
8749static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8750{
8751        __vmx_complete_interrupts(vcpu,
8752                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8753                                  VM_ENTRY_INSTRUCTION_LEN,
8754                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
8755
8756        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8757}
8758
8759static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8760{
8761        int i, nr_msrs;
8762        struct perf_guest_switch_msr *msrs;
8763
8764        msrs = perf_guest_get_msrs(&nr_msrs);
8765
8766        if (!msrs)
8767                return;
8768
8769        for (i = 0; i < nr_msrs; i++)
8770                if (msrs[i].host == msrs[i].guest)
8771                        clear_atomic_switch_msr(vmx, msrs[i].msr);
8772                else
8773                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8774                                        msrs[i].host);
8775}
8776
8777void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
8778{
8779        struct vcpu_vmx *vmx = to_vmx(vcpu);
8780        u64 tscl;
8781        u32 delta_tsc;
8782
8783        if (vmx->hv_deadline_tsc == -1)
8784                return;
8785
8786        tscl = rdtsc();
8787        if (vmx->hv_deadline_tsc > tscl)
8788                /* sure to be 32 bit only because checked on set_hv_timer */
8789                delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
8790                        cpu_preemption_timer_multi);
8791        else
8792                delta_tsc = 0;
8793
8794        vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
8795}
8796
8797static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
8798{
8799        struct vcpu_vmx *vmx = to_vmx(vcpu);
8800        unsigned long debugctlmsr, cr4;
8801
8802        /* Record the guest's net vcpu time for enforced NMI injections. */
8803        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8804                vmx->entry_time = ktime_get();
8805
8806        /* Don't enter VMX if guest state is invalid, let the exit handler
8807           start emulation until we arrive back to a valid state */
8808        if (vmx->emulation_required)
8809                return;
8810
8811        if (vmx->ple_window_dirty) {
8812                vmx->ple_window_dirty = false;
8813                vmcs_write32(PLE_WINDOW, vmx->ple_window);
8814        }
8815
8816        if (vmx->nested.sync_shadow_vmcs) {
8817                copy_vmcs12_to_shadow(vmx);
8818                vmx->nested.sync_shadow_vmcs = false;
8819        }
8820
8821        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8822                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8823        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8824                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8825
8826        cr4 = cr4_read_shadow();
8827        if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8828                vmcs_writel(HOST_CR4, cr4);
8829                vmx->host_state.vmcs_host_cr4 = cr4;
8830        }
8831
8832        /* When single-stepping over STI and MOV SS, we must clear the
8833         * corresponding interruptibility bits in the guest state. Otherwise
8834         * vmentry fails as it then expects bit 14 (BS) in pending debug
8835         * exceptions being set, but that's not correct for the guest debugging
8836         * case. */
8837        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8838                vmx_set_interrupt_shadow(vcpu, 0);
8839
8840        if (vmx->guest_pkru_valid)
8841                __write_pkru(vmx->guest_pkru);
8842
8843        atomic_switch_perf_msrs(vmx);
8844        debugctlmsr = get_debugctlmsr();
8845
8846        vmx_arm_hv_timer(vcpu);
8847
8848        vmx->__launched = vmx->loaded_vmcs->launched;
8849        asm(
8850                /* Store host registers */
8851                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8852                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8853                "push %%" _ASM_CX " \n\t"
8854                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8855                "je 1f \n\t"
8856                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
8857                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
8858                "1: \n\t"
8859                /* Reload cr2 if changed */
8860                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8861                "mov %%cr2, %%" _ASM_DX " \n\t"
8862                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
8863                "je 2f \n\t"
8864                "mov %%" _ASM_AX", %%cr2 \n\t"
8865                "2: \n\t"
8866                /* Check if vmlaunch of vmresume is needed */
8867                "cmpl $0, %c[launched](%0) \n\t"
8868                /* Load guest registers.  Don't clobber flags. */
8869                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8870                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8871                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8872                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8873                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8874                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
8875#ifdef CONFIG_X86_64
8876                "mov %c[r8](%0),  %%r8  \n\t"
8877                "mov %c[r9](%0),  %%r9  \n\t"
8878                "mov %c[r10](%0), %%r10 \n\t"
8879                "mov %c[r11](%0), %%r11 \n\t"
8880                "mov %c[r12](%0), %%r12 \n\t"
8881                "mov %c[r13](%0), %%r13 \n\t"
8882                "mov %c[r14](%0), %%r14 \n\t"
8883                "mov %c[r15](%0), %%r15 \n\t"
8884#endif
8885                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
8886
8887                /* Enter guest mode */
8888                "jne 1f \n\t"
8889                __ex(ASM_VMX_VMLAUNCH) "\n\t"
8890                "jmp 2f \n\t"
8891                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8892                "2: "
8893                /* Save guest registers, load host registers, keep flags */
8894                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
8895                "pop %0 \n\t"
8896                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8897                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8898                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8899                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8900                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8901                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8902                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
8903#ifdef CONFIG_X86_64
8904                "mov %%r8,  %c[r8](%0) \n\t"
8905                "mov %%r9,  %c[r9](%0) \n\t"
8906                "mov %%r10, %c[r10](%0) \n\t"
8907                "mov %%r11, %c[r11](%0) \n\t"
8908                "mov %%r12, %c[r12](%0) \n\t"
8909                "mov %%r13, %c[r13](%0) \n\t"
8910                "mov %%r14, %c[r14](%0) \n\t"
8911                "mov %%r15, %c[r15](%0) \n\t"
8912#endif
8913                "mov %%cr2, %%" _ASM_AX "   \n\t"
8914                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
8915
8916                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
8917                "setbe %c[fail](%0) \n\t"
8918                ".pushsection .rodata \n\t"
8919                ".global vmx_return \n\t"
8920                "vmx_return: " _ASM_PTR " 2b \n\t"
8921                ".popsection"
8922              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
8923                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
8924                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
8925                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
8926                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8927                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8928                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8929                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8930                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8931                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8932                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
8933#ifdef CONFIG_X86_64
8934                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8935                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8936                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8937                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8938                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8939                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8940                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8941                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
8942#endif
8943                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8944                [wordsize]"i"(sizeof(ulong))
8945              : "cc", "memory"
8946#ifdef CONFIG_X86_64
8947                , "rax", "rbx", "rdi", "rsi"
8948                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
8949#else
8950                , "eax", "ebx", "edi", "esi"
8951#endif
8952              );
8953
8954        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8955        if (debugctlmsr)
8956                update_debugctlmsr(debugctlmsr);
8957
8958#ifndef CONFIG_X86_64
8959        /*
8960         * The sysexit path does not restore ds/es, so we must set them to
8961         * a reasonable value ourselves.
8962         *
8963         * We can't defer this to vmx_load_host_state() since that function
8964         * may be executed in interrupt context, which saves and restore segments
8965         * around it, nullifying its effect.
8966         */
8967        loadsegment(ds, __USER_DS);
8968        loadsegment(es, __USER_DS);
8969#endif
8970
8971        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
8972                                  | (1 << VCPU_EXREG_RFLAGS)
8973                                  | (1 << VCPU_EXREG_PDPTR)
8974                                  | (1 << VCPU_EXREG_SEGMENTS)
8975                                  | (1 << VCPU_EXREG_CR3));
8976        vcpu->arch.regs_dirty = 0;
8977
8978        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8979
8980        vmx->loaded_vmcs->launched = 1;
8981
8982        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
8983
8984        /*
8985         * eager fpu is enabled if PKEY is supported and CR4 is switched
8986         * back on host, so it is safe to read guest PKRU from current
8987         * XSAVE.
8988         */
8989        if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8990                vmx->guest_pkru = __read_pkru();
8991                if (vmx->guest_pkru != vmx->host_pkru) {
8992                        vmx->guest_pkru_valid = true;
8993                        __write_pkru(vmx->host_pkru);
8994                } else
8995                        vmx->guest_pkru_valid = false;
8996        }
8997
8998        /*
8999         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
9000         * we did not inject a still-pending event to L1 now because of
9001         * nested_run_pending, we need to re-enable this bit.
9002         */
9003        if (vmx->nested.nested_run_pending)
9004                kvm_make_request(KVM_REQ_EVENT, vcpu);
9005
9006        vmx->nested.nested_run_pending = 0;
9007
9008        vmx_complete_atomic_exit(vmx);
9009        vmx_recover_nmi_blocking(vmx);
9010        vmx_complete_interrupts(vmx);
9011}
9012
9013static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
9014{
9015        struct vcpu_vmx *vmx = to_vmx(vcpu);
9016        int cpu;
9017
9018        if (vmx->loaded_vmcs == &vmx->vmcs01)
9019                return;
9020
9021        cpu = get_cpu();
9022        vmx->loaded_vmcs = &vmx->vmcs01;
9023        vmx_vcpu_put(vcpu);
9024        vmx_vcpu_load(vcpu, cpu);
9025        vcpu->cpu = cpu;
9026        put_cpu();
9027}
9028
9029/*
9030 * Ensure that the current vmcs of the logical processor is the
9031 * vmcs01 of the vcpu before calling free_nested().
9032 */
9033static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9034{
9035       struct vcpu_vmx *vmx = to_vmx(vcpu);
9036       int r;
9037
9038       r = vcpu_load(vcpu);
9039       BUG_ON(r);
9040       vmx_load_vmcs01(vcpu);
9041       free_nested(vmx);
9042       vcpu_put(vcpu);
9043}
9044
9045static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9046{
9047        struct vcpu_vmx *vmx = to_vmx(vcpu);
9048
9049        if (enable_pml)
9050                vmx_destroy_pml_buffer(vmx);
9051        free_vpid(vmx->vpid);
9052        leave_guest_mode(vcpu);
9053        vmx_free_vcpu_nested(vcpu);
9054        free_loaded_vmcs(vmx->loaded_vmcs);
9055        kfree(vmx->guest_msrs);
9056        kvm_vcpu_uninit(vcpu);
9057        kmem_cache_free(kvm_vcpu_cache, vmx);
9058}
9059
9060static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
9061{
9062        int err;
9063        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
9064        int cpu;
9065
9066        if (!vmx)
9067                return ERR_PTR(-ENOMEM);
9068
9069        vmx->vpid = allocate_vpid();
9070
9071        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
9072        if (err)
9073                goto free_vcpu;
9074
9075        err = -ENOMEM;
9076
9077        /*
9078         * If PML is turned on, failure on enabling PML just results in failure
9079         * of creating the vcpu, therefore we can simplify PML logic (by
9080         * avoiding dealing with cases, such as enabling PML partially on vcpus
9081         * for the guest, etc.
9082         */
9083        if (enable_pml) {
9084                vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
9085                if (!vmx->pml_pg)
9086                        goto uninit_vcpu;
9087        }
9088
9089        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
9090        BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
9091                     > PAGE_SIZE);
9092
9093        if (!vmx->guest_msrs)
9094                goto free_pml;
9095
9096        vmx->loaded_vmcs = &vmx->vmcs01;
9097        vmx->loaded_vmcs->vmcs = alloc_vmcs();
9098        if (!vmx->loaded_vmcs->vmcs)
9099                goto free_msrs;
9100        if (!vmm_exclusive)
9101                kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
9102        loaded_vmcs_init(vmx->loaded_vmcs);
9103        if (!vmm_exclusive)
9104                kvm_cpu_vmxoff();
9105
9106        cpu = get_cpu();
9107        vmx_vcpu_load(&vmx->vcpu, cpu);
9108        vmx->vcpu.cpu = cpu;
9109        err = vmx_vcpu_setup(vmx);
9110        vmx_vcpu_put(&vmx->vcpu);
9111        put_cpu();
9112        if (err)
9113                goto free_vmcs;
9114        if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9115                err = alloc_apic_access_page(kvm);
9116                if (err)
9117                        goto free_vmcs;
9118        }
9119
9120        if (enable_ept) {
9121                if (!kvm->arch.ept_identity_map_addr)
9122                        kvm->arch.ept_identity_map_addr =
9123                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
9124                err = init_rmode_identity_map(kvm);
9125                if (err)
9126                        goto free_vmcs;
9127        }
9128
9129        if (nested) {
9130                nested_vmx_setup_ctls_msrs(vmx);
9131                vmx->nested.vpid02 = allocate_vpid();
9132        }
9133
9134        vmx->nested.posted_intr_nv = -1;
9135        vmx->nested.current_vmptr = -1ull;
9136        vmx->nested.current_vmcs12 = NULL;
9137
9138        vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
9139
9140        return &vmx->vcpu;
9141
9142free_vmcs:
9143        free_vpid(vmx->nested.vpid02);
9144        free_loaded_vmcs(vmx->loaded_vmcs);
9145free_msrs:
9146        kfree(vmx->guest_msrs);
9147free_pml:
9148        vmx_destroy_pml_buffer(vmx);
9149uninit_vcpu:
9150        kvm_vcpu_uninit(&vmx->vcpu);
9151free_vcpu:
9152        free_vpid(vmx->vpid);
9153        kmem_cache_free(kvm_vcpu_cache, vmx);
9154        return ERR_PTR(err);
9155}
9156
9157static void __init vmx_check_processor_compat(void *rtn)
9158{
9159        struct vmcs_config vmcs_conf;
9160
9161        *(int *)rtn = 0;
9162        if (setup_vmcs_config(&vmcs_conf) < 0)
9163                *(int *)rtn = -EIO;
9164        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
9165                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
9166                                smp_processor_id());
9167                *(int *)rtn = -EIO;
9168        }
9169}
9170
9171static int get_ept_level(void)
9172{
9173        return VMX_EPT_DEFAULT_GAW + 1;
9174}
9175
9176static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
9177{
9178        u8 cache;
9179        u64 ipat = 0;
9180
9181        /* For VT-d and EPT combination
9182         * 1. MMIO: always map as UC
9183         * 2. EPT with VT-d:
9184         *   a. VT-d without snooping control feature: can't guarantee the
9185         *      result, try to trust guest.
9186         *   b. VT-d with snooping control feature: snooping control feature of
9187         *      VT-d engine can guarantee the cache correctness. Just set it
9188         *      to WB to keep consistent with host. So the same as item 3.
9189         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
9190         *    consistent with host MTRR
9191         */
9192        if (is_mmio) {
9193                cache = MTRR_TYPE_UNCACHABLE;
9194                goto exit;
9195        }
9196
9197        if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
9198                ipat = VMX_EPT_IPAT_BIT;
9199                cache = MTRR_TYPE_WRBACK;
9200                goto exit;
9201        }
9202
9203        if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9204                ipat = VMX_EPT_IPAT_BIT;
9205                if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
9206                        cache = MTRR_TYPE_WRBACK;
9207                else
9208                        cache = MTRR_TYPE_UNCACHABLE;
9209                goto exit;
9210        }
9211
9212        cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
9213
9214exit:
9215        return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
9216}
9217
9218static int vmx_get_lpage_level(void)
9219{
9220        if (enable_ept && !cpu_has_vmx_ept_1g_page())
9221                return PT_DIRECTORY_LEVEL;
9222        else
9223                /* For shadow and EPT supported 1GB page */
9224                return PT_PDPE_LEVEL;
9225}
9226
9227static void vmcs_set_secondary_exec_control(u32 new_ctl)
9228{
9229        /*
9230         * These bits in the secondary execution controls field
9231         * are dynamic, the others are mostly based on the hypervisor
9232         * architecture and the guest's CPUID.  Do not touch the
9233         * dynamic bits.
9234         */
9235        u32 mask =
9236                SECONDARY_EXEC_SHADOW_VMCS |
9237                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9238                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9239
9240        u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9241
9242        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9243                     (new_ctl & ~mask) | (cur_ctl & mask));
9244}
9245
9246static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9247{
9248        struct kvm_cpuid_entry2 *best;
9249        struct vcpu_vmx *vmx = to_vmx(vcpu);
9250        u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
9251
9252        if (vmx_rdtscp_supported()) {
9253                bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9254                if (!rdtscp_enabled)
9255                        secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
9256
9257                if (nested) {
9258                        if (rdtscp_enabled)
9259                                vmx->nested.nested_vmx_secondary_ctls_high |=
9260                                        SECONDARY_EXEC_RDTSCP;
9261                        else
9262                                vmx->nested.nested_vmx_secondary_ctls_high &=
9263                                        ~SECONDARY_EXEC_RDTSCP;
9264                }
9265        }
9266
9267        /* Exposing INVPCID only when PCID is exposed */
9268        best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9269        if (vmx_invpcid_supported() &&
9270            (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9271            !guest_cpuid_has_pcid(vcpu))) {
9272                secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
9273
9274                if (best)
9275                        best->ebx &= ~bit(X86_FEATURE_INVPCID);
9276        }
9277
9278        if (cpu_has_secondary_exec_ctrls())
9279                vmcs_set_secondary_exec_control(secondary_exec_ctl);
9280
9281        if (nested_vmx_allowed(vcpu))
9282                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
9283                        FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9284        else
9285                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
9286                        ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
9287}
9288
9289static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9290{
9291        if (func == 1 && nested)
9292                entry->ecx |= bit(X86_FEATURE_VMX);
9293}
9294
9295static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9296                struct x86_exception *fault)
9297{
9298        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9299        u32 exit_reason;
9300
9301        if (fault->error_code & PFERR_RSVD_MASK)
9302                exit_reason = EXIT_REASON_EPT_MISCONFIG;
9303        else
9304                exit_reason = EXIT_REASON_EPT_VIOLATION;
9305        nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
9306        vmcs12->guest_physical_address = fault->address;
9307}
9308
9309/* Callbacks for nested_ept_init_mmu_context: */
9310
9311static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9312{
9313        /* return the page table to be shadowed - in our case, EPT12 */
9314        return get_vmcs12(vcpu)->ept_pointer;
9315}
9316
9317static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
9318{
9319        WARN_ON(mmu_is_nested(vcpu));
9320        kvm_init_shadow_ept_mmu(vcpu,
9321                        to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9322                        VMX_EPT_EXECUTE_ONLY_BIT);
9323        vcpu->arch.mmu.set_cr3           = vmx_set_cr3;
9324        vcpu->arch.mmu.get_cr3           = nested_ept_get_cr3;
9325        vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9326
9327        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
9328}
9329
9330static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9331{
9332        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9333}
9334
9335static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9336                                            u16 error_code)
9337{
9338        bool inequality, bit;
9339
9340        bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9341        inequality =
9342                (error_code & vmcs12->page_fault_error_code_mask) !=
9343                 vmcs12->page_fault_error_code_match;
9344        return inequality ^ bit;
9345}
9346
9347static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9348                struct x86_exception *fault)
9349{
9350        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9351
9352        WARN_ON(!is_guest_mode(vcpu));
9353
9354        if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
9355                nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9356                                  vmcs_read32(VM_EXIT_INTR_INFO),
9357                                  vmcs_readl(EXIT_QUALIFICATION));
9358        else
9359                kvm_inject_page_fault(vcpu, fault);
9360}
9361
9362static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9363                                        struct vmcs12 *vmcs12)
9364{
9365        struct vcpu_vmx *vmx = to_vmx(vcpu);
9366        int maxphyaddr = cpuid_maxphyaddr(vcpu);
9367
9368        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9369                if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9370                    vmcs12->apic_access_addr >> maxphyaddr)
9371                        return false;
9372
9373                /*
9374                 * Translate L1 physical address to host physical
9375                 * address for vmcs02. Keep the page pinned, so this
9376                 * physical address remains valid. We keep a reference
9377                 * to it so we can release it later.
9378                 */
9379                if (vmx->nested.apic_access_page) /* shouldn't happen */
9380                        nested_release_page(vmx->nested.apic_access_page);
9381                vmx->nested.apic_access_page =
9382                        nested_get_page(vcpu, vmcs12->apic_access_addr);
9383        }
9384
9385        if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9386                if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9387                    vmcs12->virtual_apic_page_addr >> maxphyaddr)
9388                        return false;
9389
9390                if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9391                        nested_release_page(vmx->nested.virtual_apic_page);
9392                vmx->nested.virtual_apic_page =
9393                        nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9394
9395                /*
9396                 * Failing the vm entry is _not_ what the processor does
9397                 * but it's basically the only possibility we have.
9398                 * We could still enter the guest if CR8 load exits are
9399                 * enabled, CR8 store exits are enabled, and virtualize APIC
9400                 * access is disabled; in this case the processor would never
9401                 * use the TPR shadow and we could simply clear the bit from
9402                 * the execution control.  But such a configuration is useless,
9403                 * so let's keep the code simple.
9404                 */
9405                if (!vmx->nested.virtual_apic_page)
9406                        return false;
9407        }
9408
9409        if (nested_cpu_has_posted_intr(vmcs12)) {
9410                if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9411                    vmcs12->posted_intr_desc_addr >> maxphyaddr)
9412                        return false;
9413
9414                if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9415                        kunmap(vmx->nested.pi_desc_page);
9416                        nested_release_page(vmx->nested.pi_desc_page);
9417                }
9418                vmx->nested.pi_desc_page =
9419                        nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9420                if (!vmx->nested.pi_desc_page)
9421                        return false;
9422
9423                vmx->nested.pi_desc =
9424                        (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9425                if (!vmx->nested.pi_desc) {
9426                        nested_release_page_clean(vmx->nested.pi_desc_page);
9427                        return false;
9428                }
9429                vmx->nested.pi_desc =
9430                        (struct pi_desc *)((void *)vmx->nested.pi_desc +
9431                        (unsigned long)(vmcs12->posted_intr_desc_addr &
9432                        (PAGE_SIZE - 1)));
9433        }
9434
9435        return true;
9436}
9437
9438static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9439{
9440        u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9441        struct vcpu_vmx *vmx = to_vmx(vcpu);
9442
9443        if (vcpu->arch.virtual_tsc_khz == 0)
9444                return;
9445
9446        /* Make sure short timeouts reliably trigger an immediate vmexit.
9447         * hrtimer_start does not guarantee this. */
9448        if (preemption_timeout <= 1) {
9449                vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9450                return;
9451        }
9452
9453        preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9454        preemption_timeout *= 1000000;
9455        do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9456        hrtimer_start(&vmx->nested.preemption_timer,
9457                      ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9458}
9459
9460static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9461                                                struct vmcs12 *vmcs12)
9462{
9463        int maxphyaddr;
9464        u64 addr;
9465
9466        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9467                return 0;
9468
9469        if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9470                WARN_ON(1);
9471                return -EINVAL;
9472        }
9473        maxphyaddr = cpuid_maxphyaddr(vcpu);
9474
9475        if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9476           ((addr + PAGE_SIZE) >> maxphyaddr))
9477                return -EINVAL;
9478
9479        return 0;
9480}
9481
9482/*
9483 * Merge L0's and L1's MSR bitmap, return false to indicate that
9484 * we do not use the hardware.
9485 */
9486static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9487                                               struct vmcs12 *vmcs12)
9488{
9489        int msr;
9490        struct page *page;
9491        unsigned long *msr_bitmap_l1;
9492        unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.msr_bitmap;
9493
9494        /* This shortcut is ok because we support only x2APIC MSRs so far. */
9495        if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9496                return false;
9497
9498        page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9499        if (!page) {
9500                WARN_ON(1);
9501                return false;
9502        }
9503        msr_bitmap_l1 = (unsigned long *)kmap(page);
9504        if (!msr_bitmap_l1) {
9505                nested_release_page_clean(page);
9506                WARN_ON(1);
9507                return false;
9508        }
9509
9510        memset(msr_bitmap_l0, 0xff, PAGE_SIZE);
9511
9512        if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
9513                if (nested_cpu_has_apic_reg_virt(vmcs12))
9514                        for (msr = 0x800; msr <= 0x8ff; msr++)
9515                                nested_vmx_disable_intercept_for_msr(
9516                                        msr_bitmap_l1, msr_bitmap_l0,
9517                                        msr, MSR_TYPE_R);
9518
9519                nested_vmx_disable_intercept_for_msr(
9520                                msr_bitmap_l1, msr_bitmap_l0,
9521                                APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9522                                MSR_TYPE_R | MSR_TYPE_W);
9523
9524                if (nested_cpu_has_vid(vmcs12)) {
9525                        nested_vmx_disable_intercept_for_msr(
9526                                msr_bitmap_l1, msr_bitmap_l0,
9527                                APIC_BASE_MSR + (APIC_EOI >> 4),
9528                                MSR_TYPE_W);
9529                        nested_vmx_disable_intercept_for_msr(
9530                                msr_bitmap_l1, msr_bitmap_l0,
9531                                APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9532                                MSR_TYPE_W);
9533                }
9534        }
9535        kunmap(page);
9536        nested_release_page_clean(page);
9537
9538        return true;
9539}
9540
9541static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9542                                           struct vmcs12 *vmcs12)
9543{
9544        if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9545            !nested_cpu_has_apic_reg_virt(vmcs12) &&
9546            !nested_cpu_has_vid(vmcs12) &&
9547            !nested_cpu_has_posted_intr(vmcs12))
9548                return 0;
9549
9550        /*
9551         * If virtualize x2apic mode is enabled,
9552         * virtualize apic access must be disabled.
9553         */
9554        if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9555            nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
9556                return -EINVAL;
9557
9558        /*
9559         * If virtual interrupt delivery is enabled,
9560         * we must exit on external interrupts.
9561         */
9562        if (nested_cpu_has_vid(vmcs12) &&
9563           !nested_exit_on_intr(vcpu))
9564                return -EINVAL;
9565
9566        /*
9567         * bits 15:8 should be zero in posted_intr_nv,
9568         * the descriptor address has been already checked
9569         * in nested_get_vmcs12_pages.
9570         */
9571        if (nested_cpu_has_posted_intr(vmcs12) &&
9572           (!nested_cpu_has_vid(vmcs12) ||
9573            !nested_exit_intr_ack_set(vcpu) ||
9574            vmcs12->posted_intr_nv & 0xff00))
9575                return -EINVAL;
9576
9577        /* tpr shadow is needed by all apicv features. */
9578        if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9579                return -EINVAL;
9580
9581        return 0;
9582}
9583
9584static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9585                                       unsigned long count_field,
9586                                       unsigned long addr_field)
9587{
9588        int maxphyaddr;
9589        u64 count, addr;
9590
9591        if (vmcs12_read_any(vcpu, count_field, &count) ||
9592            vmcs12_read_any(vcpu, addr_field, &addr)) {
9593                WARN_ON(1);
9594                return -EINVAL;
9595        }
9596        if (count == 0)
9597                return 0;
9598        maxphyaddr = cpuid_maxphyaddr(vcpu);
9599        if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9600            (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9601                pr_warn_ratelimited(
9602                        "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9603                        addr_field, maxphyaddr, count, addr);
9604                return -EINVAL;
9605        }
9606        return 0;
9607}
9608
9609static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9610                                                struct vmcs12 *vmcs12)
9611{
9612        if (vmcs12->vm_exit_msr_load_count == 0 &&
9613            vmcs12->vm_exit_msr_store_count == 0 &&
9614            vmcs12->vm_entry_msr_load_count == 0)
9615                return 0; /* Fast path */
9616        if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
9617                                        VM_EXIT_MSR_LOAD_ADDR) ||
9618            nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
9619                                        VM_EXIT_MSR_STORE_ADDR) ||
9620            nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
9621                                        VM_ENTRY_MSR_LOAD_ADDR))
9622                return -EINVAL;
9623        return 0;
9624}
9625
9626static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9627                                       struct vmx_msr_entry *e)
9628{
9629        /* x2APIC MSR accesses are not allowed */
9630        if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
9631                return -EINVAL;
9632        if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9633            e->index == MSR_IA32_UCODE_REV)
9634                return -EINVAL;
9635        if (e->reserved != 0)
9636                return -EINVAL;
9637        return 0;
9638}
9639
9640static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9641                                     struct vmx_msr_entry *e)
9642{
9643        if (e->index == MSR_FS_BASE ||
9644            e->index == MSR_GS_BASE ||
9645            e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9646            nested_vmx_msr_check_common(vcpu, e))
9647                return -EINVAL;
9648        return 0;
9649}
9650
9651static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9652                                      struct vmx_msr_entry *e)
9653{
9654        if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9655            nested_vmx_msr_check_common(vcpu, e))
9656                return -EINVAL;
9657        return 0;
9658}
9659
9660/*
9661 * Load guest's/host's msr at nested entry/exit.
9662 * return 0 for success, entry index for failure.
9663 */
9664static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9665{
9666        u32 i;
9667        struct vmx_msr_entry e;
9668        struct msr_data msr;
9669
9670        msr.host_initiated = false;
9671        for (i = 0; i < count; i++) {
9672                if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9673                                        &e, sizeof(e))) {
9674                        pr_warn_ratelimited(
9675                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
9676                                __func__, i, gpa + i * sizeof(e));
9677                        goto fail;
9678                }
9679                if (nested_vmx_load_msr_check(vcpu, &e)) {
9680                        pr_warn_ratelimited(
9681                                "%s check failed (%u, 0x%x, 0x%x)\n",
9682                                __func__, i, e.index, e.reserved);
9683                        goto fail;
9684                }
9685                msr.index = e.index;
9686                msr.data = e.value;
9687                if (kvm_set_msr(vcpu, &msr)) {
9688                        pr_warn_ratelimited(
9689                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9690                                __func__, i, e.index, e.value);
9691                        goto fail;
9692                }
9693        }
9694        return 0;
9695fail:
9696        return i + 1;
9697}
9698
9699static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9700{
9701        u32 i;
9702        struct vmx_msr_entry e;
9703
9704        for (i = 0; i < count; i++) {
9705                struct msr_data msr_info;
9706                if (kvm_vcpu_read_guest(vcpu,
9707                                        gpa + i * sizeof(e),
9708                                        &e, 2 * sizeof(u32))) {
9709                        pr_warn_ratelimited(
9710                                "%s cannot read MSR entry (%u, 0x%08llx)\n",
9711                                __func__, i, gpa + i * sizeof(e));
9712                        return -EINVAL;
9713                }
9714                if (nested_vmx_store_msr_check(vcpu, &e)) {
9715                        pr_warn_ratelimited(
9716                                "%s check failed (%u, 0x%x, 0x%x)\n",
9717                                __func__, i, e.index, e.reserved);
9718                        return -EINVAL;
9719                }
9720                msr_info.host_initiated = false;
9721                msr_info.index = e.index;
9722                if (kvm_get_msr(vcpu, &msr_info)) {
9723                        pr_warn_ratelimited(
9724                                "%s cannot read MSR (%u, 0x%x)\n",
9725                                __func__, i, e.index);
9726                        return -EINVAL;
9727                }
9728                if (kvm_vcpu_write_guest(vcpu,
9729                                         gpa + i * sizeof(e) +
9730                                             offsetof(struct vmx_msr_entry, value),
9731                                         &msr_info.data, sizeof(msr_info.data))) {
9732                        pr_warn_ratelimited(
9733                                "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9734                                __func__, i, e.index, msr_info.data);
9735                        return -EINVAL;
9736                }
9737        }
9738        return 0;
9739}
9740
9741/*
9742 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9743 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
9744 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
9745 * guest in a way that will both be appropriate to L1's requests, and our
9746 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9747 * function also has additional necessary side-effects, like setting various
9748 * vcpu->arch fields.
9749 */
9750static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9751{
9752        struct vcpu_vmx *vmx = to_vmx(vcpu);
9753        u32 exec_control;
9754
9755        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9756        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9757        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9758        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9759        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9760        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9761        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9762        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9763        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9764        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9765        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9766        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9767        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9768        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9769        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9770        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9771        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9772        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9773        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9774        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9775        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9776        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9777        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9778        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9779        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9780        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9781        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9782        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9783        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9784        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9785        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9786        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9787        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9788        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9789        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9790        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9791
9792        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9793                kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9794                vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9795        } else {
9796                kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9797                vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9798        }
9799        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9800                vmcs12->vm_entry_intr_info_field);
9801        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9802                vmcs12->vm_entry_exception_error_code);
9803        vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9804                vmcs12->vm_entry_instruction_len);
9805        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9806                vmcs12->guest_interruptibility_info);
9807        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
9808        vmx_set_rflags(vcpu, vmcs12->guest_rflags);
9809        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9810                vmcs12->guest_pending_dbg_exceptions);
9811        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9812        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9813
9814        if (nested_cpu_has_xsaves(vmcs12))
9815                vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
9816        vmcs_write64(VMCS_LINK_POINTER, -1ull);
9817
9818        exec_control = vmcs12->pin_based_vm_exec_control;
9819
9820        /* Preemption timer setting is only taken from vmcs01.  */
9821        exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9822        exec_control |= vmcs_config.pin_based_exec_ctrl;
9823        if (vmx->hv_deadline_tsc == -1)
9824                exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9825
9826        /* Posted interrupts setting is only taken from vmcs12.  */
9827        if (nested_cpu_has_posted_intr(vmcs12)) {
9828                /*
9829                 * Note that we use L0's vector here and in
9830                 * vmx_deliver_nested_posted_interrupt.
9831                 */
9832                vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9833                vmx->nested.pi_pending = false;
9834                vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
9835                vmcs_write64(POSTED_INTR_DESC_ADDR,
9836                        page_to_phys(vmx->nested.pi_desc_page) +
9837                        (unsigned long)(vmcs12->posted_intr_desc_addr &
9838                        (PAGE_SIZE - 1)));
9839        } else
9840                exec_control &= ~PIN_BASED_POSTED_INTR;
9841
9842        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
9843
9844        vmx->nested.preemption_timer_expired = false;
9845        if (nested_cpu_has_preemption_timer(vmcs12))
9846                vmx_start_preemption_timer(vcpu);
9847
9848        /*
9849         * Whether page-faults are trapped is determined by a combination of
9850         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9851         * If enable_ept, L0 doesn't care about page faults and we should
9852         * set all of these to L1's desires. However, if !enable_ept, L0 does
9853         * care about (at least some) page faults, and because it is not easy
9854         * (if at all possible?) to merge L0 and L1's desires, we simply ask
9855         * to exit on each and every L2 page fault. This is done by setting
9856         * MASK=MATCH=0 and (see below) EB.PF=1.
9857         * Note that below we don't need special code to set EB.PF beyond the
9858         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9859         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9860         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9861         *
9862         * A problem with this approach (when !enable_ept) is that L1 may be
9863         * injected with more page faults than it asked for. This could have
9864         * caused problems, but in practice existing hypervisors don't care.
9865         * To fix this, we will need to emulate the PFEC checking (on the L1
9866         * page tables), using walk_addr(), when injecting PFs to L1.
9867         */
9868        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9869                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9870        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9871                enable_ept ? vmcs12->page_fault_error_code_match : 0);
9872
9873        if (cpu_has_secondary_exec_ctrls()) {
9874                exec_control = vmx_secondary_exec_control(vmx);
9875
9876                /* Take the following fields only from vmcs12 */
9877                exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
9878                                  SECONDARY_EXEC_RDTSCP |
9879                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
9880                                  SECONDARY_EXEC_APIC_REGISTER_VIRT);
9881                if (nested_cpu_has(vmcs12,
9882                                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9883                        exec_control |= vmcs12->secondary_vm_exec_control;
9884
9885                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
9886                        /*
9887                         * If translation failed, no matter: This feature asks
9888                         * to exit when accessing the given address, and if it
9889                         * can never be accessed, this feature won't do
9890                         * anything anyway.
9891                         */
9892                        if (!vmx->nested.apic_access_page)
9893                                exec_control &=
9894                                  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9895                        else
9896                                vmcs_write64(APIC_ACCESS_ADDR,
9897                                  page_to_phys(vmx->nested.apic_access_page));
9898                } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
9899                            cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
9900                        exec_control |=
9901                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9902                        kvm_vcpu_reload_apic_access_page(vcpu);
9903                }
9904
9905                if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9906                        vmcs_write64(EOI_EXIT_BITMAP0,
9907                                vmcs12->eoi_exit_bitmap0);
9908                        vmcs_write64(EOI_EXIT_BITMAP1,
9909                                vmcs12->eoi_exit_bitmap1);
9910                        vmcs_write64(EOI_EXIT_BITMAP2,
9911                                vmcs12->eoi_exit_bitmap2);
9912                        vmcs_write64(EOI_EXIT_BITMAP3,
9913                                vmcs12->eoi_exit_bitmap3);
9914                        vmcs_write16(GUEST_INTR_STATUS,
9915                                vmcs12->guest_intr_status);
9916                }
9917
9918                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9919        }
9920
9921
9922        /*
9923         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9924         * Some constant fields are set here by vmx_set_constant_host_state().
9925         * Other fields are different per CPU, and will be set later when
9926         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9927         */
9928        vmx_set_constant_host_state(vmx);
9929
9930        /*
9931         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9932         * entry, but only if the current (host) sp changed from the value
9933         * we wrote last (vmx->host_rsp). This cache is no longer relevant
9934         * if we switch vmcs, and rather than hold a separate cache per vmcs,
9935         * here we just force the write to happen on entry.
9936         */
9937        vmx->host_rsp = 0;
9938
9939        exec_control = vmx_exec_control(vmx); /* L0's desires */
9940        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9941        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9942        exec_control &= ~CPU_BASED_TPR_SHADOW;
9943        exec_control |= vmcs12->cpu_based_vm_exec_control;
9944
9945        if (exec_control & CPU_BASED_TPR_SHADOW) {
9946                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9947                                page_to_phys(vmx->nested.virtual_apic_page));
9948                vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9949        }
9950
9951        if (cpu_has_vmx_msr_bitmap() &&
9952            exec_control & CPU_BASED_USE_MSR_BITMAPS &&
9953            nested_vmx_merge_msr_bitmap(vcpu, vmcs12))
9954                ; /* MSR_BITMAP will be set by following vmx_set_efer. */
9955        else
9956                exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9957
9958        /*
9959         * Merging of IO bitmap not currently supported.
9960         * Rather, exit every time.
9961         */
9962        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9963        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9964
9965        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9966
9967        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9968         * bitwise-or of what L1 wants to trap for L2, and what we want to
9969         * trap. Note that CR0.TS also needs updating - we do this later.
9970         */
9971        update_exception_bitmap(vcpu);
9972        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9973        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9974
9975        /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9976         * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9977         * bits are further modified by vmx_set_efer() below.
9978         */
9979        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
9980
9981        /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9982         * emulated by vmx_set_efer(), below.
9983         */
9984        vm_entry_controls_init(vmx, 
9985                (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9986                        ~VM_ENTRY_IA32E_MODE) |
9987                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9988
9989        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
9990                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
9991                vcpu->arch.pat = vmcs12->guest_ia32_pat;
9992        } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
9993                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9994
9995
9996        set_cr4_guest_host_mask(vmx);
9997
9998        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9999                vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10000
10001        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
10002                vmcs_write64(TSC_OFFSET,
10003                        vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
10004        else
10005                vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10006        if (kvm_has_tsc_control)
10007                decache_tsc_multiplier(vmx);
10008
10009        if (enable_vpid) {
10010                /*
10011                 * There is no direct mapping between vpid02 and vpid12, the
10012                 * vpid02 is per-vCPU for L0 and reused while the value of
10013                 * vpid12 is changed w/ one invvpid during nested vmentry.
10014                 * The vpid12 is allocated by L1 for L2, so it will not
10015                 * influence global bitmap(for vpid01 and vpid02 allocation)
10016                 * even if spawn a lot of nested vCPUs.
10017                 */
10018                if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
10019                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10020                        if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
10021                                vmx->nested.last_vpid = vmcs12->virtual_processor_id;
10022                                __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
10023                        }
10024                } else {
10025                        vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10026                        vmx_flush_tlb(vcpu);
10027                }
10028
10029        }
10030
10031        if (nested_cpu_has_ept(vmcs12)) {
10032                kvm_mmu_unload(vcpu);
10033                nested_ept_init_mmu_context(vcpu);
10034        }
10035
10036        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
10037                vcpu->arch.efer = vmcs12->guest_ia32_efer;
10038        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
10039                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10040        else
10041                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10042        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
10043        vmx_set_efer(vcpu, vcpu->arch.efer);
10044
10045        /*
10046         * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
10047         * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
10048         * The CR0_READ_SHADOW is what L2 should have expected to read given
10049         * the specifications by L1; It's not enough to take
10050         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
10051         * have more bits than L1 expected.
10052         */
10053        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
10054        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
10055
10056        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
10057        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
10058
10059        /* shadow page tables on either EPT or shadow page tables */
10060        kvm_set_cr3(vcpu, vmcs12->guest_cr3);
10061        kvm_mmu_reset_context(vcpu);
10062
10063        if (!enable_ept)
10064                vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
10065
10066        /*
10067         * L1 may access the L2's PDPTR, so save them to construct vmcs12
10068         */
10069        if (enable_ept) {
10070                vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10071                vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10072                vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10073                vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10074        }
10075
10076        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
10077        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
10078}
10079
10080/*
10081 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
10082 * for running an L2 nested guest.
10083 */
10084static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
10085{
10086        struct vmcs12 *vmcs12;
10087        struct vcpu_vmx *vmx = to_vmx(vcpu);
10088        int cpu;
10089        struct loaded_vmcs *vmcs02;
10090        bool ia32e;
10091        u32 msr_entry_idx;
10092
10093        if (!nested_vmx_check_permission(vcpu) ||
10094            !nested_vmx_check_vmcs12(vcpu))
10095                return 1;
10096
10097        skip_emulated_instruction(vcpu);
10098        vmcs12 = get_vmcs12(vcpu);
10099
10100        if (enable_shadow_vmcs)
10101                copy_shadow_to_vmcs12(vmx);
10102
10103        /*
10104         * The nested entry process starts with enforcing various prerequisites
10105         * on vmcs12 as required by the Intel SDM, and act appropriately when
10106         * they fail: As the SDM explains, some conditions should cause the
10107         * instruction to fail, while others will cause the instruction to seem
10108         * to succeed, but return an EXIT_REASON_INVALID_STATE.
10109         * To speed up the normal (success) code path, we should avoid checking
10110         * for misconfigurations which will anyway be caught by the processor
10111         * when using the merged vmcs02.
10112         */
10113        if (vmcs12->launch_state == launch) {
10114                nested_vmx_failValid(vcpu,
10115                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
10116                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
10117                return 1;
10118        }
10119
10120        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
10121            vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
10122                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10123                return 1;
10124        }
10125
10126        if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
10127                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10128                return 1;
10129        }
10130
10131        if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
10132                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10133                return 1;
10134        }
10135
10136        if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
10137                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10138                return 1;
10139        }
10140
10141        if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
10142                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10143                return 1;
10144        }
10145
10146        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
10147                                vmx->nested.nested_vmx_true_procbased_ctls_low,
10148                                vmx->nested.nested_vmx_procbased_ctls_high) ||
10149            !vmx_control_verify(vmcs12->secondary_vm_exec_control,
10150                                vmx->nested.nested_vmx_secondary_ctls_low,
10151                                vmx->nested.nested_vmx_secondary_ctls_high) ||
10152            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
10153                                vmx->nested.nested_vmx_pinbased_ctls_low,
10154                                vmx->nested.nested_vmx_pinbased_ctls_high) ||
10155            !vmx_control_verify(vmcs12->vm_exit_controls,
10156                                vmx->nested.nested_vmx_true_exit_ctls_low,
10157                                vmx->nested.nested_vmx_exit_ctls_high) ||
10158            !vmx_control_verify(vmcs12->vm_entry_controls,
10159                                vmx->nested.nested_vmx_true_entry_ctls_low,
10160                                vmx->nested.nested_vmx_entry_ctls_high))
10161        {
10162                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
10163                return 1;
10164        }
10165
10166        if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
10167            ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10168                nested_vmx_failValid(vcpu,
10169                        VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
10170                return 1;
10171        }
10172
10173        if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
10174            ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
10175                nested_vmx_entry_failure(vcpu, vmcs12,
10176                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10177                return 1;
10178        }
10179        if (vmcs12->vmcs_link_pointer != -1ull) {
10180                nested_vmx_entry_failure(vcpu, vmcs12,
10181                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
10182                return 1;
10183        }
10184
10185        /*
10186         * If the load IA32_EFER VM-entry control is 1, the following checks
10187         * are performed on the field for the IA32_EFER MSR:
10188         * - Bits reserved in the IA32_EFER MSR must be 0.
10189         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10190         *   the IA-32e mode guest VM-exit control. It must also be identical
10191         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10192         *   CR0.PG) is 1.
10193         */
10194        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10195                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10196                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10197                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10198                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10199                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10200                        nested_vmx_entry_failure(vcpu, vmcs12,
10201                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10202                        return 1;
10203                }
10204        }
10205
10206        /*
10207         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10208         * IA32_EFER MSR must be 0 in the field for that register. In addition,
10209         * the values of the LMA and LME bits in the field must each be that of
10210         * the host address-space size VM-exit control.
10211         */
10212        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10213                ia32e = (vmcs12->vm_exit_controls &
10214                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10215                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10216                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10217                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10218                        nested_vmx_entry_failure(vcpu, vmcs12,
10219                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10220                        return 1;
10221                }
10222        }
10223
10224        /*
10225         * We're finally done with prerequisite checking, and can start with
10226         * the nested entry.
10227         */
10228
10229        vmcs02 = nested_get_current_vmcs02(vmx);
10230        if (!vmcs02)
10231                return -ENOMEM;
10232
10233        enter_guest_mode(vcpu);
10234
10235        vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10236
10237        if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10238                vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10239
10240        cpu = get_cpu();
10241        vmx->loaded_vmcs = vmcs02;
10242        vmx_vcpu_put(vcpu);
10243        vmx_vcpu_load(vcpu, cpu);
10244        vcpu->cpu = cpu;
10245        put_cpu();
10246
10247        vmx_segment_cache_clear(vmx);
10248
10249        prepare_vmcs02(vcpu, vmcs12);
10250
10251        msr_entry_idx = nested_vmx_load_msr(vcpu,
10252                                            vmcs12->vm_entry_msr_load_addr,
10253                                            vmcs12->vm_entry_msr_load_count);
10254        if (msr_entry_idx) {
10255                leave_guest_mode(vcpu);
10256                vmx_load_vmcs01(vcpu);
10257                nested_vmx_entry_failure(vcpu, vmcs12,
10258                                EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10259                return 1;
10260        }
10261
10262        vmcs12->launch_state = 1;
10263
10264        if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
10265                return kvm_vcpu_halt(vcpu);
10266
10267        vmx->nested.nested_run_pending = 1;
10268
10269        /*
10270         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10271         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10272         * returned as far as L1 is concerned. It will only return (and set
10273         * the success flag) when L2 exits (see nested_vmx_vmexit()).
10274         */
10275        return 1;
10276}
10277
10278/*
10279 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10280 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10281 * This function returns the new value we should put in vmcs12.guest_cr0.
10282 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10283 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10284 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10285 *     didn't trap the bit, because if L1 did, so would L0).
10286 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10287 *     been modified by L2, and L1 knows it. So just leave the old value of
10288 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10289 *     isn't relevant, because if L0 traps this bit it can set it to anything.
10290 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10291 *     changed these bits, and therefore they need to be updated, but L0
10292 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10293 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10294 */
10295static inline unsigned long
10296vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10297{
10298        return
10299        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10300        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10301        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10302                        vcpu->arch.cr0_guest_owned_bits));
10303}
10304
10305static inline unsigned long
10306vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10307{
10308        return
10309        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10310        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10311        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10312                        vcpu->arch.cr4_guest_owned_bits));
10313}
10314
10315static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10316                                       struct vmcs12 *vmcs12)
10317{
10318        u32 idt_vectoring;
10319        unsigned int nr;
10320
10321        if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
10322                nr = vcpu->arch.exception.nr;
10323                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10324
10325                if (kvm_exception_is_soft(nr)) {
10326                        vmcs12->vm_exit_instruction_len =
10327                                vcpu->arch.event_exit_inst_len;
10328                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10329                } else
10330                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10331
10332                if (vcpu->arch.exception.has_error_code) {
10333                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10334                        vmcs12->idt_vectoring_error_code =
10335                                vcpu->arch.exception.error_code;
10336                }
10337
10338                vmcs12->idt_vectoring_info_field = idt_vectoring;
10339        } else if (vcpu->arch.nmi_injected) {
10340                vmcs12->idt_vectoring_info_field =
10341                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10342        } else if (vcpu->arch.interrupt.pending) {
10343                nr = vcpu->arch.interrupt.nr;
10344                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10345
10346                if (vcpu->arch.interrupt.soft) {
10347                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
10348                        vmcs12->vm_entry_instruction_len =
10349                                vcpu->arch.event_exit_inst_len;
10350                } else
10351                        idt_vectoring |= INTR_TYPE_EXT_INTR;
10352
10353                vmcs12->idt_vectoring_info_field = idt_vectoring;
10354        }
10355}
10356
10357static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10358{
10359        struct vcpu_vmx *vmx = to_vmx(vcpu);
10360
10361        if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10362            vmx->nested.preemption_timer_expired) {
10363                if (vmx->nested.nested_run_pending)
10364                        return -EBUSY;
10365                nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10366                return 0;
10367        }
10368
10369        if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
10370                if (vmx->nested.nested_run_pending ||
10371                    vcpu->arch.interrupt.pending)
10372                        return -EBUSY;
10373                nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10374                                  NMI_VECTOR | INTR_TYPE_NMI_INTR |
10375                                  INTR_INFO_VALID_MASK, 0);
10376                /*
10377                 * The NMI-triggered VM exit counts as injection:
10378                 * clear this one and block further NMIs.
10379                 */
10380                vcpu->arch.nmi_pending = 0;
10381                vmx_set_nmi_mask(vcpu, true);
10382                return 0;
10383        }
10384
10385        if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10386            nested_exit_on_intr(vcpu)) {
10387                if (vmx->nested.nested_run_pending)
10388                        return -EBUSY;
10389                nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
10390                return 0;
10391        }
10392
10393        return vmx_complete_nested_posted_interrupt(vcpu);
10394}
10395
10396static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10397{
10398        ktime_t remaining =
10399                hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10400        u64 value;
10401
10402        if (ktime_to_ns(remaining) <= 0)
10403                return 0;
10404
10405        value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10406        do_div(value, 1000000);
10407        return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10408}
10409
10410/*
10411 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10412 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10413 * and this function updates it to reflect the changes to the guest state while
10414 * L2 was running (and perhaps made some exits which were handled directly by L0
10415 * without going back to L1), and to reflect the exit reason.
10416 * Note that we do not have to copy here all VMCS fields, just those that
10417 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10418 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10419 * which already writes to vmcs12 directly.
10420 */
10421static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10422                           u32 exit_reason, u32 exit_intr_info,
10423                           unsigned long exit_qualification)
10424{
10425        /* update guest state fields: */
10426        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10427        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10428
10429        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10430        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10431        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10432
10433        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10434        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10435        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10436        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10437        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10438        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10439        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10440        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10441        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10442        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10443        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10444        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10445        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10446        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10447        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10448        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10449        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10450        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10451        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10452        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10453        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10454        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10455        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10456        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10457        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10458        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10459        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10460        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10461        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10462        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10463        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10464        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10465        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10466        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10467        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10468        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10469
10470        vmcs12->guest_interruptibility_info =
10471                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10472        vmcs12->guest_pending_dbg_exceptions =
10473                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
10474        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10475                vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10476        else
10477                vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
10478
10479        if (nested_cpu_has_preemption_timer(vmcs12)) {
10480                if (vmcs12->vm_exit_controls &
10481                    VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10482                        vmcs12->vmx_preemption_timer_value =
10483                                vmx_get_preemption_timer_value(vcpu);
10484                hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10485        }
10486
10487        /*
10488         * In some cases (usually, nested EPT), L2 is allowed to change its
10489         * own CR3 without exiting. If it has changed it, we must keep it.
10490         * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10491         * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10492         *
10493         * Additionally, restore L2's PDPTR to vmcs12.
10494         */
10495        if (enable_ept) {
10496                vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
10497                vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10498                vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10499                vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10500                vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10501        }
10502
10503        if (nested_cpu_has_vid(vmcs12))
10504                vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10505
10506        vmcs12->vm_entry_controls =
10507                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
10508                (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
10509
10510        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10511                kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10512                vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10513        }
10514
10515        /* TODO: These cannot have changed unless we have MSR bitmaps and
10516         * the relevant bit asks not to trap the change */
10517        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
10518                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10519        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10520                vmcs12->guest_ia32_efer = vcpu->arch.efer;
10521        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10522        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10523        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
10524        if (kvm_mpx_supported())
10525                vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
10526        if (nested_cpu_has_xsaves(vmcs12))
10527                vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
10528
10529        /* update exit information fields: */
10530
10531        vmcs12->vm_exit_reason = exit_reason;
10532        vmcs12->exit_qualification = exit_qualification;
10533
10534        vmcs12->vm_exit_intr_info = exit_intr_info;
10535        if ((vmcs12->vm_exit_intr_info &
10536             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10537            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10538                vmcs12->vm_exit_intr_error_code =
10539                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
10540        vmcs12->idt_vectoring_info_field = 0;
10541        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10542        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10543
10544        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10545                /* vm_entry_intr_info_field is cleared on exit. Emulate this
10546                 * instead of reading the real value. */
10547                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
10548
10549                /*
10550                 * Transfer the event that L0 or L1 may wanted to inject into
10551                 * L2 to IDT_VECTORING_INFO_FIELD.
10552                 */
10553                vmcs12_save_pending_event(vcpu, vmcs12);
10554        }
10555
10556        /*
10557         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10558         * preserved above and would only end up incorrectly in L1.
10559         */
10560        vcpu->arch.nmi_injected = false;
10561        kvm_clear_exception_queue(vcpu);
10562        kvm_clear_interrupt_queue(vcpu);
10563}
10564
10565/*
10566 * A part of what we need to when the nested L2 guest exits and we want to
10567 * run its L1 parent, is to reset L1's guest state to the host state specified
10568 * in vmcs12.
10569 * This function is to be called not only on normal nested exit, but also on
10570 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10571 * Failures During or After Loading Guest State").
10572 * This function should be called when the active VMCS is L1's (vmcs01).
10573 */
10574static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10575                                   struct vmcs12 *vmcs12)
10576{
10577        struct kvm_segment seg;
10578
10579        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10580                vcpu->arch.efer = vmcs12->host_ia32_efer;
10581        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10582                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10583        else
10584                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10585        vmx_set_efer(vcpu, vcpu->arch.efer);
10586
10587        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10588        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
10589        vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
10590        /*
10591         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10592         * actually changed, because it depends on the current state of
10593         * fpu_active (which may have changed).
10594         * Note that vmx_set_cr0 refers to efer set above.
10595         */
10596        vmx_set_cr0(vcpu, vmcs12->host_cr0);
10597        /*
10598         * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10599         * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10600         * but we also need to update cr0_guest_host_mask and exception_bitmap.
10601         */
10602        update_exception_bitmap(vcpu);
10603        vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10604        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10605
10606        /*
10607         * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10608         * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10609         */
10610        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10611        kvm_set_cr4(vcpu, vmcs12->host_cr4);
10612
10613        nested_ept_uninit_mmu_context(vcpu);
10614
10615        kvm_set_cr3(vcpu, vmcs12->host_cr3);
10616        kvm_mmu_reset_context(vcpu);
10617
10618        if (!enable_ept)
10619                vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10620
10621        if (enable_vpid) {
10622                /*
10623                 * Trivially support vpid by letting L2s share their parent
10624                 * L1's vpid. TODO: move to a more elaborate solution, giving
10625                 * each L2 its own vpid and exposing the vpid feature to L1.
10626                 */
10627                vmx_flush_tlb(vcpu);
10628        }
10629
10630
10631        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10632        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10633        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10634        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10635        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
10636
10637        /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
10638        if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10639                vmcs_write64(GUEST_BNDCFGS, 0);
10640
10641        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
10642                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
10643                vcpu->arch.pat = vmcs12->host_ia32_pat;
10644        }
10645        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10646                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10647                        vmcs12->host_ia32_perf_global_ctrl);
10648
10649        /* Set L1 segment info according to Intel SDM
10650            27.5.2 Loading Host Segment and Descriptor-Table Registers */
10651        seg = (struct kvm_segment) {
10652                .base = 0,
10653                .limit = 0xFFFFFFFF,
10654                .selector = vmcs12->host_cs_selector,
10655                .type = 11,
10656                .present = 1,
10657                .s = 1,
10658                .g = 1
10659        };
10660        if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10661                seg.l = 1;
10662        else
10663                seg.db = 1;
10664        vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10665        seg = (struct kvm_segment) {
10666                .base = 0,
10667                .limit = 0xFFFFFFFF,
10668                .type = 3,
10669                .present = 1,
10670                .s = 1,
10671                .db = 1,
10672                .g = 1
10673        };
10674        seg.selector = vmcs12->host_ds_selector;
10675        vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10676        seg.selector = vmcs12->host_es_selector;
10677        vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10678        seg.selector = vmcs12->host_ss_selector;
10679        vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10680        seg.selector = vmcs12->host_fs_selector;
10681        seg.base = vmcs12->host_fs_base;
10682        vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10683        seg.selector = vmcs12->host_gs_selector;
10684        seg.base = vmcs12->host_gs_base;
10685        vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10686        seg = (struct kvm_segment) {
10687                .base = vmcs12->host_tr_base,
10688                .limit = 0x67,
10689                .selector = vmcs12->host_tr_selector,
10690                .type = 11,
10691                .present = 1
10692        };
10693        vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10694
10695        kvm_set_dr(vcpu, 7, 0x400);
10696        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
10697
10698        if (cpu_has_vmx_msr_bitmap())
10699                vmx_set_msr_bitmap(vcpu);
10700
10701        if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10702                                vmcs12->vm_exit_msr_load_count))
10703                nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
10704}
10705
10706/*
10707 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10708 * and modify vmcs12 to make it see what it would expect to see there if
10709 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10710 */
10711static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10712                              u32 exit_intr_info,
10713                              unsigned long exit_qualification)
10714{
10715        struct vcpu_vmx *vmx = to_vmx(vcpu);
10716        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10717
10718        /* trying to cancel vmlaunch/vmresume is a bug */
10719        WARN_ON_ONCE(vmx->nested.nested_run_pending);
10720
10721        leave_guest_mode(vcpu);
10722        prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10723                       exit_qualification);
10724
10725        if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10726                                 vmcs12->vm_exit_msr_store_count))
10727                nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10728
10729        vmx_load_vmcs01(vcpu);
10730
10731        if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10732            && nested_exit_intr_ack_set(vcpu)) {
10733                int irq = kvm_cpu_get_interrupt(vcpu);
10734                WARN_ON(irq < 0);
10735                vmcs12->vm_exit_intr_info = irq |
10736                        INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10737        }
10738
10739        trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10740                                       vmcs12->exit_qualification,
10741                                       vmcs12->idt_vectoring_info_field,
10742                                       vmcs12->vm_exit_intr_info,
10743                                       vmcs12->vm_exit_intr_error_code,
10744                                       KVM_ISA_VMX);
10745
10746        vm_entry_controls_reset_shadow(vmx);
10747        vm_exit_controls_reset_shadow(vmx);
10748        vmx_segment_cache_clear(vmx);
10749
10750        /* if no vmcs02 cache requested, remove the one we used */
10751        if (VMCS02_POOL_SIZE == 0)
10752                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10753
10754        load_vmcs12_host_state(vcpu, vmcs12);
10755
10756        /* Update any VMCS fields that might have changed while L2 ran */
10757        vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10758        if (vmx->hv_deadline_tsc == -1)
10759                vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10760                                PIN_BASED_VMX_PREEMPTION_TIMER);
10761        else
10762                vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10763                              PIN_BASED_VMX_PREEMPTION_TIMER);
10764        if (kvm_has_tsc_control)
10765                decache_tsc_multiplier(vmx);
10766
10767        if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
10768                vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
10769                vmx_set_virtual_x2apic_mode(vcpu,
10770                                vcpu->arch.apic_base & X2APIC_ENABLE);
10771        }
10772
10773        /* This is needed for same reason as it was needed in prepare_vmcs02 */
10774        vmx->host_rsp = 0;
10775
10776        /* Unpin physical memory we referred to in vmcs02 */
10777        if (vmx->nested.apic_access_page) {
10778                nested_release_page(vmx->nested.apic_access_page);
10779                vmx->nested.apic_access_page = NULL;
10780        }
10781        if (vmx->nested.virtual_apic_page) {
10782                nested_release_page(vmx->nested.virtual_apic_page);
10783                vmx->nested.virtual_apic_page = NULL;
10784        }
10785        if (vmx->nested.pi_desc_page) {
10786                kunmap(vmx->nested.pi_desc_page);
10787                nested_release_page(vmx->nested.pi_desc_page);
10788                vmx->nested.pi_desc_page = NULL;
10789                vmx->nested.pi_desc = NULL;
10790        }
10791
10792        /*
10793         * We are now running in L2, mmu_notifier will force to reload the
10794         * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10795         */
10796        kvm_vcpu_reload_apic_access_page(vcpu);
10797
10798        /*
10799         * Exiting from L2 to L1, we're now back to L1 which thinks it just
10800         * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10801         * success or failure flag accordingly.
10802         */
10803        if (unlikely(vmx->fail)) {
10804                vmx->fail = 0;
10805                nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10806        } else
10807                nested_vmx_succeed(vcpu);
10808        if (enable_shadow_vmcs)
10809                vmx->nested.sync_shadow_vmcs = true;
10810
10811        /* in case we halted in L2 */
10812        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10813}
10814
10815/*
10816 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10817 */
10818static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10819{
10820        if (is_guest_mode(vcpu))
10821                nested_vmx_vmexit(vcpu, -1, 0, 0);
10822        free_nested(to_vmx(vcpu));
10823}
10824
10825/*
10826 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10827 * 23.7 "VM-entry failures during or after loading guest state" (this also
10828 * lists the acceptable exit-reason and exit-qualification parameters).
10829 * It should only be called before L2 actually succeeded to run, and when
10830 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10831 */
10832static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10833                        struct vmcs12 *vmcs12,
10834                        u32 reason, unsigned long qualification)
10835{
10836        load_vmcs12_host_state(vcpu, vmcs12);
10837        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10838        vmcs12->exit_qualification = qualification;
10839        nested_vmx_succeed(vcpu);
10840        if (enable_shadow_vmcs)
10841                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
10842}
10843
10844static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10845                               struct x86_instruction_info *info,
10846                               enum x86_intercept_stage stage)
10847{
10848        return X86EMUL_CONTINUE;
10849}
10850
10851#ifdef CONFIG_X86_64
10852/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
10853static inline int u64_shl_div_u64(u64 a, unsigned int shift,
10854                                  u64 divisor, u64 *result)
10855{
10856        u64 low = a << shift, high = a >> (64 - shift);
10857
10858        /* To avoid the overflow on divq */
10859        if (high >= divisor)
10860                return 1;
10861
10862        /* Low hold the result, high hold rem which is discarded */
10863        asm("divq %2\n\t" : "=a" (low), "=d" (high) :
10864            "rm" (divisor), "0" (low), "1" (high));
10865        *result = low;
10866
10867        return 0;
10868}
10869
10870static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
10871{
10872        struct vcpu_vmx *vmx = to_vmx(vcpu);
10873        u64 tscl = rdtsc();
10874        u64 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
10875        u64 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
10876
10877        /* Convert to host delta tsc if tsc scaling is enabled */
10878        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
10879                        u64_shl_div_u64(delta_tsc,
10880                                kvm_tsc_scaling_ratio_frac_bits,
10881                                vcpu->arch.tsc_scaling_ratio,
10882                                &delta_tsc))
10883                return -ERANGE;
10884
10885        /*
10886         * If the delta tsc can't fit in the 32 bit after the multi shift,
10887         * we can't use the preemption timer.
10888         * It's possible that it fits on later vmentries, but checking
10889         * on every vmentry is costly so we just use an hrtimer.
10890         */
10891        if (delta_tsc >> (cpu_preemption_timer_multi + 32))
10892                return -ERANGE;
10893
10894        vmx->hv_deadline_tsc = tscl + delta_tsc;
10895        vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
10896                        PIN_BASED_VMX_PREEMPTION_TIMER);
10897        return 0;
10898}
10899
10900static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
10901{
10902        struct vcpu_vmx *vmx = to_vmx(vcpu);
10903        vmx->hv_deadline_tsc = -1;
10904        vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
10905                        PIN_BASED_VMX_PREEMPTION_TIMER);
10906}
10907#endif
10908
10909static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
10910{
10911        if (ple_gap)
10912                shrink_ple_window(vcpu);
10913}
10914
10915static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10916                                     struct kvm_memory_slot *slot)
10917{
10918        kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10919        kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10920}
10921
10922static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10923                                       struct kvm_memory_slot *slot)
10924{
10925        kvm_mmu_slot_set_dirty(kvm, slot);
10926}
10927
10928static void vmx_flush_log_dirty(struct kvm *kvm)
10929{
10930        kvm_flush_pml_buffers(kvm);
10931}
10932
10933static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10934                                           struct kvm_memory_slot *memslot,
10935                                           gfn_t offset, unsigned long mask)
10936{
10937        kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10938}
10939
10940/*
10941 * This routine does the following things for vCPU which is going
10942 * to be blocked if VT-d PI is enabled.
10943 * - Store the vCPU to the wakeup list, so when interrupts happen
10944 *   we can find the right vCPU to wake up.
10945 * - Change the Posted-interrupt descriptor as below:
10946 *      'NDST' <-- vcpu->pre_pcpu
10947 *      'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10948 * - If 'ON' is set during this process, which means at least one
10949 *   interrupt is posted for this vCPU, we cannot block it, in
10950 *   this case, return 1, otherwise, return 0.
10951 *
10952 */
10953static int pi_pre_block(struct kvm_vcpu *vcpu)
10954{
10955        unsigned long flags;
10956        unsigned int dest;
10957        struct pi_desc old, new;
10958        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10959
10960        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10961                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
10962                !kvm_vcpu_apicv_active(vcpu))
10963                return 0;
10964
10965        vcpu->pre_pcpu = vcpu->cpu;
10966        spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10967                          vcpu->pre_pcpu), flags);
10968        list_add_tail(&vcpu->blocked_vcpu_list,
10969                      &per_cpu(blocked_vcpu_on_cpu,
10970                      vcpu->pre_pcpu));
10971        spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10972                               vcpu->pre_pcpu), flags);
10973
10974        do {
10975                old.control = new.control = pi_desc->control;
10976
10977                /*
10978                 * We should not block the vCPU if
10979                 * an interrupt is posted for it.
10980                 */
10981                if (pi_test_on(pi_desc) == 1) {
10982                        spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10983                                          vcpu->pre_pcpu), flags);
10984                        list_del(&vcpu->blocked_vcpu_list);
10985                        spin_unlock_irqrestore(
10986                                        &per_cpu(blocked_vcpu_on_cpu_lock,
10987                                        vcpu->pre_pcpu), flags);
10988                        vcpu->pre_pcpu = -1;
10989
10990                        return 1;
10991                }
10992
10993                WARN((pi_desc->sn == 1),
10994                     "Warning: SN field of posted-interrupts "
10995                     "is set before blocking\n");
10996
10997                /*
10998                 * Since vCPU can be preempted during this process,
10999                 * vcpu->cpu could be different with pre_pcpu, we
11000                 * need to set pre_pcpu as the destination of wakeup
11001                 * notification event, then we can find the right vCPU
11002                 * to wakeup in wakeup handler if interrupts happen
11003                 * when the vCPU is in blocked state.
11004                 */
11005                dest = cpu_physical_id(vcpu->pre_pcpu);
11006
11007                if (x2apic_enabled())
11008                        new.ndst = dest;
11009                else
11010                        new.ndst = (dest << 8) & 0xFF00;
11011
11012                /* set 'NV' to 'wakeup vector' */
11013                new.nv = POSTED_INTR_WAKEUP_VECTOR;
11014        } while (cmpxchg(&pi_desc->control, old.control,
11015                        new.control) != old.control);
11016
11017        return 0;
11018}
11019
11020static int vmx_pre_block(struct kvm_vcpu *vcpu)
11021{
11022        if (pi_pre_block(vcpu))
11023                return 1;
11024
11025        if (kvm_lapic_hv_timer_in_use(vcpu))
11026                kvm_lapic_switch_to_sw_timer(vcpu);
11027
11028        return 0;
11029}
11030
11031static void pi_post_block(struct kvm_vcpu *vcpu)
11032{
11033        struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
11034        struct pi_desc old, new;
11035        unsigned int dest;
11036        unsigned long flags;
11037
11038        if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
11039                !irq_remapping_cap(IRQ_POSTING_CAP)  ||
11040                !kvm_vcpu_apicv_active(vcpu))
11041                return;
11042
11043        do {
11044                old.control = new.control = pi_desc->control;
11045
11046                dest = cpu_physical_id(vcpu->cpu);
11047
11048                if (x2apic_enabled())
11049                        new.ndst = dest;
11050                else
11051                        new.ndst = (dest << 8) & 0xFF00;
11052
11053                /* Allow posting non-urgent interrupts */
11054                new.sn = 0;
11055
11056                /* set 'NV' to 'notification vector' */
11057                new.nv = POSTED_INTR_VECTOR;
11058        } while (cmpxchg(&pi_desc->control, old.control,
11059                        new.control) != old.control);
11060
11061        if(vcpu->pre_pcpu != -1) {
11062                spin_lock_irqsave(
11063                        &per_cpu(blocked_vcpu_on_cpu_lock,
11064                        vcpu->pre_pcpu), flags);
11065                list_del(&vcpu->blocked_vcpu_list);
11066                spin_unlock_irqrestore(
11067                        &per_cpu(blocked_vcpu_on_cpu_lock,
11068                        vcpu->pre_pcpu), flags);
11069                vcpu->pre_pcpu = -1;
11070        }
11071}
11072
11073static void vmx_post_block(struct kvm_vcpu *vcpu)
11074{
11075        if (kvm_x86_ops->set_hv_timer)
11076                kvm_lapic_switch_to_hv_timer(vcpu);
11077
11078        pi_post_block(vcpu);
11079}
11080
11081/*
11082 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
11083 *
11084 * @kvm: kvm
11085 * @host_irq: host irq of the interrupt
11086 * @guest_irq: gsi of the interrupt
11087 * @set: set or unset PI
11088 * returns 0 on success, < 0 on failure
11089 */
11090static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
11091                              uint32_t guest_irq, bool set)
11092{
11093        struct kvm_kernel_irq_routing_entry *e;
11094        struct kvm_irq_routing_table *irq_rt;
11095        struct kvm_lapic_irq irq;
11096        struct kvm_vcpu *vcpu;
11097        struct vcpu_data vcpu_info;
11098        int idx, ret = -EINVAL;
11099
11100        if (!kvm_arch_has_assigned_device(kvm) ||
11101                !irq_remapping_cap(IRQ_POSTING_CAP) ||
11102                !kvm_vcpu_apicv_active(kvm->vcpus[0]))
11103                return 0;
11104
11105        idx = srcu_read_lock(&kvm->irq_srcu);
11106        irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
11107        BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
11108
11109        hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
11110                if (e->type != KVM_IRQ_ROUTING_MSI)
11111                        continue;
11112                /*
11113                 * VT-d PI cannot support posting multicast/broadcast
11114                 * interrupts to a vCPU, we still use interrupt remapping
11115                 * for these kind of interrupts.
11116                 *
11117                 * For lowest-priority interrupts, we only support
11118                 * those with single CPU as the destination, e.g. user
11119                 * configures the interrupts via /proc/irq or uses
11120                 * irqbalance to make the interrupts single-CPU.
11121                 *
11122                 * We will support full lowest-priority interrupt later.
11123                 */
11124
11125                kvm_set_msi_irq(kvm, e, &irq);
11126                if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
11127                        /*
11128                         * Make sure the IRTE is in remapped mode if
11129                         * we don't handle it in posted mode.
11130                         */
11131                        ret = irq_set_vcpu_affinity(host_irq, NULL);
11132                        if (ret < 0) {
11133                                printk(KERN_INFO
11134                                   "failed to back to remapped mode, irq: %u\n",
11135                                   host_irq);
11136                                goto out;
11137                        }
11138
11139                        continue;
11140                }
11141
11142                vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
11143                vcpu_info.vector = irq.vector;
11144
11145                trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
11146                                vcpu_info.vector, vcpu_info.pi_desc_addr, set);
11147
11148                if (set)
11149                        ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
11150                else {
11151                        /* suppress notification event before unposting */
11152                        pi_set_sn(vcpu_to_pi_desc(vcpu));
11153                        ret = irq_set_vcpu_affinity(host_irq, NULL);
11154                        pi_clear_sn(vcpu_to_pi_desc(vcpu));
11155                }
11156
11157                if (ret < 0) {
11158                        printk(KERN_INFO "%s: failed to update PI IRTE\n",
11159                                        __func__);
11160                        goto out;
11161                }
11162        }
11163
11164        ret = 0;
11165out:
11166        srcu_read_unlock(&kvm->irq_srcu, idx);
11167        return ret;
11168}
11169
11170static void vmx_setup_mce(struct kvm_vcpu *vcpu)
11171{
11172        if (vcpu->arch.mcg_cap & MCG_LMCE_P)
11173                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
11174                        FEATURE_CONTROL_LMCE;
11175        else
11176                to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
11177                        ~FEATURE_CONTROL_LMCE;
11178}
11179
11180static struct kvm_x86_ops vmx_x86_ops = {
11181        .cpu_has_kvm_support = cpu_has_kvm_support,
11182        .disabled_by_bios = vmx_disabled_by_bios,
11183        .hardware_setup = hardware_setup,
11184        .hardware_unsetup = hardware_unsetup,
11185        .check_processor_compatibility = vmx_check_processor_compat,
11186        .hardware_enable = hardware_enable,
11187        .hardware_disable = hardware_disable,
11188        .cpu_has_accelerated_tpr = report_flexpriority,
11189        .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
11190
11191        .vcpu_create = vmx_create_vcpu,
11192        .vcpu_free = vmx_free_vcpu,
11193        .vcpu_reset = vmx_vcpu_reset,
11194
11195        .prepare_guest_switch = vmx_save_host_state,
11196        .vcpu_load = vmx_vcpu_load,
11197        .vcpu_put = vmx_vcpu_put,
11198
11199        .update_bp_intercept = update_exception_bitmap,
11200        .get_msr = vmx_get_msr,
11201        .set_msr = vmx_set_msr,
11202        .get_segment_base = vmx_get_segment_base,
11203        .get_segment = vmx_get_segment,
11204        .set_segment = vmx_set_segment,
11205        .get_cpl = vmx_get_cpl,
11206        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
11207        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
11208        .decache_cr3 = vmx_decache_cr3,
11209        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
11210        .set_cr0 = vmx_set_cr0,
11211        .set_cr3 = vmx_set_cr3,
11212        .set_cr4 = vmx_set_cr4,
11213        .set_efer = vmx_set_efer,
11214        .get_idt = vmx_get_idt,
11215        .set_idt = vmx_set_idt,
11216        .get_gdt = vmx_get_gdt,
11217        .set_gdt = vmx_set_gdt,
11218        .get_dr6 = vmx_get_dr6,
11219        .set_dr6 = vmx_set_dr6,
11220        .set_dr7 = vmx_set_dr7,
11221        .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
11222        .cache_reg = vmx_cache_reg,
11223        .get_rflags = vmx_get_rflags,
11224        .set_rflags = vmx_set_rflags,
11225
11226        .get_pkru = vmx_get_pkru,
11227
11228        .fpu_activate = vmx_fpu_activate,
11229        .fpu_deactivate = vmx_fpu_deactivate,
11230
11231        .tlb_flush = vmx_flush_tlb,
11232
11233        .run = vmx_vcpu_run,
11234        .handle_exit = vmx_handle_exit,
11235        .skip_emulated_instruction = skip_emulated_instruction,
11236        .set_interrupt_shadow = vmx_set_interrupt_shadow,
11237        .get_interrupt_shadow = vmx_get_interrupt_shadow,
11238        .patch_hypercall = vmx_patch_hypercall,
11239        .set_irq = vmx_inject_irq,
11240        .set_nmi = vmx_inject_nmi,
11241        .queue_exception = vmx_queue_exception,
11242        .cancel_injection = vmx_cancel_injection,
11243        .interrupt_allowed = vmx_interrupt_allowed,
11244        .nmi_allowed = vmx_nmi_allowed,
11245        .get_nmi_mask = vmx_get_nmi_mask,
11246        .set_nmi_mask = vmx_set_nmi_mask,
11247        .enable_nmi_window = enable_nmi_window,
11248        .enable_irq_window = enable_irq_window,
11249        .update_cr8_intercept = update_cr8_intercept,
11250        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
11251        .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
11252        .get_enable_apicv = vmx_get_enable_apicv,
11253        .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
11254        .load_eoi_exitmap = vmx_load_eoi_exitmap,
11255        .hwapic_irr_update = vmx_hwapic_irr_update,
11256        .hwapic_isr_update = vmx_hwapic_isr_update,
11257        .sync_pir_to_irr = vmx_sync_pir_to_irr,
11258        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
11259
11260        .set_tss_addr = vmx_set_tss_addr,
11261        .get_tdp_level = get_ept_level,
11262        .get_mt_mask = vmx_get_mt_mask,
11263
11264        .get_exit_info = vmx_get_exit_info,
11265
11266        .get_lpage_level = vmx_get_lpage_level,
11267
11268        .cpuid_update = vmx_cpuid_update,
11269
11270        .rdtscp_supported = vmx_rdtscp_supported,
11271        .invpcid_supported = vmx_invpcid_supported,
11272
11273        .set_supported_cpuid = vmx_set_supported_cpuid,
11274
11275        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
11276
11277        .read_tsc_offset = vmx_read_tsc_offset,
11278        .write_tsc_offset = vmx_write_tsc_offset,
11279        .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
11280        .read_l1_tsc = vmx_read_l1_tsc,
11281
11282        .set_tdp_cr3 = vmx_set_cr3,
11283
11284        .check_intercept = vmx_check_intercept,
11285        .handle_external_intr = vmx_handle_external_intr,
11286        .mpx_supported = vmx_mpx_supported,
11287        .xsaves_supported = vmx_xsaves_supported,
11288
11289        .check_nested_events = vmx_check_nested_events,
11290
11291        .sched_in = vmx_sched_in,
11292
11293        .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11294        .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11295        .flush_log_dirty = vmx_flush_log_dirty,
11296        .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
11297
11298        .pre_block = vmx_pre_block,
11299        .post_block = vmx_post_block,
11300
11301        .pmu_ops = &intel_pmu_ops,
11302
11303        .update_pi_irte = vmx_update_pi_irte,
11304
11305#ifdef CONFIG_X86_64
11306        .set_hv_timer = vmx_set_hv_timer,
11307        .cancel_hv_timer = vmx_cancel_hv_timer,
11308#endif
11309
11310        .setup_mce = vmx_setup_mce,
11311};
11312
11313static int __init vmx_init(void)
11314{
11315        int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11316                     __alignof__(struct vcpu_vmx), THIS_MODULE);
11317        if (r)
11318                return r;
11319
11320#ifdef CONFIG_KEXEC_CORE
11321        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11322                           crash_vmclear_local_loaded_vmcss);
11323#endif
11324
11325        return 0;
11326}
11327
11328static void __exit vmx_exit(void)
11329{
11330#ifdef CONFIG_KEXEC_CORE
11331        RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
11332        synchronize_rcu();
11333#endif
11334
11335        kvm_exit();
11336}
11337
11338module_init(vmx_init)
11339module_exit(vmx_exit)
11340