linux/arch/x86/kvm/x86.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * derived from drivers/kvm/kvm_main.c
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright (C) 2008 Qumranet, Inc.
   8 * Copyright IBM Corporation, 2008
   9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  10 *
  11 * Authors:
  12 *   Avi Kivity   <avi@qumranet.com>
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Amit Shah    <amit.shah@qumranet.com>
  15 *   Ben-Ami Yassour <benami@il.ibm.com>
  16 *
  17 * This work is licensed under the terms of the GNU GPL, version 2.  See
  18 * the COPYING file in the top-level directory.
  19 *
  20 */
  21
  22#include <linux/kvm_host.h>
  23#include "irq.h"
  24#include "mmu.h"
  25#include "i8254.h"
  26#include "tss.h"
  27#include "kvm_cache_regs.h"
  28#include "x86.h"
  29#include "cpuid.h"
  30#include "assigned-dev.h"
  31#include "pmu.h"
  32#include "hyperv.h"
  33
  34#include <linux/clocksource.h>
  35#include <linux/interrupt.h>
  36#include <linux/kvm.h>
  37#include <linux/fs.h>
  38#include <linux/vmalloc.h>
  39#include <linux/export.h>
  40#include <linux/moduleparam.h>
  41#include <linux/mman.h>
  42#include <linux/highmem.h>
  43#include <linux/iommu.h>
  44#include <linux/intel-iommu.h>
  45#include <linux/cpufreq.h>
  46#include <linux/user-return-notifier.h>
  47#include <linux/srcu.h>
  48#include <linux/slab.h>
  49#include <linux/perf_event.h>
  50#include <linux/uaccess.h>
  51#include <linux/hash.h>
  52#include <linux/pci.h>
  53#include <linux/timekeeper_internal.h>
  54#include <linux/pvclock_gtod.h>
  55#include <linux/kvm_irqfd.h>
  56#include <linux/irqbypass.h>
  57#include <trace/events/kvm.h>
  58
  59#include <asm/debugreg.h>
  60#include <asm/msr.h>
  61#include <asm/desc.h>
  62#include <asm/mce.h>
  63#include <linux/kernel_stat.h>
  64#include <asm/fpu/internal.h> /* Ugh! */
  65#include <asm/pvclock.h>
  66#include <asm/div64.h>
  67#include <asm/irq_remapping.h>
  68
  69#define CREATE_TRACE_POINTS
  70#include "trace.h"
  71
  72#define MAX_IO_MSRS 256
  73#define KVM_MAX_MCE_BANKS 32
  74u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
  75EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
  76
  77#define emul_to_vcpu(ctxt) \
  78        container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
  79
  80/* EFER defaults:
  81 * - enable syscall per default because its emulated by KVM
  82 * - enable LME and LMA per default on 64 bit KVM
  83 */
  84#ifdef CONFIG_X86_64
  85static
  86u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
  87#else
  88static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
  89#endif
  90
  91#define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  92#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  93
  94#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
  95                                    KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
  96
  97static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  98static void process_nmi(struct kvm_vcpu *vcpu);
  99static void enter_smm(struct kvm_vcpu *vcpu);
 100static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
 101
 102struct kvm_x86_ops *kvm_x86_ops __read_mostly;
 103EXPORT_SYMBOL_GPL(kvm_x86_ops);
 104
 105static bool __read_mostly ignore_msrs = 0;
 106module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
 107
 108unsigned int min_timer_period_us = 500;
 109module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
 110
 111static bool __read_mostly kvmclock_periodic_sync = true;
 112module_param(kvmclock_periodic_sync, bool, S_IRUGO);
 113
 114bool __read_mostly kvm_has_tsc_control;
 115EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
 116u32  __read_mostly kvm_max_guest_tsc_khz;
 117EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
 118u8   __read_mostly kvm_tsc_scaling_ratio_frac_bits;
 119EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
 120u64  __read_mostly kvm_max_tsc_scaling_ratio;
 121EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
 122u64 __read_mostly kvm_default_tsc_scaling_ratio;
 123EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
 124
 125/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
 126static u32 __read_mostly tsc_tolerance_ppm = 250;
 127module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
 128
 129/* lapic timer advance (tscdeadline mode only) in nanoseconds */
 130unsigned int __read_mostly lapic_timer_advance_ns = 0;
 131module_param(lapic_timer_advance_ns, uint, S_IRUGO | S_IWUSR);
 132
 133static bool __read_mostly vector_hashing = true;
 134module_param(vector_hashing, bool, S_IRUGO);
 135
 136static bool __read_mostly backwards_tsc_observed = false;
 137
 138#define KVM_NR_SHARED_MSRS 16
 139
 140struct kvm_shared_msrs_global {
 141        int nr;
 142        u32 msrs[KVM_NR_SHARED_MSRS];
 143};
 144
 145struct kvm_shared_msrs {
 146        struct user_return_notifier urn;
 147        bool registered;
 148        struct kvm_shared_msr_values {
 149                u64 host;
 150                u64 curr;
 151        } values[KVM_NR_SHARED_MSRS];
 152};
 153
 154static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
 155static struct kvm_shared_msrs __percpu *shared_msrs;
 156
 157struct kvm_stats_debugfs_item debugfs_entries[] = {
 158        { "pf_fixed", VCPU_STAT(pf_fixed) },
 159        { "pf_guest", VCPU_STAT(pf_guest) },
 160        { "tlb_flush", VCPU_STAT(tlb_flush) },
 161        { "invlpg", VCPU_STAT(invlpg) },
 162        { "exits", VCPU_STAT(exits) },
 163        { "io_exits", VCPU_STAT(io_exits) },
 164        { "mmio_exits", VCPU_STAT(mmio_exits) },
 165        { "signal_exits", VCPU_STAT(signal_exits) },
 166        { "irq_window", VCPU_STAT(irq_window_exits) },
 167        { "nmi_window", VCPU_STAT(nmi_window_exits) },
 168        { "halt_exits", VCPU_STAT(halt_exits) },
 169        { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
 170        { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
 171        { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
 172        { "halt_wakeup", VCPU_STAT(halt_wakeup) },
 173        { "hypercalls", VCPU_STAT(hypercalls) },
 174        { "request_irq", VCPU_STAT(request_irq_exits) },
 175        { "irq_exits", VCPU_STAT(irq_exits) },
 176        { "host_state_reload", VCPU_STAT(host_state_reload) },
 177        { "efer_reload", VCPU_STAT(efer_reload) },
 178        { "fpu_reload", VCPU_STAT(fpu_reload) },
 179        { "insn_emulation", VCPU_STAT(insn_emulation) },
 180        { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 181        { "irq_injections", VCPU_STAT(irq_injections) },
 182        { "nmi_injections", VCPU_STAT(nmi_injections) },
 183        { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 184        { "mmu_pte_write", VM_STAT(mmu_pte_write) },
 185        { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 186        { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 187        { "mmu_flooded", VM_STAT(mmu_flooded) },
 188        { "mmu_recycled", VM_STAT(mmu_recycled) },
 189        { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 190        { "mmu_unsync", VM_STAT(mmu_unsync) },
 191        { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 192        { "largepages", VM_STAT(lpages) },
 193        { NULL }
 194};
 195
 196u64 __read_mostly host_xcr0;
 197
 198static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
 199
 200static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
 201{
 202        int i;
 203        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
 204                vcpu->arch.apf.gfns[i] = ~0;
 205}
 206
 207static void kvm_on_user_return(struct user_return_notifier *urn)
 208{
 209        unsigned slot;
 210        struct kvm_shared_msrs *locals
 211                = container_of(urn, struct kvm_shared_msrs, urn);
 212        struct kvm_shared_msr_values *values;
 213
 214        for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
 215                values = &locals->values[slot];
 216                if (values->host != values->curr) {
 217                        wrmsrl(shared_msrs_global.msrs[slot], values->host);
 218                        values->curr = values->host;
 219                }
 220        }
 221        locals->registered = false;
 222        user_return_notifier_unregister(urn);
 223}
 224
 225static void shared_msr_update(unsigned slot, u32 msr)
 226{
 227        u64 value;
 228        unsigned int cpu = smp_processor_id();
 229        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 230
 231        /* only read, and nobody should modify it at this time,
 232         * so don't need lock */
 233        if (slot >= shared_msrs_global.nr) {
 234                printk(KERN_ERR "kvm: invalid MSR slot!");
 235                return;
 236        }
 237        rdmsrl_safe(msr, &value);
 238        smsr->values[slot].host = value;
 239        smsr->values[slot].curr = value;
 240}
 241
 242void kvm_define_shared_msr(unsigned slot, u32 msr)
 243{
 244        BUG_ON(slot >= KVM_NR_SHARED_MSRS);
 245        shared_msrs_global.msrs[slot] = msr;
 246        if (slot >= shared_msrs_global.nr)
 247                shared_msrs_global.nr = slot + 1;
 248}
 249EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
 250
 251static void kvm_shared_msr_cpu_online(void)
 252{
 253        unsigned i;
 254
 255        for (i = 0; i < shared_msrs_global.nr; ++i)
 256                shared_msr_update(i, shared_msrs_global.msrs[i]);
 257}
 258
 259int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
 260{
 261        unsigned int cpu = smp_processor_id();
 262        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 263        int err;
 264
 265        if (((value ^ smsr->values[slot].curr) & mask) == 0)
 266                return 0;
 267        smsr->values[slot].curr = value;
 268        err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
 269        if (err)
 270                return 1;
 271
 272        if (!smsr->registered) {
 273                smsr->urn.on_user_return = kvm_on_user_return;
 274                user_return_notifier_register(&smsr->urn);
 275                smsr->registered = true;
 276        }
 277        return 0;
 278}
 279EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
 280
 281static void drop_user_return_notifiers(void)
 282{
 283        unsigned int cpu = smp_processor_id();
 284        struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
 285
 286        if (smsr->registered)
 287                kvm_on_user_return(&smsr->urn);
 288}
 289
 290u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 291{
 292        return vcpu->arch.apic_base;
 293}
 294EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 295
 296int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
 297{
 298        u64 old_state = vcpu->arch.apic_base &
 299                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 300        u64 new_state = msr_info->data &
 301                (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE);
 302        u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) |
 303                0x2ff | (guest_cpuid_has_x2apic(vcpu) ? 0 : X2APIC_ENABLE);
 304
 305        if (!msr_info->host_initiated &&
 306            ((msr_info->data & reserved_bits) != 0 ||
 307             new_state == X2APIC_ENABLE ||
 308             (new_state == MSR_IA32_APICBASE_ENABLE &&
 309              old_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE)) ||
 310             (new_state == (MSR_IA32_APICBASE_ENABLE | X2APIC_ENABLE) &&
 311              old_state == 0)))
 312                return 1;
 313
 314        kvm_lapic_set_base(vcpu, msr_info->data);
 315        return 0;
 316}
 317EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 318
 319asmlinkage __visible void kvm_spurious_fault(void)
 320{
 321        /* Fault while not rebooting.  We want the trace. */
 322        BUG();
 323}
 324EXPORT_SYMBOL_GPL(kvm_spurious_fault);
 325
 326#define EXCPT_BENIGN            0
 327#define EXCPT_CONTRIBUTORY      1
 328#define EXCPT_PF                2
 329
 330static int exception_class(int vector)
 331{
 332        switch (vector) {
 333        case PF_VECTOR:
 334                return EXCPT_PF;
 335        case DE_VECTOR:
 336        case TS_VECTOR:
 337        case NP_VECTOR:
 338        case SS_VECTOR:
 339        case GP_VECTOR:
 340                return EXCPT_CONTRIBUTORY;
 341        default:
 342                break;
 343        }
 344        return EXCPT_BENIGN;
 345}
 346
 347#define EXCPT_FAULT             0
 348#define EXCPT_TRAP              1
 349#define EXCPT_ABORT             2
 350#define EXCPT_INTERRUPT         3
 351
 352static int exception_type(int vector)
 353{
 354        unsigned int mask;
 355
 356        if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
 357                return EXCPT_INTERRUPT;
 358
 359        mask = 1 << vector;
 360
 361        /* #DB is trap, as instruction watchpoints are handled elsewhere */
 362        if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
 363                return EXCPT_TRAP;
 364
 365        if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
 366                return EXCPT_ABORT;
 367
 368        /* Reserved exceptions will result in fault */
 369        return EXCPT_FAULT;
 370}
 371
 372static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
 373                unsigned nr, bool has_error, u32 error_code,
 374                bool reinject)
 375{
 376        u32 prev_nr;
 377        int class1, class2;
 378
 379        kvm_make_request(KVM_REQ_EVENT, vcpu);
 380
 381        if (!vcpu->arch.exception.pending) {
 382        queue:
 383                if (has_error && !is_protmode(vcpu))
 384                        has_error = false;
 385                vcpu->arch.exception.pending = true;
 386                vcpu->arch.exception.has_error_code = has_error;
 387                vcpu->arch.exception.nr = nr;
 388                vcpu->arch.exception.error_code = error_code;
 389                vcpu->arch.exception.reinject = reinject;
 390                return;
 391        }
 392
 393        /* to check exception */
 394        prev_nr = vcpu->arch.exception.nr;
 395        if (prev_nr == DF_VECTOR) {
 396                /* triple fault -> shutdown */
 397                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
 398                return;
 399        }
 400        class1 = exception_class(prev_nr);
 401        class2 = exception_class(nr);
 402        if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
 403                || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
 404                /* generate double fault per SDM Table 5-5 */
 405                vcpu->arch.exception.pending = true;
 406                vcpu->arch.exception.has_error_code = true;
 407                vcpu->arch.exception.nr = DF_VECTOR;
 408                vcpu->arch.exception.error_code = 0;
 409        } else
 410                /* replace previous exception with a new one in a hope
 411                   that instruction re-execution will regenerate lost
 412                   exception */
 413                goto queue;
 414}
 415
 416void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 417{
 418        kvm_multiple_exception(vcpu, nr, false, 0, false);
 419}
 420EXPORT_SYMBOL_GPL(kvm_queue_exception);
 421
 422void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 423{
 424        kvm_multiple_exception(vcpu, nr, false, 0, true);
 425}
 426EXPORT_SYMBOL_GPL(kvm_requeue_exception);
 427
 428void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
 429{
 430        if (err)
 431                kvm_inject_gp(vcpu, 0);
 432        else
 433                kvm_x86_ops->skip_emulated_instruction(vcpu);
 434}
 435EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
 436
 437void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 438{
 439        ++vcpu->stat.pf_guest;
 440        vcpu->arch.cr2 = fault->address;
 441        kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
 442}
 443EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
 444
 445static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
 446{
 447        if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
 448                vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
 449        else
 450                vcpu->arch.mmu.inject_page_fault(vcpu, fault);
 451
 452        return fault->nested_page_fault;
 453}
 454
 455void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 456{
 457        atomic_inc(&vcpu->arch.nmi_queued);
 458        kvm_make_request(KVM_REQ_NMI, vcpu);
 459}
 460EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 461
 462void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 463{
 464        kvm_multiple_exception(vcpu, nr, true, error_code, false);
 465}
 466EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 467
 468void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 469{
 470        kvm_multiple_exception(vcpu, nr, true, error_code, true);
 471}
 472EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
 473
 474/*
 475 * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 476 * a #GP and return false.
 477 */
 478bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 479{
 480        if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 481                return true;
 482        kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 483        return false;
 484}
 485EXPORT_SYMBOL_GPL(kvm_require_cpl);
 486
 487bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
 488{
 489        if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
 490                return true;
 491
 492        kvm_queue_exception(vcpu, UD_VECTOR);
 493        return false;
 494}
 495EXPORT_SYMBOL_GPL(kvm_require_dr);
 496
 497/*
 498 * This function will be used to read from the physical memory of the currently
 499 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
 500 * can read from guest physical or from the guest's guest physical memory.
 501 */
 502int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 503                            gfn_t ngfn, void *data, int offset, int len,
 504                            u32 access)
 505{
 506        struct x86_exception exception;
 507        gfn_t real_gfn;
 508        gpa_t ngpa;
 509
 510        ngpa     = gfn_to_gpa(ngfn);
 511        real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
 512        if (real_gfn == UNMAPPED_GVA)
 513                return -EFAULT;
 514
 515        real_gfn = gpa_to_gfn(real_gfn);
 516
 517        return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
 518}
 519EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
 520
 521static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
 522                               void *data, int offset, int len, u32 access)
 523{
 524        return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
 525                                       data, offset, len, access);
 526}
 527
 528/*
 529 * Load the pae pdptrs.  Return true is they are all valid.
 530 */
 531int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
 532{
 533        gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 534        unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 535        int i;
 536        int ret;
 537        u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
 538
 539        ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
 540                                      offset * sizeof(u64), sizeof(pdpte),
 541                                      PFERR_USER_MASK|PFERR_WRITE_MASK);
 542        if (ret < 0) {
 543                ret = 0;
 544                goto out;
 545        }
 546        for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 547                if ((pdpte[i] & PT_PRESENT_MASK) &&
 548                    (pdpte[i] &
 549                     vcpu->arch.mmu.guest_rsvd_check.rsvd_bits_mask[0][2])) {
 550                        ret = 0;
 551                        goto out;
 552                }
 553        }
 554        ret = 1;
 555
 556        memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
 557        __set_bit(VCPU_EXREG_PDPTR,
 558                  (unsigned long *)&vcpu->arch.regs_avail);
 559        __set_bit(VCPU_EXREG_PDPTR,
 560                  (unsigned long *)&vcpu->arch.regs_dirty);
 561out:
 562
 563        return ret;
 564}
 565EXPORT_SYMBOL_GPL(load_pdptrs);
 566
 567static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 568{
 569        u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
 570        bool changed = true;
 571        int offset;
 572        gfn_t gfn;
 573        int r;
 574
 575        if (is_long_mode(vcpu) || !is_pae(vcpu))
 576                return false;
 577
 578        if (!test_bit(VCPU_EXREG_PDPTR,
 579                      (unsigned long *)&vcpu->arch.regs_avail))
 580                return true;
 581
 582        gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
 583        offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
 584        r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
 585                                       PFERR_USER_MASK | PFERR_WRITE_MASK);
 586        if (r < 0)
 587                goto out;
 588        changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
 589out:
 590
 591        return changed;
 592}
 593
 594int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 595{
 596        unsigned long old_cr0 = kvm_read_cr0(vcpu);
 597        unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
 598
 599        cr0 |= X86_CR0_ET;
 600
 601#ifdef CONFIG_X86_64
 602        if (cr0 & 0xffffffff00000000UL)
 603                return 1;
 604#endif
 605
 606        cr0 &= ~CR0_RESERVED_BITS;
 607
 608        if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
 609                return 1;
 610
 611        if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
 612                return 1;
 613
 614        if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 615#ifdef CONFIG_X86_64
 616                if ((vcpu->arch.efer & EFER_LME)) {
 617                        int cs_db, cs_l;
 618
 619                        if (!is_pae(vcpu))
 620                                return 1;
 621                        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 622                        if (cs_l)
 623                                return 1;
 624                } else
 625#endif
 626                if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 627                                                 kvm_read_cr3(vcpu)))
 628                        return 1;
 629        }
 630
 631        if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
 632                return 1;
 633
 634        kvm_x86_ops->set_cr0(vcpu, cr0);
 635
 636        if ((cr0 ^ old_cr0) & X86_CR0_PG) {
 637                kvm_clear_async_pf_completion_queue(vcpu);
 638                kvm_async_pf_hash_reset(vcpu);
 639        }
 640
 641        if ((cr0 ^ old_cr0) & update_bits)
 642                kvm_mmu_reset_context(vcpu);
 643
 644        if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
 645            kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
 646            !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
 647                kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
 648
 649        return 0;
 650}
 651EXPORT_SYMBOL_GPL(kvm_set_cr0);
 652
 653void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 654{
 655        (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
 656}
 657EXPORT_SYMBOL_GPL(kvm_lmsw);
 658
 659static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
 660{
 661        if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
 662                        !vcpu->guest_xcr0_loaded) {
 663                /* kvm_set_xcr() also depends on this */
 664                xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
 665                vcpu->guest_xcr0_loaded = 1;
 666        }
 667}
 668
 669static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
 670{
 671        if (vcpu->guest_xcr0_loaded) {
 672                if (vcpu->arch.xcr0 != host_xcr0)
 673                        xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
 674                vcpu->guest_xcr0_loaded = 0;
 675        }
 676}
 677
 678static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 679{
 680        u64 xcr0 = xcr;
 681        u64 old_xcr0 = vcpu->arch.xcr0;
 682        u64 valid_bits;
 683
 684        /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */
 685        if (index != XCR_XFEATURE_ENABLED_MASK)
 686                return 1;
 687        if (!(xcr0 & XFEATURE_MASK_FP))
 688                return 1;
 689        if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
 690                return 1;
 691
 692        /*
 693         * Do not allow the guest to set bits that we do not support
 694         * saving.  However, xcr0 bit 0 is always set, even if the
 695         * emulated CPU does not support XSAVE (see fx_init).
 696         */
 697        valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
 698        if (xcr0 & ~valid_bits)
 699                return 1;
 700
 701        if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
 702            (!(xcr0 & XFEATURE_MASK_BNDCSR)))
 703                return 1;
 704
 705        if (xcr0 & XFEATURE_MASK_AVX512) {
 706                if (!(xcr0 & XFEATURE_MASK_YMM))
 707                        return 1;
 708                if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
 709                        return 1;
 710        }
 711        vcpu->arch.xcr0 = xcr0;
 712
 713        if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
 714                kvm_update_cpuid(vcpu);
 715        return 0;
 716}
 717
 718int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
 719{
 720        if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
 721            __kvm_set_xcr(vcpu, index, xcr)) {
 722                kvm_inject_gp(vcpu, 0);
 723                return 1;
 724        }
 725        return 0;
 726}
 727EXPORT_SYMBOL_GPL(kvm_set_xcr);
 728
 729int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 730{
 731        unsigned long old_cr4 = kvm_read_cr4(vcpu);
 732        unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
 733                                   X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
 734
 735        if (cr4 & CR4_RESERVED_BITS)
 736                return 1;
 737
 738        if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
 739                return 1;
 740
 741        if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
 742                return 1;
 743
 744        if (!guest_cpuid_has_smap(vcpu) && (cr4 & X86_CR4_SMAP))
 745                return 1;
 746
 747        if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_FSGSBASE))
 748                return 1;
 749
 750        if (!guest_cpuid_has_pku(vcpu) && (cr4 & X86_CR4_PKE))
 751                return 1;
 752
 753        if (is_long_mode(vcpu)) {
 754                if (!(cr4 & X86_CR4_PAE))
 755                        return 1;
 756        } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 757                   && ((cr4 ^ old_cr4) & pdptr_bits)
 758                   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
 759                                   kvm_read_cr3(vcpu)))
 760                return 1;
 761
 762        if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
 763                if (!guest_cpuid_has_pcid(vcpu))
 764                        return 1;
 765
 766                /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
 767                if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
 768                        return 1;
 769        }
 770
 771        if (kvm_x86_ops->set_cr4(vcpu, cr4))
 772                return 1;
 773
 774        if (((cr4 ^ old_cr4) & pdptr_bits) ||
 775            (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
 776                kvm_mmu_reset_context(vcpu);
 777
 778        if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
 779                kvm_update_cpuid(vcpu);
 780
 781        return 0;
 782}
 783EXPORT_SYMBOL_GPL(kvm_set_cr4);
 784
 785int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 786{
 787#ifdef CONFIG_X86_64
 788        cr3 &= ~CR3_PCID_INVD;
 789#endif
 790
 791        if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
 792                kvm_mmu_sync_roots(vcpu);
 793                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
 794                return 0;
 795        }
 796
 797        if (is_long_mode(vcpu)) {
 798                if (cr3 & CR3_L_MODE_RESERVED_BITS)
 799                        return 1;
 800        } else if (is_pae(vcpu) && is_paging(vcpu) &&
 801                   !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
 802                return 1;
 803
 804        vcpu->arch.cr3 = cr3;
 805        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
 806        kvm_mmu_new_cr3(vcpu);
 807        return 0;
 808}
 809EXPORT_SYMBOL_GPL(kvm_set_cr3);
 810
 811int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 812{
 813        if (cr8 & CR8_RESERVED_BITS)
 814                return 1;
 815        if (lapic_in_kernel(vcpu))
 816                kvm_lapic_set_tpr(vcpu, cr8);
 817        else
 818                vcpu->arch.cr8 = cr8;
 819        return 0;
 820}
 821EXPORT_SYMBOL_GPL(kvm_set_cr8);
 822
 823unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 824{
 825        if (lapic_in_kernel(vcpu))
 826                return kvm_lapic_get_cr8(vcpu);
 827        else
 828                return vcpu->arch.cr8;
 829}
 830EXPORT_SYMBOL_GPL(kvm_get_cr8);
 831
 832static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
 833{
 834        int i;
 835
 836        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
 837                for (i = 0; i < KVM_NR_DB_REGS; i++)
 838                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 839                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
 840        }
 841}
 842
 843static void kvm_update_dr6(struct kvm_vcpu *vcpu)
 844{
 845        if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 846                kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
 847}
 848
 849static void kvm_update_dr7(struct kvm_vcpu *vcpu)
 850{
 851        unsigned long dr7;
 852
 853        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 854                dr7 = vcpu->arch.guest_debug_dr7;
 855        else
 856                dr7 = vcpu->arch.dr7;
 857        kvm_x86_ops->set_dr7(vcpu, dr7);
 858        vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
 859        if (dr7 & DR7_BP_EN_MASK)
 860                vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
 861}
 862
 863static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
 864{
 865        u64 fixed = DR6_FIXED_1;
 866
 867        if (!guest_cpuid_has_rtm(vcpu))
 868                fixed |= DR6_RTM;
 869        return fixed;
 870}
 871
 872static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 873{
 874        switch (dr) {
 875        case 0 ... 3:
 876                vcpu->arch.db[dr] = val;
 877                if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
 878                        vcpu->arch.eff_db[dr] = val;
 879                break;
 880        case 4:
 881                /* fall through */
 882        case 6:
 883                if (val & 0xffffffff00000000ULL)
 884                        return -1; /* #GP */
 885                vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
 886                kvm_update_dr6(vcpu);
 887                break;
 888        case 5:
 889                /* fall through */
 890        default: /* 7 */
 891                if (val & 0xffffffff00000000ULL)
 892                        return -1; /* #GP */
 893                vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
 894                kvm_update_dr7(vcpu);
 895                break;
 896        }
 897
 898        return 0;
 899}
 900
 901int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
 902{
 903        if (__kvm_set_dr(vcpu, dr, val)) {
 904                kvm_inject_gp(vcpu, 0);
 905                return 1;
 906        }
 907        return 0;
 908}
 909EXPORT_SYMBOL_GPL(kvm_set_dr);
 910
 911int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
 912{
 913        switch (dr) {
 914        case 0 ... 3:
 915                *val = vcpu->arch.db[dr];
 916                break;
 917        case 4:
 918                /* fall through */
 919        case 6:
 920                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
 921                        *val = vcpu->arch.dr6;
 922                else
 923                        *val = kvm_x86_ops->get_dr6(vcpu);
 924                break;
 925        case 5:
 926                /* fall through */
 927        default: /* 7 */
 928                *val = vcpu->arch.dr7;
 929                break;
 930        }
 931        return 0;
 932}
 933EXPORT_SYMBOL_GPL(kvm_get_dr);
 934
 935bool kvm_rdpmc(struct kvm_vcpu *vcpu)
 936{
 937        u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 938        u64 data;
 939        int err;
 940
 941        err = kvm_pmu_rdpmc(vcpu, ecx, &data);
 942        if (err)
 943                return err;
 944        kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data);
 945        kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32);
 946        return err;
 947}
 948EXPORT_SYMBOL_GPL(kvm_rdpmc);
 949
 950/*
 951 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 952 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 953 *
 954 * This list is modified at module load time to reflect the
 955 * capabilities of the host cpu. This capabilities test skips MSRs that are
 956 * kvm-specific. Those are put in emulated_msrs; filtering of emulated_msrs
 957 * may depend on host virtualization features rather than host cpu features.
 958 */
 959
 960static u32 msrs_to_save[] = {
 961        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 962        MSR_STAR,
 963#ifdef CONFIG_X86_64
 964        MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 965#endif
 966        MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
 967        MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
 968};
 969
 970static unsigned num_msrs_to_save;
 971
 972static u32 emulated_msrs[] = {
 973        MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 974        MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
 975        HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
 976        HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
 977        HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
 978        HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
 979        HV_X64_MSR_RESET,
 980        HV_X64_MSR_VP_INDEX,
 981        HV_X64_MSR_VP_RUNTIME,
 982        HV_X64_MSR_SCONTROL,
 983        HV_X64_MSR_STIMER0_CONFIG,
 984        HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
 985        MSR_KVM_PV_EOI_EN,
 986
 987        MSR_IA32_TSC_ADJUST,
 988        MSR_IA32_TSCDEADLINE,
 989        MSR_IA32_MISC_ENABLE,
 990        MSR_IA32_MCG_STATUS,
 991        MSR_IA32_MCG_CTL,
 992        MSR_IA32_MCG_EXT_CTL,
 993        MSR_IA32_SMBASE,
 994};
 995
 996static unsigned num_emulated_msrs;
 997
 998bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
 999{
1000        if (efer & efer_reserved_bits)
1001                return false;
1002
1003        if (efer & EFER_FFXSR) {
1004                struct kvm_cpuid_entry2 *feat;
1005
1006                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1007                if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
1008                        return false;
1009        }
1010
1011        if (efer & EFER_SVME) {
1012                struct kvm_cpuid_entry2 *feat;
1013
1014                feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
1015                if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
1016                        return false;
1017        }
1018
1019        return true;
1020}
1021EXPORT_SYMBOL_GPL(kvm_valid_efer);
1022
1023static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
1024{
1025        u64 old_efer = vcpu->arch.efer;
1026
1027        if (!kvm_valid_efer(vcpu, efer))
1028                return 1;
1029
1030        if (is_paging(vcpu)
1031            && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1032                return 1;
1033
1034        efer &= ~EFER_LMA;
1035        efer |= vcpu->arch.efer & EFER_LMA;
1036
1037        kvm_x86_ops->set_efer(vcpu, efer);
1038
1039        /* Update reserved bits */
1040        if ((efer ^ old_efer) & EFER_NX)
1041                kvm_mmu_reset_context(vcpu);
1042
1043        return 0;
1044}
1045
1046void kvm_enable_efer_bits(u64 mask)
1047{
1048       efer_reserved_bits &= ~mask;
1049}
1050EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1051
1052/*
1053 * Writes msr value into into the appropriate "register".
1054 * Returns 0 on success, non-0 otherwise.
1055 * Assumes vcpu_load() was already called.
1056 */
1057int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
1058{
1059        switch (msr->index) {
1060        case MSR_FS_BASE:
1061        case MSR_GS_BASE:
1062        case MSR_KERNEL_GS_BASE:
1063        case MSR_CSTAR:
1064        case MSR_LSTAR:
1065                if (is_noncanonical_address(msr->data))
1066                        return 1;
1067                break;
1068        case MSR_IA32_SYSENTER_EIP:
1069        case MSR_IA32_SYSENTER_ESP:
1070                /*
1071                 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1072                 * non-canonical address is written on Intel but not on
1073                 * AMD (which ignores the top 32-bits, because it does
1074                 * not implement 64-bit SYSENTER).
1075                 *
1076                 * 64-bit code should hence be able to write a non-canonical
1077                 * value on AMD.  Making the address canonical ensures that
1078                 * vmentry does not fail on Intel after writing a non-canonical
1079                 * value, and that something deterministic happens if the guest
1080                 * invokes 64-bit SYSENTER.
1081                 */
1082                msr->data = get_canonical(msr->data);
1083        }
1084        return kvm_x86_ops->set_msr(vcpu, msr);
1085}
1086EXPORT_SYMBOL_GPL(kvm_set_msr);
1087
1088/*
1089 * Adapt set_msr() to msr_io()'s calling convention
1090 */
1091static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1092{
1093        struct msr_data msr;
1094        int r;
1095
1096        msr.index = index;
1097        msr.host_initiated = true;
1098        r = kvm_get_msr(vcpu, &msr);
1099        if (r)
1100                return r;
1101
1102        *data = msr.data;
1103        return 0;
1104}
1105
1106static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1107{
1108        struct msr_data msr;
1109
1110        msr.data = *data;
1111        msr.index = index;
1112        msr.host_initiated = true;
1113        return kvm_set_msr(vcpu, &msr);
1114}
1115
1116#ifdef CONFIG_X86_64
1117struct pvclock_gtod_data {
1118        seqcount_t      seq;
1119
1120        struct { /* extract of a clocksource struct */
1121                int vclock_mode;
1122                cycle_t cycle_last;
1123                cycle_t mask;
1124                u32     mult;
1125                u32     shift;
1126        } clock;
1127
1128        u64             boot_ns;
1129        u64             nsec_base;
1130};
1131
1132static struct pvclock_gtod_data pvclock_gtod_data;
1133
1134static void update_pvclock_gtod(struct timekeeper *tk)
1135{
1136        struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1137        u64 boot_ns;
1138
1139        boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1140
1141        write_seqcount_begin(&vdata->seq);
1142
1143        /* copy pvclock gtod data */
1144        vdata->clock.vclock_mode        = tk->tkr_mono.clock->archdata.vclock_mode;
1145        vdata->clock.cycle_last         = tk->tkr_mono.cycle_last;
1146        vdata->clock.mask               = tk->tkr_mono.mask;
1147        vdata->clock.mult               = tk->tkr_mono.mult;
1148        vdata->clock.shift              = tk->tkr_mono.shift;
1149
1150        vdata->boot_ns                  = boot_ns;
1151        vdata->nsec_base                = tk->tkr_mono.xtime_nsec;
1152
1153        write_seqcount_end(&vdata->seq);
1154}
1155#endif
1156
1157void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1158{
1159        /*
1160         * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1161         * vcpu_enter_guest.  This function is only called from
1162         * the physical CPU that is running vcpu.
1163         */
1164        kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1165}
1166
1167static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1168{
1169        int version;
1170        int r;
1171        struct pvclock_wall_clock wc;
1172        struct timespec64 boot;
1173
1174        if (!wall_clock)
1175                return;
1176
1177        r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1178        if (r)
1179                return;
1180
1181        if (version & 1)
1182                ++version;  /* first time write, random junk */
1183
1184        ++version;
1185
1186        if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1187                return;
1188
1189        /*
1190         * The guest calculates current wall clock time by adding
1191         * system time (updated by kvm_guest_time_update below) to the
1192         * wall clock specified here.  guest system time equals host
1193         * system time for us, thus we must fill in host boot time here.
1194         */
1195        getboottime64(&boot);
1196
1197        if (kvm->arch.kvmclock_offset) {
1198                struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1199                boot = timespec64_sub(boot, ts);
1200        }
1201        wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1202        wc.nsec = boot.tv_nsec;
1203        wc.version = version;
1204
1205        kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1206
1207        version++;
1208        kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1209}
1210
1211static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1212{
1213        do_shl32_div32(dividend, divisor);
1214        return dividend;
1215}
1216
1217static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1218                               s8 *pshift, u32 *pmultiplier)
1219{
1220        uint64_t scaled64;
1221        int32_t  shift = 0;
1222        uint64_t tps64;
1223        uint32_t tps32;
1224
1225        tps64 = base_hz;
1226        scaled64 = scaled_hz;
1227        while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1228                tps64 >>= 1;
1229                shift--;
1230        }
1231
1232        tps32 = (uint32_t)tps64;
1233        while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1234                if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1235                        scaled64 >>= 1;
1236                else
1237                        tps32 <<= 1;
1238                shift++;
1239        }
1240
1241        *pshift = shift;
1242        *pmultiplier = div_frac(scaled64, tps32);
1243
1244        pr_debug("%s: base_hz %llu => %llu, shift %d, mul %u\n",
1245                 __func__, base_hz, scaled_hz, shift, *pmultiplier);
1246}
1247
1248#ifdef CONFIG_X86_64
1249static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1250#endif
1251
1252static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1253static unsigned long max_tsc_khz;
1254
1255static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1256{
1257        u64 v = (u64)khz * (1000000 + ppm);
1258        do_div(v, 1000000);
1259        return v;
1260}
1261
1262static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1263{
1264        u64 ratio;
1265
1266        /* Guest TSC same frequency as host TSC? */
1267        if (!scale) {
1268                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1269                return 0;
1270        }
1271
1272        /* TSC scaling supported? */
1273        if (!kvm_has_tsc_control) {
1274                if (user_tsc_khz > tsc_khz) {
1275                        vcpu->arch.tsc_catchup = 1;
1276                        vcpu->arch.tsc_always_catchup = 1;
1277                        return 0;
1278                } else {
1279                        WARN(1, "user requested TSC rate below hardware speed\n");
1280                        return -1;
1281                }
1282        }
1283
1284        /* TSC scaling required  - calculate ratio */
1285        ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1286                                user_tsc_khz, tsc_khz);
1287
1288        if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1289                WARN_ONCE(1, "Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1290                          user_tsc_khz);
1291                return -1;
1292        }
1293
1294        vcpu->arch.tsc_scaling_ratio = ratio;
1295        return 0;
1296}
1297
1298static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1299{
1300        u32 thresh_lo, thresh_hi;
1301        int use_scaling = 0;
1302
1303        /* tsc_khz can be zero if TSC calibration fails */
1304        if (user_tsc_khz == 0) {
1305                /* set tsc_scaling_ratio to a safe value */
1306                vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1307                return -1;
1308        }
1309
1310        /* Compute a scale to convert nanoseconds in TSC cycles */
1311        kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1312                           &vcpu->arch.virtual_tsc_shift,
1313                           &vcpu->arch.virtual_tsc_mult);
1314        vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1315
1316        /*
1317         * Compute the variation in TSC rate which is acceptable
1318         * within the range of tolerance and decide if the
1319         * rate being applied is within that bounds of the hardware
1320         * rate.  If so, no scaling or compensation need be done.
1321         */
1322        thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1323        thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1324        if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1325                pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1326                use_scaling = 1;
1327        }
1328        return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1329}
1330
1331static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1332{
1333        u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1334                                      vcpu->arch.virtual_tsc_mult,
1335                                      vcpu->arch.virtual_tsc_shift);
1336        tsc += vcpu->arch.this_tsc_write;
1337        return tsc;
1338}
1339
1340static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1341{
1342#ifdef CONFIG_X86_64
1343        bool vcpus_matched;
1344        struct kvm_arch *ka = &vcpu->kvm->arch;
1345        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1346
1347        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1348                         atomic_read(&vcpu->kvm->online_vcpus));
1349
1350        /*
1351         * Once the masterclock is enabled, always perform request in
1352         * order to update it.
1353         *
1354         * In order to enable masterclock, the host clocksource must be TSC
1355         * and the vcpus need to have matched TSCs.  When that happens,
1356         * perform request to enable masterclock.
1357         */
1358        if (ka->use_master_clock ||
1359            (gtod->clock.vclock_mode == VCLOCK_TSC && vcpus_matched))
1360                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1361
1362        trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1363                            atomic_read(&vcpu->kvm->online_vcpus),
1364                            ka->use_master_clock, gtod->clock.vclock_mode);
1365#endif
1366}
1367
1368static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1369{
1370        u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu);
1371        vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1372}
1373
1374/*
1375 * Multiply tsc by a fixed point number represented by ratio.
1376 *
1377 * The most significant 64-N bits (mult) of ratio represent the
1378 * integral part of the fixed point number; the remaining N bits
1379 * (frac) represent the fractional part, ie. ratio represents a fixed
1380 * point number (mult + frac * 2^(-N)).
1381 *
1382 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1383 */
1384static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1385{
1386        return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1387}
1388
1389u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1390{
1391        u64 _tsc = tsc;
1392        u64 ratio = vcpu->arch.tsc_scaling_ratio;
1393
1394        if (ratio != kvm_default_tsc_scaling_ratio)
1395                _tsc = __scale_tsc(ratio, tsc);
1396
1397        return _tsc;
1398}
1399EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1400
1401static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1402{
1403        u64 tsc;
1404
1405        tsc = kvm_scale_tsc(vcpu, rdtsc());
1406
1407        return target_tsc - tsc;
1408}
1409
1410u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1411{
1412        return kvm_x86_ops->read_l1_tsc(vcpu, kvm_scale_tsc(vcpu, host_tsc));
1413}
1414EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1415
1416void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1417{
1418        struct kvm *kvm = vcpu->kvm;
1419        u64 offset, ns, elapsed;
1420        unsigned long flags;
1421        s64 usdiff;
1422        bool matched;
1423        bool already_matched;
1424        u64 data = msr->data;
1425
1426        raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1427        offset = kvm_compute_tsc_offset(vcpu, data);
1428        ns = get_kernel_ns();
1429        elapsed = ns - kvm->arch.last_tsc_nsec;
1430
1431        if (vcpu->arch.virtual_tsc_khz) {
1432                int faulted = 0;
1433
1434                /* n.b - signed multiplication and division required */
1435                usdiff = data - kvm->arch.last_tsc_write;
1436#ifdef CONFIG_X86_64
1437                usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz;
1438#else
1439                /* do_div() only does unsigned */
1440                asm("1: idivl %[divisor]\n"
1441                    "2: xor %%edx, %%edx\n"
1442                    "   movl $0, %[faulted]\n"
1443                    "3:\n"
1444                    ".section .fixup,\"ax\"\n"
1445                    "4: movl $1, %[faulted]\n"
1446                    "   jmp  3b\n"
1447                    ".previous\n"
1448
1449                _ASM_EXTABLE(1b, 4b)
1450
1451                : "=A"(usdiff), [faulted] "=r" (faulted)
1452                : "A"(usdiff * 1000), [divisor] "rm"(vcpu->arch.virtual_tsc_khz));
1453
1454#endif
1455                do_div(elapsed, 1000);
1456                usdiff -= elapsed;
1457                if (usdiff < 0)
1458                        usdiff = -usdiff;
1459
1460                /* idivl overflow => difference is larger than USEC_PER_SEC */
1461                if (faulted)
1462                        usdiff = USEC_PER_SEC;
1463        } else
1464                usdiff = USEC_PER_SEC; /* disable TSC match window below */
1465
1466        /*
1467         * Special case: TSC write with a small delta (1 second) of virtual
1468         * cycle time against real time is interpreted as an attempt to
1469         * synchronize the CPU.
1470         *
1471         * For a reliable TSC, we can match TSC offsets, and for an unstable
1472         * TSC, we add elapsed time in this computation.  We could let the
1473         * compensation code attempt to catch up if we fall behind, but
1474         * it's better to try to match offsets from the beginning.
1475         */
1476        if (usdiff < USEC_PER_SEC &&
1477            vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1478                if (!check_tsc_unstable()) {
1479                        offset = kvm->arch.cur_tsc_offset;
1480                        pr_debug("kvm: matched tsc offset for %llu\n", data);
1481                } else {
1482                        u64 delta = nsec_to_cycles(vcpu, elapsed);
1483                        data += delta;
1484                        offset = kvm_compute_tsc_offset(vcpu, data);
1485                        pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1486                }
1487                matched = true;
1488                already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1489        } else {
1490                /*
1491                 * We split periods of matched TSC writes into generations.
1492                 * For each generation, we track the original measured
1493                 * nanosecond time, offset, and write, so if TSCs are in
1494                 * sync, we can match exact offset, and if not, we can match
1495                 * exact software computation in compute_guest_tsc()
1496                 *
1497                 * These values are tracked in kvm->arch.cur_xxx variables.
1498                 */
1499                kvm->arch.cur_tsc_generation++;
1500                kvm->arch.cur_tsc_nsec = ns;
1501                kvm->arch.cur_tsc_write = data;
1502                kvm->arch.cur_tsc_offset = offset;
1503                matched = false;
1504                pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1505                         kvm->arch.cur_tsc_generation, data);
1506        }
1507
1508        /*
1509         * We also track th most recent recorded KHZ, write and time to
1510         * allow the matching interval to be extended at each write.
1511         */
1512        kvm->arch.last_tsc_nsec = ns;
1513        kvm->arch.last_tsc_write = data;
1514        kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
1515
1516        vcpu->arch.last_guest_tsc = data;
1517
1518        /* Keep track of which generation this VCPU has synchronized to */
1519        vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
1520        vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
1521        vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
1522
1523        if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated)
1524                update_ia32_tsc_adjust_msr(vcpu, offset);
1525        kvm_x86_ops->write_tsc_offset(vcpu, offset);
1526        raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1527
1528        spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
1529        if (!matched) {
1530                kvm->arch.nr_vcpus_matched_tsc = 0;
1531        } else if (!already_matched) {
1532                kvm->arch.nr_vcpus_matched_tsc++;
1533        }
1534
1535        kvm_track_tsc_matching(vcpu);
1536        spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
1537}
1538
1539EXPORT_SYMBOL_GPL(kvm_write_tsc);
1540
1541static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
1542                                           s64 adjustment)
1543{
1544        kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1545}
1546
1547static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
1548{
1549        if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
1550                WARN_ON(adjustment < 0);
1551        adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
1552        kvm_x86_ops->adjust_tsc_offset_guest(vcpu, adjustment);
1553}
1554
1555#ifdef CONFIG_X86_64
1556
1557static cycle_t read_tsc(void)
1558{
1559        cycle_t ret = (cycle_t)rdtsc_ordered();
1560        u64 last = pvclock_gtod_data.clock.cycle_last;
1561
1562        if (likely(ret >= last))
1563                return ret;
1564
1565        /*
1566         * GCC likes to generate cmov here, but this branch is extremely
1567         * predictable (it's just a function of time and the likely is
1568         * very likely) and there's a data dependence, so force GCC
1569         * to generate a branch instead.  I don't barrier() because
1570         * we don't actually need a barrier, and if this function
1571         * ever gets inlined it will generate worse code.
1572         */
1573        asm volatile ("");
1574        return last;
1575}
1576
1577static inline u64 vgettsc(cycle_t *cycle_now)
1578{
1579        long v;
1580        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1581
1582        *cycle_now = read_tsc();
1583
1584        v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask;
1585        return v * gtod->clock.mult;
1586}
1587
1588static int do_monotonic_boot(s64 *t, cycle_t *cycle_now)
1589{
1590        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1591        unsigned long seq;
1592        int mode;
1593        u64 ns;
1594
1595        do {
1596                seq = read_seqcount_begin(&gtod->seq);
1597                mode = gtod->clock.vclock_mode;
1598                ns = gtod->nsec_base;
1599                ns += vgettsc(cycle_now);
1600                ns >>= gtod->clock.shift;
1601                ns += gtod->boot_ns;
1602        } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
1603        *t = ns;
1604
1605        return mode;
1606}
1607
1608/* returns true if host is using tsc clocksource */
1609static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now)
1610{
1611        /* checked again under seqlock below */
1612        if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC)
1613                return false;
1614
1615        return do_monotonic_boot(kernel_ns, cycle_now) == VCLOCK_TSC;
1616}
1617#endif
1618
1619/*
1620 *
1621 * Assuming a stable TSC across physical CPUS, and a stable TSC
1622 * across virtual CPUs, the following condition is possible.
1623 * Each numbered line represents an event visible to both
1624 * CPUs at the next numbered event.
1625 *
1626 * "timespecX" represents host monotonic time. "tscX" represents
1627 * RDTSC value.
1628 *
1629 *              VCPU0 on CPU0           |       VCPU1 on CPU1
1630 *
1631 * 1.  read timespec0,tsc0
1632 * 2.                                   | timespec1 = timespec0 + N
1633 *                                      | tsc1 = tsc0 + M
1634 * 3. transition to guest               | transition to guest
1635 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1636 * 5.                                   | ret1 = timespec1 + (rdtsc - tsc1)
1637 *                                      | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1638 *
1639 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1640 *
1641 *      - ret0 < ret1
1642 *      - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1643 *              ...
1644 *      - 0 < N - M => M < N
1645 *
1646 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1647 * always the case (the difference between two distinct xtime instances
1648 * might be smaller then the difference between corresponding TSC reads,
1649 * when updating guest vcpus pvclock areas).
1650 *
1651 * To avoid that problem, do not allow visibility of distinct
1652 * system_timestamp/tsc_timestamp values simultaneously: use a master
1653 * copy of host monotonic time values. Update that master copy
1654 * in lockstep.
1655 *
1656 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1657 *
1658 */
1659
1660static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
1661{
1662#ifdef CONFIG_X86_64
1663        struct kvm_arch *ka = &kvm->arch;
1664        int vclock_mode;
1665        bool host_tsc_clocksource, vcpus_matched;
1666
1667        vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1668                        atomic_read(&kvm->online_vcpus));
1669
1670        /*
1671         * If the host uses TSC clock, then passthrough TSC as stable
1672         * to the guest.
1673         */
1674        host_tsc_clocksource = kvm_get_time_and_clockread(
1675                                        &ka->master_kernel_ns,
1676                                        &ka->master_cycle_now);
1677
1678        ka->use_master_clock = host_tsc_clocksource && vcpus_matched
1679                                && !backwards_tsc_observed
1680                                && !ka->boot_vcpu_runs_old_kvmclock;
1681
1682        if (ka->use_master_clock)
1683                atomic_set(&kvm_guest_has_master_clock, 1);
1684
1685        vclock_mode = pvclock_gtod_data.clock.vclock_mode;
1686        trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
1687                                        vcpus_matched);
1688#endif
1689}
1690
1691void kvm_make_mclock_inprogress_request(struct kvm *kvm)
1692{
1693        kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
1694}
1695
1696static void kvm_gen_update_masterclock(struct kvm *kvm)
1697{
1698#ifdef CONFIG_X86_64
1699        int i;
1700        struct kvm_vcpu *vcpu;
1701        struct kvm_arch *ka = &kvm->arch;
1702
1703        spin_lock(&ka->pvclock_gtod_sync_lock);
1704        kvm_make_mclock_inprogress_request(kvm);
1705        /* no guest entries from this point */
1706        pvclock_update_vm_gtod_copy(kvm);
1707
1708        kvm_for_each_vcpu(i, vcpu, kvm)
1709                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1710
1711        /* guest entries allowed */
1712        kvm_for_each_vcpu(i, vcpu, kvm)
1713                clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests);
1714
1715        spin_unlock(&ka->pvclock_gtod_sync_lock);
1716#endif
1717}
1718
1719static int kvm_guest_time_update(struct kvm_vcpu *v)
1720{
1721        unsigned long flags, tgt_tsc_khz;
1722        struct kvm_vcpu_arch *vcpu = &v->arch;
1723        struct kvm_arch *ka = &v->kvm->arch;
1724        s64 kernel_ns;
1725        u64 tsc_timestamp, host_tsc;
1726        struct pvclock_vcpu_time_info guest_hv_clock;
1727        u8 pvclock_flags;
1728        bool use_master_clock;
1729
1730        kernel_ns = 0;
1731        host_tsc = 0;
1732
1733        /*
1734         * If the host uses TSC clock, then passthrough TSC as stable
1735         * to the guest.
1736         */
1737        spin_lock(&ka->pvclock_gtod_sync_lock);
1738        use_master_clock = ka->use_master_clock;
1739        if (use_master_clock) {
1740                host_tsc = ka->master_cycle_now;
1741                kernel_ns = ka->master_kernel_ns;
1742        }
1743        spin_unlock(&ka->pvclock_gtod_sync_lock);
1744
1745        /* Keep irq disabled to prevent changes to the clock */
1746        local_irq_save(flags);
1747        tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
1748        if (unlikely(tgt_tsc_khz == 0)) {
1749                local_irq_restore(flags);
1750                kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1751                return 1;
1752        }
1753        if (!use_master_clock) {
1754                host_tsc = rdtsc();
1755                kernel_ns = get_kernel_ns();
1756        }
1757
1758        tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
1759
1760        /*
1761         * We may have to catch up the TSC to match elapsed wall clock
1762         * time for two reasons, even if kvmclock is used.
1763         *   1) CPU could have been running below the maximum TSC rate
1764         *   2) Broken TSC compensation resets the base at each VCPU
1765         *      entry to avoid unknown leaps of TSC even when running
1766         *      again on the same CPU.  This may cause apparent elapsed
1767         *      time to disappear, and the guest to stand still or run
1768         *      very slowly.
1769         */
1770        if (vcpu->tsc_catchup) {
1771                u64 tsc = compute_guest_tsc(v, kernel_ns);
1772                if (tsc > tsc_timestamp) {
1773                        adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
1774                        tsc_timestamp = tsc;
1775                }
1776        }
1777
1778        local_irq_restore(flags);
1779
1780        if (!vcpu->pv_time_enabled)
1781                return 0;
1782
1783        if (kvm_has_tsc_control)
1784                tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
1785
1786        if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
1787                kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
1788                                   &vcpu->hv_clock.tsc_shift,
1789                                   &vcpu->hv_clock.tsc_to_system_mul);
1790                vcpu->hw_tsc_khz = tgt_tsc_khz;
1791        }
1792
1793        /* With all the info we got, fill in the values */
1794        vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1795        vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1796        vcpu->last_guest_tsc = tsc_timestamp;
1797
1798        if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
1799                &guest_hv_clock, sizeof(guest_hv_clock))))
1800                return 0;
1801
1802        /* This VCPU is paused, but it's legal for a guest to read another
1803         * VCPU's kvmclock, so we really have to follow the specification where
1804         * it says that version is odd if data is being modified, and even after
1805         * it is consistent.
1806         *
1807         * Version field updates must be kept separate.  This is because
1808         * kvm_write_guest_cached might use a "rep movs" instruction, and
1809         * writes within a string instruction are weakly ordered.  So there
1810         * are three writes overall.
1811         *
1812         * As a small optimization, only write the version field in the first
1813         * and third write.  The vcpu->pv_time cache is still valid, because the
1814         * version field is the first in the struct.
1815         */
1816        BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
1817
1818        vcpu->hv_clock.version = guest_hv_clock.version + 1;
1819        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1820                                &vcpu->hv_clock,
1821                                sizeof(vcpu->hv_clock.version));
1822
1823        smp_wmb();
1824
1825        /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1826        pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
1827
1828        if (vcpu->pvclock_set_guest_stopped_request) {
1829                pvclock_flags |= PVCLOCK_GUEST_STOPPED;
1830                vcpu->pvclock_set_guest_stopped_request = false;
1831        }
1832
1833        /* If the host uses TSC clocksource, then it is stable */
1834        if (use_master_clock)
1835                pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
1836
1837        vcpu->hv_clock.flags = pvclock_flags;
1838
1839        trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
1840
1841        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1842                                &vcpu->hv_clock,
1843                                sizeof(vcpu->hv_clock));
1844
1845        smp_wmb();
1846
1847        vcpu->hv_clock.version++;
1848        kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
1849                                &vcpu->hv_clock,
1850                                sizeof(vcpu->hv_clock.version));
1851        return 0;
1852}
1853
1854/*
1855 * kvmclock updates which are isolated to a given vcpu, such as
1856 * vcpu->cpu migration, should not allow system_timestamp from
1857 * the rest of the vcpus to remain static. Otherwise ntp frequency
1858 * correction applies to one vcpu's system_timestamp but not
1859 * the others.
1860 *
1861 * So in those cases, request a kvmclock update for all vcpus.
1862 * We need to rate-limit these requests though, as they can
1863 * considerably slow guests that have a large number of vcpus.
1864 * The time for a remote vcpu to update its kvmclock is bound
1865 * by the delay we use to rate-limit the updates.
1866 */
1867
1868#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1869
1870static void kvmclock_update_fn(struct work_struct *work)
1871{
1872        int i;
1873        struct delayed_work *dwork = to_delayed_work(work);
1874        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1875                                           kvmclock_update_work);
1876        struct kvm *kvm = container_of(ka, struct kvm, arch);
1877        struct kvm_vcpu *vcpu;
1878
1879        kvm_for_each_vcpu(i, vcpu, kvm) {
1880                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1881                kvm_vcpu_kick(vcpu);
1882        }
1883}
1884
1885static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
1886{
1887        struct kvm *kvm = v->kvm;
1888
1889        kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1890        schedule_delayed_work(&kvm->arch.kvmclock_update_work,
1891                                        KVMCLOCK_UPDATE_DELAY);
1892}
1893
1894#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1895
1896static void kvmclock_sync_fn(struct work_struct *work)
1897{
1898        struct delayed_work *dwork = to_delayed_work(work);
1899        struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
1900                                           kvmclock_sync_work);
1901        struct kvm *kvm = container_of(ka, struct kvm, arch);
1902
1903        if (!kvmclock_periodic_sync)
1904                return;
1905
1906        schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
1907        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
1908                                        KVMCLOCK_SYNC_PERIOD);
1909}
1910
1911static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1912{
1913        u64 mcg_cap = vcpu->arch.mcg_cap;
1914        unsigned bank_num = mcg_cap & 0xff;
1915
1916        switch (msr) {
1917        case MSR_IA32_MCG_STATUS:
1918                vcpu->arch.mcg_status = data;
1919                break;
1920        case MSR_IA32_MCG_CTL:
1921                if (!(mcg_cap & MCG_CTL_P))
1922                        return 1;
1923                if (data != 0 && data != ~(u64)0)
1924                        return -1;
1925                vcpu->arch.mcg_ctl = data;
1926                break;
1927        default:
1928                if (msr >= MSR_IA32_MC0_CTL &&
1929                    msr < MSR_IA32_MCx_CTL(bank_num)) {
1930                        u32 offset = msr - MSR_IA32_MC0_CTL;
1931                        /* only 0 or all 1s can be written to IA32_MCi_CTL
1932                         * some Linux kernels though clear bit 10 in bank 4 to
1933                         * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1934                         * this to avoid an uncatched #GP in the guest
1935                         */
1936                        if ((offset & 0x3) == 0 &&
1937                            data != 0 && (data | (1 << 10)) != ~(u64)0)
1938                                return -1;
1939                        vcpu->arch.mce_banks[offset] = data;
1940                        break;
1941                }
1942                return 1;
1943        }
1944        return 0;
1945}
1946
1947static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1948{
1949        struct kvm *kvm = vcpu->kvm;
1950        int lm = is_long_mode(vcpu);
1951        u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1952                : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1953        u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1954                : kvm->arch.xen_hvm_config.blob_size_32;
1955        u32 page_num = data & ~PAGE_MASK;
1956        u64 page_addr = data & PAGE_MASK;
1957        u8 *page;
1958        int r;
1959
1960        r = -E2BIG;
1961        if (page_num >= blob_size)
1962                goto out;
1963        r = -ENOMEM;
1964        page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
1965        if (IS_ERR(page)) {
1966                r = PTR_ERR(page);
1967                goto out;
1968        }
1969        if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
1970                goto out_free;
1971        r = 0;
1972out_free:
1973        kfree(page);
1974out:
1975        return r;
1976}
1977
1978static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1979{
1980        gpa_t gpa = data & ~0x3f;
1981
1982        /* Bits 2:5 are reserved, Should be zero */
1983        if (data & 0x3c)
1984                return 1;
1985
1986        vcpu->arch.apf.msr_val = data;
1987
1988        if (!(data & KVM_ASYNC_PF_ENABLED)) {
1989                kvm_clear_async_pf_completion_queue(vcpu);
1990                kvm_async_pf_hash_reset(vcpu);
1991                return 0;
1992        }
1993
1994        if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
1995                                        sizeof(u32)))
1996                return 1;
1997
1998        vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1999        kvm_async_pf_wakeup_all(vcpu);
2000        return 0;
2001}
2002
2003static void kvmclock_reset(struct kvm_vcpu *vcpu)
2004{
2005        vcpu->arch.pv_time_enabled = false;
2006}
2007
2008static void record_steal_time(struct kvm_vcpu *vcpu)
2009{
2010        if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2011                return;
2012
2013        if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2014                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2015                return;
2016
2017        if (vcpu->arch.st.steal.version & 1)
2018                vcpu->arch.st.steal.version += 1;  /* first time write, random junk */
2019
2020        vcpu->arch.st.steal.version += 1;
2021
2022        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2023                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2024
2025        smp_wmb();
2026
2027        vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2028                vcpu->arch.st.last_steal;
2029        vcpu->arch.st.last_steal = current->sched_info.run_delay;
2030
2031        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2032                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2033
2034        smp_wmb();
2035
2036        vcpu->arch.st.steal.version += 1;
2037
2038        kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2039                &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2040}
2041
2042int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2043{
2044        bool pr = false;
2045        u32 msr = msr_info->index;
2046        u64 data = msr_info->data;
2047
2048        switch (msr) {
2049        case MSR_AMD64_NB_CFG:
2050        case MSR_IA32_UCODE_REV:
2051        case MSR_IA32_UCODE_WRITE:
2052        case MSR_VM_HSAVE_PA:
2053        case MSR_AMD64_PATCH_LOADER:
2054        case MSR_AMD64_BU_CFG2:
2055                break;
2056
2057        case MSR_EFER:
2058                return set_efer(vcpu, data);
2059        case MSR_K7_HWCR:
2060                data &= ~(u64)0x40;     /* ignore flush filter disable */
2061                data &= ~(u64)0x100;    /* ignore ignne emulation enable */
2062                data &= ~(u64)0x8;      /* ignore TLB cache disable */
2063                data &= ~(u64)0x40000;  /* ignore Mc status write enable */
2064                if (data != 0) {
2065                        vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2066                                    data);
2067                        return 1;
2068                }
2069                break;
2070        case MSR_FAM10H_MMIO_CONF_BASE:
2071                if (data != 0) {
2072                        vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2073                                    "0x%llx\n", data);
2074                        return 1;
2075                }
2076                break;
2077        case MSR_IA32_DEBUGCTLMSR:
2078                if (!data) {
2079                        /* We support the non-activated case already */
2080                        break;
2081                } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2082                        /* Values other than LBR and BTF are vendor-specific,
2083                           thus reserved and should throw a #GP */
2084                        return 1;
2085                }
2086                vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2087                            __func__, data);
2088                break;
2089        case 0x200 ... 0x2ff:
2090                return kvm_mtrr_set_msr(vcpu, msr, data);
2091        case MSR_IA32_APICBASE:
2092                return kvm_set_apic_base(vcpu, msr_info);
2093        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2094                return kvm_x2apic_msr_write(vcpu, msr, data);
2095        case MSR_IA32_TSCDEADLINE:
2096                kvm_set_lapic_tscdeadline_msr(vcpu, data);
2097                break;
2098        case MSR_IA32_TSC_ADJUST:
2099                if (guest_cpuid_has_tsc_adjust(vcpu)) {
2100                        if (!msr_info->host_initiated) {
2101                                s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2102                                adjust_tsc_offset_guest(vcpu, adj);
2103                        }
2104                        vcpu->arch.ia32_tsc_adjust_msr = data;
2105                }
2106                break;
2107        case MSR_IA32_MISC_ENABLE:
2108                vcpu->arch.ia32_misc_enable_msr = data;
2109                break;
2110        case MSR_IA32_SMBASE:
2111                if (!msr_info->host_initiated)
2112                        return 1;
2113                vcpu->arch.smbase = data;
2114                break;
2115        case MSR_KVM_WALL_CLOCK_NEW:
2116        case MSR_KVM_WALL_CLOCK:
2117                vcpu->kvm->arch.wall_clock = data;
2118                kvm_write_wall_clock(vcpu->kvm, data);
2119                break;
2120        case MSR_KVM_SYSTEM_TIME_NEW:
2121        case MSR_KVM_SYSTEM_TIME: {
2122                u64 gpa_offset;
2123                struct kvm_arch *ka = &vcpu->kvm->arch;
2124
2125                kvmclock_reset(vcpu);
2126
2127                if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2128                        bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2129
2130                        if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2131                                set_bit(KVM_REQ_MASTERCLOCK_UPDATE,
2132                                        &vcpu->requests);
2133
2134                        ka->boot_vcpu_runs_old_kvmclock = tmp;
2135                }
2136
2137                vcpu->arch.time = data;
2138                kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2139
2140                /* we verify if the enable bit is set... */
2141                if (!(data & 1))
2142                        break;
2143
2144                gpa_offset = data & ~(PAGE_MASK | 1);
2145
2146                if (kvm_gfn_to_hva_cache_init(vcpu->kvm,
2147                     &vcpu->arch.pv_time, data & ~1ULL,
2148                     sizeof(struct pvclock_vcpu_time_info)))
2149                        vcpu->arch.pv_time_enabled = false;
2150                else
2151                        vcpu->arch.pv_time_enabled = true;
2152
2153                break;
2154        }
2155        case MSR_KVM_ASYNC_PF_EN:
2156                if (kvm_pv_enable_async_pf(vcpu, data))
2157                        return 1;
2158                break;
2159        case MSR_KVM_STEAL_TIME:
2160
2161                if (unlikely(!sched_info_on()))
2162                        return 1;
2163
2164                if (data & KVM_STEAL_RESERVED_MASK)
2165                        return 1;
2166
2167                if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2168                                                data & KVM_STEAL_VALID_BITS,
2169                                                sizeof(struct kvm_steal_time)))
2170                        return 1;
2171
2172                vcpu->arch.st.msr_val = data;
2173
2174                if (!(data & KVM_MSR_ENABLED))
2175                        break;
2176
2177                kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2178
2179                break;
2180        case MSR_KVM_PV_EOI_EN:
2181                if (kvm_lapic_enable_pv_eoi(vcpu, data))
2182                        return 1;
2183                break;
2184
2185        case MSR_IA32_MCG_CTL:
2186        case MSR_IA32_MCG_STATUS:
2187        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2188                return set_msr_mce(vcpu, msr, data);
2189
2190        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2191        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2192                pr = true; /* fall through */
2193        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2194        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2195                if (kvm_pmu_is_valid_msr(vcpu, msr))
2196                        return kvm_pmu_set_msr(vcpu, msr_info);
2197
2198                if (pr || data != 0)
2199                        vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2200                                    "0x%x data 0x%llx\n", msr, data);
2201                break;
2202        case MSR_K7_CLK_CTL:
2203                /*
2204                 * Ignore all writes to this no longer documented MSR.
2205                 * Writes are only relevant for old K7 processors,
2206                 * all pre-dating SVM, but a recommended workaround from
2207                 * AMD for these chips. It is possible to specify the
2208                 * affected processor models on the command line, hence
2209                 * the need to ignore the workaround.
2210                 */
2211                break;
2212        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2213        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2214        case HV_X64_MSR_CRASH_CTL:
2215        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2216                return kvm_hv_set_msr_common(vcpu, msr, data,
2217                                             msr_info->host_initiated);
2218        case MSR_IA32_BBL_CR_CTL3:
2219                /* Drop writes to this legacy MSR -- see rdmsr
2220                 * counterpart for further detail.
2221                 */
2222                vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
2223                break;
2224        case MSR_AMD64_OSVW_ID_LENGTH:
2225                if (!guest_cpuid_has_osvw(vcpu))
2226                        return 1;
2227                vcpu->arch.osvw.length = data;
2228                break;
2229        case MSR_AMD64_OSVW_STATUS:
2230                if (!guest_cpuid_has_osvw(vcpu))
2231                        return 1;
2232                vcpu->arch.osvw.status = data;
2233                break;
2234        default:
2235                if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2236                        return xen_hvm_config(vcpu, data);
2237                if (kvm_pmu_is_valid_msr(vcpu, msr))
2238                        return kvm_pmu_set_msr(vcpu, msr_info);
2239                if (!ignore_msrs) {
2240                        vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
2241                                    msr, data);
2242                        return 1;
2243                } else {
2244                        vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
2245                                    msr, data);
2246                        break;
2247                }
2248        }
2249        return 0;
2250}
2251EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2252
2253
2254/*
2255 * Reads an msr value (of 'msr_index') into 'pdata'.
2256 * Returns 0 on success, non-0 otherwise.
2257 * Assumes vcpu_load() was already called.
2258 */
2259int kvm_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
2260{
2261        return kvm_x86_ops->get_msr(vcpu, msr);
2262}
2263EXPORT_SYMBOL_GPL(kvm_get_msr);
2264
2265static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
2266{
2267        u64 data;
2268        u64 mcg_cap = vcpu->arch.mcg_cap;
2269        unsigned bank_num = mcg_cap & 0xff;
2270
2271        switch (msr) {
2272        case MSR_IA32_P5_MC_ADDR:
2273        case MSR_IA32_P5_MC_TYPE:
2274                data = 0;
2275                break;
2276        case MSR_IA32_MCG_CAP:
2277                data = vcpu->arch.mcg_cap;
2278                break;
2279        case MSR_IA32_MCG_CTL:
2280                if (!(mcg_cap & MCG_CTL_P))
2281                        return 1;
2282                data = vcpu->arch.mcg_ctl;
2283                break;
2284        case MSR_IA32_MCG_STATUS:
2285                data = vcpu->arch.mcg_status;
2286                break;
2287        default:
2288                if (msr >= MSR_IA32_MC0_CTL &&
2289                    msr < MSR_IA32_MCx_CTL(bank_num)) {
2290                        u32 offset = msr - MSR_IA32_MC0_CTL;
2291                        data = vcpu->arch.mce_banks[offset];
2292                        break;
2293                }
2294                return 1;
2295        }
2296        *pdata = data;
2297        return 0;
2298}
2299
2300int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2301{
2302        switch (msr_info->index) {
2303        case MSR_IA32_PLATFORM_ID:
2304        case MSR_IA32_EBL_CR_POWERON:
2305        case MSR_IA32_DEBUGCTLMSR:
2306        case MSR_IA32_LASTBRANCHFROMIP:
2307        case MSR_IA32_LASTBRANCHTOIP:
2308        case MSR_IA32_LASTINTFROMIP:
2309        case MSR_IA32_LASTINTTOIP:
2310        case MSR_K8_SYSCFG:
2311        case MSR_K8_TSEG_ADDR:
2312        case MSR_K8_TSEG_MASK:
2313        case MSR_K7_HWCR:
2314        case MSR_VM_HSAVE_PA:
2315        case MSR_K8_INT_PENDING_MSG:
2316        case MSR_AMD64_NB_CFG:
2317        case MSR_FAM10H_MMIO_CONF_BASE:
2318        case MSR_AMD64_BU_CFG2:
2319        case MSR_IA32_PERF_CTL:
2320                msr_info->data = 0;
2321                break;
2322        case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2323        case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2324        case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2325        case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2326                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2327                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2328                msr_info->data = 0;
2329                break;
2330        case MSR_IA32_UCODE_REV:
2331                msr_info->data = 0x100000000ULL;
2332                break;
2333        case MSR_MTRRcap:
2334        case 0x200 ... 0x2ff:
2335                return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
2336        case 0xcd: /* fsb frequency */
2337                msr_info->data = 3;
2338                break;
2339                /*
2340                 * MSR_EBC_FREQUENCY_ID
2341                 * Conservative value valid for even the basic CPU models.
2342                 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2343                 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2344                 * and 266MHz for model 3, or 4. Set Core Clock
2345                 * Frequency to System Bus Frequency Ratio to 1 (bits
2346                 * 31:24) even though these are only valid for CPU
2347                 * models > 2, however guests may end up dividing or
2348                 * multiplying by zero otherwise.
2349                 */
2350        case MSR_EBC_FREQUENCY_ID:
2351                msr_info->data = 1 << 24;
2352                break;
2353        case MSR_IA32_APICBASE:
2354                msr_info->data = kvm_get_apic_base(vcpu);
2355                break;
2356        case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2357                return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
2358                break;
2359        case MSR_IA32_TSCDEADLINE:
2360                msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
2361                break;
2362        case MSR_IA32_TSC_ADJUST:
2363                msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
2364                break;
2365        case MSR_IA32_MISC_ENABLE:
2366                msr_info->data = vcpu->arch.ia32_misc_enable_msr;
2367                break;
2368        case MSR_IA32_SMBASE:
2369                if (!msr_info->host_initiated)
2370                        return 1;
2371                msr_info->data = vcpu->arch.smbase;
2372                break;
2373        case MSR_IA32_PERF_STATUS:
2374                /* TSC increment by tick */
2375                msr_info->data = 1000ULL;
2376                /* CPU multiplier */
2377                msr_info->data |= (((uint64_t)4ULL) << 40);
2378                break;
2379        case MSR_EFER:
2380                msr_info->data = vcpu->arch.efer;
2381                break;
2382        case MSR_KVM_WALL_CLOCK:
2383        case MSR_KVM_WALL_CLOCK_NEW:
2384                msr_info->data = vcpu->kvm->arch.wall_clock;
2385                break;
2386        case MSR_KVM_SYSTEM_TIME:
2387        case MSR_KVM_SYSTEM_TIME_NEW:
2388                msr_info->data = vcpu->arch.time;
2389                break;
2390        case MSR_KVM_ASYNC_PF_EN:
2391                msr_info->data = vcpu->arch.apf.msr_val;
2392                break;
2393        case MSR_KVM_STEAL_TIME:
2394                msr_info->data = vcpu->arch.st.msr_val;
2395                break;
2396        case MSR_KVM_PV_EOI_EN:
2397                msr_info->data = vcpu->arch.pv_eoi.msr_val;
2398                break;
2399        case MSR_IA32_P5_MC_ADDR:
2400        case MSR_IA32_P5_MC_TYPE:
2401        case MSR_IA32_MCG_CAP:
2402        case MSR_IA32_MCG_CTL:
2403        case MSR_IA32_MCG_STATUS:
2404        case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2405                return get_msr_mce(vcpu, msr_info->index, &msr_info->data);
2406        case MSR_K7_CLK_CTL:
2407                /*
2408                 * Provide expected ramp-up count for K7. All other
2409                 * are set to zero, indicating minimum divisors for
2410                 * every field.
2411                 *
2412                 * This prevents guest kernels on AMD host with CPU
2413                 * type 6, model 8 and higher from exploding due to
2414                 * the rdmsr failing.
2415                 */
2416                msr_info->data = 0x20000000;
2417                break;
2418        case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2419        case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2420        case HV_X64_MSR_CRASH_CTL:
2421        case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2422                return kvm_hv_get_msr_common(vcpu,
2423                                             msr_info->index, &msr_info->data);
2424                break;
2425        case MSR_IA32_BBL_CR_CTL3:
2426                /* This legacy MSR exists but isn't fully documented in current
2427                 * silicon.  It is however accessed by winxp in very narrow
2428                 * scenarios where it sets bit #19, itself documented as
2429                 * a "reserved" bit.  Best effort attempt to source coherent
2430                 * read data here should the balance of the register be
2431                 * interpreted by the guest:
2432                 *
2433                 * L2 cache control register 3: 64GB range, 256KB size,
2434                 * enabled, latency 0x1, configured
2435                 */
2436                msr_info->data = 0xbe702111;
2437                break;
2438        case MSR_AMD64_OSVW_ID_LENGTH:
2439                if (!guest_cpuid_has_osvw(vcpu))
2440                        return 1;
2441                msr_info->data = vcpu->arch.osvw.length;
2442                break;
2443        case MSR_AMD64_OSVW_STATUS:
2444                if (!guest_cpuid_has_osvw(vcpu))
2445                        return 1;
2446                msr_info->data = vcpu->arch.osvw.status;
2447                break;
2448        default:
2449                if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
2450                        return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
2451                if (!ignore_msrs) {
2452                        vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr_info->index);
2453                        return 1;
2454                } else {
2455                        vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr_info->index);
2456                        msr_info->data = 0;
2457                }
2458                break;
2459        }
2460        return 0;
2461}
2462EXPORT_SYMBOL_GPL(kvm_get_msr_common);
2463
2464/*
2465 * Read or write a bunch of msrs. All parameters are kernel addresses.
2466 *
2467 * @return number of msrs set successfully.
2468 */
2469static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
2470                    struct kvm_msr_entry *entries,
2471                    int (*do_msr)(struct kvm_vcpu *vcpu,
2472                                  unsigned index, u64 *data))
2473{
2474        int i, idx;
2475
2476        idx = srcu_read_lock(&vcpu->kvm->srcu);
2477        for (i = 0; i < msrs->nmsrs; ++i)
2478                if (do_msr(vcpu, entries[i].index, &entries[i].data))
2479                        break;
2480        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2481
2482        return i;
2483}
2484
2485/*
2486 * Read or write a bunch of msrs. Parameters are user addresses.
2487 *
2488 * @return number of msrs set successfully.
2489 */
2490static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2491                  int (*do_msr)(struct kvm_vcpu *vcpu,
2492                                unsigned index, u64 *data),
2493                  int writeback)
2494{
2495        struct kvm_msrs msrs;
2496        struct kvm_msr_entry *entries;
2497        int r, n;
2498        unsigned size;
2499
2500        r = -EFAULT;
2501        if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2502                goto out;
2503
2504        r = -E2BIG;
2505        if (msrs.nmsrs >= MAX_IO_MSRS)
2506                goto out;
2507
2508        size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2509        entries = memdup_user(user_msrs->entries, size);
2510        if (IS_ERR(entries)) {
2511                r = PTR_ERR(entries);
2512                goto out;
2513        }
2514
2515        r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2516        if (r < 0)
2517                goto out_free;
2518
2519        r = -EFAULT;
2520        if (writeback && copy_to_user(user_msrs->entries, entries, size))
2521                goto out_free;
2522
2523        r = n;
2524
2525out_free:
2526        kfree(entries);
2527out:
2528        return r;
2529}
2530
2531int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
2532{
2533        int r;
2534
2535        switch (ext) {
2536        case KVM_CAP_IRQCHIP:
2537        case KVM_CAP_HLT:
2538        case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2539        case KVM_CAP_SET_TSS_ADDR:
2540        case KVM_CAP_EXT_CPUID:
2541        case KVM_CAP_EXT_EMUL_CPUID:
2542        case KVM_CAP_CLOCKSOURCE:
2543        case KVM_CAP_PIT:
2544        case KVM_CAP_NOP_IO_DELAY:
2545        case KVM_CAP_MP_STATE:
2546        case KVM_CAP_SYNC_MMU:
2547        case KVM_CAP_USER_NMI:
2548        case KVM_CAP_REINJECT_CONTROL:
2549        case KVM_CAP_IRQ_INJECT_STATUS:
2550        case KVM_CAP_IOEVENTFD:
2551        case KVM_CAP_IOEVENTFD_NO_LENGTH:
2552        case KVM_CAP_PIT2:
2553        case KVM_CAP_PIT_STATE2:
2554        case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2555        case KVM_CAP_XEN_HVM:
2556        case KVM_CAP_ADJUST_CLOCK:
2557        case KVM_CAP_VCPU_EVENTS:
2558        case KVM_CAP_HYPERV:
2559        case KVM_CAP_HYPERV_VAPIC:
2560        case KVM_CAP_HYPERV_SPIN:
2561        case KVM_CAP_HYPERV_SYNIC:
2562        case KVM_CAP_PCI_SEGMENT:
2563        case KVM_CAP_DEBUGREGS:
2564        case KVM_CAP_X86_ROBUST_SINGLESTEP:
2565        case KVM_CAP_XSAVE:
2566        case KVM_CAP_ASYNC_PF:
2567        case KVM_CAP_GET_TSC_KHZ:
2568        case KVM_CAP_KVMCLOCK_CTRL:
2569        case KVM_CAP_READONLY_MEM:
2570        case KVM_CAP_HYPERV_TIME:
2571        case KVM_CAP_IOAPIC_POLARITY_IGNORED:
2572        case KVM_CAP_TSC_DEADLINE_TIMER:
2573        case KVM_CAP_ENABLE_CAP_VM:
2574        case KVM_CAP_DISABLE_QUIRKS:
2575        case KVM_CAP_SET_BOOT_CPU_ID:
2576        case KVM_CAP_SPLIT_IRQCHIP:
2577#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2578        case KVM_CAP_ASSIGN_DEV_IRQ:
2579        case KVM_CAP_PCI_2_3:
2580#endif
2581                r = 1;
2582                break;
2583        case KVM_CAP_X86_SMM:
2584                /* SMBASE is usually relocated above 1M on modern chipsets,
2585                 * and SMM handlers might indeed rely on 4G segment limits,
2586                 * so do not report SMM to be available if real mode is
2587                 * emulated via vm86 mode.  Still, do not go to great lengths
2588                 * to avoid userspace's usage of the feature, because it is a
2589                 * fringe case that is not enabled except via specific settings
2590                 * of the module parameters.
2591                 */
2592                r = kvm_x86_ops->cpu_has_high_real_mode_segbase();
2593                break;
2594        case KVM_CAP_COALESCED_MMIO:
2595                r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2596                break;
2597        case KVM_CAP_VAPIC:
2598                r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2599                break;
2600        case KVM_CAP_NR_VCPUS:
2601                r = KVM_SOFT_MAX_VCPUS;
2602                break;
2603        case KVM_CAP_MAX_VCPUS:
2604                r = KVM_MAX_VCPUS;
2605                break;
2606        case KVM_CAP_NR_MEMSLOTS:
2607                r = KVM_USER_MEM_SLOTS;
2608                break;
2609        case KVM_CAP_PV_MMU:    /* obsolete */
2610                r = 0;
2611                break;
2612#ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2613        case KVM_CAP_IOMMU:
2614                r = iommu_present(&pci_bus_type);
2615                break;
2616#endif
2617        case KVM_CAP_MCE:
2618                r = KVM_MAX_MCE_BANKS;
2619                break;
2620        case KVM_CAP_XCRS:
2621                r = boot_cpu_has(X86_FEATURE_XSAVE);
2622                break;
2623        case KVM_CAP_TSC_CONTROL:
2624                r = kvm_has_tsc_control;
2625                break;
2626        case KVM_CAP_X2APIC_API:
2627                r = KVM_X2APIC_API_VALID_FLAGS;
2628                break;
2629        default:
2630                r = 0;
2631                break;
2632        }
2633        return r;
2634
2635}
2636
2637long kvm_arch_dev_ioctl(struct file *filp,
2638                        unsigned int ioctl, unsigned long arg)
2639{
2640        void __user *argp = (void __user *)arg;
2641        long r;
2642
2643        switch (ioctl) {
2644        case KVM_GET_MSR_INDEX_LIST: {
2645                struct kvm_msr_list __user *user_msr_list = argp;
2646                struct kvm_msr_list msr_list;
2647                unsigned n;
2648
2649                r = -EFAULT;
2650                if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2651                        goto out;
2652                n = msr_list.nmsrs;
2653                msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
2654                if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2655                        goto out;
2656                r = -E2BIG;
2657                if (n < msr_list.nmsrs)
2658                        goto out;
2659                r = -EFAULT;
2660                if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2661                                 num_msrs_to_save * sizeof(u32)))
2662                        goto out;
2663                if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2664                                 &emulated_msrs,
2665                                 num_emulated_msrs * sizeof(u32)))
2666                        goto out;
2667                r = 0;
2668                break;
2669        }
2670        case KVM_GET_SUPPORTED_CPUID:
2671        case KVM_GET_EMULATED_CPUID: {
2672                struct kvm_cpuid2 __user *cpuid_arg = argp;
2673                struct kvm_cpuid2 cpuid;
2674
2675                r = -EFAULT;
2676                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2677                        goto out;
2678
2679                r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
2680                                            ioctl);
2681                if (r)
2682                        goto out;
2683
2684                r = -EFAULT;
2685                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2686                        goto out;
2687                r = 0;
2688                break;
2689        }
2690        case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2691                r = -EFAULT;
2692                if (copy_to_user(argp, &kvm_mce_cap_supported,
2693                                 sizeof(kvm_mce_cap_supported)))
2694                        goto out;
2695                r = 0;
2696                break;
2697        }
2698        default:
2699                r = -EINVAL;
2700        }
2701out:
2702        return r;
2703}
2704
2705static void wbinvd_ipi(void *garbage)
2706{
2707        wbinvd();
2708}
2709
2710static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2711{
2712        return kvm_arch_has_noncoherent_dma(vcpu->kvm);
2713}
2714
2715static inline void kvm_migrate_timers(struct kvm_vcpu *vcpu)
2716{
2717        set_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests);
2718}
2719
2720void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2721{
2722        /* Address WBINVD may be executed by guest */
2723        if (need_emulate_wbinvd(vcpu)) {
2724                if (kvm_x86_ops->has_wbinvd_exit())
2725                        cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2726                else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2727                        smp_call_function_single(vcpu->cpu,
2728                                        wbinvd_ipi, NULL, 1);
2729        }
2730
2731        kvm_x86_ops->vcpu_load(vcpu, cpu);
2732
2733        /* Apply any externally detected TSC adjustments (due to suspend) */
2734        if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
2735                adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
2736                vcpu->arch.tsc_offset_adjustment = 0;
2737                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2738        }
2739
2740        if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2741                s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
2742                                rdtsc() - vcpu->arch.last_host_tsc;
2743                if (tsc_delta < 0)
2744                        mark_tsc_unstable("KVM discovered backwards TSC");
2745
2746                if (check_tsc_unstable()) {
2747                        u64 offset = kvm_compute_tsc_offset(vcpu,
2748                                                vcpu->arch.last_guest_tsc);
2749                        kvm_x86_ops->write_tsc_offset(vcpu, offset);
2750                        vcpu->arch.tsc_catchup = 1;
2751                }
2752                if (kvm_lapic_hv_timer_in_use(vcpu) &&
2753                                kvm_x86_ops->set_hv_timer(vcpu,
2754                                        kvm_get_lapic_tscdeadline_msr(vcpu)))
2755                        kvm_lapic_switch_to_sw_timer(vcpu);
2756                /*
2757                 * On a host with synchronized TSC, there is no need to update
2758                 * kvmclock on vcpu->cpu migration
2759                 */
2760                if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
2761                        kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2762                if (vcpu->cpu != cpu)
2763                        kvm_migrate_timers(vcpu);
2764                vcpu->cpu = cpu;
2765        }
2766
2767        kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2768}
2769
2770void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2771{
2772        kvm_x86_ops->vcpu_put(vcpu);
2773        kvm_put_guest_fpu(vcpu);
2774        vcpu->arch.last_host_tsc = rdtsc();
2775}
2776
2777static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2778                                    struct kvm_lapic_state *s)
2779{
2780        if (vcpu->arch.apicv_active)
2781                kvm_x86_ops->sync_pir_to_irr(vcpu);
2782
2783        return kvm_apic_get_state(vcpu, s);
2784}
2785
2786static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2787                                    struct kvm_lapic_state *s)
2788{
2789        int r;
2790
2791        r = kvm_apic_set_state(vcpu, s);
2792        if (r)
2793                return r;
2794        update_cr8_intercept(vcpu);
2795
2796        return 0;
2797}
2798
2799static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
2800{
2801        return (!lapic_in_kernel(vcpu) ||
2802                kvm_apic_accept_pic_intr(vcpu));
2803}
2804
2805/*
2806 * if userspace requested an interrupt window, check that the
2807 * interrupt window is open.
2808 *
2809 * No need to exit to userspace if we already have an interrupt queued.
2810 */
2811static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
2812{
2813        return kvm_arch_interrupt_allowed(vcpu) &&
2814                !kvm_cpu_has_interrupt(vcpu) &&
2815                !kvm_event_needs_reinjection(vcpu) &&
2816                kvm_cpu_accept_dm_intr(vcpu);
2817}
2818
2819static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2820                                    struct kvm_interrupt *irq)
2821{
2822        if (irq->irq >= KVM_NR_INTERRUPTS)
2823                return -EINVAL;
2824
2825        if (!irqchip_in_kernel(vcpu->kvm)) {
2826                kvm_queue_interrupt(vcpu, irq->irq, false);
2827                kvm_make_request(KVM_REQ_EVENT, vcpu);
2828                return 0;
2829        }
2830
2831        /*
2832         * With in-kernel LAPIC, we only use this to inject EXTINT, so
2833         * fail for in-kernel 8259.
2834         */
2835        if (pic_in_kernel(vcpu->kvm))
2836                return -ENXIO;
2837
2838        if (vcpu->arch.pending_external_vector != -1)
2839                return -EEXIST;
2840
2841        vcpu->arch.pending_external_vector = irq->irq;
2842        kvm_make_request(KVM_REQ_EVENT, vcpu);
2843        return 0;
2844}
2845
2846static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2847{
2848        kvm_inject_nmi(vcpu);
2849
2850        return 0;
2851}
2852
2853static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
2854{
2855        kvm_make_request(KVM_REQ_SMI, vcpu);
2856
2857        return 0;
2858}
2859
2860static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2861                                           struct kvm_tpr_access_ctl *tac)
2862{
2863        if (tac->flags)
2864                return -EINVAL;
2865        vcpu->arch.tpr_access_reporting = !!tac->enabled;
2866        return 0;
2867}
2868
2869static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2870                                        u64 mcg_cap)
2871{
2872        int r;
2873        unsigned bank_num = mcg_cap & 0xff, bank;
2874
2875        r = -EINVAL;
2876        if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2877                goto out;
2878        if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
2879                goto out;
2880        r = 0;
2881        vcpu->arch.mcg_cap = mcg_cap;
2882        /* Init IA32_MCG_CTL to all 1s */
2883        if (mcg_cap & MCG_CTL_P)
2884                vcpu->arch.mcg_ctl = ~(u64)0;
2885        /* Init IA32_MCi_CTL to all 1s */
2886        for (bank = 0; bank < bank_num; bank++)
2887                vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2888
2889        if (kvm_x86_ops->setup_mce)
2890                kvm_x86_ops->setup_mce(vcpu);
2891out:
2892        return r;
2893}
2894
2895static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2896                                      struct kvm_x86_mce *mce)
2897{
2898        u64 mcg_cap = vcpu->arch.mcg_cap;
2899        unsigned bank_num = mcg_cap & 0xff;
2900        u64 *banks = vcpu->arch.mce_banks;
2901
2902        if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2903                return -EINVAL;
2904        /*
2905         * if IA32_MCG_CTL is not all 1s, the uncorrected error
2906         * reporting is disabled
2907         */
2908        if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2909            vcpu->arch.mcg_ctl != ~(u64)0)
2910                return 0;
2911        banks += 4 * mce->bank;
2912        /*
2913         * if IA32_MCi_CTL is not all 1s, the uncorrected error
2914         * reporting is disabled for the bank
2915         */
2916        if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2917                return 0;
2918        if (mce->status & MCI_STATUS_UC) {
2919                if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2920                    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2921                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2922                        return 0;
2923                }
2924                if (banks[1] & MCI_STATUS_VAL)
2925                        mce->status |= MCI_STATUS_OVER;
2926                banks[2] = mce->addr;
2927                banks[3] = mce->misc;
2928                vcpu->arch.mcg_status = mce->mcg_status;
2929                banks[1] = mce->status;
2930                kvm_queue_exception(vcpu, MC_VECTOR);
2931        } else if (!(banks[1] & MCI_STATUS_VAL)
2932                   || !(banks[1] & MCI_STATUS_UC)) {
2933                if (banks[1] & MCI_STATUS_VAL)
2934                        mce->status |= MCI_STATUS_OVER;
2935                banks[2] = mce->addr;
2936                banks[3] = mce->misc;
2937                banks[1] = mce->status;
2938        } else
2939                banks[1] |= MCI_STATUS_OVER;
2940        return 0;
2941}
2942
2943static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2944                                               struct kvm_vcpu_events *events)
2945{
2946        process_nmi(vcpu);
2947        events->exception.injected =
2948                vcpu->arch.exception.pending &&
2949                !kvm_exception_is_soft(vcpu->arch.exception.nr);
2950        events->exception.nr = vcpu->arch.exception.nr;
2951        events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2952        events->exception.pad = 0;
2953        events->exception.error_code = vcpu->arch.exception.error_code;
2954
2955        events->interrupt.injected =
2956                vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2957        events->interrupt.nr = vcpu->arch.interrupt.nr;
2958        events->interrupt.soft = 0;
2959        events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
2960
2961        events->nmi.injected = vcpu->arch.nmi_injected;
2962        events->nmi.pending = vcpu->arch.nmi_pending != 0;
2963        events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2964        events->nmi.pad = 0;
2965
2966        events->sipi_vector = 0; /* never valid when reporting to user space */
2967
2968        events->smi.smm = is_smm(vcpu);
2969        events->smi.pending = vcpu->arch.smi_pending;
2970        events->smi.smm_inside_nmi =
2971                !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
2972        events->smi.latched_init = kvm_lapic_latched_init(vcpu);
2973
2974        events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2975                         | KVM_VCPUEVENT_VALID_SHADOW
2976                         | KVM_VCPUEVENT_VALID_SMM);
2977        memset(&events->reserved, 0, sizeof(events->reserved));
2978}
2979
2980static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2981                                              struct kvm_vcpu_events *events)
2982{
2983        if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2984                              | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2985                              | KVM_VCPUEVENT_VALID_SHADOW
2986                              | KVM_VCPUEVENT_VALID_SMM))
2987                return -EINVAL;
2988
2989        if (events->exception.injected &&
2990            (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
2991                return -EINVAL;
2992
2993        process_nmi(vcpu);
2994        vcpu->arch.exception.pending = events->exception.injected;
2995        vcpu->arch.exception.nr = events->exception.nr;
2996        vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2997        vcpu->arch.exception.error_code = events->exception.error_code;
2998
2999        vcpu->arch.interrupt.pending = events->interrupt.injected;
3000        vcpu->arch.interrupt.nr = events->interrupt.nr;
3001        vcpu->arch.interrupt.soft = events->interrupt.soft;
3002        if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3003                kvm_x86_ops->set_interrupt_shadow(vcpu,
3004                                                  events->interrupt.shadow);
3005
3006        vcpu->arch.nmi_injected = events->nmi.injected;
3007        if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3008                vcpu->arch.nmi_pending = events->nmi.pending;
3009        kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3010
3011        if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3012            lapic_in_kernel(vcpu))
3013                vcpu->arch.apic->sipi_vector = events->sipi_vector;
3014
3015        if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3016                if (events->smi.smm)
3017                        vcpu->arch.hflags |= HF_SMM_MASK;
3018                else
3019                        vcpu->arch.hflags &= ~HF_SMM_MASK;
3020                vcpu->arch.smi_pending = events->smi.pending;
3021                if (events->smi.smm_inside_nmi)
3022                        vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3023                else
3024                        vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3025                if (lapic_in_kernel(vcpu)) {
3026                        if (events->smi.latched_init)
3027                                set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3028                        else
3029                                clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3030                }
3031        }
3032
3033        kvm_make_request(KVM_REQ_EVENT, vcpu);
3034
3035        return 0;
3036}
3037
3038static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3039                                             struct kvm_debugregs *dbgregs)
3040{
3041        unsigned long val;
3042
3043        memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3044        kvm_get_dr(vcpu, 6, &val);
3045        dbgregs->dr6 = val;
3046        dbgregs->dr7 = vcpu->arch.dr7;
3047        dbgregs->flags = 0;
3048        memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3049}
3050
3051static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3052                                            struct kvm_debugregs *dbgregs)
3053{
3054        if (dbgregs->flags)
3055                return -EINVAL;
3056
3057        if (dbgregs->dr6 & ~0xffffffffull)
3058                return -EINVAL;
3059        if (dbgregs->dr7 & ~0xffffffffull)
3060                return -EINVAL;
3061
3062        memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3063        kvm_update_dr0123(vcpu);
3064        vcpu->arch.dr6 = dbgregs->dr6;
3065        kvm_update_dr6(vcpu);
3066        vcpu->arch.dr7 = dbgregs->dr7;
3067        kvm_update_dr7(vcpu);
3068
3069        return 0;
3070}
3071
3072#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3073
3074static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3075{
3076        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3077        u64 xstate_bv = xsave->header.xfeatures;
3078        u64 valid;
3079
3080        /*
3081         * Copy legacy XSAVE area, to avoid complications with CPUID
3082         * leaves 0 and 1 in the loop below.
3083         */
3084        memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3085
3086        /* Set XSTATE_BV */
3087        *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3088
3089        /*
3090         * Copy each region from the possibly compacted offset to the
3091         * non-compacted offset.
3092         */
3093        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3094        while (valid) {
3095                u64 feature = valid & -valid;
3096                int index = fls64(feature) - 1;
3097                void *src = get_xsave_addr(xsave, feature);
3098
3099                if (src) {
3100                        u32 size, offset, ecx, edx;
3101                        cpuid_count(XSTATE_CPUID, index,
3102                                    &size, &offset, &ecx, &edx);
3103                        memcpy(dest + offset, src, size);
3104                }
3105
3106                valid -= feature;
3107        }
3108}
3109
3110static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
3111{
3112        struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
3113        u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
3114        u64 valid;
3115
3116        /*
3117         * Copy legacy XSAVE area, to avoid complications with CPUID
3118         * leaves 0 and 1 in the loop below.
3119         */
3120        memcpy(xsave, src, XSAVE_HDR_OFFSET);
3121
3122        /* Set XSTATE_BV and possibly XCOMP_BV.  */
3123        xsave->header.xfeatures = xstate_bv;
3124        if (boot_cpu_has(X86_FEATURE_XSAVES))
3125                xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
3126
3127        /*
3128         * Copy each region from the non-compacted offset to the
3129         * possibly compacted offset.
3130         */
3131        valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3132        while (valid) {
3133                u64 feature = valid & -valid;
3134                int index = fls64(feature) - 1;
3135                void *dest = get_xsave_addr(xsave, feature);
3136
3137                if (dest) {
3138                        u32 size, offset, ecx, edx;
3139                        cpuid_count(XSTATE_CPUID, index,
3140                                    &size, &offset, &ecx, &edx);
3141                        memcpy(dest, src + offset, size);
3142                }
3143
3144                valid -= feature;
3145        }
3146}
3147
3148static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
3149                                         struct kvm_xsave *guest_xsave)
3150{
3151        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3152                memset(guest_xsave, 0, sizeof(struct kvm_xsave));
3153                fill_xsave((u8 *) guest_xsave->region, vcpu);
3154        } else {
3155                memcpy(guest_xsave->region,
3156                        &vcpu->arch.guest_fpu.state.fxsave,
3157                        sizeof(struct fxregs_state));
3158                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
3159                        XFEATURE_MASK_FPSSE;
3160        }
3161}
3162
3163static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
3164                                        struct kvm_xsave *guest_xsave)
3165{
3166        u64 xstate_bv =
3167                *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
3168
3169        if (boot_cpu_has(X86_FEATURE_XSAVE)) {
3170                /*
3171                 * Here we allow setting states that are not present in
3172                 * CPUID leaf 0xD, index 0, EDX:EAX.  This is for compatibility
3173                 * with old userspace.
3174                 */
3175                if (xstate_bv & ~kvm_supported_xcr0())
3176                        return -EINVAL;
3177                load_xsave(vcpu, (u8 *)guest_xsave->region);
3178        } else {
3179                if (xstate_bv & ~XFEATURE_MASK_FPSSE)
3180                        return -EINVAL;
3181                memcpy(&vcpu->arch.guest_fpu.state.fxsave,
3182                        guest_xsave->region, sizeof(struct fxregs_state));
3183        }
3184        return 0;
3185}
3186
3187static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
3188                                        struct kvm_xcrs *guest_xcrs)
3189{
3190        if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
3191                guest_xcrs->nr_xcrs = 0;
3192                return;
3193        }
3194
3195        guest_xcrs->nr_xcrs = 1;
3196        guest_xcrs->flags = 0;
3197        guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
3198        guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
3199}
3200
3201static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
3202                                       struct kvm_xcrs *guest_xcrs)
3203{
3204        int i, r = 0;
3205
3206        if (!boot_cpu_has(X86_FEATURE_XSAVE))
3207                return -EINVAL;
3208
3209        if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
3210                return -EINVAL;
3211
3212        for (i = 0; i < guest_xcrs->nr_xcrs; i++)
3213                /* Only support XCR0 currently */
3214                if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
3215                        r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
3216                                guest_xcrs->xcrs[i].value);
3217                        break;
3218                }
3219        if (r)
3220                r = -EINVAL;
3221        return r;
3222}
3223
3224/*
3225 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3226 * stopped by the hypervisor.  This function will be called from the host only.
3227 * EINVAL is returned when the host attempts to set the flag for a guest that
3228 * does not support pv clocks.
3229 */
3230static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
3231{
3232        if (!vcpu->arch.pv_time_enabled)
3233                return -EINVAL;
3234        vcpu->arch.pvclock_set_guest_stopped_request = true;
3235        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3236        return 0;
3237}
3238
3239static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3240                                     struct kvm_enable_cap *cap)
3241{
3242        if (cap->flags)
3243                return -EINVAL;
3244
3245        switch (cap->cap) {
3246        case KVM_CAP_HYPERV_SYNIC:
3247                return kvm_hv_activate_synic(vcpu);
3248        default:
3249                return -EINVAL;
3250        }
3251}
3252
3253long kvm_arch_vcpu_ioctl(struct file *filp,
3254                         unsigned int ioctl, unsigned long arg)
3255{
3256        struct kvm_vcpu *vcpu = filp->private_data;
3257        void __user *argp = (void __user *)arg;
3258        int r;
3259        union {
3260                struct kvm_lapic_state *lapic;
3261                struct kvm_xsave *xsave;
3262                struct kvm_xcrs *xcrs;
3263                void *buffer;
3264        } u;
3265
3266        u.buffer = NULL;
3267        switch (ioctl) {
3268        case KVM_GET_LAPIC: {
3269                r = -EINVAL;
3270                if (!lapic_in_kernel(vcpu))
3271                        goto out;
3272                u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3273
3274                r = -ENOMEM;
3275                if (!u.lapic)
3276                        goto out;
3277                r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3278                if (r)
3279                        goto out;
3280                r = -EFAULT;
3281                if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3282                        goto out;
3283                r = 0;
3284                break;
3285        }
3286        case KVM_SET_LAPIC: {
3287                r = -EINVAL;
3288                if (!lapic_in_kernel(vcpu))
3289                        goto out;
3290                u.lapic = memdup_user(argp, sizeof(*u.lapic));
3291                if (IS_ERR(u.lapic))
3292                        return PTR_ERR(u.lapic);
3293
3294                r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3295                break;
3296        }
3297        case KVM_INTERRUPT: {
3298                struct kvm_interrupt irq;
3299
3300                r = -EFAULT;
3301                if (copy_from_user(&irq, argp, sizeof irq))
3302                        goto out;
3303                r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3304                break;
3305        }
3306        case KVM_NMI: {
3307                r = kvm_vcpu_ioctl_nmi(vcpu);
3308                break;
3309        }
3310        case KVM_SMI: {
3311                r = kvm_vcpu_ioctl_smi(vcpu);
3312                break;
3313        }
3314        case KVM_SET_CPUID: {
3315                struct kvm_cpuid __user *cpuid_arg = argp;
3316                struct kvm_cpuid cpuid;
3317
3318                r = -EFAULT;
3319                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3320                        goto out;
3321                r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3322                break;
3323        }
3324        case KVM_SET_CPUID2: {
3325                struct kvm_cpuid2 __user *cpuid_arg = argp;
3326                struct kvm_cpuid2 cpuid;
3327
3328                r = -EFAULT;
3329                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3330                        goto out;
3331                r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3332                                              cpuid_arg->entries);
3333                break;
3334        }
3335        case KVM_GET_CPUID2: {
3336                struct kvm_cpuid2 __user *cpuid_arg = argp;
3337                struct kvm_cpuid2 cpuid;
3338
3339                r = -EFAULT;
3340                if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3341                        goto out;
3342                r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3343                                              cpuid_arg->entries);
3344                if (r)
3345                        goto out;
3346                r = -EFAULT;
3347                if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3348                        goto out;
3349                r = 0;
3350                break;
3351        }
3352        case KVM_GET_MSRS:
3353                r = msr_io(vcpu, argp, do_get_msr, 1);
3354                break;
3355        case KVM_SET_MSRS:
3356                r = msr_io(vcpu, argp, do_set_msr, 0);
3357                break;
3358        case KVM_TPR_ACCESS_REPORTING: {
3359                struct kvm_tpr_access_ctl tac;
3360
3361                r = -EFAULT;
3362                if (copy_from_user(&tac, argp, sizeof tac))
3363                        goto out;
3364                r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3365                if (r)
3366                        goto out;
3367                r = -EFAULT;
3368                if (copy_to_user(argp, &tac, sizeof tac))
3369                        goto out;
3370                r = 0;
3371                break;
3372        };
3373        case KVM_SET_VAPIC_ADDR: {
3374                struct kvm_vapic_addr va;
3375
3376                r = -EINVAL;
3377                if (!lapic_in_kernel(vcpu))
3378                        goto out;
3379                r = -EFAULT;
3380                if (copy_from_user(&va, argp, sizeof va))
3381                        goto out;
3382                r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3383                break;
3384        }
3385        case KVM_X86_SETUP_MCE: {
3386                u64 mcg_cap;
3387
3388                r = -EFAULT;
3389                if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3390                        goto out;
3391                r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3392                break;
3393        }
3394        case KVM_X86_SET_MCE: {
3395                struct kvm_x86_mce mce;
3396
3397                r = -EFAULT;
3398                if (copy_from_user(&mce, argp, sizeof mce))
3399                        goto out;
3400                r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3401                break;
3402        }
3403        case KVM_GET_VCPU_EVENTS: {
3404                struct kvm_vcpu_events events;
3405
3406                kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3407
3408                r = -EFAULT;
3409                if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3410                        break;
3411                r = 0;
3412                break;
3413        }
3414        case KVM_SET_VCPU_EVENTS: {
3415                struct kvm_vcpu_events events;
3416
3417                r = -EFAULT;
3418                if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3419                        break;
3420
3421                r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3422                break;
3423        }
3424        case KVM_GET_DEBUGREGS: {
3425                struct kvm_debugregs dbgregs;
3426
3427                kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3428
3429                r = -EFAULT;
3430                if (copy_to_user(argp, &dbgregs,
3431                                 sizeof(struct kvm_debugregs)))
3432                        break;
3433                r = 0;
3434                break;
3435        }
3436        case KVM_SET_DEBUGREGS: {
3437                struct kvm_debugregs dbgregs;
3438
3439                r = -EFAULT;
3440                if (copy_from_user(&dbgregs, argp,
3441                                   sizeof(struct kvm_debugregs)))
3442                        break;
3443
3444                r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3445                break;
3446        }
3447        case KVM_GET_XSAVE: {
3448                u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3449                r = -ENOMEM;
3450                if (!u.xsave)
3451                        break;
3452
3453                kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3454
3455                r = -EFAULT;
3456                if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3457                        break;
3458                r = 0;
3459                break;
3460        }
3461        case KVM_SET_XSAVE: {
3462                u.xsave = memdup_user(argp, sizeof(*u.xsave));
3463                if (IS_ERR(u.xsave))
3464                        return PTR_ERR(u.xsave);
3465
3466                r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3467                break;
3468        }
3469        case KVM_GET_XCRS: {
3470                u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3471                r = -ENOMEM;
3472                if (!u.xcrs)
3473                        break;
3474
3475                kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3476
3477                r = -EFAULT;
3478                if (copy_to_user(argp, u.xcrs,
3479                                 sizeof(struct kvm_xcrs)))
3480                        break;
3481                r = 0;
3482                break;
3483        }
3484        case KVM_SET_XCRS: {
3485                u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
3486                if (IS_ERR(u.xcrs))
3487                        return PTR_ERR(u.xcrs);
3488
3489                r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3490                break;
3491        }
3492        case KVM_SET_TSC_KHZ: {
3493                u32 user_tsc_khz;
3494
3495                r = -EINVAL;
3496                user_tsc_khz = (u32)arg;
3497
3498                if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3499                        goto out;
3500
3501                if (user_tsc_khz == 0)
3502                        user_tsc_khz = tsc_khz;
3503
3504                if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
3505                        r = 0;
3506
3507                goto out;
3508        }
3509        case KVM_GET_TSC_KHZ: {
3510                r = vcpu->arch.virtual_tsc_khz;
3511                goto out;
3512        }
3513        case KVM_KVMCLOCK_CTRL: {
3514                r = kvm_set_guest_paused(vcpu);
3515                goto out;
3516        }
3517        case KVM_ENABLE_CAP: {
3518                struct kvm_enable_cap cap;
3519
3520                r = -EFAULT;
3521                if (copy_from_user(&cap, argp, sizeof(cap)))
3522                        goto out;
3523                r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3524                break;
3525        }
3526        default:
3527                r = -EINVAL;
3528        }
3529out:
3530        kfree(u.buffer);
3531        return r;
3532}
3533
3534int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3535{
3536        return VM_FAULT_SIGBUS;
3537}
3538
3539static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3540{
3541        int ret;
3542
3543        if (addr > (unsigned int)(-3 * PAGE_SIZE))
3544                return -EINVAL;
3545        ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3546        return ret;
3547}
3548
3549static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3550                                              u64 ident_addr)
3551{
3552        kvm->arch.ept_identity_map_addr = ident_addr;
3553        return 0;
3554}
3555
3556static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3557                                          u32 kvm_nr_mmu_pages)
3558{
3559        if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3560                return -EINVAL;
3561
3562        mutex_lock(&kvm->slots_lock);
3563
3564        kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3565        kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3566
3567        mutex_unlock(&kvm->slots_lock);
3568        return 0;
3569}
3570
3571static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3572{
3573        return kvm->arch.n_max_mmu_pages;
3574}
3575
3576static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3577{
3578        int r;
3579
3580        r = 0;
3581        switch (chip->chip_id) {
3582        case KVM_IRQCHIP_PIC_MASTER:
3583                memcpy(&chip->chip.pic,
3584                        &pic_irqchip(kvm)->pics[0],
3585                        sizeof(struct kvm_pic_state));
3586                break;
3587        case KVM_IRQCHIP_PIC_SLAVE:
3588                memcpy(&chip->chip.pic,
3589                        &pic_irqchip(kvm)->pics[1],
3590                        sizeof(struct kvm_pic_state));
3591                break;
3592        case KVM_IRQCHIP_IOAPIC:
3593                r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3594                break;
3595        default:
3596                r = -EINVAL;
3597                break;
3598        }
3599        return r;
3600}
3601
3602static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3603{
3604        int r;
3605
3606        r = 0;
3607        switch (chip->chip_id) {
3608        case KVM_IRQCHIP_PIC_MASTER:
3609                spin_lock(&pic_irqchip(kvm)->lock);
3610                memcpy(&pic_irqchip(kvm)->pics[0],
3611                        &chip->chip.pic,
3612                        sizeof(struct kvm_pic_state));
3613                spin_unlock(&pic_irqchip(kvm)->lock);
3614                break;
3615        case KVM_IRQCHIP_PIC_SLAVE:
3616                spin_lock(&pic_irqchip(kvm)->lock);
3617                memcpy(&pic_irqchip(kvm)->pics[1],
3618                        &chip->chip.pic,
3619                        sizeof(struct kvm_pic_state));
3620                spin_unlock(&pic_irqchip(kvm)->lock);
3621                break;
3622        case KVM_IRQCHIP_IOAPIC:
3623                r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3624                break;
3625        default:
3626                r = -EINVAL;
3627                break;
3628        }
3629        kvm_pic_update_irq(pic_irqchip(kvm));
3630        return r;
3631}
3632
3633static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3634{
3635        struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
3636
3637        BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
3638
3639        mutex_lock(&kps->lock);
3640        memcpy(ps, &kps->channels, sizeof(*ps));
3641        mutex_unlock(&kps->lock);
3642        return 0;
3643}
3644
3645static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3646{
3647        int i;
3648        struct kvm_pit *pit = kvm->arch.vpit;
3649
3650        mutex_lock(&pit->pit_state.lock);
3651        memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
3652        for (i = 0; i < 3; i++)
3653                kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
3654        mutex_unlock(&pit->pit_state.lock);
3655        return 0;
3656}
3657
3658static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3659{
3660        mutex_lock(&kvm->arch.vpit->pit_state.lock);
3661        memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3662                sizeof(ps->channels));
3663        ps->flags = kvm->arch.vpit->pit_state.flags;
3664        mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3665        memset(&ps->reserved, 0, sizeof(ps->reserved));
3666        return 0;
3667}
3668
3669static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3670{
3671        int start = 0;
3672        int i;
3673        u32 prev_legacy, cur_legacy;
3674        struct kvm_pit *pit = kvm->arch.vpit;
3675
3676        mutex_lock(&pit->pit_state.lock);
3677        prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3678        cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3679        if (!prev_legacy && cur_legacy)
3680                start = 1;
3681        memcpy(&pit->pit_state.channels, &ps->channels,
3682               sizeof(pit->pit_state.channels));
3683        pit->pit_state.flags = ps->flags;
3684        for (i = 0; i < 3; i++)
3685                kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
3686                                   start && i == 0);
3687        mutex_unlock(&pit->pit_state.lock);
3688        return 0;
3689}
3690
3691static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3692                                 struct kvm_reinject_control *control)
3693{
3694        struct kvm_pit *pit = kvm->arch.vpit;
3695
3696        if (!pit)
3697                return -ENXIO;
3698
3699        /* pit->pit_state.lock was overloaded to prevent userspace from getting
3700         * an inconsistent state after running multiple KVM_REINJECT_CONTROL
3701         * ioctls in parallel.  Use a separate lock if that ioctl isn't rare.
3702         */
3703        mutex_lock(&pit->pit_state.lock);
3704        kvm_pit_set_reinject(pit, control->pit_reinject);
3705        mutex_unlock(&pit->pit_state.lock);
3706
3707        return 0;
3708}
3709
3710/**
3711 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3712 * @kvm: kvm instance
3713 * @log: slot id and address to which we copy the log
3714 *
3715 * Steps 1-4 below provide general overview of dirty page logging. See
3716 * kvm_get_dirty_log_protect() function description for additional details.
3717 *
3718 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3719 * always flush the TLB (step 4) even if previous step failed  and the dirty
3720 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3721 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3722 * writes will be marked dirty for next log read.
3723 *
3724 *   1. Take a snapshot of the bit and clear it if needed.
3725 *   2. Write protect the corresponding page.
3726 *   3. Copy the snapshot to the userspace.
3727 *   4. Flush TLB's if needed.
3728 */
3729int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
3730{
3731        bool is_dirty = false;
3732        int r;
3733
3734        mutex_lock(&kvm->slots_lock);
3735
3736        /*
3737         * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3738         */
3739        if (kvm_x86_ops->flush_log_dirty)
3740                kvm_x86_ops->flush_log_dirty(kvm);
3741
3742        r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
3743
3744        /*
3745         * All the TLBs can be flushed out of mmu lock, see the comments in
3746         * kvm_mmu_slot_remove_write_access().
3747         */
3748        lockdep_assert_held(&kvm->slots_lock);
3749        if (is_dirty)
3750                kvm_flush_remote_tlbs(kvm);
3751
3752        mutex_unlock(&kvm->slots_lock);
3753        return r;
3754}
3755
3756int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
3757                        bool line_status)
3758{
3759        if (!irqchip_in_kernel(kvm))
3760                return -ENXIO;
3761
3762        irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3763                                        irq_event->irq, irq_event->level,
3764                                        line_status);
3765        return 0;
3766}
3767
3768static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3769                                   struct kvm_enable_cap *cap)
3770{
3771        int r;
3772
3773        if (cap->flags)
3774                return -EINVAL;
3775
3776        switch (cap->cap) {
3777        case KVM_CAP_DISABLE_QUIRKS:
3778                kvm->arch.disabled_quirks = cap->args[0];
3779                r = 0;
3780                break;
3781        case KVM_CAP_SPLIT_IRQCHIP: {
3782                mutex_lock(&kvm->lock);
3783                r = -EINVAL;
3784                if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
3785                        goto split_irqchip_unlock;
3786                r = -EEXIST;
3787                if (irqchip_in_kernel(kvm))
3788                        goto split_irqchip_unlock;
3789                if (kvm->created_vcpus)
3790                        goto split_irqchip_unlock;
3791                r = kvm_setup_empty_irq_routing(kvm);
3792                if (r)
3793                        goto split_irqchip_unlock;
3794                /* Pairs with irqchip_in_kernel. */
3795                smp_wmb();
3796                kvm->arch.irqchip_split = true;
3797                kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
3798                r = 0;
3799split_irqchip_unlock:
3800                mutex_unlock(&kvm->lock);
3801                break;
3802        }
3803        case KVM_CAP_X2APIC_API:
3804                r = -EINVAL;
3805                if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
3806                        break;
3807
3808                if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
3809                        kvm->arch.x2apic_format = true;
3810                if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
3811                        kvm->arch.x2apic_broadcast_quirk_disabled = true;
3812
3813                r = 0;
3814                break;
3815        default:
3816                r = -EINVAL;
3817                break;
3818        }
3819        return r;
3820}
3821
3822long kvm_arch_vm_ioctl(struct file *filp,
3823                       unsigned int ioctl, unsigned long arg)
3824{
3825        struct kvm *kvm = filp->private_data;
3826        void __user *argp = (void __user *)arg;
3827        int r = -ENOTTY;
3828        /*
3829         * This union makes it completely explicit to gcc-3.x
3830         * that these two variables' stack usage should be
3831         * combined, not added together.
3832         */
3833        union {
3834                struct kvm_pit_state ps;
3835                struct kvm_pit_state2 ps2;
3836                struct kvm_pit_config pit_config;
3837        } u;
3838
3839        switch (ioctl) {
3840        case KVM_SET_TSS_ADDR:
3841                r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3842                break;
3843        case KVM_SET_IDENTITY_MAP_ADDR: {
3844                u64 ident_addr;
3845
3846                r = -EFAULT;
3847                if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3848                        goto out;
3849                r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3850                break;
3851        }
3852        case KVM_SET_NR_MMU_PAGES:
3853                r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3854                break;
3855        case KVM_GET_NR_MMU_PAGES:
3856                r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3857                break;
3858        case KVM_CREATE_IRQCHIP: {
3859                struct kvm_pic *vpic;
3860
3861                mutex_lock(&kvm->lock);
3862                r = -EEXIST;
3863                if (kvm->arch.vpic)
3864                        goto create_irqchip_unlock;
3865                r = -EINVAL;
3866                if (kvm->created_vcpus)
3867                        goto create_irqchip_unlock;
3868                r = -ENOMEM;
3869                vpic = kvm_create_pic(kvm);
3870                if (vpic) {
3871                        r = kvm_ioapic_init(kvm);
3872                        if (r) {
3873                                mutex_lock(&kvm->slots_lock);
3874                                kvm_destroy_pic(vpic);
3875                                mutex_unlock(&kvm->slots_lock);
3876                                goto create_irqchip_unlock;
3877                        }
3878                } else
3879                        goto create_irqchip_unlock;
3880                r = kvm_setup_default_irq_routing(kvm);
3881                if (r) {
3882                        mutex_lock(&kvm->slots_lock);
3883                        mutex_lock(&kvm->irq_lock);
3884                        kvm_ioapic_destroy(kvm);
3885                        kvm_destroy_pic(vpic);
3886                        mutex_unlock(&kvm->irq_lock);
3887                        mutex_unlock(&kvm->slots_lock);
3888                        goto create_irqchip_unlock;
3889                }
3890                /* Write kvm->irq_routing before kvm->arch.vpic.  */
3891                smp_wmb();
3892                kvm->arch.vpic = vpic;
3893        create_irqchip_unlock:
3894                mutex_unlock(&kvm->lock);
3895                break;
3896        }
3897        case KVM_CREATE_PIT:
3898                u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3899                goto create_pit;
3900        case KVM_CREATE_PIT2:
3901                r = -EFAULT;
3902                if (copy_from_user(&u.pit_config, argp,
3903                                   sizeof(struct kvm_pit_config)))
3904                        goto out;
3905        create_pit:
3906                mutex_lock(&kvm->lock);
3907                r = -EEXIST;
3908                if (kvm->arch.vpit)
3909                        goto create_pit_unlock;
3910                r = -ENOMEM;
3911                kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3912                if (kvm->arch.vpit)
3913                        r = 0;
3914        create_pit_unlock:
3915                mutex_unlock(&kvm->lock);
3916                break;
3917        case KVM_GET_IRQCHIP: {
3918                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3919                struct kvm_irqchip *chip;
3920
3921                chip = memdup_user(argp, sizeof(*chip));
3922                if (IS_ERR(chip)) {
3923                        r = PTR_ERR(chip);
3924                        goto out;
3925                }
3926
3927                r = -ENXIO;
3928                if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3929                        goto get_irqchip_out;
3930                r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3931                if (r)
3932                        goto get_irqchip_out;
3933                r = -EFAULT;
3934                if (copy_to_user(argp, chip, sizeof *chip))
3935                        goto get_irqchip_out;
3936                r = 0;
3937        get_irqchip_out:
3938                kfree(chip);
3939                break;
3940        }
3941        case KVM_SET_IRQCHIP: {
3942                /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3943                struct kvm_irqchip *chip;
3944
3945                chip = memdup_user(argp, sizeof(*chip));
3946                if (IS_ERR(chip)) {
3947                        r = PTR_ERR(chip);
3948                        goto out;
3949                }
3950
3951                r = -ENXIO;
3952                if (!irqchip_in_kernel(kvm) || irqchip_split(kvm))
3953                        goto set_irqchip_out;
3954                r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3955                if (r)
3956                        goto set_irqchip_out;
3957                r = 0;
3958        set_irqchip_out:
3959                kfree(chip);
3960                break;
3961        }
3962        case KVM_GET_PIT: {
3963                r = -EFAULT;
3964                if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3965                        goto out;
3966                r = -ENXIO;
3967                if (!kvm->arch.vpit)
3968                        goto out;
3969                r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3970                if (r)
3971                        goto out;
3972                r = -EFAULT;
3973                if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3974                        goto out;
3975                r = 0;
3976                break;
3977        }
3978        case KVM_SET_PIT: {
3979                r = -EFAULT;
3980                if (copy_from_user(&u.ps, argp, sizeof u.ps))
3981                        goto out;
3982                r = -ENXIO;
3983                if (!kvm->arch.vpit)
3984                        goto out;
3985                r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3986                break;
3987        }
3988        case KVM_GET_PIT2: {
3989                r = -ENXIO;
3990                if (!kvm->arch.vpit)
3991                        goto out;
3992                r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3993                if (r)
3994                        goto out;
3995                r = -EFAULT;
3996                if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3997                        goto out;
3998                r = 0;
3999                break;
4000        }
4001        case KVM_SET_PIT2: {
4002                r = -EFAULT;
4003                if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
4004                        goto out;
4005                r = -ENXIO;
4006                if (!kvm->arch.vpit)
4007                        goto out;
4008                r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
4009                break;
4010        }
4011        case KVM_REINJECT_CONTROL: {
4012                struct kvm_reinject_control control;
4013                r =  -EFAULT;
4014                if (copy_from_user(&control, argp, sizeof(control)))
4015                        goto out;
4016                r = kvm_vm_ioctl_reinject(kvm, &control);
4017                break;
4018        }
4019        case KVM_SET_BOOT_CPU_ID:
4020                r = 0;
4021                mutex_lock(&kvm->lock);
4022                if (kvm->created_vcpus)
4023                        r = -EBUSY;
4024                else
4025                        kvm->arch.bsp_vcpu_id = arg;
4026                mutex_unlock(&kvm->lock);
4027                break;
4028        case KVM_XEN_HVM_CONFIG: {
4029                r = -EFAULT;
4030                if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
4031                                   sizeof(struct kvm_xen_hvm_config)))
4032                        goto out;
4033                r = -EINVAL;
4034                if (kvm->arch.xen_hvm_config.flags)
4035                        goto out;
4036                r = 0;
4037                break;
4038        }
4039        case KVM_SET_CLOCK: {
4040                struct kvm_clock_data user_ns;
4041                u64 now_ns;
4042                s64 delta;
4043
4044                r = -EFAULT;
4045                if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
4046                        goto out;
4047
4048                r = -EINVAL;
4049                if (user_ns.flags)
4050                        goto out;
4051
4052                r = 0;
4053                local_irq_disable();
4054                now_ns = get_kernel_ns();
4055                delta = user_ns.clock - now_ns;
4056                local_irq_enable();
4057                kvm->arch.kvmclock_offset = delta;
4058                kvm_gen_update_masterclock(kvm);
4059                break;
4060        }
4061        case KVM_GET_CLOCK: {
4062                struct kvm_clock_data user_ns;
4063                u64 now_ns;
4064
4065                local_irq_disable();
4066                now_ns = get_kernel_ns();
4067                user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
4068                local_irq_enable();
4069                user_ns.flags = 0;
4070                memset(&user_ns.pad, 0, sizeof(user_ns.pad));
4071
4072                r = -EFAULT;
4073                if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
4074                        goto out;
4075                r = 0;
4076                break;
4077        }
4078        case KVM_ENABLE_CAP: {
4079                struct kvm_enable_cap cap;
4080
4081                r = -EFAULT;
4082                if (copy_from_user(&cap, argp, sizeof(cap)))
4083                        goto out;
4084                r = kvm_vm_ioctl_enable_cap(kvm, &cap);
4085                break;
4086        }
4087        default:
4088                r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
4089        }
4090out:
4091        return r;
4092}
4093
4094static void kvm_init_msr_list(void)
4095{
4096        u32 dummy[2];
4097        unsigned i, j;
4098
4099        for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
4100                if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
4101                        continue;
4102
4103                /*
4104                 * Even MSRs that are valid in the host may not be exposed
4105                 * to the guests in some cases.
4106                 */
4107                switch (msrs_to_save[i]) {
4108                case MSR_IA32_BNDCFGS:
4109                        if (!kvm_x86_ops->mpx_supported())
4110                                continue;
4111                        break;
4112                case MSR_TSC_AUX:
4113                        if (!kvm_x86_ops->rdtscp_supported())
4114                                continue;
4115                        break;
4116                default:
4117                        break;
4118                }
4119
4120                if (j < i)
4121                        msrs_to_save[j] = msrs_to_save[i];
4122                j++;
4123        }
4124        num_msrs_to_save = j;
4125
4126        for (i = j = 0; i < ARRAY_SIZE(emulated_msrs); i++) {
4127                switch (emulated_msrs[i]) {
4128                case MSR_IA32_SMBASE:
4129                        if (!kvm_x86_ops->cpu_has_high_real_mode_segbase())
4130                                continue;
4131                        break;
4132                default:
4133                        break;
4134                }
4135
4136                if (j < i)
4137                        emulated_msrs[j] = emulated_msrs[i];
4138                j++;
4139        }
4140        num_emulated_msrs = j;
4141}
4142
4143static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
4144                           const void *v)
4145{
4146        int handled = 0;
4147        int n;
4148
4149        do {
4150                n = min(len, 8);
4151                if (!(lapic_in_kernel(vcpu) &&
4152                      !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
4153                    && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
4154                        break;
4155                handled += n;
4156                addr += n;
4157                len -= n;
4158                v += n;
4159        } while (len);
4160
4161        return handled;
4162}
4163
4164static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
4165{
4166        int handled = 0;
4167        int n;
4168
4169        do {
4170                n = min(len, 8);
4171                if (!(lapic_in_kernel(vcpu) &&
4172                      !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
4173                                         addr, n, v))
4174                    && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
4175                        break;
4176                trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
4177                handled += n;
4178                addr += n;
4179                len -= n;
4180                v += n;
4181        } while (len);
4182
4183        return handled;
4184}
4185
4186static void kvm_set_segment(struct kvm_vcpu *vcpu,
4187                        struct kvm_segment *var, int seg)
4188{
4189        kvm_x86_ops->set_segment(vcpu, var, seg);
4190}
4191
4192void kvm_get_segment(struct kvm_vcpu *vcpu,
4193                     struct kvm_segment *var, int seg)
4194{
4195        kvm_x86_ops->get_segment(vcpu, var, seg);
4196}
4197
4198gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
4199                           struct x86_exception *exception)
4200{
4201        gpa_t t_gpa;
4202
4203        BUG_ON(!mmu_is_nested(vcpu));
4204
4205        /* NPT walks are always user-walks */
4206        access |= PFERR_USER_MASK;
4207        t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, exception);
4208
4209        return t_gpa;
4210}
4211
4212gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
4213                              struct x86_exception *exception)
4214{
4215        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4216        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4217}
4218
4219 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
4220                                struct x86_exception *exception)
4221{
4222        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4223        access |= PFERR_FETCH_MASK;
4224        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4225}
4226
4227gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
4228                               struct x86_exception *exception)
4229{
4230        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4231        access |= PFERR_WRITE_MASK;
4232        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4233}
4234
4235/* uses this to access any guest's mapped memory without checking CPL */
4236gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
4237                                struct x86_exception *exception)
4238{
4239        return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
4240}
4241
4242static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
4243                                      struct kvm_vcpu *vcpu, u32 access,
4244                                      struct x86_exception *exception)
4245{
4246        void *data = val;
4247        int r = X86EMUL_CONTINUE;
4248
4249        while (bytes) {
4250                gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
4251                                                            exception);
4252                unsigned offset = addr & (PAGE_SIZE-1);
4253                unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
4254                int ret;
4255
4256                if (gpa == UNMAPPED_GVA)
4257                        return X86EMUL_PROPAGATE_FAULT;
4258                ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
4259                                               offset, toread);
4260                if (ret < 0) {
4261                        r = X86EMUL_IO_NEEDED;
4262                        goto out;
4263                }
4264
4265                bytes -= toread;
4266                data += toread;
4267                addr += toread;
4268        }
4269out:
4270        return r;
4271}
4272
4273/* used for instruction fetching */
4274static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
4275                                gva_t addr, void *val, unsigned int bytes,
4276                                struct x86_exception *exception)
4277{
4278        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4279        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4280        unsigned offset;
4281        int ret;
4282
4283        /* Inline kvm_read_guest_virt_helper for speed.  */
4284        gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
4285                                                    exception);
4286        if (unlikely(gpa == UNMAPPED_GVA))
4287                return X86EMUL_PROPAGATE_FAULT;
4288
4289        offset = addr & (PAGE_SIZE-1);
4290        if (WARN_ON(offset + bytes > PAGE_SIZE))
4291                bytes = (unsigned)PAGE_SIZE - offset;
4292        ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
4293                                       offset, bytes);
4294        if (unlikely(ret < 0))
4295                return X86EMUL_IO_NEEDED;
4296
4297        return X86EMUL_CONTINUE;
4298}
4299
4300int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
4301                               gva_t addr, void *val, unsigned int bytes,
4302                               struct x86_exception *exception)
4303{
4304        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4305        u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4306
4307        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
4308                                          exception);
4309}
4310EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
4311
4312static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4313                                      gva_t addr, void *val, unsigned int bytes,
4314                                      struct x86_exception *exception)
4315{
4316        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4317        return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
4318}
4319
4320static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
4321                unsigned long addr, void *val, unsigned int bytes)
4322{
4323        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4324        int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
4325
4326        return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
4327}
4328
4329int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
4330                                       gva_t addr, void *val,
4331                                       unsigned int bytes,
4332                                       struct x86_exception *exception)
4333{
4334        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4335        void *data = val;
4336        int r = X86EMUL_CONTINUE;
4337
4338        while (bytes) {
4339                gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
4340                                                             PFERR_WRITE_MASK,
4341                                                             exception);
4342                unsigned offset = addr & (PAGE_SIZE-1);
4343                unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
4344                int ret;
4345
4346                if (gpa == UNMAPPED_GVA)
4347                        return X86EMUL_PROPAGATE_FAULT;
4348                ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
4349                if (ret < 0) {
4350                        r = X86EMUL_IO_NEEDED;
4351                        goto out;
4352                }
4353
4354                bytes -= towrite;
4355                data += towrite;
4356                addr += towrite;
4357        }
4358out:
4359        return r;
4360}
4361EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4362
4363static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4364                                gpa_t *gpa, struct x86_exception *exception,
4365                                bool write)
4366{
4367        u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
4368                | (write ? PFERR_WRITE_MASK : 0);
4369
4370        /*
4371         * currently PKRU is only applied to ept enabled guest so
4372         * there is no pkey in EPT page table for L1 guest or EPT
4373         * shadow page table for L2 guest.
4374         */
4375        if (vcpu_match_mmio_gva(vcpu, gva)
4376            && !permission_fault(vcpu, vcpu->arch.walk_mmu,
4377                                 vcpu->arch.access, 0, access)) {
4378                *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4379                                        (gva & (PAGE_SIZE - 1));
4380                trace_vcpu_match_mmio(gva, *gpa, write, false);
4381                return 1;
4382        }
4383
4384        *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4385
4386        if (*gpa == UNMAPPED_GVA)
4387                return -1;
4388
4389        /* For APIC access vmexit */
4390        if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4391                return 1;
4392
4393        if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4394                trace_vcpu_match_mmio(gva, *gpa, write, true);
4395                return 1;
4396        }
4397
4398        return 0;
4399}
4400
4401int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4402                        const void *val, int bytes)
4403{
4404        int ret;
4405
4406        ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
4407        if (ret < 0)
4408                return 0;
4409        kvm_page_track_write(vcpu, gpa, val, bytes);
4410        return 1;
4411}
4412
4413struct read_write_emulator_ops {
4414        int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
4415                                  int bytes);
4416        int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
4417                                  void *val, int bytes);
4418        int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4419                               int bytes, void *val);
4420        int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
4421                                    void *val, int bytes);
4422        bool write;
4423};
4424
4425static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
4426{
4427        if (vcpu->mmio_read_completed) {
4428                trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4429                               vcpu->mmio_fragments[0].gpa, *(u64 *)val);
4430                vcpu->mmio_read_completed = 0;
4431                return 1;
4432        }
4433
4434        return 0;
4435}
4436
4437static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4438                        void *val, int bytes)
4439{
4440        return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
4441}
4442
4443static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
4444                         void *val, int bytes)
4445{
4446        return emulator_write_phys(vcpu, gpa, val, bytes);
4447}
4448
4449static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
4450{
4451        trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4452        return vcpu_mmio_write(vcpu, gpa, bytes, val);
4453}
4454
4455static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4456                          void *val, int bytes)
4457{
4458        trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4459        return X86EMUL_IO_NEEDED;
4460}
4461
4462static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
4463                           void *val, int bytes)
4464{
4465        struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
4466
4467        memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
4468        return X86EMUL_CONTINUE;
4469}
4470
4471static const struct read_write_emulator_ops read_emultor = {
4472        .read_write_prepare = read_prepare,
4473        .read_write_emulate = read_emulate,
4474        .read_write_mmio = vcpu_mmio_read,
4475        .read_write_exit_mmio = read_exit_mmio,
4476};
4477
4478static const struct read_write_emulator_ops write_emultor = {
4479        .read_write_emulate = write_emulate,
4480        .read_write_mmio = write_mmio,
4481        .read_write_exit_mmio = write_exit_mmio,
4482        .write = true,
4483};
4484
4485static int emulator_read_write_onepage(unsigned long addr, void *val,
4486                                       unsigned int bytes,
4487                                       struct x86_exception *exception,
4488                                       struct kvm_vcpu *vcpu,
4489                                       const struct read_write_emulator_ops *ops)
4490{
4491        gpa_t gpa;
4492        int handled, ret;
4493        bool write = ops->write;
4494        struct kvm_mmio_fragment *frag;
4495
4496        ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
4497
4498        if (ret < 0)
4499                return X86EMUL_PROPAGATE_FAULT;
4500
4501        /* For APIC access vmexit */
4502        if (ret)
4503                goto mmio;
4504
4505        if (ops->read_write_emulate(vcpu, gpa, val, bytes))
4506                return X86EMUL_CONTINUE;
4507
4508mmio:
4509        /*
4510         * Is this MMIO handled locally?
4511         */
4512        handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
4513        if (handled == bytes)
4514                return X86EMUL_CONTINUE;
4515
4516        gpa += handled;
4517        bytes -= handled;
4518        val += handled;
4519
4520        WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
4521        frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
4522        frag->gpa = gpa;
4523        frag->data = val;
4524        frag->len = bytes;
4525        return X86EMUL_CONTINUE;
4526}
4527
4528static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
4529                        unsigned long addr,
4530                        void *val, unsigned int bytes,
4531                        struct x86_exception *exception,
4532                        const struct read_write_emulator_ops *ops)
4533{
4534        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4535        gpa_t gpa;
4536        int rc;
4537
4538        if (ops->read_write_prepare &&
4539                  ops->read_write_prepare(vcpu, val, bytes))
4540                return X86EMUL_CONTINUE;
4541
4542        vcpu->mmio_nr_fragments = 0;
4543
4544        /* Crossing a page boundary? */
4545        if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4546                int now;
4547
4548                now = -addr & ~PAGE_MASK;
4549                rc = emulator_read_write_onepage(addr, val, now, exception,
4550                                                 vcpu, ops);
4551
4552                if (rc != X86EMUL_CONTINUE)
4553                        return rc;
4554                addr += now;
4555                if (ctxt->mode != X86EMUL_MODE_PROT64)
4556                        addr = (u32)addr;
4557                val += now;
4558                bytes -= now;
4559        }
4560
4561        rc = emulator_read_write_onepage(addr, val, bytes, exception,
4562                                         vcpu, ops);
4563        if (rc != X86EMUL_CONTINUE)
4564                return rc;
4565
4566        if (!vcpu->mmio_nr_fragments)
4567                return rc;
4568
4569        gpa = vcpu->mmio_fragments[0].gpa;
4570
4571        vcpu->mmio_needed = 1;
4572        vcpu->mmio_cur_fragment = 0;
4573
4574        vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
4575        vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
4576        vcpu->run->exit_reason = KVM_EXIT_MMIO;
4577        vcpu->run->mmio.phys_addr = gpa;
4578
4579        return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
4580}
4581
4582static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4583                                  unsigned long addr,
4584                                  void *val,
4585                                  unsigned int bytes,
4586                                  struct x86_exception *exception)
4587{
4588        return emulator_read_write(ctxt, addr, val, bytes,
4589                                   exception, &read_emultor);
4590}
4591
4592static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4593                            unsigned long addr,
4594                            const void *val,
4595                            unsigned int bytes,
4596                            struct x86_exception *exception)
4597{
4598        return emulator_read_write(ctxt, addr, (void *)val, bytes,
4599                                   exception, &write_emultor);
4600}
4601
4602#define CMPXCHG_TYPE(t, ptr, old, new) \
4603        (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4604
4605#ifdef CONFIG_X86_64
4606#  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4607#else
4608#  define CMPXCHG64(ptr, old, new) \
4609        (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4610#endif
4611
4612static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4613                                     unsigned long addr,
4614                                     const void *old,
4615                                     const void *new,
4616                                     unsigned int bytes,
4617                                     struct x86_exception *exception)
4618{
4619        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4620        gpa_t gpa;
4621        struct page *page;
4622        char *kaddr;
4623        bool exchanged;
4624
4625        /* guests cmpxchg8b have to be emulated atomically */
4626        if (bytes > 8 || (bytes & (bytes - 1)))
4627                goto emul_write;
4628
4629        gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4630
4631        if (gpa == UNMAPPED_GVA ||
4632            (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4633                goto emul_write;
4634
4635        if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4636                goto emul_write;
4637
4638        page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
4639        if (is_error_page(page))
4640                goto emul_write;
4641
4642        kaddr = kmap_atomic(page);
4643        kaddr += offset_in_page(gpa);
4644        switch (bytes) {
4645        case 1:
4646                exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4647                break;
4648        case 2:
4649                exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4650                break;
4651        case 4:
4652                exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4653                break;
4654        case 8:
4655                exchanged = CMPXCHG64(kaddr, old, new);
4656                break;
4657        default:
4658                BUG();
4659        }
4660        kunmap_atomic(kaddr);
4661        kvm_release_page_dirty(page);
4662
4663        if (!exchanged)
4664                return X86EMUL_CMPXCHG_FAILED;
4665
4666        kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
4667        kvm_page_track_write(vcpu, gpa, new, bytes);
4668
4669        return X86EMUL_CONTINUE;
4670
4671emul_write:
4672        printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4673
4674        return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4675}
4676
4677static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4678{
4679        /* TODO: String I/O for in kernel device */
4680        int r;
4681
4682        if (vcpu->arch.pio.in)
4683                r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
4684                                    vcpu->arch.pio.size, pd);
4685        else
4686                r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
4687                                     vcpu->arch.pio.port, vcpu->arch.pio.size,
4688                                     pd);
4689        return r;
4690}
4691
4692static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
4693                               unsigned short port, void *val,
4694                               unsigned int count, bool in)
4695{
4696        vcpu->arch.pio.port = port;
4697        vcpu->arch.pio.in = in;
4698        vcpu->arch.pio.count  = count;
4699        vcpu->arch.pio.size = size;
4700
4701        if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4702                vcpu->arch.pio.count = 0;
4703                return 1;
4704        }
4705
4706        vcpu->run->exit_reason = KVM_EXIT_IO;
4707        vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
4708        vcpu->run->io.size = size;
4709        vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4710        vcpu->run->io.count = count;
4711        vcpu->run->io.port = port;
4712
4713        return 0;
4714}
4715
4716static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4717                                    int size, unsigned short port, void *val,
4718                                    unsigned int count)
4719{
4720        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4721        int ret;
4722
4723        if (vcpu->arch.pio.count)
4724                goto data_avail;
4725
4726        ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
4727        if (ret) {
4728data_avail:
4729                memcpy(val, vcpu->arch.pio_data, size * count);
4730                trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
4731                vcpu->arch.pio.count = 0;
4732                return 1;
4733        }
4734
4735        return 0;
4736}
4737
4738static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4739                                     int size, unsigned short port,
4740                                     const void *val, unsigned int count)
4741{
4742        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4743
4744        memcpy(vcpu->arch.pio_data, val, size * count);
4745        trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
4746        return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
4747}
4748
4749static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4750{
4751        return kvm_x86_ops->get_segment_base(vcpu, seg);
4752}
4753
4754static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4755{
4756        kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4757}
4758
4759int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
4760{
4761        if (!need_emulate_wbinvd(vcpu))
4762                return X86EMUL_CONTINUE;
4763
4764        if (kvm_x86_ops->has_wbinvd_exit()) {
4765                int cpu = get_cpu();
4766
4767                cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4768                smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4769                                wbinvd_ipi, NULL, 1);
4770                put_cpu();
4771                cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4772        } else
4773                wbinvd();
4774        return X86EMUL_CONTINUE;
4775}
4776
4777int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4778{
4779        kvm_x86_ops->skip_emulated_instruction(vcpu);
4780        return kvm_emulate_wbinvd_noskip(vcpu);
4781}
4782EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4783
4784
4785
4786static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4787{
4788        kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
4789}
4790
4791static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
4792                           unsigned long *dest)
4793{
4794        return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4795}
4796
4797static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
4798                           unsigned long value)
4799{
4800
4801        return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4802}
4803
4804static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4805{
4806        return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4807}
4808
4809static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4810{
4811        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4812        unsigned long value;
4813
4814        switch (cr) {
4815        case 0:
4816                value = kvm_read_cr0(vcpu);
4817                break;
4818        case 2:
4819                value = vcpu->arch.cr2;
4820                break;
4821        case 3:
4822                value = kvm_read_cr3(vcpu);
4823                break;
4824        case 4:
4825                value = kvm_read_cr4(vcpu);
4826                break;
4827        case 8:
4828                value = kvm_get_cr8(vcpu);
4829                break;
4830        default:
4831                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4832                return 0;
4833        }
4834
4835        return value;
4836}
4837
4838static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4839{
4840        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4841        int res = 0;
4842
4843        switch (cr) {
4844        case 0:
4845                res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4846                break;
4847        case 2:
4848                vcpu->arch.cr2 = val;
4849                break;
4850        case 3:
4851                res = kvm_set_cr3(vcpu, val);
4852                break;
4853        case 4:
4854                res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4855                break;
4856        case 8:
4857                res = kvm_set_cr8(vcpu, val);
4858                break;
4859        default:
4860                kvm_err("%s: unexpected cr %u\n", __func__, cr);
4861                res = -1;
4862        }
4863
4864        return res;
4865}
4866
4867static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4868{
4869        return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4870}
4871
4872static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4873{
4874        kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4875}
4876
4877static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4878{
4879        kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4880}
4881
4882static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4883{
4884        kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4885}
4886
4887static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4888{
4889        kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4890}
4891
4892static unsigned long emulator_get_cached_segment_base(
4893        struct x86_emulate_ctxt *ctxt, int seg)
4894{
4895        return get_segment_base(emul_to_vcpu(ctxt), seg);
4896}
4897
4898static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4899                                 struct desc_struct *desc, u32 *base3,
4900                                 int seg)
4901{
4902        struct kvm_segment var;
4903
4904        kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4905        *selector = var.selector;
4906
4907        if (var.unusable) {
4908                memset(desc, 0, sizeof(*desc));
4909                return false;
4910        }
4911
4912        if (var.g)
4913                var.limit >>= 12;
4914        set_desc_limit(desc, var.limit);
4915        set_desc_base(desc, (unsigned long)var.base);
4916#ifdef CONFIG_X86_64
4917        if (base3)
4918                *base3 = var.base >> 32;
4919#endif
4920        desc->type = var.type;
4921        desc->s = var.s;
4922        desc->dpl = var.dpl;
4923        desc->p = var.present;
4924        desc->avl = var.avl;
4925        desc->l = var.l;
4926        desc->d = var.db;
4927        desc->g = var.g;
4928
4929        return true;
4930}
4931
4932static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4933                                 struct desc_struct *desc, u32 base3,
4934                                 int seg)
4935{
4936        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4937        struct kvm_segment var;
4938
4939        var.selector = selector;
4940        var.base = get_desc_base(desc);
4941#ifdef CONFIG_X86_64
4942        var.base |= ((u64)base3) << 32;
4943#endif
4944        var.limit = get_desc_limit(desc);
4945        if (desc->g)
4946                var.limit = (var.limit << 12) | 0xfff;
4947        var.type = desc->type;
4948        var.dpl = desc->dpl;
4949        var.db = desc->d;
4950        var.s = desc->s;
4951        var.l = desc->l;
4952        var.g = desc->g;
4953        var.avl = desc->avl;
4954        var.present = desc->p;
4955        var.unusable = !var.present;
4956        var.padding = 0;
4957
4958        kvm_set_segment(vcpu, &var, seg);
4959        return;
4960}
4961
4962static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4963                            u32 msr_index, u64 *pdata)
4964{
4965        struct msr_data msr;
4966        int r;
4967
4968        msr.index = msr_index;
4969        msr.host_initiated = false;
4970        r = kvm_get_msr(emul_to_vcpu(ctxt), &msr);
4971        if (r)
4972                return r;
4973
4974        *pdata = msr.data;
4975        return 0;
4976}
4977
4978static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4979                            u32 msr_index, u64 data)
4980{
4981        struct msr_data msr;
4982
4983        msr.data = data;
4984        msr.index = msr_index;
4985        msr.host_initiated = false;
4986        return kvm_set_msr(emul_to_vcpu(ctxt), &msr);
4987}
4988
4989static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
4990{
4991        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4992
4993        return vcpu->arch.smbase;
4994}
4995
4996static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
4997{
4998        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4999
5000        vcpu->arch.smbase = smbase;
5001}
5002
5003static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
5004                              u32 pmc)
5005{
5006        return kvm_pmu_is_valid_msr_idx(emul_to_vcpu(ctxt), pmc);
5007}
5008
5009static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
5010                             u32 pmc, u64 *pdata)
5011{
5012        return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
5013}
5014
5015static void emulator_halt(struct x86_emulate_ctxt *ctxt)
5016{
5017        emul_to_vcpu(ctxt)->arch.halt_request = 1;
5018}
5019
5020static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
5021{
5022        preempt_disable();
5023        kvm_load_guest_fpu(emul_to_vcpu(ctxt));
5024        /*
5025         * CR0.TS may reference the host fpu state, not the guest fpu state,
5026         * so it may be clear at this point.
5027         */
5028        clts();
5029}
5030
5031static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
5032{
5033        preempt_enable();
5034}
5035
5036static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
5037                              struct x86_instruction_info *info,
5038                              enum x86_intercept_stage stage)
5039{
5040        return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
5041}
5042
5043static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
5044                               u32 *eax, u32 *ebx, u32 *ecx, u32 *edx)
5045{
5046        kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx);
5047}
5048
5049static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
5050{
5051        return kvm_register_read(emul_to_vcpu(ctxt), reg);
5052}
5053
5054static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
5055{
5056        kvm_register_write(emul_to_vcpu(ctxt), reg, val);
5057}
5058
5059static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
5060{
5061        kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
5062}
5063
5064static const struct x86_emulate_ops emulate_ops = {
5065        .read_gpr            = emulator_read_gpr,
5066        .write_gpr           = emulator_write_gpr,
5067        .read_std            = kvm_read_guest_virt_system,
5068        .write_std           = kvm_write_guest_virt_system,
5069        .read_phys           = kvm_read_guest_phys_system,
5070        .fetch               = kvm_fetch_guest_virt,
5071        .read_emulated       = emulator_read_emulated,
5072        .write_emulated      = emulator_write_emulated,
5073        .cmpxchg_emulated    = emulator_cmpxchg_emulated,
5074        .invlpg              = emulator_invlpg,
5075        .pio_in_emulated     = emulator_pio_in_emulated,
5076        .pio_out_emulated    = emulator_pio_out_emulated,
5077        .get_segment         = emulator_get_segment,
5078        .set_segment         = emulator_set_segment,
5079        .get_cached_segment_base = emulator_get_cached_segment_base,
5080        .get_gdt             = emulator_get_gdt,
5081        .get_idt             = emulator_get_idt,
5082        .set_gdt             = emulator_set_gdt,
5083        .set_idt             = emulator_set_idt,
5084        .get_cr              = emulator_get_cr,
5085        .set_cr              = emulator_set_cr,
5086        .cpl                 = emulator_get_cpl,
5087        .get_dr              = emulator_get_dr,
5088        .set_dr              = emulator_set_dr,
5089        .get_smbase          = emulator_get_smbase,
5090        .set_smbase          = emulator_set_smbase,
5091        .set_msr             = emulator_set_msr,
5092        .get_msr             = emulator_get_msr,
5093        .check_pmc           = emulator_check_pmc,
5094        .read_pmc            = emulator_read_pmc,
5095        .halt                = emulator_halt,
5096        .wbinvd              = emulator_wbinvd,
5097        .fix_hypercall       = emulator_fix_hypercall,
5098        .get_fpu             = emulator_get_fpu,
5099        .put_fpu             = emulator_put_fpu,
5100        .intercept           = emulator_intercept,
5101        .get_cpuid           = emulator_get_cpuid,
5102        .set_nmi_mask        = emulator_set_nmi_mask,
5103};
5104
5105static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
5106{
5107        u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
5108        /*
5109         * an sti; sti; sequence only disable interrupts for the first
5110         * instruction. So, if the last instruction, be it emulated or
5111         * not, left the system with the INT_STI flag enabled, it
5112         * means that the last instruction is an sti. We should not
5113         * leave the flag on in this case. The same goes for mov ss
5114         */
5115        if (int_shadow & mask)
5116                mask = 0;
5117        if (unlikely(int_shadow || mask)) {
5118                kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
5119                if (!mask)
5120                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5121        }
5122}
5123
5124static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
5125{
5126        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5127        if (ctxt->exception.vector == PF_VECTOR)
5128                return kvm_propagate_fault(vcpu, &ctxt->exception);
5129
5130        if (ctxt->exception.error_code_valid)
5131                kvm_queue_exception_e(vcpu, ctxt->exception.vector,
5132                                      ctxt->exception.error_code);
5133        else
5134                kvm_queue_exception(vcpu, ctxt->exception.vector);
5135        return false;
5136}
5137
5138static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
5139{
5140        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5141        int cs_db, cs_l;
5142
5143        kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5144
5145        ctxt->eflags = kvm_get_rflags(vcpu);
5146        ctxt->eip = kvm_rip_read(vcpu);
5147        ctxt->mode = (!is_protmode(vcpu))               ? X86EMUL_MODE_REAL :
5148                     (ctxt->eflags & X86_EFLAGS_VM)     ? X86EMUL_MODE_VM86 :
5149                     (cs_l && is_long_mode(vcpu))       ? X86EMUL_MODE_PROT64 :
5150                     cs_db                              ? X86EMUL_MODE_PROT32 :
5151                                                          X86EMUL_MODE_PROT16;
5152        BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
5153        BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
5154        BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
5155        ctxt->emul_flags = vcpu->arch.hflags;
5156
5157        init_decode_cache(ctxt);
5158        vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5159}
5160
5161int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
5162{
5163        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5164        int ret;
5165
5166        init_emulate_ctxt(vcpu);
5167
5168        ctxt->op_bytes = 2;
5169        ctxt->ad_bytes = 2;
5170        ctxt->_eip = ctxt->eip + inc_eip;
5171        ret = emulate_int_real(ctxt, irq);
5172
5173        if (ret != X86EMUL_CONTINUE)
5174                return EMULATE_FAIL;
5175
5176        ctxt->eip = ctxt->_eip;
5177        kvm_rip_write(vcpu, ctxt->eip);
5178        kvm_set_rflags(vcpu, ctxt->eflags);
5179
5180        if (irq == NMI_VECTOR)
5181                vcpu->arch.nmi_pending = 0;
5182        else
5183                vcpu->arch.interrupt.pending = false;
5184
5185        return EMULATE_DONE;
5186}
5187EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
5188
5189static int handle_emulation_failure(struct kvm_vcpu *vcpu)
5190{
5191        int r = EMULATE_DONE;
5192
5193        ++vcpu->stat.insn_emulation_fail;
5194        trace_kvm_emulate_insn_failed(vcpu);
5195        if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
5196                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5197                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5198                vcpu->run->internal.ndata = 0;
5199                r = EMULATE_FAIL;
5200        }
5201        kvm_queue_exception(vcpu, UD_VECTOR);
5202
5203        return r;
5204}
5205
5206static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2,
5207                                  bool write_fault_to_shadow_pgtable,
5208                                  int emulation_type)
5209{
5210        gpa_t gpa = cr2;
5211        kvm_pfn_t pfn;
5212
5213        if (emulation_type & EMULTYPE_NO_REEXECUTE)
5214                return false;
5215
5216        if (!vcpu->arch.mmu.direct_map) {
5217                /*
5218                 * Write permission should be allowed since only
5219                 * write access need to be emulated.
5220                 */
5221                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5222
5223                /*
5224                 * If the mapping is invalid in guest, let cpu retry
5225                 * it to generate fault.
5226                 */
5227                if (gpa == UNMAPPED_GVA)
5228                        return true;
5229        }
5230
5231        /*
5232         * Do not retry the unhandleable instruction if it faults on the
5233         * readonly host memory, otherwise it will goto a infinite loop:
5234         * retry instruction -> write #PF -> emulation fail -> retry
5235         * instruction -> ...
5236         */
5237        pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
5238
5239        /*
5240         * If the instruction failed on the error pfn, it can not be fixed,
5241         * report the error to userspace.
5242         */
5243        if (is_error_noslot_pfn(pfn))
5244                return false;
5245
5246        kvm_release_pfn_clean(pfn);
5247
5248        /* The instructions are well-emulated on direct mmu. */
5249        if (vcpu->arch.mmu.direct_map) {
5250                unsigned int indirect_shadow_pages;
5251
5252                spin_lock(&vcpu->kvm->mmu_lock);
5253                indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
5254                spin_unlock(&vcpu->kvm->mmu_lock);
5255
5256                if (indirect_shadow_pages)
5257                        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5258
5259                return true;
5260        }
5261
5262        /*
5263         * if emulation was due to access to shadowed page table
5264         * and it failed try to unshadow page and re-enter the
5265         * guest to let CPU execute the instruction.
5266         */
5267        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5268
5269        /*
5270         * If the access faults on its page table, it can not
5271         * be fixed by unprotecting shadow page and it should
5272         * be reported to userspace.
5273         */
5274        return !write_fault_to_shadow_pgtable;
5275}
5276
5277static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
5278                              unsigned long cr2,  int emulation_type)
5279{
5280        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5281        unsigned long last_retry_eip, last_retry_addr, gpa = cr2;
5282
5283        last_retry_eip = vcpu->arch.last_retry_eip;
5284        last_retry_addr = vcpu->arch.last_retry_addr;
5285
5286        /*
5287         * If the emulation is caused by #PF and it is non-page_table
5288         * writing instruction, it means the VM-EXIT is caused by shadow
5289         * page protected, we can zap the shadow page and retry this
5290         * instruction directly.
5291         *
5292         * Note: if the guest uses a non-page-table modifying instruction
5293         * on the PDE that points to the instruction, then we will unmap
5294         * the instruction and go to an infinite loop. So, we cache the
5295         * last retried eip and the last fault address, if we meet the eip
5296         * and the address again, we can break out of the potential infinite
5297         * loop.
5298         */
5299        vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
5300
5301        if (!(emulation_type & EMULTYPE_RETRY))
5302                return false;
5303
5304        if (x86_page_table_writing_insn(ctxt))
5305                return false;
5306
5307        if (ctxt->eip == last_retry_eip && last_retry_addr == cr2)
5308                return false;
5309
5310        vcpu->arch.last_retry_eip = ctxt->eip;
5311        vcpu->arch.last_retry_addr = cr2;
5312
5313        if (!vcpu->arch.mmu.direct_map)
5314                gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL);
5315
5316        kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
5317
5318        return true;
5319}
5320
5321static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
5322static int complete_emulated_pio(struct kvm_vcpu *vcpu);
5323
5324static void kvm_smm_changed(struct kvm_vcpu *vcpu)
5325{
5326        if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
5327                /* This is a good place to trace that we are exiting SMM.  */
5328                trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
5329
5330                /* Process a latched INIT or SMI, if any.  */
5331                kvm_make_request(KVM_REQ_EVENT, vcpu);
5332        }
5333
5334        kvm_mmu_reset_context(vcpu);
5335}
5336
5337static void kvm_set_hflags(struct kvm_vcpu *vcpu, unsigned emul_flags)
5338{
5339        unsigned changed = vcpu->arch.hflags ^ emul_flags;
5340
5341        vcpu->arch.hflags = emul_flags;
5342
5343        if (changed & HF_SMM_MASK)
5344                kvm_smm_changed(vcpu);
5345}
5346
5347static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
5348                                unsigned long *db)
5349{
5350        u32 dr6 = 0;
5351        int i;
5352        u32 enable, rwlen;
5353
5354        enable = dr7;
5355        rwlen = dr7 >> 16;
5356        for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
5357                if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
5358                        dr6 |= (1 << i);
5359        return dr6;
5360}
5361
5362static void kvm_vcpu_check_singlestep(struct kvm_vcpu *vcpu, unsigned long rflags, int *r)
5363{
5364        struct kvm_run *kvm_run = vcpu->run;
5365
5366        /*
5367         * rflags is the old, "raw" value of the flags.  The new value has
5368         * not been saved yet.
5369         *
5370         * This is correct even for TF set by the guest, because "the
5371         * processor will not generate this exception after the instruction
5372         * that sets the TF flag".
5373         */
5374        if (unlikely(rflags & X86_EFLAGS_TF)) {
5375                if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
5376                        kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 |
5377                                                  DR6_RTM;
5378                        kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
5379                        kvm_run->debug.arch.exception = DB_VECTOR;
5380                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5381                        *r = EMULATE_USER_EXIT;
5382                } else {
5383                        vcpu->arch.emulate_ctxt.eflags &= ~X86_EFLAGS_TF;
5384                        /*
5385                         * "Certain debug exceptions may clear bit 0-3.  The
5386                         * remaining contents of the DR6 register are never
5387                         * cleared by the processor".
5388                         */
5389                        vcpu->arch.dr6 &= ~15;
5390                        vcpu->arch.dr6 |= DR6_BS | DR6_RTM;
5391                        kvm_queue_exception(vcpu, DB_VECTOR);
5392                }
5393        }
5394}
5395
5396static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
5397{
5398        if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
5399            (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
5400                struct kvm_run *kvm_run = vcpu->run;
5401                unsigned long eip = kvm_get_linear_rip(vcpu);
5402                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5403                                           vcpu->arch.guest_debug_dr7,
5404                                           vcpu->arch.eff_db);
5405
5406                if (dr6 != 0) {
5407                        kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
5408                        kvm_run->debug.arch.pc = eip;
5409                        kvm_run->debug.arch.exception = DB_VECTOR;
5410                        kvm_run->exit_reason = KVM_EXIT_DEBUG;
5411                        *r = EMULATE_USER_EXIT;
5412                        return true;
5413                }
5414        }
5415
5416        if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
5417            !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
5418                unsigned long eip = kvm_get_linear_rip(vcpu);
5419                u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
5420                                           vcpu->arch.dr7,
5421                                           vcpu->arch.db);
5422
5423                if (dr6 != 0) {
5424                        vcpu->arch.dr6 &= ~15;
5425                        vcpu->arch.dr6 |= dr6 | DR6_RTM;
5426                        kvm_queue_exception(vcpu, DB_VECTOR);
5427                        *r = EMULATE_DONE;
5428                        return true;
5429                }
5430        }
5431
5432        return false;
5433}
5434
5435int x86_emulate_instruction(struct kvm_vcpu *vcpu,
5436                            unsigned long cr2,
5437                            int emulation_type,
5438                            void *insn,
5439                            int insn_len)
5440{
5441        int r;
5442        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5443        bool writeback = true;
5444        bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
5445
5446        /*
5447         * Clear write_fault_to_shadow_pgtable here to ensure it is
5448         * never reused.
5449         */
5450        vcpu->arch.write_fault_to_shadow_pgtable = false;
5451        kvm_clear_exception_queue(vcpu);
5452
5453        if (!(emulation_type & EMULTYPE_NO_DECODE)) {
5454                init_emulate_ctxt(vcpu);
5455
5456                /*
5457                 * We will reenter on the same instruction since
5458                 * we do not set complete_userspace_io.  This does not
5459                 * handle watchpoints yet, those would be handled in
5460                 * the emulate_ops.
5461                 */
5462                if (kvm_vcpu_check_breakpoint(vcpu, &r))
5463                        return r;
5464
5465                ctxt->interruptibility = 0;
5466                ctxt->have_exception = false;
5467                ctxt->exception.vector = -1;
5468                ctxt->perm_ok = false;
5469
5470                ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
5471
5472                r = x86_decode_insn(ctxt, insn, insn_len);
5473
5474                trace_kvm_emulate_insn_start(vcpu);
5475                ++vcpu->stat.insn_emulation;
5476                if (r != EMULATION_OK)  {
5477                        if (emulation_type & EMULTYPE_TRAP_UD)
5478                                return EMULATE_FAIL;
5479                        if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5480                                                emulation_type))
5481                                return EMULATE_DONE;
5482                        if (emulation_type & EMULTYPE_SKIP)
5483                                return EMULATE_FAIL;
5484                        return handle_emulation_failure(vcpu);
5485                }
5486        }
5487
5488        if (emulation_type & EMULTYPE_SKIP) {
5489                kvm_rip_write(vcpu, ctxt->_eip);
5490                if (ctxt->eflags & X86_EFLAGS_RF)
5491                        kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
5492                return EMULATE_DONE;
5493        }
5494
5495        if (retry_instruction(ctxt, cr2, emulation_type))
5496                return EMULATE_DONE;
5497
5498        /* this is needed for vmware backdoor interface to work since it
5499           changes registers values  during IO operation */
5500        if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
5501                vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
5502                emulator_invalidate_register_cache(ctxt);
5503        }
5504
5505restart:
5506        r = x86_emulate_insn(ctxt);
5507
5508        if (r == EMULATION_INTERCEPTED)
5509                return EMULATE_DONE;
5510
5511        if (r == EMULATION_FAILED) {
5512                if (reexecute_instruction(vcpu, cr2, write_fault_to_spt,
5513                                        emulation_type))
5514                        return EMULATE_DONE;
5515
5516                return handle_emulation_failure(vcpu);
5517        }
5518
5519        if (ctxt->have_exception) {
5520                r = EMULATE_DONE;
5521                if (inject_emulated_exception(vcpu))
5522                        return r;
5523        } else if (vcpu->arch.pio.count) {
5524                if (!vcpu->arch.pio.in) {
5525                        /* FIXME: return into emulator if single-stepping.  */
5526                        vcpu->arch.pio.count = 0;
5527                } else {
5528                        writeback = false;
5529                        vcpu->arch.complete_userspace_io = complete_emulated_pio;
5530                }
5531                r = EMULATE_USER_EXIT;
5532        } else if (vcpu->mmio_needed) {
5533                if (!vcpu->mmio_is_write)
5534                        writeback = false;
5535                r = EMULATE_USER_EXIT;
5536                vcpu->arch.complete_userspace_io = complete_emulated_mmio;
5537        } else if (r == EMULATION_RESTART)
5538                goto restart;
5539        else
5540                r = EMULATE_DONE;
5541
5542        if (writeback) {
5543                unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
5544                toggle_interruptibility(vcpu, ctxt->interruptibility);
5545                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5546                if (vcpu->arch.hflags != ctxt->emul_flags)
5547                        kvm_set_hflags(vcpu, ctxt->emul_flags);
5548                kvm_rip_write(vcpu, ctxt->eip);
5549                if (r == EMULATE_DONE)
5550                        kvm_vcpu_check_singlestep(vcpu, rflags, &r);
5551                if (!ctxt->have_exception ||
5552                    exception_type(ctxt->exception.vector) == EXCPT_TRAP)
5553                        __kvm_set_rflags(vcpu, ctxt->eflags);
5554
5555                /*
5556                 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5557                 * do nothing, and it will be requested again as soon as
5558                 * the shadow expires.  But we still need to check here,
5559                 * because POPF has no interrupt shadow.
5560                 */
5561                if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
5562                        kvm_make_request(KVM_REQ_EVENT, vcpu);
5563        } else
5564                vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
5565
5566        return r;
5567}
5568EXPORT_SYMBOL_GPL(x86_emulate_instruction);
5569
5570int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
5571{
5572        unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
5573        int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
5574                                            size, port, &val, 1);
5575        /* do not return to emulator after return from userspace */
5576        vcpu->arch.pio.count = 0;
5577        return ret;
5578}
5579EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
5580
5581static int kvmclock_cpu_down_prep(unsigned int cpu)
5582{
5583        __this_cpu_write(cpu_tsc_khz, 0);
5584        return 0;
5585}
5586
5587static void tsc_khz_changed(void *data)
5588{
5589        struct cpufreq_freqs *freq = data;
5590        unsigned long khz = 0;
5591
5592        if (data)
5593                khz = freq->new;
5594        else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5595                khz = cpufreq_quick_get(raw_smp_processor_id());
5596        if (!khz)
5597                khz = tsc_khz;
5598        __this_cpu_write(cpu_tsc_khz, khz);
5599}
5600
5601static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
5602                                     void *data)
5603{
5604        struct cpufreq_freqs *freq = data;
5605        struct kvm *kvm;
5606        struct kvm_vcpu *vcpu;
5607        int i, send_ipi = 0;
5608
5609        /*
5610         * We allow guests to temporarily run on slowing clocks,
5611         * provided we notify them after, or to run on accelerating
5612         * clocks, provided we notify them before.  Thus time never
5613         * goes backwards.
5614         *
5615         * However, we have a problem.  We can't atomically update
5616         * the frequency of a given CPU from this function; it is
5617         * merely a notifier, which can be called from any CPU.
5618         * Changing the TSC frequency at arbitrary points in time
5619         * requires a recomputation of local variables related to
5620         * the TSC for each VCPU.  We must flag these local variables
5621         * to be updated and be sure the update takes place with the
5622         * new frequency before any guests proceed.
5623         *
5624         * Unfortunately, the combination of hotplug CPU and frequency
5625         * change creates an intractable locking scenario; the order
5626         * of when these callouts happen is undefined with respect to
5627         * CPU hotplug, and they can race with each other.  As such,
5628         * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5629         * undefined; you can actually have a CPU frequency change take
5630         * place in between the computation of X and the setting of the
5631         * variable.  To protect against this problem, all updates of
5632         * the per_cpu tsc_khz variable are done in an interrupt
5633         * protected IPI, and all callers wishing to update the value
5634         * must wait for a synchronous IPI to complete (which is trivial
5635         * if the caller is on the CPU already).  This establishes the
5636         * necessary total order on variable updates.
5637         *
5638         * Note that because a guest time update may take place
5639         * anytime after the setting of the VCPU's request bit, the
5640         * correct TSC value must be set before the request.  However,
5641         * to ensure the update actually makes it to any guest which
5642         * starts running in hardware virtualization between the set
5643         * and the acquisition of the spinlock, we must also ping the
5644         * CPU after setting the request bit.
5645         *
5646         */
5647
5648        if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
5649                return 0;
5650        if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
5651                return 0;
5652
5653        smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5654
5655        spin_lock(&kvm_lock);
5656        list_for_each_entry(kvm, &vm_list, vm_list) {
5657                kvm_for_each_vcpu(i, vcpu, kvm) {
5658                        if (vcpu->cpu != freq->cpu)
5659                                continue;
5660                        kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5661                        if (vcpu->cpu != smp_processor_id())
5662                                send_ipi = 1;
5663                }
5664        }
5665        spin_unlock(&kvm_lock);
5666
5667        if (freq->old < freq->new && send_ipi) {
5668                /*
5669                 * We upscale the frequency.  Must make the guest
5670                 * doesn't see old kvmclock values while running with
5671                 * the new frequency, otherwise we risk the guest sees
5672                 * time go backwards.
5673                 *
5674                 * In case we update the frequency for another cpu
5675                 * (which might be in guest context) send an interrupt
5676                 * to kick the cpu out of guest context.  Next time
5677                 * guest context is entered kvmclock will be updated,
5678                 * so the guest will not see stale values.
5679                 */
5680                smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
5681        }
5682        return 0;
5683}
5684
5685static struct notifier_block kvmclock_cpufreq_notifier_block = {
5686        .notifier_call  = kvmclock_cpufreq_notifier
5687};
5688
5689static int kvmclock_cpu_online(unsigned int cpu)
5690{
5691        tsc_khz_changed(NULL);
5692        return 0;
5693}
5694
5695static void kvm_timer_init(void)
5696{
5697        int cpu;
5698
5699        max_tsc_khz = tsc_khz;
5700
5701        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5702#ifdef CONFIG_CPU_FREQ
5703                struct cpufreq_policy policy;
5704                memset(&policy, 0, sizeof(policy));
5705                cpu = get_cpu();
5706                cpufreq_get_policy(&policy, cpu);
5707                if (policy.cpuinfo.max_freq)
5708                        max_tsc_khz = policy.cpuinfo.max_freq;
5709                put_cpu();
5710#endif
5711                cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5712                                          CPUFREQ_TRANSITION_NOTIFIER);
5713        }
5714        pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5715
5716        cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "AP_X86_KVM_CLK_ONLINE",
5717                          kvmclock_cpu_online, kvmclock_cpu_down_prep);
5718}
5719
5720static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5721
5722int kvm_is_in_guest(void)
5723{
5724        return __this_cpu_read(current_vcpu) != NULL;
5725}
5726
5727static int kvm_is_user_mode(void)
5728{
5729        int user_mode = 3;
5730
5731        if (__this_cpu_read(current_vcpu))
5732                user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
5733
5734        return user_mode != 0;
5735}
5736
5737static unsigned long kvm_get_guest_ip(void)
5738{
5739        unsigned long ip = 0;
5740
5741        if (__this_cpu_read(current_vcpu))
5742                ip = kvm_rip_read(__this_cpu_read(current_vcpu));
5743
5744        return ip;
5745}
5746
5747static struct perf_guest_info_callbacks kvm_guest_cbs = {
5748        .is_in_guest            = kvm_is_in_guest,
5749        .is_user_mode           = kvm_is_user_mode,
5750        .get_guest_ip           = kvm_get_guest_ip,
5751};
5752
5753void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5754{
5755        __this_cpu_write(current_vcpu, vcpu);
5756}
5757EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5758
5759void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5760{
5761        __this_cpu_write(current_vcpu, NULL);
5762}
5763EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5764
5765static void kvm_set_mmio_spte_mask(void)
5766{
5767        u64 mask;
5768        int maxphyaddr = boot_cpu_data.x86_phys_bits;
5769
5770        /*
5771         * Set the reserved bits and the present bit of an paging-structure
5772         * entry to generate page fault with PFER.RSV = 1.
5773         */
5774         /* Mask the reserved physical address bits. */
5775        mask = rsvd_bits(maxphyaddr, 51);
5776
5777        /* Bit 62 is always reserved for 32bit host. */
5778        mask |= 0x3ull << 62;
5779
5780        /* Set the present bit. */
5781        mask |= 1ull;
5782
5783#ifdef CONFIG_X86_64
5784        /*
5785         * If reserved bit is not supported, clear the present bit to disable
5786         * mmio page fault.
5787         */
5788        if (maxphyaddr == 52)
5789                mask &= ~1ull;
5790#endif
5791
5792        kvm_mmu_set_mmio_spte_mask(mask);
5793}
5794
5795#ifdef CONFIG_X86_64
5796static void pvclock_gtod_update_fn(struct work_struct *work)
5797{
5798        struct kvm *kvm;
5799
5800        struct kvm_vcpu *vcpu;
5801        int i;
5802
5803        spin_lock(&kvm_lock);
5804        list_for_each_entry(kvm, &vm_list, vm_list)
5805                kvm_for_each_vcpu(i, vcpu, kvm)
5806                        kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
5807        atomic_set(&kvm_guest_has_master_clock, 0);
5808        spin_unlock(&kvm_lock);
5809}
5810
5811static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
5812
5813/*
5814 * Notification about pvclock gtod data update.
5815 */
5816static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
5817                               void *priv)
5818{
5819        struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
5820        struct timekeeper *tk = priv;
5821
5822        update_pvclock_gtod(tk);
5823
5824        /* disable master clock if host does not trust, or does not
5825         * use, TSC clocksource
5826         */
5827        if (gtod->clock.vclock_mode != VCLOCK_TSC &&
5828            atomic_read(&kvm_guest_has_master_clock) != 0)
5829                queue_work(system_long_wq, &pvclock_gtod_work);
5830
5831        return 0;
5832}
5833
5834static struct notifier_block pvclock_gtod_notifier = {
5835        .notifier_call = pvclock_gtod_notify,
5836};
5837#endif
5838
5839int kvm_arch_init(void *opaque)
5840{
5841        int r;
5842        struct kvm_x86_ops *ops = opaque;
5843
5844        if (kvm_x86_ops) {
5845                printk(KERN_ERR "kvm: already loaded the other module\n");
5846                r = -EEXIST;
5847                goto out;
5848        }
5849
5850        if (!ops->cpu_has_kvm_support()) {
5851                printk(KERN_ERR "kvm: no hardware support\n");
5852                r = -EOPNOTSUPP;
5853                goto out;
5854        }
5855        if (ops->disabled_by_bios()) {
5856                printk(KERN_ERR "kvm: disabled by bios\n");
5857                r = -EOPNOTSUPP;
5858                goto out;
5859        }
5860
5861        r = -ENOMEM;
5862        shared_msrs = alloc_percpu(struct kvm_shared_msrs);
5863        if (!shared_msrs) {
5864                printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
5865                goto out;
5866        }
5867
5868        r = kvm_mmu_module_init();
5869        if (r)
5870                goto out_free_percpu;
5871
5872        kvm_set_mmio_spte_mask();
5873
5874        kvm_x86_ops = ops;
5875
5876        kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5877                        PT_DIRTY_MASK, PT64_NX_MASK, 0,
5878                        PT_PRESENT_MASK);
5879        kvm_timer_init();
5880
5881        perf_register_guest_info_callbacks(&kvm_guest_cbs);
5882
5883        if (boot_cpu_has(X86_FEATURE_XSAVE))
5884                host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5885
5886        kvm_lapic_init();
5887#ifdef CONFIG_X86_64
5888        pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
5889#endif
5890
5891        return 0;
5892
5893out_free_percpu:
5894        free_percpu(shared_msrs);
5895out:
5896        return r;
5897}
5898
5899void kvm_arch_exit(void)
5900{
5901        perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5902
5903        if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5904                cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5905                                            CPUFREQ_TRANSITION_NOTIFIER);
5906        cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
5907#ifdef CONFIG_X86_64
5908        pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
5909#endif
5910        kvm_x86_ops = NULL;
5911        kvm_mmu_module_exit();
5912        free_percpu(shared_msrs);
5913}
5914
5915int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
5916{
5917        ++vcpu->stat.halt_exits;
5918        if (lapic_in_kernel(vcpu)) {
5919                vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5920                return 1;
5921        } else {
5922                vcpu->run->exit_reason = KVM_EXIT_HLT;
5923                return 0;
5924        }
5925}
5926EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
5927
5928int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5929{
5930        kvm_x86_ops->skip_emulated_instruction(vcpu);
5931        return kvm_vcpu_halt(vcpu);
5932}
5933EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5934
5935/*
5936 * kvm_pv_kick_cpu_op:  Kick a vcpu.
5937 *
5938 * @apicid - apicid of vcpu to be kicked.
5939 */
5940static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
5941{
5942        struct kvm_lapic_irq lapic_irq;
5943
5944        lapic_irq.shorthand = 0;
5945        lapic_irq.dest_mode = 0;
5946        lapic_irq.dest_id = apicid;
5947        lapic_irq.msi_redir_hint = false;
5948
5949        lapic_irq.delivery_mode = APIC_DM_REMRD;
5950        kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
5951}
5952
5953void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
5954{
5955        vcpu->arch.apicv_active = false;
5956        kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
5957}
5958
5959int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5960{
5961        unsigned long nr, a0, a1, a2, a3, ret;
5962        int op_64_bit, r = 1;
5963
5964        kvm_x86_ops->skip_emulated_instruction(vcpu);
5965
5966        if (kvm_hv_hypercall_enabled(vcpu->kvm))
5967                return kvm_hv_hypercall(vcpu);
5968
5969        nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5970        a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5971        a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5972        a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5973        a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5974
5975        trace_kvm_hypercall(nr, a0, a1, a2, a3);
5976
5977        op_64_bit = is_64_bit_mode(vcpu);
5978        if (!op_64_bit) {
5979                nr &= 0xFFFFFFFF;
5980                a0 &= 0xFFFFFFFF;
5981                a1 &= 0xFFFFFFFF;
5982                a2 &= 0xFFFFFFFF;
5983                a3 &= 0xFFFFFFFF;
5984        }
5985
5986        if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5987                ret = -KVM_EPERM;
5988                goto out;
5989        }
5990
5991        switch (nr) {
5992        case KVM_HC_VAPIC_POLL_IRQ:
5993                ret = 0;
5994                break;
5995        case KVM_HC_KICK_CPU:
5996                kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
5997                ret = 0;
5998                break;
5999        default:
6000                ret = -KVM_ENOSYS;
6001                break;
6002        }
6003out:
6004        if (!op_64_bit)
6005                ret = (u32)ret;
6006        kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
6007        ++vcpu->stat.hypercalls;
6008        return r;
6009}
6010EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
6011
6012static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
6013{
6014        struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6015        char instruction[3];
6016        unsigned long rip = kvm_rip_read(vcpu);
6017
6018        kvm_x86_ops->patch_hypercall(vcpu, instruction);
6019
6020        return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
6021}
6022
6023static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
6024{
6025        return vcpu->run->request_interrupt_window &&
6026                likely(!pic_in_kernel(vcpu->kvm));
6027}
6028
6029static void post_kvm_run_save(struct kvm_vcpu *vcpu)
6030{
6031        struct kvm_run *kvm_run = vcpu->run;
6032
6033        kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
6034        kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
6035        kvm_run->cr8 = kvm_get_cr8(vcpu);
6036        kvm_run->apic_base = kvm_get_apic_base(vcpu);
6037        kvm_run->ready_for_interrupt_injection =
6038                pic_in_kernel(vcpu->kvm) ||
6039                kvm_vcpu_ready_for_interrupt_injection(vcpu);
6040}
6041
6042static void update_cr8_intercept(struct kvm_vcpu *vcpu)
6043{
6044        int max_irr, tpr;
6045
6046        if (!kvm_x86_ops->update_cr8_intercept)
6047                return;
6048
6049        if (!lapic_in_kernel(vcpu))
6050                return;
6051
6052        if (vcpu->arch.apicv_active)
6053                return;
6054
6055        if (!vcpu->arch.apic->vapic_addr)
6056                max_irr = kvm_lapic_find_highest_irr(vcpu);
6057        else
6058                max_irr = -1;
6059
6060        if (max_irr != -1)
6061                max_irr >>= 4;
6062
6063        tpr = kvm_lapic_get_cr8(vcpu);
6064
6065        kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
6066}
6067
6068static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
6069{
6070        int r;
6071
6072        /* try to reinject previous events if any */
6073        if (vcpu->arch.exception.pending) {
6074                trace_kvm_inj_exception(vcpu->arch.exception.nr,
6075                                        vcpu->arch.exception.has_error_code,
6076                                        vcpu->arch.exception.error_code);
6077
6078                if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
6079                        __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
6080                                             X86_EFLAGS_RF);
6081
6082                if (vcpu->arch.exception.nr == DB_VECTOR &&
6083                    (vcpu->arch.dr7 & DR7_GD)) {
6084                        vcpu->arch.dr7 &= ~DR7_GD;
6085                        kvm_update_dr7(vcpu);
6086                }
6087
6088                kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
6089                                          vcpu->arch.exception.has_error_code,
6090                                          vcpu->arch.exception.error_code,
6091                                          vcpu->arch.exception.reinject);
6092                return 0;
6093        }
6094
6095        if (vcpu->arch.nmi_injected) {
6096                kvm_x86_ops->set_nmi(vcpu);
6097                return 0;
6098        }
6099
6100        if (vcpu->arch.interrupt.pending) {
6101                kvm_x86_ops->set_irq(vcpu);
6102                return 0;
6103        }
6104
6105        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6106                r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6107                if (r != 0)
6108                        return r;
6109        }
6110
6111        /* try to inject new event if pending */
6112        if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
6113                vcpu->arch.smi_pending = false;
6114                enter_smm(vcpu);
6115        } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
6116                --vcpu->arch.nmi_pending;
6117                vcpu->arch.nmi_injected = true;
6118                kvm_x86_ops->set_nmi(vcpu);
6119        } else if (kvm_cpu_has_injectable_intr(vcpu)) {
6120                /*
6121                 * Because interrupts can be injected asynchronously, we are
6122                 * calling check_nested_events again here to avoid a race condition.
6123                 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6124                 * proposal and current concerns.  Perhaps we should be setting
6125                 * KVM_REQ_EVENT only on certain events and not unconditionally?
6126                 */
6127                if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
6128                        r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
6129                        if (r != 0)
6130                                return r;
6131                }
6132                if (kvm_x86_ops->interrupt_allowed(vcpu)) {
6133                        kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
6134                                            false);
6135                        kvm_x86_ops->set_irq(vcpu);
6136                }
6137        }
6138
6139        return 0;
6140}
6141
6142static void process_nmi(struct kvm_vcpu *vcpu)
6143{
6144        unsigned limit = 2;
6145
6146        /*
6147         * x86 is limited to one NMI running, and one NMI pending after it.
6148         * If an NMI is already in progress, limit further NMIs to just one.
6149         * Otherwise, allow two (and we'll inject the first one immediately).
6150         */
6151        if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
6152                limit = 1;
6153
6154        vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
6155        vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
6156        kvm_make_request(KVM_REQ_EVENT, vcpu);
6157}
6158
6159#define put_smstate(type, buf, offset, val)                       \
6160        *(type *)((buf) + (offset) - 0x7e00) = val
6161
6162static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
6163{
6164        u32 flags = 0;
6165        flags |= seg->g       << 23;
6166        flags |= seg->db      << 22;
6167        flags |= seg->l       << 21;
6168        flags |= seg->avl     << 20;
6169        flags |= seg->present << 15;
6170        flags |= seg->dpl     << 13;
6171        flags |= seg->s       << 12;
6172        flags |= seg->type    << 8;
6173        return flags;
6174}
6175
6176static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
6177{
6178        struct kvm_segment seg;
6179        int offset;
6180
6181        kvm_get_segment(vcpu, &seg, n);
6182        put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
6183
6184        if (n < 3)
6185                offset = 0x7f84 + n * 12;
6186        else
6187                offset = 0x7f2c + (n - 3) * 12;
6188
6189        put_smstate(u32, buf, offset + 8, seg.base);
6190        put_smstate(u32, buf, offset + 4, seg.limit);
6191        put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
6192}
6193
6194#ifdef CONFIG_X86_64
6195static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
6196{
6197        struct kvm_segment seg;
6198        int offset;
6199        u16 flags;
6200
6201        kvm_get_segment(vcpu, &seg, n);
6202        offset = 0x7e00 + n * 16;
6203
6204        flags = enter_smm_get_segment_flags(&seg) >> 8;
6205        put_smstate(u16, buf, offset, seg.selector);
6206        put_smstate(u16, buf, offset + 2, flags);
6207        put_smstate(u32, buf, offset + 4, seg.limit);
6208        put_smstate(u64, buf, offset + 8, seg.base);
6209}
6210#endif
6211
6212static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
6213{
6214        struct desc_ptr dt;
6215        struct kvm_segment seg;
6216        unsigned long val;
6217        int i;
6218
6219        put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
6220        put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
6221        put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
6222        put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
6223
6224        for (i = 0; i < 8; i++)
6225                put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
6226
6227        kvm_get_dr(vcpu, 6, &val);
6228        put_smstate(u32, buf, 0x7fcc, (u32)val);
6229        kvm_get_dr(vcpu, 7, &val);
6230        put_smstate(u32, buf, 0x7fc8, (u32)val);
6231
6232        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6233        put_smstate(u32, buf, 0x7fc4, seg.selector);
6234        put_smstate(u32, buf, 0x7f64, seg.base);
6235        put_smstate(u32, buf, 0x7f60, seg.limit);
6236        put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
6237
6238        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6239        put_smstate(u32, buf, 0x7fc0, seg.selector);
6240        put_smstate(u32, buf, 0x7f80, seg.base);
6241        put_smstate(u32, buf, 0x7f7c, seg.limit);
6242        put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
6243
6244        kvm_x86_ops->get_gdt(vcpu, &dt);
6245        put_smstate(u32, buf, 0x7f74, dt.address);
6246        put_smstate(u32, buf, 0x7f70, dt.size);
6247
6248        kvm_x86_ops->get_idt(vcpu, &dt);
6249        put_smstate(u32, buf, 0x7f58, dt.address);
6250        put_smstate(u32, buf, 0x7f54, dt.size);
6251
6252        for (i = 0; i < 6; i++)
6253                enter_smm_save_seg_32(vcpu, buf, i);
6254
6255        put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
6256
6257        /* revision id */
6258        put_smstate(u32, buf, 0x7efc, 0x00020000);
6259        put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
6260}
6261
6262static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
6263{
6264#ifdef CONFIG_X86_64
6265        struct desc_ptr dt;
6266        struct kvm_segment seg;
6267        unsigned long val;
6268        int i;
6269
6270        for (i = 0; i < 16; i++)
6271                put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
6272
6273        put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
6274        put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
6275
6276        kvm_get_dr(vcpu, 6, &val);
6277        put_smstate(u64, buf, 0x7f68, val);
6278        kvm_get_dr(vcpu, 7, &val);
6279        put_smstate(u64, buf, 0x7f60, val);
6280
6281        put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
6282        put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
6283        put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
6284
6285        put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
6286
6287        /* revision id */
6288        put_smstate(u32, buf, 0x7efc, 0x00020064);
6289
6290        put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
6291
6292        kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
6293        put_smstate(u16, buf, 0x7e90, seg.selector);
6294        put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
6295        put_smstate(u32, buf, 0x7e94, seg.limit);
6296        put_smstate(u64, buf, 0x7e98, seg.base);
6297
6298        kvm_x86_ops->get_idt(vcpu, &dt);
6299        put_smstate(u32, buf, 0x7e84, dt.size);
6300        put_smstate(u64, buf, 0x7e88, dt.address);
6301
6302        kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
6303        put_smstate(u16, buf, 0x7e70, seg.selector);
6304        put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
6305        put_smstate(u32, buf, 0x7e74, seg.limit);
6306        put_smstate(u64, buf, 0x7e78, seg.base);
6307
6308        kvm_x86_ops->get_gdt(vcpu, &dt);
6309        put_smstate(u32, buf, 0x7e64, dt.size);
6310        put_smstate(u64, buf, 0x7e68, dt.address);
6311
6312        for (i = 0; i < 6; i++)
6313                enter_smm_save_seg_64(vcpu, buf, i);
6314#else
6315        WARN_ON_ONCE(1);
6316#endif
6317}
6318
6319static void enter_smm(struct kvm_vcpu *vcpu)
6320{
6321        struct kvm_segment cs, ds;
6322        struct desc_ptr dt;
6323        char buf[512];
6324        u32 cr0;
6325
6326        trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
6327        vcpu->arch.hflags |= HF_SMM_MASK;
6328        memset(buf, 0, 512);
6329        if (guest_cpuid_has_longmode(vcpu))
6330                enter_smm_save_state_64(vcpu, buf);
6331        else
6332                enter_smm_save_state_32(vcpu, buf);
6333
6334        kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
6335
6336        if (kvm_x86_ops->get_nmi_mask(vcpu))
6337                vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
6338        else
6339                kvm_x86_ops->set_nmi_mask(vcpu, true);
6340
6341        kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
6342        kvm_rip_write(vcpu, 0x8000);
6343
6344        cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
6345        kvm_x86_ops->set_cr0(vcpu, cr0);
6346        vcpu->arch.cr0 = cr0;
6347
6348        kvm_x86_ops->set_cr4(vcpu, 0);
6349
6350        /* Undocumented: IDT limit is set to zero on entry to SMM.  */
6351        dt.address = dt.size = 0;
6352        kvm_x86_ops->set_idt(vcpu, &dt);
6353
6354        __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
6355
6356        cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
6357        cs.base = vcpu->arch.smbase;
6358
6359        ds.selector = 0;
6360        ds.base = 0;
6361
6362        cs.limit    = ds.limit = 0xffffffff;
6363        cs.type     = ds.type = 0x3;
6364        cs.dpl      = ds.dpl = 0;
6365        cs.db       = ds.db = 0;
6366        cs.s        = ds.s = 1;
6367        cs.l        = ds.l = 0;
6368        cs.g        = ds.g = 1;
6369        cs.avl      = ds.avl = 0;
6370        cs.present  = ds.present = 1;
6371        cs.unusable = ds.unusable = 0;
6372        cs.padding  = ds.padding = 0;
6373
6374        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
6375        kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
6376        kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
6377        kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
6378        kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
6379        kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
6380
6381        if (guest_cpuid_has_longmode(vcpu))
6382                kvm_x86_ops->set_efer(vcpu, 0);
6383
6384        kvm_update_cpuid(vcpu);
6385        kvm_mmu_reset_context(vcpu);
6386}
6387
6388static void process_smi(struct kvm_vcpu *vcpu)
6389{
6390        vcpu->arch.smi_pending = true;
6391        kvm_make_request(KVM_REQ_EVENT, vcpu);
6392}
6393
6394void kvm_make_scan_ioapic_request(struct kvm *kvm)
6395{
6396        kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
6397}
6398
6399static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
6400{
6401        u64 eoi_exit_bitmap[4];
6402
6403        if (!kvm_apic_hw_enabled(vcpu->arch.apic))
6404                return;
6405
6406        bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
6407
6408        if (irqchip_split(vcpu->kvm))
6409                kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
6410        else {
6411                if (vcpu->arch.apicv_active)
6412                        kvm_x86_ops->sync_pir_to_irr(vcpu);
6413                kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
6414        }
6415        bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
6416                  vcpu_to_synic(vcpu)->vec_bitmap, 256);
6417        kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
6418}
6419
6420static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu)
6421{
6422        ++vcpu->stat.tlb_flush;
6423        kvm_x86_ops->tlb_flush(vcpu);
6424}
6425
6426void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
6427{
6428        struct page *page = NULL;
6429
6430        if (!lapic_in_kernel(vcpu))
6431                return;
6432
6433        if (!kvm_x86_ops->set_apic_access_page_addr)
6434                return;
6435
6436        page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6437        if (is_error_page(page))
6438                return;
6439        kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
6440
6441        /*
6442         * Do not pin apic access page in memory, the MMU notifier
6443         * will call us again if it is migrated or swapped out.
6444         */
6445        put_page(page);
6446}
6447EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page);
6448
6449void kvm_arch_mmu_notifier_invalidate_page(struct kvm *kvm,
6450                                           unsigned long address)
6451{
6452        /*
6453         * The physical address of apic access page is stored in the VMCS.
6454         * Update it when it becomes invalid.
6455         */
6456        if (address == gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT))
6457                kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
6458}
6459
6460/*
6461 * Returns 1 to let vcpu_run() continue the guest execution loop without
6462 * exiting to the userspace.  Otherwise, the value will be returned to the
6463 * userspace.
6464 */
6465static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
6466{
6467        int r;
6468        bool req_int_win =
6469                dm_request_for_irq_injection(vcpu) &&
6470                kvm_cpu_accept_dm_intr(vcpu);
6471
6472        bool req_immediate_exit = false;
6473
6474        if (vcpu->requests) {
6475                if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
6476                        kvm_mmu_unload(vcpu);
6477                if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
6478                        __kvm_migrate_timers(vcpu);
6479                if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6480                        kvm_gen_update_masterclock(vcpu->kvm);
6481                if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
6482                        kvm_gen_kvmclock_update(vcpu);
6483                if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
6484                        r = kvm_guest_time_update(vcpu);
6485                        if (unlikely(r))
6486                                goto out;
6487                }
6488                if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
6489                        kvm_mmu_sync_roots(vcpu);
6490                if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
6491                        kvm_vcpu_flush_tlb(vcpu);
6492                if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
6493                        vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
6494                        r = 0;
6495                        goto out;
6496                }
6497                if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
6498                        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
6499                        r = 0;
6500                        goto out;
6501                }
6502                if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
6503                        vcpu->fpu_active = 0;
6504                        kvm_x86_ops->fpu_deactivate(vcpu);
6505                }
6506                if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
6507                        /* Page is swapped out. Do synthetic halt */
6508                        vcpu->arch.apf.halted = true;
6509                        r = 1;
6510                        goto out;
6511                }
6512                if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
6513                        record_steal_time(vcpu);
6514                if (kvm_check_request(KVM_REQ_SMI, vcpu))
6515                        process_smi(vcpu);
6516                if (kvm_check_request(KVM_REQ_NMI, vcpu))
6517                        process_nmi(vcpu);
6518                if (kvm_check_request(KVM_REQ_PMU, vcpu))
6519                        kvm_pmu_handle_event(vcpu);
6520                if (kvm_check_request(KVM_REQ_PMI, vcpu))
6521                        kvm_pmu_deliver_pmi(vcpu);
6522                if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
6523                        BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
6524                        if (test_bit(vcpu->arch.pending_ioapic_eoi,
6525                                     vcpu->arch.ioapic_handled_vectors)) {
6526                                vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
6527                                vcpu->run->eoi.vector =
6528                                                vcpu->arch.pending_ioapic_eoi;
6529                                r = 0;
6530                                goto out;
6531                        }
6532                }
6533                if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
6534                        vcpu_scan_ioapic(vcpu);
6535                if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
6536                        kvm_vcpu_reload_apic_access_page(vcpu);
6537                if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
6538                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6539                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
6540                        r = 0;
6541                        goto out;
6542                }
6543                if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
6544                        vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
6545                        vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
6546                        r = 0;
6547                        goto out;
6548                }
6549                if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
6550                        vcpu->run->exit_reason = KVM_EXIT_HYPERV;
6551                        vcpu->run->hyperv = vcpu->arch.hyperv.exit;
6552                        r = 0;
6553                        goto out;
6554                }
6555
6556                /*
6557                 * KVM_REQ_HV_STIMER has to be processed after
6558                 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
6559                 * depend on the guest clock being up-to-date
6560                 */
6561                if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
6562                        kvm_hv_process_stimers(vcpu);
6563        }
6564
6565        /*
6566         * KVM_REQ_EVENT is not set when posted interrupts are set by
6567         * VT-d hardware, so we have to update RVI unconditionally.
6568         */
6569        if (kvm_lapic_enabled(vcpu)) {
6570                /*
6571                 * Update architecture specific hints for APIC
6572                 * virtual interrupt delivery.
6573                 */
6574                if (vcpu->arch.apicv_active)
6575                        kvm_x86_ops->hwapic_irr_update(vcpu,
6576                                kvm_lapic_find_highest_irr(vcpu));
6577        }
6578
6579        if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
6580                kvm_apic_accept_events(vcpu);
6581                if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
6582                        r = 1;
6583                        goto out;
6584                }
6585
6586                if (inject_pending_event(vcpu, req_int_win) != 0)
6587                        req_immediate_exit = true;
6588                else {
6589                        /* Enable NMI/IRQ window open exits if needed.
6590                         *
6591                         * SMIs have two cases: 1) they can be nested, and
6592                         * then there is nothing to do here because RSM will
6593                         * cause a vmexit anyway; 2) or the SMI can be pending
6594                         * because inject_pending_event has completed the
6595                         * injection of an IRQ or NMI from the previous vmexit,
6596                         * and then we request an immediate exit to inject the SMI.
6597                         */
6598                        if (vcpu->arch.smi_pending && !is_smm(vcpu))
6599                                req_immediate_exit = true;
6600                        if (vcpu->arch.nmi_pending)
6601                                kvm_x86_ops->enable_nmi_window(vcpu);
6602                        if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
6603                                kvm_x86_ops->enable_irq_window(vcpu);
6604                }
6605
6606                if (kvm_lapic_enabled(vcpu)) {
6607                        update_cr8_intercept(vcpu);
6608                        kvm_lapic_sync_to_vapic(vcpu);
6609                }
6610        }
6611
6612        r = kvm_mmu_reload(vcpu);
6613        if (unlikely(r)) {
6614                goto cancel_injection;
6615        }
6616
6617        preempt_disable();
6618
6619        kvm_x86_ops->prepare_guest_switch(vcpu);
6620        if (vcpu->fpu_active)
6621                kvm_load_guest_fpu(vcpu);
6622        vcpu->mode = IN_GUEST_MODE;
6623
6624        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6625
6626        /*
6627         * We should set ->mode before check ->requests,
6628         * Please see the comment in kvm_make_all_cpus_request.
6629         * This also orders the write to mode from any reads
6630         * to the page tables done while the VCPU is running.
6631         * Please see the comment in kvm_flush_remote_tlbs.
6632         */
6633        smp_mb__after_srcu_read_unlock();
6634
6635        local_irq_disable();
6636
6637        if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
6638            || need_resched() || signal_pending(current)) {
6639                vcpu->mode = OUTSIDE_GUEST_MODE;
6640                smp_wmb();
6641                local_irq_enable();
6642                preempt_enable();
6643                vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6644                r = 1;
6645                goto cancel_injection;
6646        }
6647
6648        kvm_load_guest_xcr0(vcpu);
6649
6650        if (req_immediate_exit) {
6651                kvm_make_request(KVM_REQ_EVENT, vcpu);
6652                smp_send_reschedule(vcpu->cpu);
6653        }
6654
6655        trace_kvm_entry(vcpu->vcpu_id);
6656        wait_lapic_expire(vcpu);
6657        guest_enter_irqoff();
6658
6659        if (unlikely(vcpu->arch.switch_db_regs)) {
6660                set_debugreg(0, 7);
6661                set_debugreg(vcpu->arch.eff_db[0], 0);
6662                set_debugreg(vcpu->arch.eff_db[1], 1);
6663                set_debugreg(vcpu->arch.eff_db[2], 2);
6664                set_debugreg(vcpu->arch.eff_db[3], 3);
6665                set_debugreg(vcpu->arch.dr6, 6);
6666                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6667        }
6668
6669        kvm_x86_ops->run(vcpu);
6670
6671        /*
6672         * Do this here before restoring debug registers on the host.  And
6673         * since we do this before handling the vmexit, a DR access vmexit
6674         * can (a) read the correct value of the debug registers, (b) set
6675         * KVM_DEBUGREG_WONT_EXIT again.
6676         */
6677        if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
6678                WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
6679                kvm_x86_ops->sync_dirty_debug_regs(vcpu);
6680                kvm_update_dr0123(vcpu);
6681                kvm_update_dr6(vcpu);
6682                kvm_update_dr7(vcpu);
6683                vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
6684        }
6685
6686        /*
6687         * If the guest has used debug registers, at least dr7
6688         * will be disabled while returning to the host.
6689         * If we don't have active breakpoints in the host, we don't
6690         * care about the messed up debug address registers. But if
6691         * we have some of them active, restore the old state.
6692         */
6693        if (hw_breakpoint_active())
6694                hw_breakpoint_restore();
6695
6696        vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
6697
6698        vcpu->mode = OUTSIDE_GUEST_MODE;
6699        smp_wmb();
6700
6701        kvm_put_guest_xcr0(vcpu);
6702
6703        /* Interrupt is enabled by handle_external_intr() */
6704        kvm_x86_ops->handle_external_intr(vcpu);
6705
6706        ++vcpu->stat.exits;
6707
6708        guest_exit_irqoff();
6709
6710        local_irq_enable();
6711        preempt_enable();
6712
6713        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6714
6715        /*
6716         * Profile KVM exit RIPs:
6717         */
6718        if (unlikely(prof_on == KVM_PROFILING)) {
6719                unsigned long rip = kvm_rip_read(vcpu);
6720                profile_hit(KVM_PROFILING, (void *)rip);
6721        }
6722
6723        if (unlikely(vcpu->arch.tsc_always_catchup))
6724                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6725
6726        if (vcpu->arch.apic_attention)
6727                kvm_lapic_sync_from_vapic(vcpu);
6728
6729        r = kvm_x86_ops->handle_exit(vcpu);
6730        return r;
6731
6732cancel_injection:
6733        kvm_x86_ops->cancel_injection(vcpu);
6734        if (unlikely(vcpu->arch.apic_attention))
6735                kvm_lapic_sync_from_vapic(vcpu);
6736out:
6737        return r;
6738}
6739
6740static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
6741{
6742        if (!kvm_arch_vcpu_runnable(vcpu) &&
6743            (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
6744                srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6745                kvm_vcpu_block(vcpu);
6746                vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6747
6748                if (kvm_x86_ops->post_block)
6749                        kvm_x86_ops->post_block(vcpu);
6750
6751                if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
6752                        return 1;
6753        }
6754
6755        kvm_apic_accept_events(vcpu);
6756        switch(vcpu->arch.mp_state) {
6757        case KVM_MP_STATE_HALTED:
6758                vcpu->arch.pv.pv_unhalted = false;
6759                vcpu->arch.mp_state =
6760                        KVM_MP_STATE_RUNNABLE;
6761        case KVM_MP_STATE_RUNNABLE:
6762                vcpu->arch.apf.halted = false;
6763                break;
6764        case KVM_MP_STATE_INIT_RECEIVED:
6765                break;
6766        default:
6767                return -EINTR;
6768                break;
6769        }
6770        return 1;
6771}
6772
6773static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
6774{
6775        return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6776                !vcpu->arch.apf.halted);
6777}
6778
6779static int vcpu_run(struct kvm_vcpu *vcpu)
6780{
6781        int r;
6782        struct kvm *kvm = vcpu->kvm;
6783
6784        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6785
6786        for (;;) {
6787                if (kvm_vcpu_running(vcpu)) {
6788                        r = vcpu_enter_guest(vcpu);
6789                } else {
6790                        r = vcpu_block(kvm, vcpu);
6791                }
6792
6793                if (r <= 0)
6794                        break;
6795
6796                clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
6797                if (kvm_cpu_has_pending_timer(vcpu))
6798                        kvm_inject_pending_timer_irqs(vcpu);
6799
6800                if (dm_request_for_irq_injection(vcpu) &&
6801                        kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
6802                        r = 0;
6803                        vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
6804                        ++vcpu->stat.request_irq_exits;
6805                        break;
6806                }
6807
6808                kvm_check_async_pf_completion(vcpu);
6809
6810                if (signal_pending(current)) {
6811                        r = -EINTR;
6812                        vcpu->run->exit_reason = KVM_EXIT_INTR;
6813                        ++vcpu->stat.signal_exits;
6814                        break;
6815                }
6816                if (need_resched()) {
6817                        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6818                        cond_resched();
6819                        vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
6820                }
6821        }
6822
6823        srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
6824
6825        return r;
6826}
6827
6828static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
6829{
6830        int r;
6831        vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6832        r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
6833        srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
6834        if (r != EMULATE_DONE)
6835                return 0;
6836        return 1;
6837}
6838
6839static int complete_emulated_pio(struct kvm_vcpu *vcpu)
6840{
6841        BUG_ON(!vcpu->arch.pio.count);
6842
6843        return complete_emulated_io(vcpu);
6844}
6845
6846/*
6847 * Implements the following, as a state machine:
6848 *
6849 * read:
6850 *   for each fragment
6851 *     for each mmio piece in the fragment
6852 *       write gpa, len
6853 *       exit
6854 *       copy data
6855 *   execute insn
6856 *
6857 * write:
6858 *   for each fragment
6859 *     for each mmio piece in the fragment
6860 *       write gpa, len
6861 *       copy data
6862 *       exit
6863 */
6864static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
6865{
6866        struct kvm_run *run = vcpu->run;
6867        struct kvm_mmio_fragment *frag;
6868        unsigned len;
6869
6870        BUG_ON(!vcpu->mmio_needed);
6871
6872        /* Complete previous fragment */
6873        frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
6874        len = min(8u, frag->len);
6875        if (!vcpu->mmio_is_write)
6876                memcpy(frag->data, run->mmio.data, len);
6877
6878        if (frag->len <= 8) {
6879                /* Switch to the next fragment. */
6880                frag++;
6881                vcpu->mmio_cur_fragment++;
6882        } else {
6883                /* Go forward to the next mmio piece. */
6884                frag->data += len;
6885                frag->gpa += len;
6886                frag->len -= len;
6887        }
6888
6889        if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
6890                vcpu->mmio_needed = 0;
6891
6892                /* FIXME: return into emulator if single-stepping.  */
6893                if (vcpu->mmio_is_write)
6894                        return 1;
6895                vcpu->mmio_read_completed = 1;
6896                return complete_emulated_io(vcpu);
6897        }
6898
6899        run->exit_reason = KVM_EXIT_MMIO;
6900        run->mmio.phys_addr = frag->gpa;
6901        if (vcpu->mmio_is_write)
6902                memcpy(run->mmio.data, frag->data, min(8u, frag->len));
6903        run->mmio.len = min(8u, frag->len);
6904        run->mmio.is_write = vcpu->mmio_is_write;
6905        vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6906        return 0;
6907}
6908
6909
6910int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
6911{
6912        struct fpu *fpu = &current->thread.fpu;
6913        int r;
6914        sigset_t sigsaved;
6915
6916        fpu__activate_curr(fpu);
6917
6918        if (vcpu->sigset_active)
6919                sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
6920
6921        if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
6922                kvm_vcpu_block(vcpu);
6923                kvm_apic_accept_events(vcpu);
6924                clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
6925                r = -EAGAIN;
6926                goto out;
6927        }
6928
6929        /* re-sync apic's tpr */
6930        if (!lapic_in_kernel(vcpu)) {
6931                if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
6932                        r = -EINVAL;
6933                        goto out;
6934                }
6935        }
6936
6937        if (unlikely(vcpu->arch.complete_userspace_io)) {
6938                int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
6939                vcpu->arch.complete_userspace_io = NULL;
6940                r = cui(vcpu);
6941                if (r <= 0)
6942                        goto out;
6943        } else
6944                WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
6945
6946        r = vcpu_run(vcpu);
6947
6948out:
6949        post_kvm_run_save(vcpu);
6950        if (vcpu->sigset_active)
6951                sigprocmask(SIG_SETMASK, &sigsaved, NULL);
6952
6953        return r;
6954}
6955
6956int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6957{
6958        if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
6959                /*
6960                 * We are here if userspace calls get_regs() in the middle of
6961                 * instruction emulation. Registers state needs to be copied
6962                 * back from emulation context to vcpu. Userspace shouldn't do
6963                 * that usually, but some bad designed PV devices (vmware
6964                 * backdoor interface) need this to work
6965                 */
6966                emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
6967                vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6968        }
6969        regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
6970        regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
6971        regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
6972        regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
6973        regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
6974        regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
6975        regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6976        regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
6977#ifdef CONFIG_X86_64
6978        regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
6979        regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
6980        regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
6981        regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
6982        regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
6983        regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
6984        regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
6985        regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
6986#endif
6987
6988        regs->rip = kvm_rip_read(vcpu);
6989        regs->rflags = kvm_get_rflags(vcpu);
6990
6991        return 0;
6992}
6993
6994int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
6995{
6996        vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
6997        vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6998
6999        kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
7000        kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
7001        kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
7002        kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
7003        kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
7004        kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
7005        kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
7006        kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
7007#ifdef CONFIG_X86_64
7008        kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
7009        kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
7010        kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
7011        kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
7012        kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
7013        kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
7014        kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
7015        kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
7016#endif
7017
7018        kvm_rip_write(vcpu, regs->rip);
7019        kvm_set_rflags(vcpu, regs->rflags);
7020
7021        vcpu->arch.exception.pending = false;
7022
7023        kvm_make_request(KVM_REQ_EVENT, vcpu);
7024
7025        return 0;
7026}
7027
7028void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
7029{
7030        struct kvm_segment cs;
7031
7032        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7033        *db = cs.db;
7034        *l = cs.l;
7035}
7036EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
7037
7038int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
7039                                  struct kvm_sregs *sregs)
7040{
7041        struct desc_ptr dt;
7042
7043        kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7044        kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7045        kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7046        kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7047        kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7048        kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7049
7050        kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7051        kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7052
7053        kvm_x86_ops->get_idt(vcpu, &dt);
7054        sregs->idt.limit = dt.size;
7055        sregs->idt.base = dt.address;
7056        kvm_x86_ops->get_gdt(vcpu, &dt);
7057        sregs->gdt.limit = dt.size;
7058        sregs->gdt.base = dt.address;
7059
7060        sregs->cr0 = kvm_read_cr0(vcpu);
7061        sregs->cr2 = vcpu->arch.cr2;
7062        sregs->cr3 = kvm_read_cr3(vcpu);
7063        sregs->cr4 = kvm_read_cr4(vcpu);
7064        sregs->cr8 = kvm_get_cr8(vcpu);
7065        sregs->efer = vcpu->arch.efer;
7066        sregs->apic_base = kvm_get_apic_base(vcpu);
7067
7068        memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
7069
7070        if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
7071                set_bit(vcpu->arch.interrupt.nr,
7072                        (unsigned long *)sregs->interrupt_bitmap);
7073
7074        return 0;
7075}
7076
7077int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
7078                                    struct kvm_mp_state *mp_state)
7079{
7080        kvm_apic_accept_events(vcpu);
7081        if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
7082                                        vcpu->arch.pv.pv_unhalted)
7083                mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
7084        else
7085                mp_state->mp_state = vcpu->arch.mp_state;
7086
7087        return 0;
7088}
7089
7090int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
7091                                    struct kvm_mp_state *mp_state)
7092{
7093        if (!lapic_in_kernel(vcpu) &&
7094            mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
7095                return -EINVAL;
7096
7097        if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
7098                vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
7099                set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
7100        } else
7101                vcpu->arch.mp_state = mp_state->mp_state;
7102        kvm_make_request(KVM_REQ_EVENT, vcpu);
7103        return 0;
7104}
7105
7106int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
7107                    int reason, bool has_error_code, u32 error_code)
7108{
7109        struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
7110        int ret;
7111
7112        init_emulate_ctxt(vcpu);
7113
7114        ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
7115                                   has_error_code, error_code);
7116
7117        if (ret)
7118                return EMULATE_FAIL;
7119
7120        kvm_rip_write(vcpu, ctxt->eip);
7121        kvm_set_rflags(vcpu, ctxt->eflags);
7122        kvm_make_request(KVM_REQ_EVENT, vcpu);
7123        return EMULATE_DONE;
7124}
7125EXPORT_SYMBOL_GPL(kvm_task_switch);
7126
7127int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
7128                                  struct kvm_sregs *sregs)
7129{
7130        struct msr_data apic_base_msr;
7131        int mmu_reset_needed = 0;
7132        int pending_vec, max_bits, idx;
7133        struct desc_ptr dt;
7134
7135        if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE))
7136                return -EINVAL;
7137
7138        dt.size = sregs->idt.limit;
7139        dt.address = sregs->idt.base;
7140        kvm_x86_ops->set_idt(vcpu, &dt);
7141        dt.size = sregs->gdt.limit;
7142        dt.address = sregs->gdt.base;
7143        kvm_x86_ops->set_gdt(vcpu, &dt);
7144
7145        vcpu->arch.cr2 = sregs->cr2;
7146        mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
7147        vcpu->arch.cr3 = sregs->cr3;
7148        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
7149
7150        kvm_set_cr8(vcpu, sregs->cr8);
7151
7152        mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
7153        kvm_x86_ops->set_efer(vcpu, sregs->efer);
7154        apic_base_msr.data = sregs->apic_base;
7155        apic_base_msr.host_initiated = true;
7156        kvm_set_apic_base(vcpu, &apic_base_msr);
7157
7158        mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
7159        kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
7160        vcpu->arch.cr0 = sregs->cr0;
7161
7162        mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
7163        kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
7164        if (sregs->cr4 & (X86_CR4_OSXSAVE | X86_CR4_PKE))
7165                kvm_update_cpuid(vcpu);
7166
7167        idx = srcu_read_lock(&vcpu->kvm->srcu);
7168        if (!is_long_mode(vcpu) && is_pae(vcpu)) {
7169                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7170                mmu_reset_needed = 1;
7171        }
7172        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7173
7174        if (mmu_reset_needed)
7175                kvm_mmu_reset_context(vcpu);
7176
7177        max_bits = KVM_NR_INTERRUPTS;
7178        pending_vec = find_first_bit(
7179                (const unsigned long *)sregs->interrupt_bitmap, max_bits);
7180        if (pending_vec < max_bits) {
7181                kvm_queue_interrupt(vcpu, pending_vec, false);
7182                pr_debug("Set back pending irq %d\n", pending_vec);
7183        }
7184
7185        kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
7186        kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
7187        kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
7188        kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
7189        kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
7190        kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
7191
7192        kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
7193        kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
7194
7195        update_cr8_intercept(vcpu);
7196
7197        /* Older userspace won't unhalt the vcpu on reset. */
7198        if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
7199            sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
7200            !is_protmode(vcpu))
7201                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7202
7203        kvm_make_request(KVM_REQ_EVENT, vcpu);
7204
7205        return 0;
7206}
7207
7208int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
7209                                        struct kvm_guest_debug *dbg)
7210{
7211        unsigned long rflags;
7212        int i, r;
7213
7214        if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
7215                r = -EBUSY;
7216                if (vcpu->arch.exception.pending)
7217                        goto out;
7218                if (dbg->control & KVM_GUESTDBG_INJECT_DB)
7219                        kvm_queue_exception(vcpu, DB_VECTOR);
7220                else
7221                        kvm_queue_exception(vcpu, BP_VECTOR);
7222        }
7223
7224        /*
7225         * Read rflags as long as potentially injected trace flags are still
7226         * filtered out.
7227         */
7228        rflags = kvm_get_rflags(vcpu);
7229
7230        vcpu->guest_debug = dbg->control;
7231        if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
7232                vcpu->guest_debug = 0;
7233
7234        if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
7235                for (i = 0; i < KVM_NR_DB_REGS; ++i)
7236                        vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
7237                vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
7238        } else {
7239                for (i = 0; i < KVM_NR_DB_REGS; i++)
7240                        vcpu->arch.eff_db[i] = vcpu->arch.db[i];
7241        }
7242        kvm_update_dr7(vcpu);
7243
7244        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
7245                vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
7246                        get_segment_base(vcpu, VCPU_SREG_CS);
7247
7248        /*
7249         * Trigger an rflags update that will inject or remove the trace
7250         * flags.
7251         */
7252        kvm_set_rflags(vcpu, rflags);
7253
7254        kvm_x86_ops->update_bp_intercept(vcpu);
7255
7256        r = 0;
7257
7258out:
7259
7260        return r;
7261}
7262
7263/*
7264 * Translate a guest virtual address to a guest physical address.
7265 */
7266int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
7267                                    struct kvm_translation *tr)
7268{
7269        unsigned long vaddr = tr->linear_address;
7270        gpa_t gpa;
7271        int idx;
7272
7273        idx = srcu_read_lock(&vcpu->kvm->srcu);
7274        gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
7275        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7276        tr->physical_address = gpa;
7277        tr->valid = gpa != UNMAPPED_GVA;
7278        tr->writeable = 1;
7279        tr->usermode = 0;
7280
7281        return 0;
7282}
7283
7284int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7285{
7286        struct fxregs_state *fxsave =
7287                        &vcpu->arch.guest_fpu.state.fxsave;
7288
7289        memcpy(fpu->fpr, fxsave->st_space, 128);
7290        fpu->fcw = fxsave->cwd;
7291        fpu->fsw = fxsave->swd;
7292        fpu->ftwx = fxsave->twd;
7293        fpu->last_opcode = fxsave->fop;
7294        fpu->last_ip = fxsave->rip;
7295        fpu->last_dp = fxsave->rdp;
7296        memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
7297
7298        return 0;
7299}
7300
7301int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
7302{
7303        struct fxregs_state *fxsave =
7304                        &vcpu->arch.guest_fpu.state.fxsave;
7305
7306        memcpy(fxsave->st_space, fpu->fpr, 128);
7307        fxsave->cwd = fpu->fcw;
7308        fxsave->swd = fpu->fsw;
7309        fxsave->twd = fpu->ftwx;
7310        fxsave->fop = fpu->last_opcode;
7311        fxsave->rip = fpu->last_ip;
7312        fxsave->rdp = fpu->last_dp;
7313        memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
7314
7315        return 0;
7316}
7317
7318static void fx_init(struct kvm_vcpu *vcpu)
7319{
7320        fpstate_init(&vcpu->arch.guest_fpu.state);
7321        if (boot_cpu_has(X86_FEATURE_XSAVES))
7322                vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
7323                        host_xcr0 | XSTATE_COMPACTION_ENABLED;
7324
7325        /*
7326         * Ensure guest xcr0 is valid for loading
7327         */
7328        vcpu->arch.xcr0 = XFEATURE_MASK_FP;
7329
7330        vcpu->arch.cr0 |= X86_CR0_ET;
7331}
7332
7333void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
7334{
7335        if (vcpu->guest_fpu_loaded)
7336                return;
7337
7338        /*
7339         * Restore all possible states in the guest,
7340         * and assume host would use all available bits.
7341         * Guest xcr0 would be loaded later.
7342         */
7343        vcpu->guest_fpu_loaded = 1;
7344        __kernel_fpu_begin();
7345        __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state);
7346        trace_kvm_fpu(1);
7347}
7348
7349void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
7350{
7351        if (!vcpu->guest_fpu_loaded) {
7352                vcpu->fpu_counter = 0;
7353                return;
7354        }
7355
7356        vcpu->guest_fpu_loaded = 0;
7357        copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
7358        __kernel_fpu_end();
7359        ++vcpu->stat.fpu_reload;
7360        /*
7361         * If using eager FPU mode, or if the guest is a frequent user
7362         * of the FPU, just leave the FPU active for next time.
7363         * Every 255 times fpu_counter rolls over to 0; a guest that uses
7364         * the FPU in bursts will revert to loading it on demand.
7365         */
7366        if (!use_eager_fpu()) {
7367                if (++vcpu->fpu_counter < 5)
7368                        kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
7369        }
7370        trace_kvm_fpu(0);
7371}
7372
7373void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
7374{
7375        kvmclock_reset(vcpu);
7376
7377        free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
7378        kvm_x86_ops->vcpu_free(vcpu);
7379}
7380
7381struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
7382                                                unsigned int id)
7383{
7384        struct kvm_vcpu *vcpu;
7385
7386        if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
7387                printk_once(KERN_WARNING
7388                "kvm: SMP vm created on host with unstable TSC; "
7389                "guest TSC will not be reliable\n");
7390
7391        vcpu = kvm_x86_ops->vcpu_create(kvm, id);
7392
7393        return vcpu;
7394}
7395
7396int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
7397{
7398        int r;
7399
7400        kvm_vcpu_mtrr_init(vcpu);
7401        r = vcpu_load(vcpu);
7402        if (r)
7403                return r;
7404        kvm_vcpu_reset(vcpu, false);
7405        kvm_mmu_setup(vcpu);
7406        vcpu_put(vcpu);
7407        return r;
7408}
7409
7410void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
7411{
7412        struct msr_data msr;
7413        struct kvm *kvm = vcpu->kvm;
7414
7415        if (vcpu_load(vcpu))
7416                return;
7417        msr.data = 0x0;
7418        msr.index = MSR_IA32_TSC;
7419        msr.host_initiated = true;
7420        kvm_write_tsc(vcpu, &msr);
7421        vcpu_put(vcpu);
7422
7423        if (!kvmclock_periodic_sync)
7424                return;
7425
7426        schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
7427                                        KVMCLOCK_SYNC_PERIOD);
7428}
7429
7430void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
7431{
7432        int r;
7433        vcpu->arch.apf.msr_val = 0;
7434
7435        r = vcpu_load(vcpu);
7436        BUG_ON(r);
7437        kvm_mmu_unload(vcpu);
7438        vcpu_put(vcpu);
7439
7440        kvm_x86_ops->vcpu_free(vcpu);
7441}
7442
7443void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
7444{
7445        vcpu->arch.hflags = 0;
7446
7447        vcpu->arch.smi_pending = 0;
7448        atomic_set(&vcpu->arch.nmi_queued, 0);
7449        vcpu->arch.nmi_pending = 0;
7450        vcpu->arch.nmi_injected = false;
7451        kvm_clear_interrupt_queue(vcpu);
7452        kvm_clear_exception_queue(vcpu);
7453
7454        memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
7455        kvm_update_dr0123(vcpu);
7456        vcpu->arch.dr6 = DR6_INIT;
7457        kvm_update_dr6(vcpu);
7458        vcpu->arch.dr7 = DR7_FIXED_1;
7459        kvm_update_dr7(vcpu);
7460
7461        vcpu->arch.cr2 = 0;
7462
7463        kvm_make_request(KVM_REQ_EVENT, vcpu);
7464        vcpu->arch.apf.msr_val = 0;
7465        vcpu->arch.st.msr_val = 0;
7466
7467        kvmclock_reset(vcpu);
7468
7469        kvm_clear_async_pf_completion_queue(vcpu);
7470        kvm_async_pf_hash_reset(vcpu);
7471        vcpu->arch.apf.halted = false;
7472
7473        if (!init_event) {
7474                kvm_pmu_reset(vcpu);
7475                vcpu->arch.smbase = 0x30000;
7476        }
7477
7478        memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
7479        vcpu->arch.regs_avail = ~0;
7480        vcpu->arch.regs_dirty = ~0;
7481
7482        kvm_x86_ops->vcpu_reset(vcpu, init_event);
7483}
7484
7485void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
7486{
7487        struct kvm_segment cs;
7488
7489        kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
7490        cs.selector = vector << 8;
7491        cs.base = vector << 12;
7492        kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7493        kvm_rip_write(vcpu, 0);
7494}
7495
7496int kvm_arch_hardware_enable(void)
7497{
7498        struct kvm *kvm;
7499        struct kvm_vcpu *vcpu;
7500        int i;
7501        int ret;
7502        u64 local_tsc;
7503        u64 max_tsc = 0;
7504        bool stable, backwards_tsc = false;
7505
7506        kvm_shared_msr_cpu_online();
7507        ret = kvm_x86_ops->hardware_enable();
7508        if (ret != 0)
7509                return ret;
7510
7511        local_tsc = rdtsc();
7512        stable = !check_tsc_unstable();
7513        list_for_each_entry(kvm, &vm_list, vm_list) {
7514                kvm_for_each_vcpu(i, vcpu, kvm) {
7515                        if (!stable && vcpu->cpu == smp_processor_id())
7516                                kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7517                        if (stable && vcpu->arch.last_host_tsc > local_tsc) {
7518                                backwards_tsc = true;
7519                                if (vcpu->arch.last_host_tsc > max_tsc)
7520                                        max_tsc = vcpu->arch.last_host_tsc;
7521                        }
7522                }
7523        }
7524
7525        /*
7526         * Sometimes, even reliable TSCs go backwards.  This happens on
7527         * platforms that reset TSC during suspend or hibernate actions, but
7528         * maintain synchronization.  We must compensate.  Fortunately, we can
7529         * detect that condition here, which happens early in CPU bringup,
7530         * before any KVM threads can be running.  Unfortunately, we can't
7531         * bring the TSCs fully up to date with real time, as we aren't yet far
7532         * enough into CPU bringup that we know how much real time has actually
7533         * elapsed; our helper function, get_kernel_ns() will be using boot
7534         * variables that haven't been updated yet.
7535         *
7536         * So we simply find the maximum observed TSC above, then record the
7537         * adjustment to TSC in each VCPU.  When the VCPU later gets loaded,
7538         * the adjustment will be applied.  Note that we accumulate
7539         * adjustments, in case multiple suspend cycles happen before some VCPU
7540         * gets a chance to run again.  In the event that no KVM threads get a
7541         * chance to run, we will miss the entire elapsed period, as we'll have
7542         * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7543         * loose cycle time.  This isn't too big a deal, since the loss will be
7544         * uniform across all VCPUs (not to mention the scenario is extremely
7545         * unlikely). It is possible that a second hibernate recovery happens
7546         * much faster than a first, causing the observed TSC here to be
7547         * smaller; this would require additional padding adjustment, which is
7548         * why we set last_host_tsc to the local tsc observed here.
7549         *
7550         * N.B. - this code below runs only on platforms with reliable TSC,
7551         * as that is the only way backwards_tsc is set above.  Also note
7552         * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7553         * have the same delta_cyc adjustment applied if backwards_tsc
7554         * is detected.  Note further, this adjustment is only done once,
7555         * as we reset last_host_tsc on all VCPUs to stop this from being
7556         * called multiple times (one for each physical CPU bringup).
7557         *
7558         * Platforms with unreliable TSCs don't have to deal with this, they
7559         * will be compensated by the logic in vcpu_load, which sets the TSC to
7560         * catchup mode.  This will catchup all VCPUs to real time, but cannot
7561         * guarantee that they stay in perfect synchronization.
7562         */
7563        if (backwards_tsc) {
7564                u64 delta_cyc = max_tsc - local_tsc;
7565                backwards_tsc_observed = true;
7566                list_for_each_entry(kvm, &vm_list, vm_list) {
7567                        kvm_for_each_vcpu(i, vcpu, kvm) {
7568                                vcpu->arch.tsc_offset_adjustment += delta_cyc;
7569                                vcpu->arch.last_host_tsc = local_tsc;
7570                                kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7571                        }
7572
7573                        /*
7574                         * We have to disable TSC offset matching.. if you were
7575                         * booting a VM while issuing an S4 host suspend....
7576                         * you may have some problem.  Solving this issue is
7577                         * left as an exercise to the reader.
7578                         */
7579                        kvm->arch.last_tsc_nsec = 0;
7580                        kvm->arch.last_tsc_write = 0;
7581                }
7582
7583        }
7584        return 0;
7585}
7586
7587void kvm_arch_hardware_disable(void)
7588{
7589        kvm_x86_ops->hardware_disable();
7590        drop_user_return_notifiers();
7591}
7592
7593int kvm_arch_hardware_setup(void)
7594{
7595        int r;
7596
7597        r = kvm_x86_ops->hardware_setup();
7598        if (r != 0)
7599                return r;
7600
7601        if (kvm_has_tsc_control) {
7602                /*
7603                 * Make sure the user can only configure tsc_khz values that
7604                 * fit into a signed integer.
7605                 * A min value is not calculated needed because it will always
7606                 * be 1 on all machines.
7607                 */
7608                u64 max = min(0x7fffffffULL,
7609                              __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
7610                kvm_max_guest_tsc_khz = max;
7611
7612                kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
7613        }
7614
7615        kvm_init_msr_list();
7616        return 0;
7617}
7618
7619void kvm_arch_hardware_unsetup(void)
7620{
7621        kvm_x86_ops->hardware_unsetup();
7622}
7623
7624void kvm_arch_check_processor_compat(void *rtn)
7625{
7626        kvm_x86_ops->check_processor_compatibility(rtn);
7627}
7628
7629bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
7630{
7631        return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
7632}
7633EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
7634
7635bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
7636{
7637        return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
7638}
7639
7640struct static_key kvm_no_apic_vcpu __read_mostly;
7641EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
7642
7643int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
7644{
7645        struct page *page;
7646        struct kvm *kvm;
7647        int r;
7648
7649        BUG_ON(vcpu->kvm == NULL);
7650        kvm = vcpu->kvm;
7651
7652        vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv();
7653        vcpu->arch.pv.pv_unhalted = false;
7654        vcpu->arch.emulate_ctxt.ops = &emulate_ops;
7655        if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_reset_bsp(vcpu))
7656                vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7657        else
7658                vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
7659
7660        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
7661        if (!page) {
7662                r = -ENOMEM;
7663                goto fail;
7664        }
7665        vcpu->arch.pio_data = page_address(page);
7666
7667        kvm_set_tsc_khz(vcpu, max_tsc_khz);
7668
7669        r = kvm_mmu_create(vcpu);
7670        if (r < 0)
7671                goto fail_free_pio_data;
7672
7673        if (irqchip_in_kernel(kvm)) {
7674                r = kvm_create_lapic(vcpu);
7675                if (r < 0)
7676                        goto fail_mmu_destroy;
7677        } else
7678                static_key_slow_inc(&kvm_no_apic_vcpu);
7679
7680        vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
7681                                       GFP_KERNEL);
7682        if (!vcpu->arch.mce_banks) {
7683                r = -ENOMEM;
7684                goto fail_free_lapic;
7685        }
7686        vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
7687
7688        if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) {
7689                r = -ENOMEM;
7690                goto fail_free_mce_banks;
7691        }
7692
7693        fx_init(vcpu);
7694
7695        vcpu->arch.ia32_tsc_adjust_msr = 0x0;
7696        vcpu->arch.pv_time_enabled = false;
7697
7698        vcpu->arch.guest_supported_xcr0 = 0;
7699        vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
7700
7701        vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
7702
7703        vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
7704
7705        kvm_async_pf_hash_reset(vcpu);
7706        kvm_pmu_init(vcpu);
7707
7708        vcpu->arch.pending_external_vector = -1;
7709
7710        kvm_hv_vcpu_init(vcpu);
7711
7712        return 0;
7713
7714fail_free_mce_banks:
7715        kfree(vcpu->arch.mce_banks);
7716fail_free_lapic:
7717        kvm_free_lapic(vcpu);
7718fail_mmu_destroy:
7719        kvm_mmu_destroy(vcpu);
7720fail_free_pio_data:
7721        free_page((unsigned long)vcpu->arch.pio_data);
7722fail:
7723        return r;
7724}
7725
7726void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
7727{
7728        int idx;
7729
7730        kvm_hv_vcpu_uninit(vcpu);
7731        kvm_pmu_destroy(vcpu);
7732        kfree(vcpu->arch.mce_banks);
7733        kvm_free_lapic(vcpu);
7734        idx = srcu_read_lock(&vcpu->kvm->srcu);
7735        kvm_mmu_destroy(vcpu);
7736        srcu_read_unlock(&vcpu->kvm->srcu, idx);
7737        free_page((unsigned long)vcpu->arch.pio_data);
7738        if (!lapic_in_kernel(vcpu))
7739                static_key_slow_dec(&kvm_no_apic_vcpu);
7740}
7741
7742void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
7743{
7744        kvm_x86_ops->sched_in(vcpu, cpu);
7745}
7746
7747int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
7748{
7749        if (type)
7750                return -EINVAL;
7751
7752        INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
7753        INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
7754        INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
7755        INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
7756        atomic_set(&kvm->arch.noncoherent_dma_count, 0);
7757
7758        /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7759        set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7760        /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7761        set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
7762                &kvm->arch.irq_sources_bitmap);
7763
7764        raw_spin_lock_init(&kvm->arch.tsc_write_lock);
7765        mutex_init(&kvm->arch.apic_map_lock);
7766        spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
7767
7768        pvclock_update_vm_gtod_copy(kvm);
7769
7770        INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
7771        INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7772
7773        kvm_page_track_init(kvm);
7774        kvm_mmu_init_vm(kvm);
7775
7776        if (kvm_x86_ops->vm_init)
7777                return kvm_x86_ops->vm_init(kvm);
7778
7779        return 0;
7780}
7781
7782static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
7783{
7784        int r;
7785        r = vcpu_load(vcpu);
7786        BUG_ON(r);
7787        kvm_mmu_unload(vcpu);
7788        vcpu_put(vcpu);
7789}
7790
7791static void kvm_free_vcpus(struct kvm *kvm)
7792{
7793        unsigned int i;
7794        struct kvm_vcpu *vcpu;
7795
7796        /*
7797         * Unpin any mmu pages first.
7798         */
7799        kvm_for_each_vcpu(i, vcpu, kvm) {
7800                kvm_clear_async_pf_completion_queue(vcpu);
7801                kvm_unload_vcpu_mmu(vcpu);
7802        }
7803        kvm_for_each_vcpu(i, vcpu, kvm)
7804                kvm_arch_vcpu_free(vcpu);
7805
7806        mutex_lock(&kvm->lock);
7807        for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
7808                kvm->vcpus[i] = NULL;
7809
7810        atomic_set(&kvm->online_vcpus, 0);
7811        mutex_unlock(&kvm->lock);
7812}
7813
7814void kvm_arch_sync_events(struct kvm *kvm)
7815{
7816        cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7817        cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
7818        kvm_free_all_assigned_devices(kvm);
7819        kvm_free_pit(kvm);
7820}
7821
7822int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7823{
7824        int i, r;
7825        unsigned long hva;
7826        struct kvm_memslots *slots = kvm_memslots(kvm);
7827        struct kvm_memory_slot *slot, old;
7828
7829        /* Called with kvm->slots_lock held.  */
7830        if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
7831                return -EINVAL;
7832
7833        slot = id_to_memslot(slots, id);
7834        if (size) {
7835                if (slot->npages)
7836                        return -EEXIST;
7837
7838                /*
7839                 * MAP_SHARED to prevent internal slot pages from being moved
7840                 * by fork()/COW.
7841                 */
7842                hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
7843                              MAP_SHARED | MAP_ANONYMOUS, 0);
7844                if (IS_ERR((void *)hva))
7845                        return PTR_ERR((void *)hva);
7846        } else {
7847                if (!slot->npages)
7848                        return 0;
7849
7850                hva = 0;
7851        }
7852
7853        old = *slot;
7854        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
7855                struct kvm_userspace_memory_region m;
7856
7857                m.slot = id | (i << 16);
7858                m.flags = 0;
7859                m.guest_phys_addr = gpa;
7860                m.userspace_addr = hva;
7861                m.memory_size = size;
7862                r = __kvm_set_memory_region(kvm, &m);
7863                if (r < 0)
7864                        return r;
7865        }
7866
7867        if (!size) {
7868                r = vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
7869                WARN_ON(r < 0);
7870        }
7871
7872        return 0;
7873}
7874EXPORT_SYMBOL_GPL(__x86_set_memory_region);
7875
7876int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
7877{
7878        int r;
7879
7880        mutex_lock(&kvm->slots_lock);
7881        r = __x86_set_memory_region(kvm, id, gpa, size);
7882        mutex_unlock(&kvm->slots_lock);
7883
7884        return r;
7885}
7886EXPORT_SYMBOL_GPL(x86_set_memory_region);
7887
7888void kvm_arch_destroy_vm(struct kvm *kvm)
7889{
7890        if (current->mm == kvm->mm) {
7891                /*
7892                 * Free memory regions allocated on behalf of userspace,
7893                 * unless the the memory map has changed due to process exit
7894                 * or fd copying.
7895                 */
7896                x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
7897                x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
7898                x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
7899        }
7900        if (kvm_x86_ops->vm_destroy)
7901                kvm_x86_ops->vm_destroy(kvm);
7902        kvm_iommu_unmap_guest(kvm);
7903        kfree(kvm->arch.vpic);
7904        kfree(kvm->arch.vioapic);
7905        kvm_free_vcpus(kvm);
7906        kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
7907        kvm_mmu_uninit_vm(kvm);
7908}
7909
7910void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
7911                           struct kvm_memory_slot *dont)
7912{
7913        int i;
7914
7915        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7916                if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
7917                        kvfree(free->arch.rmap[i]);
7918                        free->arch.rmap[i] = NULL;
7919                }
7920                if (i == 0)
7921                        continue;
7922
7923                if (!dont || free->arch.lpage_info[i - 1] !=
7924                             dont->arch.lpage_info[i - 1]) {
7925                        kvfree(free->arch.lpage_info[i - 1]);
7926                        free->arch.lpage_info[i - 1] = NULL;
7927                }
7928        }
7929
7930        kvm_page_track_free_memslot(free, dont);
7931}
7932
7933int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
7934                            unsigned long npages)
7935{
7936        int i;
7937
7938        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7939                struct kvm_lpage_info *linfo;
7940                unsigned long ugfn;
7941                int lpages;
7942                int level = i + 1;
7943
7944                lpages = gfn_to_index(slot->base_gfn + npages - 1,
7945                                      slot->base_gfn, level) + 1;
7946
7947                slot->arch.rmap[i] =
7948                        kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i]));
7949                if (!slot->arch.rmap[i])
7950                        goto out_free;
7951                if (i == 0)
7952                        continue;
7953
7954                linfo = kvm_kvzalloc(lpages * sizeof(*linfo));
7955                if (!linfo)
7956                        goto out_free;
7957
7958                slot->arch.lpage_info[i - 1] = linfo;
7959
7960                if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
7961                        linfo[0].disallow_lpage = 1;
7962                if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
7963                        linfo[lpages - 1].disallow_lpage = 1;
7964                ugfn = slot->userspace_addr >> PAGE_SHIFT;
7965                /*
7966                 * If the gfn and userspace address are not aligned wrt each
7967                 * other, or if explicitly asked to, disable large page
7968                 * support for this slot
7969                 */
7970                if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
7971                    !kvm_largepages_enabled()) {
7972                        unsigned long j;
7973
7974                        for (j = 0; j < lpages; ++j)
7975                                linfo[j].disallow_lpage = 1;
7976                }
7977        }
7978
7979        if (kvm_page_track_create_memslot(slot, npages))
7980                goto out_free;
7981
7982        return 0;
7983
7984out_free:
7985        for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
7986                kvfree(slot->arch.rmap[i]);
7987                slot->arch.rmap[i] = NULL;
7988                if (i == 0)
7989                        continue;
7990
7991                kvfree(slot->arch.lpage_info[i - 1]);
7992                slot->arch.lpage_info[i - 1] = NULL;
7993        }
7994        return -ENOMEM;
7995}
7996
7997void kvm_arch_memslots_updated(struct kvm *kvm, struct kvm_memslots *slots)
7998{
7999        /*
8000         * memslots->generation has been incremented.
8001         * mmio generation may have reached its maximum value.
8002         */
8003        kvm_mmu_invalidate_mmio_sptes(kvm, slots);
8004}
8005
8006int kvm_arch_prepare_memory_region(struct kvm *kvm,
8007                                struct kvm_memory_slot *memslot,
8008                                const struct kvm_userspace_memory_region *mem,
8009                                enum kvm_mr_change change)
8010{
8011        return 0;
8012}
8013
8014static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
8015                                     struct kvm_memory_slot *new)
8016{
8017        /* Still write protect RO slot */
8018        if (new->flags & KVM_MEM_READONLY) {
8019                kvm_mmu_slot_remove_write_access(kvm, new);
8020                return;
8021        }
8022
8023        /*
8024         * Call kvm_x86_ops dirty logging hooks when they are valid.
8025         *
8026         * kvm_x86_ops->slot_disable_log_dirty is called when:
8027         *
8028         *  - KVM_MR_CREATE with dirty logging is disabled
8029         *  - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
8030         *
8031         * The reason is, in case of PML, we need to set D-bit for any slots
8032         * with dirty logging disabled in order to eliminate unnecessary GPA
8033         * logging in PML buffer (and potential PML buffer full VMEXT). This
8034         * guarantees leaving PML enabled during guest's lifetime won't have
8035         * any additonal overhead from PML when guest is running with dirty
8036         * logging disabled for memory slots.
8037         *
8038         * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
8039         * to dirty logging mode.
8040         *
8041         * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
8042         *
8043         * In case of write protect:
8044         *
8045         * Write protect all pages for dirty logging.
8046         *
8047         * All the sptes including the large sptes which point to this
8048         * slot are set to readonly. We can not create any new large
8049         * spte on this slot until the end of the logging.
8050         *
8051         * See the comments in fast_page_fault().
8052         */
8053        if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
8054                if (kvm_x86_ops->slot_enable_log_dirty)
8055                        kvm_x86_ops->slot_enable_log_dirty(kvm, new);
8056                else
8057                        kvm_mmu_slot_remove_write_access(kvm, new);
8058        } else {
8059                if (kvm_x86_ops->slot_disable_log_dirty)
8060                        kvm_x86_ops->slot_disable_log_dirty(kvm, new);
8061        }
8062}
8063
8064void kvm_arch_commit_memory_region(struct kvm *kvm,
8065                                const struct kvm_userspace_memory_region *mem,
8066                                const struct kvm_memory_slot *old,
8067                                const struct kvm_memory_slot *new,
8068                                enum kvm_mr_change change)
8069{
8070        int nr_mmu_pages = 0;
8071
8072        if (!kvm->arch.n_requested_mmu_pages)
8073                nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
8074
8075        if (nr_mmu_pages)
8076                kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
8077
8078        /*
8079         * Dirty logging tracks sptes in 4k granularity, meaning that large
8080         * sptes have to be split.  If live migration is successful, the guest
8081         * in the source machine will be destroyed and large sptes will be
8082         * created in the destination. However, if the guest continues to run
8083         * in the source machine (for example if live migration fails), small
8084         * sptes will remain around and cause bad performance.
8085         *
8086         * Scan sptes if dirty logging has been stopped, dropping those
8087         * which can be collapsed into a single large-page spte.  Later
8088         * page faults will create the large-page sptes.
8089         */
8090        if ((change != KVM_MR_DELETE) &&
8091                (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
8092                !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
8093                kvm_mmu_zap_collapsible_sptes(kvm, new);
8094
8095        /*
8096         * Set up write protection and/or dirty logging for the new slot.
8097         *
8098         * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
8099         * been zapped so no dirty logging staff is needed for old slot. For
8100         * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
8101         * new and it's also covered when dealing with the new slot.
8102         *
8103         * FIXME: const-ify all uses of struct kvm_memory_slot.
8104         */
8105        if (change != KVM_MR_DELETE)
8106                kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
8107}
8108
8109void kvm_arch_flush_shadow_all(struct kvm *kvm)
8110{
8111        kvm_mmu_invalidate_zap_all_pages(kvm);
8112}
8113
8114void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
8115                                   struct kvm_memory_slot *slot)
8116{
8117        kvm_mmu_invalidate_zap_all_pages(kvm);
8118}
8119
8120static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
8121{
8122        if (!list_empty_careful(&vcpu->async_pf.done))
8123                return true;
8124
8125        if (kvm_apic_has_events(vcpu))
8126                return true;
8127
8128        if (vcpu->arch.pv.pv_unhalted)
8129                return true;
8130
8131        if (atomic_read(&vcpu->arch.nmi_queued))
8132                return true;
8133
8134        if (test_bit(KVM_REQ_SMI, &vcpu->requests))
8135                return true;
8136
8137        if (kvm_arch_interrupt_allowed(vcpu) &&
8138            kvm_cpu_has_interrupt(vcpu))
8139                return true;
8140
8141        if (kvm_hv_has_stimer_pending(vcpu))
8142                return true;
8143
8144        return false;
8145}
8146
8147int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
8148{
8149        if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8150                kvm_x86_ops->check_nested_events(vcpu, false);
8151
8152        return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
8153}
8154
8155int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
8156{
8157        return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
8158}
8159
8160int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
8161{
8162        return kvm_x86_ops->interrupt_allowed(vcpu);
8163}
8164
8165unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
8166{
8167        if (is_64_bit_mode(vcpu))
8168                return kvm_rip_read(vcpu);
8169        return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
8170                     kvm_rip_read(vcpu));
8171}
8172EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
8173
8174bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
8175{
8176        return kvm_get_linear_rip(vcpu) == linear_rip;
8177}
8178EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
8179
8180unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
8181{
8182        unsigned long rflags;
8183
8184        rflags = kvm_x86_ops->get_rflags(vcpu);
8185        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8186                rflags &= ~X86_EFLAGS_TF;
8187        return rflags;
8188}
8189EXPORT_SYMBOL_GPL(kvm_get_rflags);
8190
8191static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8192{
8193        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
8194            kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
8195                rflags |= X86_EFLAGS_TF;
8196        kvm_x86_ops->set_rflags(vcpu, rflags);
8197}
8198
8199void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
8200{
8201        __kvm_set_rflags(vcpu, rflags);
8202        kvm_make_request(KVM_REQ_EVENT, vcpu);
8203}
8204EXPORT_SYMBOL_GPL(kvm_set_rflags);
8205
8206void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
8207{
8208        int r;
8209
8210        if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
8211              work->wakeup_all)
8212                return;
8213
8214        r = kvm_mmu_reload(vcpu);
8215        if (unlikely(r))
8216                return;
8217
8218        if (!vcpu->arch.mmu.direct_map &&
8219              work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
8220                return;
8221
8222        vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
8223}
8224
8225static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
8226{
8227        return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
8228}
8229
8230static inline u32 kvm_async_pf_next_probe(u32 key)
8231{
8232        return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
8233}
8234
8235static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8236{
8237        u32 key = kvm_async_pf_hash_fn(gfn);
8238
8239        while (vcpu->arch.apf.gfns[key] != ~0)
8240                key = kvm_async_pf_next_probe(key);
8241
8242        vcpu->arch.apf.gfns[key] = gfn;
8243}
8244
8245static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
8246{
8247        int i;
8248        u32 key = kvm_async_pf_hash_fn(gfn);
8249
8250        for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
8251                     (vcpu->arch.apf.gfns[key] != gfn &&
8252                      vcpu->arch.apf.gfns[key] != ~0); i++)
8253                key = kvm_async_pf_next_probe(key);
8254
8255        return key;
8256}
8257
8258bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8259{
8260        return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
8261}
8262
8263static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
8264{
8265        u32 i, j, k;
8266
8267        i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
8268        while (true) {
8269                vcpu->arch.apf.gfns[i] = ~0;
8270                do {
8271                        j = kvm_async_pf_next_probe(j);
8272                        if (vcpu->arch.apf.gfns[j] == ~0)
8273                                return;
8274                        k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
8275                        /*
8276                         * k lies cyclically in ]i,j]
8277                         * |    i.k.j |
8278                         * |....j i.k.| or  |.k..j i...|
8279                         */
8280                } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
8281                vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
8282                i = j;
8283        }
8284}
8285
8286static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
8287{
8288
8289        return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
8290                                      sizeof(val));
8291}
8292
8293void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
8294                                     struct kvm_async_pf *work)
8295{
8296        struct x86_exception fault;
8297
8298        trace_kvm_async_pf_not_present(work->arch.token, work->gva);
8299        kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
8300
8301        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
8302            (vcpu->arch.apf.send_user_only &&
8303             kvm_x86_ops->get_cpl(vcpu) == 0))
8304                kvm_make_request(KVM_REQ_APF_HALT, vcpu);
8305        else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
8306                fault.vector = PF_VECTOR;
8307                fault.error_code_valid = true;
8308                fault.error_code = 0;
8309                fault.nested_page_fault = false;
8310                fault.address = work->arch.token;
8311                kvm_inject_page_fault(vcpu, &fault);
8312        }
8313}
8314
8315void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
8316                                 struct kvm_async_pf *work)
8317{
8318        struct x86_exception fault;
8319
8320        trace_kvm_async_pf_ready(work->arch.token, work->gva);
8321        if (work->wakeup_all)
8322                work->arch.token = ~0; /* broadcast wakeup */
8323        else
8324                kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
8325
8326        if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
8327            !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
8328                fault.vector = PF_VECTOR;
8329                fault.error_code_valid = true;
8330                fault.error_code = 0;
8331                fault.nested_page_fault = false;
8332                fault.address = work->arch.token;
8333                kvm_inject_page_fault(vcpu, &fault);
8334        }
8335        vcpu->arch.apf.halted = false;
8336        vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8337}
8338
8339bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
8340{
8341        if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
8342                return true;
8343        else
8344                return !kvm_event_needs_reinjection(vcpu) &&
8345                        kvm_x86_ops->interrupt_allowed(vcpu);
8346}
8347
8348void kvm_arch_start_assignment(struct kvm *kvm)
8349{
8350        atomic_inc(&kvm->arch.assigned_device_count);
8351}
8352EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
8353
8354void kvm_arch_end_assignment(struct kvm *kvm)
8355{
8356        atomic_dec(&kvm->arch.assigned_device_count);
8357}
8358EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
8359
8360bool kvm_arch_has_assigned_device(struct kvm *kvm)
8361{
8362        return atomic_read(&kvm->arch.assigned_device_count);
8363}
8364EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
8365
8366void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
8367{
8368        atomic_inc(&kvm->arch.noncoherent_dma_count);
8369}
8370EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
8371
8372void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
8373{
8374        atomic_dec(&kvm->arch.noncoherent_dma_count);
8375}
8376EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
8377
8378bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
8379{
8380        return atomic_read(&kvm->arch.noncoherent_dma_count);
8381}
8382EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
8383
8384bool kvm_arch_has_irq_bypass(void)
8385{
8386        return kvm_x86_ops->update_pi_irte != NULL;
8387}
8388
8389int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
8390                                      struct irq_bypass_producer *prod)
8391{
8392        struct kvm_kernel_irqfd *irqfd =
8393                container_of(cons, struct kvm_kernel_irqfd, consumer);
8394
8395        irqfd->producer = prod;
8396
8397        return kvm_x86_ops->update_pi_irte(irqfd->kvm,
8398                                           prod->irq, irqfd->gsi, 1);
8399}
8400
8401void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
8402                                      struct irq_bypass_producer *prod)
8403{
8404        int ret;
8405        struct kvm_kernel_irqfd *irqfd =
8406                container_of(cons, struct kvm_kernel_irqfd, consumer);
8407
8408        WARN_ON(irqfd->producer != prod);
8409        irqfd->producer = NULL;
8410
8411        /*
8412         * When producer of consumer is unregistered, we change back to
8413         * remapped mode, so we can re-use the current implementation
8414         * when the irq is masked/disabled or the consumer side (KVM
8415         * int this case doesn't want to receive the interrupts.
8416        */
8417        ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
8418        if (ret)
8419                printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
8420                       " fails: %d\n", irqfd->consumer.token, ret);
8421}
8422
8423int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
8424                                   uint32_t guest_irq, bool set)
8425{
8426        if (!kvm_x86_ops->update_pi_irte)
8427                return -EINVAL;
8428
8429        return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
8430}
8431
8432bool kvm_vector_hashing_enabled(void)
8433{
8434        return vector_hashing;
8435}
8436EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
8437
8438EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
8439EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
8440EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
8441EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
8442EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
8443EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
8444EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
8445EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
8446EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
8447EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
8448EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
8449EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
8450EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
8451EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
8452EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window);
8453EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
8454EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
8455EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
8456EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
8457