linux/arch/x86/xen/enlighten.c
<<
>>
Prefs
   1/*
   2 * Core of Xen paravirt_ops implementation.
   3 *
   4 * This file contains the xen_paravirt_ops structure itself, and the
   5 * implementations for:
   6 * - privileged instructions
   7 * - interrupt flags
   8 * - segment operations
   9 * - booting and setup
  10 *
  11 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
  12 */
  13
  14#include <linux/cpu.h>
  15#include <linux/kernel.h>
  16#include <linux/init.h>
  17#include <linux/smp.h>
  18#include <linux/preempt.h>
  19#include <linux/hardirq.h>
  20#include <linux/percpu.h>
  21#include <linux/delay.h>
  22#include <linux/start_kernel.h>
  23#include <linux/sched.h>
  24#include <linux/kprobes.h>
  25#include <linux/bootmem.h>
  26#include <linux/export.h>
  27#include <linux/mm.h>
  28#include <linux/page-flags.h>
  29#include <linux/highmem.h>
  30#include <linux/console.h>
  31#include <linux/pci.h>
  32#include <linux/gfp.h>
  33#include <linux/memblock.h>
  34#include <linux/edd.h>
  35#include <linux/frame.h>
  36
  37#include <linux/kexec.h>
  38
  39#include <xen/xen.h>
  40#include <xen/events.h>
  41#include <xen/interface/xen.h>
  42#include <xen/interface/version.h>
  43#include <xen/interface/physdev.h>
  44#include <xen/interface/vcpu.h>
  45#include <xen/interface/memory.h>
  46#include <xen/interface/nmi.h>
  47#include <xen/interface/xen-mca.h>
  48#include <xen/features.h>
  49#include <xen/page.h>
  50#include <xen/hvm.h>
  51#include <xen/hvc-console.h>
  52#include <xen/acpi.h>
  53
  54#include <asm/paravirt.h>
  55#include <asm/apic.h>
  56#include <asm/page.h>
  57#include <asm/xen/pci.h>
  58#include <asm/xen/hypercall.h>
  59#include <asm/xen/hypervisor.h>
  60#include <asm/xen/cpuid.h>
  61#include <asm/fixmap.h>
  62#include <asm/processor.h>
  63#include <asm/proto.h>
  64#include <asm/msr-index.h>
  65#include <asm/traps.h>
  66#include <asm/setup.h>
  67#include <asm/desc.h>
  68#include <asm/pgalloc.h>
  69#include <asm/pgtable.h>
  70#include <asm/tlbflush.h>
  71#include <asm/reboot.h>
  72#include <asm/stackprotector.h>
  73#include <asm/hypervisor.h>
  74#include <asm/mach_traps.h>
  75#include <asm/mwait.h>
  76#include <asm/pci_x86.h>
  77#include <asm/cpu.h>
  78
  79#ifdef CONFIG_ACPI
  80#include <linux/acpi.h>
  81#include <asm/acpi.h>
  82#include <acpi/pdc_intel.h>
  83#include <acpi/processor.h>
  84#include <xen/interface/platform.h>
  85#endif
  86
  87#include "xen-ops.h"
  88#include "mmu.h"
  89#include "smp.h"
  90#include "multicalls.h"
  91#include "pmu.h"
  92
  93EXPORT_SYMBOL_GPL(hypercall_page);
  94
  95/*
  96 * Pointer to the xen_vcpu_info structure or
  97 * &HYPERVISOR_shared_info->vcpu_info[cpu]. See xen_hvm_init_shared_info
  98 * and xen_vcpu_setup for details. By default it points to share_info->vcpu_info
  99 * but if the hypervisor supports VCPUOP_register_vcpu_info then it can point
 100 * to xen_vcpu_info. The pointer is used in __xen_evtchn_do_upcall to
 101 * acknowledge pending events.
 102 * Also more subtly it is used by the patched version of irq enable/disable
 103 * e.g. xen_irq_enable_direct and xen_iret in PV mode.
 104 *
 105 * The desire to be able to do those mask/unmask operations as a single
 106 * instruction by using the per-cpu offset held in %gs is the real reason
 107 * vcpu info is in a per-cpu pointer and the original reason for this
 108 * hypercall.
 109 *
 110 */
 111DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu);
 112
 113/*
 114 * Per CPU pages used if hypervisor supports VCPUOP_register_vcpu_info
 115 * hypercall. This can be used both in PV and PVHVM mode. The structure
 116 * overrides the default per_cpu(xen_vcpu, cpu) value.
 117 */
 118DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info);
 119
 120/* Linux <-> Xen vCPU id mapping */
 121DEFINE_PER_CPU(uint32_t, xen_vcpu_id);
 122EXPORT_PER_CPU_SYMBOL(xen_vcpu_id);
 123
 124enum xen_domain_type xen_domain_type = XEN_NATIVE;
 125EXPORT_SYMBOL_GPL(xen_domain_type);
 126
 127unsigned long *machine_to_phys_mapping = (void *)MACH2PHYS_VIRT_START;
 128EXPORT_SYMBOL(machine_to_phys_mapping);
 129unsigned long  machine_to_phys_nr;
 130EXPORT_SYMBOL(machine_to_phys_nr);
 131
 132struct start_info *xen_start_info;
 133EXPORT_SYMBOL_GPL(xen_start_info);
 134
 135struct shared_info xen_dummy_shared_info;
 136
 137void *xen_initial_gdt;
 138
 139RESERVE_BRK(shared_info_page_brk, PAGE_SIZE);
 140__read_mostly int xen_have_vector_callback;
 141EXPORT_SYMBOL_GPL(xen_have_vector_callback);
 142
 143/*
 144 * Point at some empty memory to start with. We map the real shared_info
 145 * page as soon as fixmap is up and running.
 146 */
 147struct shared_info *HYPERVISOR_shared_info = &xen_dummy_shared_info;
 148
 149/*
 150 * Flag to determine whether vcpu info placement is available on all
 151 * VCPUs.  We assume it is to start with, and then set it to zero on
 152 * the first failure.  This is because it can succeed on some VCPUs
 153 * and not others, since it can involve hypervisor memory allocation,
 154 * or because the guest failed to guarantee all the appropriate
 155 * constraints on all VCPUs (ie buffer can't cross a page boundary).
 156 *
 157 * Note that any particular CPU may be using a placed vcpu structure,
 158 * but we can only optimise if the all are.
 159 *
 160 * 0: not available, 1: available
 161 */
 162static int have_vcpu_info_placement = 1;
 163
 164struct tls_descs {
 165        struct desc_struct desc[3];
 166};
 167
 168/*
 169 * Updating the 3 TLS descriptors in the GDT on every task switch is
 170 * surprisingly expensive so we avoid updating them if they haven't
 171 * changed.  Since Xen writes different descriptors than the one
 172 * passed in the update_descriptor hypercall we keep shadow copies to
 173 * compare against.
 174 */
 175static DEFINE_PER_CPU(struct tls_descs, shadow_tls_desc);
 176
 177static void clamp_max_cpus(void)
 178{
 179#ifdef CONFIG_SMP
 180        if (setup_max_cpus > MAX_VIRT_CPUS)
 181                setup_max_cpus = MAX_VIRT_CPUS;
 182#endif
 183}
 184
 185void xen_vcpu_setup(int cpu)
 186{
 187        struct vcpu_register_vcpu_info info;
 188        int err;
 189        struct vcpu_info *vcpup;
 190
 191        BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
 192
 193        /*
 194         * This path is called twice on PVHVM - first during bootup via
 195         * smp_init -> xen_hvm_cpu_notify, and then if the VCPU is being
 196         * hotplugged: cpu_up -> xen_hvm_cpu_notify.
 197         * As we can only do the VCPUOP_register_vcpu_info once lets
 198         * not over-write its result.
 199         *
 200         * For PV it is called during restore (xen_vcpu_restore) and bootup
 201         * (xen_setup_vcpu_info_placement). The hotplug mechanism does not
 202         * use this function.
 203         */
 204        if (xen_hvm_domain()) {
 205                if (per_cpu(xen_vcpu, cpu) == &per_cpu(xen_vcpu_info, cpu))
 206                        return;
 207        }
 208        if (xen_vcpu_nr(cpu) < MAX_VIRT_CPUS)
 209                per_cpu(xen_vcpu, cpu) =
 210                        &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
 211
 212        if (!have_vcpu_info_placement) {
 213                if (cpu >= MAX_VIRT_CPUS)
 214                        clamp_max_cpus();
 215                return;
 216        }
 217
 218        vcpup = &per_cpu(xen_vcpu_info, cpu);
 219        info.mfn = arbitrary_virt_to_mfn(vcpup);
 220        info.offset = offset_in_page(vcpup);
 221
 222        /* Check to see if the hypervisor will put the vcpu_info
 223           structure where we want it, which allows direct access via
 224           a percpu-variable.
 225           N.B. This hypercall can _only_ be called once per CPU. Subsequent
 226           calls will error out with -EINVAL. This is due to the fact that
 227           hypervisor has no unregister variant and this hypercall does not
 228           allow to over-write info.mfn and info.offset.
 229         */
 230        err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, xen_vcpu_nr(cpu),
 231                                 &info);
 232
 233        if (err) {
 234                printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err);
 235                have_vcpu_info_placement = 0;
 236                clamp_max_cpus();
 237        } else {
 238                /* This cpu is using the registered vcpu info, even if
 239                   later ones fail to. */
 240                per_cpu(xen_vcpu, cpu) = vcpup;
 241        }
 242}
 243
 244/*
 245 * On restore, set the vcpu placement up again.
 246 * If it fails, then we're in a bad state, since
 247 * we can't back out from using it...
 248 */
 249void xen_vcpu_restore(void)
 250{
 251        int cpu;
 252
 253        for_each_possible_cpu(cpu) {
 254                bool other_cpu = (cpu != smp_processor_id());
 255                bool is_up = HYPERVISOR_vcpu_op(VCPUOP_is_up, xen_vcpu_nr(cpu),
 256                                                NULL);
 257
 258                if (other_cpu && is_up &&
 259                    HYPERVISOR_vcpu_op(VCPUOP_down, xen_vcpu_nr(cpu), NULL))
 260                        BUG();
 261
 262                xen_setup_runstate_info(cpu);
 263
 264                if (have_vcpu_info_placement)
 265                        xen_vcpu_setup(cpu);
 266
 267                if (other_cpu && is_up &&
 268                    HYPERVISOR_vcpu_op(VCPUOP_up, xen_vcpu_nr(cpu), NULL))
 269                        BUG();
 270        }
 271}
 272
 273static void __init xen_banner(void)
 274{
 275        unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL);
 276        struct xen_extraversion extra;
 277        HYPERVISOR_xen_version(XENVER_extraversion, &extra);
 278
 279        pr_info("Booting paravirtualized kernel %son %s\n",
 280                xen_feature(XENFEAT_auto_translated_physmap) ?
 281                        "with PVH extensions " : "", pv_info.name);
 282        printk(KERN_INFO "Xen version: %d.%d%s%s\n",
 283               version >> 16, version & 0xffff, extra.extraversion,
 284               xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : "");
 285}
 286/* Check if running on Xen version (major, minor) or later */
 287bool
 288xen_running_on_version_or_later(unsigned int major, unsigned int minor)
 289{
 290        unsigned int version;
 291
 292        if (!xen_domain())
 293                return false;
 294
 295        version = HYPERVISOR_xen_version(XENVER_version, NULL);
 296        if ((((version >> 16) == major) && ((version & 0xffff) >= minor)) ||
 297                ((version >> 16) > major))
 298                return true;
 299        return false;
 300}
 301
 302#define CPUID_THERM_POWER_LEAF 6
 303#define APERFMPERF_PRESENT 0
 304
 305static __read_mostly unsigned int cpuid_leaf1_edx_mask = ~0;
 306static __read_mostly unsigned int cpuid_leaf1_ecx_mask = ~0;
 307
 308static __read_mostly unsigned int cpuid_leaf1_ecx_set_mask;
 309static __read_mostly unsigned int cpuid_leaf5_ecx_val;
 310static __read_mostly unsigned int cpuid_leaf5_edx_val;
 311
 312static void xen_cpuid(unsigned int *ax, unsigned int *bx,
 313                      unsigned int *cx, unsigned int *dx)
 314{
 315        unsigned maskebx = ~0;
 316        unsigned maskecx = ~0;
 317        unsigned maskedx = ~0;
 318        unsigned setecx = 0;
 319        /*
 320         * Mask out inconvenient features, to try and disable as many
 321         * unsupported kernel subsystems as possible.
 322         */
 323        switch (*ax) {
 324        case 1:
 325                maskecx = cpuid_leaf1_ecx_mask;
 326                setecx = cpuid_leaf1_ecx_set_mask;
 327                maskedx = cpuid_leaf1_edx_mask;
 328                break;
 329
 330        case CPUID_MWAIT_LEAF:
 331                /* Synthesize the values.. */
 332                *ax = 0;
 333                *bx = 0;
 334                *cx = cpuid_leaf5_ecx_val;
 335                *dx = cpuid_leaf5_edx_val;
 336                return;
 337
 338        case CPUID_THERM_POWER_LEAF:
 339                /* Disabling APERFMPERF for kernel usage */
 340                maskecx = ~(1 << APERFMPERF_PRESENT);
 341                break;
 342
 343        case 0xb:
 344                /* Suppress extended topology stuff */
 345                maskebx = 0;
 346                break;
 347        }
 348
 349        asm(XEN_EMULATE_PREFIX "cpuid"
 350                : "=a" (*ax),
 351                  "=b" (*bx),
 352                  "=c" (*cx),
 353                  "=d" (*dx)
 354                : "0" (*ax), "2" (*cx));
 355
 356        *bx &= maskebx;
 357        *cx &= maskecx;
 358        *cx |= setecx;
 359        *dx &= maskedx;
 360}
 361STACK_FRAME_NON_STANDARD(xen_cpuid); /* XEN_EMULATE_PREFIX */
 362
 363static bool __init xen_check_mwait(void)
 364{
 365#ifdef CONFIG_ACPI
 366        struct xen_platform_op op = {
 367                .cmd                    = XENPF_set_processor_pminfo,
 368                .u.set_pminfo.id        = -1,
 369                .u.set_pminfo.type      = XEN_PM_PDC,
 370        };
 371        uint32_t buf[3];
 372        unsigned int ax, bx, cx, dx;
 373        unsigned int mwait_mask;
 374
 375        /* We need to determine whether it is OK to expose the MWAIT
 376         * capability to the kernel to harvest deeper than C3 states from ACPI
 377         * _CST using the processor_harvest_xen.c module. For this to work, we
 378         * need to gather the MWAIT_LEAF values (which the cstate.c code
 379         * checks against). The hypervisor won't expose the MWAIT flag because
 380         * it would break backwards compatibility; so we will find out directly
 381         * from the hardware and hypercall.
 382         */
 383        if (!xen_initial_domain())
 384                return false;
 385
 386        /*
 387         * When running under platform earlier than Xen4.2, do not expose
 388         * mwait, to avoid the risk of loading native acpi pad driver
 389         */
 390        if (!xen_running_on_version_or_later(4, 2))
 391                return false;
 392
 393        ax = 1;
 394        cx = 0;
 395
 396        native_cpuid(&ax, &bx, &cx, &dx);
 397
 398        mwait_mask = (1 << (X86_FEATURE_EST % 32)) |
 399                     (1 << (X86_FEATURE_MWAIT % 32));
 400
 401        if ((cx & mwait_mask) != mwait_mask)
 402                return false;
 403
 404        /* We need to emulate the MWAIT_LEAF and for that we need both
 405         * ecx and edx. The hypercall provides only partial information.
 406         */
 407
 408        ax = CPUID_MWAIT_LEAF;
 409        bx = 0;
 410        cx = 0;
 411        dx = 0;
 412
 413        native_cpuid(&ax, &bx, &cx, &dx);
 414
 415        /* Ask the Hypervisor whether to clear ACPI_PDC_C_C2C3_FFH. If so,
 416         * don't expose MWAIT_LEAF and let ACPI pick the IOPORT version of C3.
 417         */
 418        buf[0] = ACPI_PDC_REVISION_ID;
 419        buf[1] = 1;
 420        buf[2] = (ACPI_PDC_C_CAPABILITY_SMP | ACPI_PDC_EST_CAPABILITY_SWSMP);
 421
 422        set_xen_guest_handle(op.u.set_pminfo.pdc, buf);
 423
 424        if ((HYPERVISOR_platform_op(&op) == 0) &&
 425            (buf[2] & (ACPI_PDC_C_C1_FFH | ACPI_PDC_C_C2C3_FFH))) {
 426                cpuid_leaf5_ecx_val = cx;
 427                cpuid_leaf5_edx_val = dx;
 428        }
 429        return true;
 430#else
 431        return false;
 432#endif
 433}
 434static void __init xen_init_cpuid_mask(void)
 435{
 436        unsigned int ax, bx, cx, dx;
 437        unsigned int xsave_mask;
 438
 439        cpuid_leaf1_edx_mask =
 440                ~((1 << X86_FEATURE_MTRR) |  /* disable MTRR */
 441                  (1 << X86_FEATURE_ACC));   /* thermal monitoring */
 442
 443        if (!xen_initial_domain())
 444                cpuid_leaf1_edx_mask &=
 445                        ~((1 << X86_FEATURE_ACPI));  /* disable ACPI */
 446
 447        cpuid_leaf1_ecx_mask &= ~(1 << (X86_FEATURE_X2APIC % 32));
 448
 449        ax = 1;
 450        cx = 0;
 451        cpuid(1, &ax, &bx, &cx, &dx);
 452
 453        xsave_mask =
 454                (1 << (X86_FEATURE_XSAVE % 32)) |
 455                (1 << (X86_FEATURE_OSXSAVE % 32));
 456
 457        /* Xen will set CR4.OSXSAVE if supported and not disabled by force */
 458        if ((cx & xsave_mask) != xsave_mask)
 459                cpuid_leaf1_ecx_mask &= ~xsave_mask; /* disable XSAVE & OSXSAVE */
 460        if (xen_check_mwait())
 461                cpuid_leaf1_ecx_set_mask = (1 << (X86_FEATURE_MWAIT % 32));
 462}
 463
 464static void xen_set_debugreg(int reg, unsigned long val)
 465{
 466        HYPERVISOR_set_debugreg(reg, val);
 467}
 468
 469static unsigned long xen_get_debugreg(int reg)
 470{
 471        return HYPERVISOR_get_debugreg(reg);
 472}
 473
 474static void xen_end_context_switch(struct task_struct *next)
 475{
 476        xen_mc_flush();
 477        paravirt_end_context_switch(next);
 478}
 479
 480static unsigned long xen_store_tr(void)
 481{
 482        return 0;
 483}
 484
 485/*
 486 * Set the page permissions for a particular virtual address.  If the
 487 * address is a vmalloc mapping (or other non-linear mapping), then
 488 * find the linear mapping of the page and also set its protections to
 489 * match.
 490 */
 491static void set_aliased_prot(void *v, pgprot_t prot)
 492{
 493        int level;
 494        pte_t *ptep;
 495        pte_t pte;
 496        unsigned long pfn;
 497        struct page *page;
 498        unsigned char dummy;
 499
 500        ptep = lookup_address((unsigned long)v, &level);
 501        BUG_ON(ptep == NULL);
 502
 503        pfn = pte_pfn(*ptep);
 504        page = pfn_to_page(pfn);
 505
 506        pte = pfn_pte(pfn, prot);
 507
 508        /*
 509         * Careful: update_va_mapping() will fail if the virtual address
 510         * we're poking isn't populated in the page tables.  We don't
 511         * need to worry about the direct map (that's always in the page
 512         * tables), but we need to be careful about vmap space.  In
 513         * particular, the top level page table can lazily propagate
 514         * entries between processes, so if we've switched mms since we
 515         * vmapped the target in the first place, we might not have the
 516         * top-level page table entry populated.
 517         *
 518         * We disable preemption because we want the same mm active when
 519         * we probe the target and when we issue the hypercall.  We'll
 520         * have the same nominal mm, but if we're a kernel thread, lazy
 521         * mm dropping could change our pgd.
 522         *
 523         * Out of an abundance of caution, this uses __get_user() to fault
 524         * in the target address just in case there's some obscure case
 525         * in which the target address isn't readable.
 526         */
 527
 528        preempt_disable();
 529
 530        probe_kernel_read(&dummy, v, 1);
 531
 532        if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0))
 533                BUG();
 534
 535        if (!PageHighMem(page)) {
 536                void *av = __va(PFN_PHYS(pfn));
 537
 538                if (av != v)
 539                        if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0))
 540                                BUG();
 541        } else
 542                kmap_flush_unused();
 543
 544        preempt_enable();
 545}
 546
 547static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries)
 548{
 549        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 550        int i;
 551
 552        /*
 553         * We need to mark the all aliases of the LDT pages RO.  We
 554         * don't need to call vm_flush_aliases(), though, since that's
 555         * only responsible for flushing aliases out the TLBs, not the
 556         * page tables, and Xen will flush the TLB for us if needed.
 557         *
 558         * To avoid confusing future readers: none of this is necessary
 559         * to load the LDT.  The hypervisor only checks this when the
 560         * LDT is faulted in due to subsequent descriptor access.
 561         */
 562
 563        for(i = 0; i < entries; i += entries_per_page)
 564                set_aliased_prot(ldt + i, PAGE_KERNEL_RO);
 565}
 566
 567static void xen_free_ldt(struct desc_struct *ldt, unsigned entries)
 568{
 569        const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE;
 570        int i;
 571
 572        for(i = 0; i < entries; i += entries_per_page)
 573                set_aliased_prot(ldt + i, PAGE_KERNEL);
 574}
 575
 576static void xen_set_ldt(const void *addr, unsigned entries)
 577{
 578        struct mmuext_op *op;
 579        struct multicall_space mcs = xen_mc_entry(sizeof(*op));
 580
 581        trace_xen_cpu_set_ldt(addr, entries);
 582
 583        op = mcs.args;
 584        op->cmd = MMUEXT_SET_LDT;
 585        op->arg1.linear_addr = (unsigned long)addr;
 586        op->arg2.nr_ents = entries;
 587
 588        MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
 589
 590        xen_mc_issue(PARAVIRT_LAZY_CPU);
 591}
 592
 593static void xen_load_gdt(const struct desc_ptr *dtr)
 594{
 595        unsigned long va = dtr->address;
 596        unsigned int size = dtr->size + 1;
 597        unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
 598        unsigned long frames[pages];
 599        int f;
 600
 601        /*
 602         * A GDT can be up to 64k in size, which corresponds to 8192
 603         * 8-byte entries, or 16 4k pages..
 604         */
 605
 606        BUG_ON(size > 65536);
 607        BUG_ON(va & ~PAGE_MASK);
 608
 609        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 610                int level;
 611                pte_t *ptep;
 612                unsigned long pfn, mfn;
 613                void *virt;
 614
 615                /*
 616                 * The GDT is per-cpu and is in the percpu data area.
 617                 * That can be virtually mapped, so we need to do a
 618                 * page-walk to get the underlying MFN for the
 619                 * hypercall.  The page can also be in the kernel's
 620                 * linear range, so we need to RO that mapping too.
 621                 */
 622                ptep = lookup_address(va, &level);
 623                BUG_ON(ptep == NULL);
 624
 625                pfn = pte_pfn(*ptep);
 626                mfn = pfn_to_mfn(pfn);
 627                virt = __va(PFN_PHYS(pfn));
 628
 629                frames[f] = mfn;
 630
 631                make_lowmem_page_readonly((void *)va);
 632                make_lowmem_page_readonly(virt);
 633        }
 634
 635        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 636                BUG();
 637}
 638
 639/*
 640 * load_gdt for early boot, when the gdt is only mapped once
 641 */
 642static void __init xen_load_gdt_boot(const struct desc_ptr *dtr)
 643{
 644        unsigned long va = dtr->address;
 645        unsigned int size = dtr->size + 1;
 646        unsigned pages = DIV_ROUND_UP(size, PAGE_SIZE);
 647        unsigned long frames[pages];
 648        int f;
 649
 650        /*
 651         * A GDT can be up to 64k in size, which corresponds to 8192
 652         * 8-byte entries, or 16 4k pages..
 653         */
 654
 655        BUG_ON(size > 65536);
 656        BUG_ON(va & ~PAGE_MASK);
 657
 658        for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) {
 659                pte_t pte;
 660                unsigned long pfn, mfn;
 661
 662                pfn = virt_to_pfn(va);
 663                mfn = pfn_to_mfn(pfn);
 664
 665                pte = pfn_pte(pfn, PAGE_KERNEL_RO);
 666
 667                if (HYPERVISOR_update_va_mapping((unsigned long)va, pte, 0))
 668                        BUG();
 669
 670                frames[f] = mfn;
 671        }
 672
 673        if (HYPERVISOR_set_gdt(frames, size / sizeof(struct desc_struct)))
 674                BUG();
 675}
 676
 677static inline bool desc_equal(const struct desc_struct *d1,
 678                              const struct desc_struct *d2)
 679{
 680        return d1->a == d2->a && d1->b == d2->b;
 681}
 682
 683static void load_TLS_descriptor(struct thread_struct *t,
 684                                unsigned int cpu, unsigned int i)
 685{
 686        struct desc_struct *shadow = &per_cpu(shadow_tls_desc, cpu).desc[i];
 687        struct desc_struct *gdt;
 688        xmaddr_t maddr;
 689        struct multicall_space mc;
 690
 691        if (desc_equal(shadow, &t->tls_array[i]))
 692                return;
 693
 694        *shadow = t->tls_array[i];
 695
 696        gdt = get_cpu_gdt_table(cpu);
 697        maddr = arbitrary_virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]);
 698        mc = __xen_mc_entry(0);
 699
 700        MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]);
 701}
 702
 703static void xen_load_tls(struct thread_struct *t, unsigned int cpu)
 704{
 705        /*
 706         * XXX sleazy hack: If we're being called in a lazy-cpu zone
 707         * and lazy gs handling is enabled, it means we're in a
 708         * context switch, and %gs has just been saved.  This means we
 709         * can zero it out to prevent faults on exit from the
 710         * hypervisor if the next process has no %gs.  Either way, it
 711         * has been saved, and the new value will get loaded properly.
 712         * This will go away as soon as Xen has been modified to not
 713         * save/restore %gs for normal hypercalls.
 714         *
 715         * On x86_64, this hack is not used for %gs, because gs points
 716         * to KERNEL_GS_BASE (and uses it for PDA references), so we
 717         * must not zero %gs on x86_64
 718         *
 719         * For x86_64, we need to zero %fs, otherwise we may get an
 720         * exception between the new %fs descriptor being loaded and
 721         * %fs being effectively cleared at __switch_to().
 722         */
 723        if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) {
 724#ifdef CONFIG_X86_32
 725                lazy_load_gs(0);
 726#else
 727                loadsegment(fs, 0);
 728#endif
 729        }
 730
 731        xen_mc_batch();
 732
 733        load_TLS_descriptor(t, cpu, 0);
 734        load_TLS_descriptor(t, cpu, 1);
 735        load_TLS_descriptor(t, cpu, 2);
 736
 737        xen_mc_issue(PARAVIRT_LAZY_CPU);
 738}
 739
 740#ifdef CONFIG_X86_64
 741static void xen_load_gs_index(unsigned int idx)
 742{
 743        if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx))
 744                BUG();
 745}
 746#endif
 747
 748static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum,
 749                                const void *ptr)
 750{
 751        xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]);
 752        u64 entry = *(u64 *)ptr;
 753
 754        trace_xen_cpu_write_ldt_entry(dt, entrynum, entry);
 755
 756        preempt_disable();
 757
 758        xen_mc_flush();
 759        if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry))
 760                BUG();
 761
 762        preempt_enable();
 763}
 764
 765static int cvt_gate_to_trap(int vector, const gate_desc *val,
 766                            struct trap_info *info)
 767{
 768        unsigned long addr;
 769
 770        if (val->type != GATE_TRAP && val->type != GATE_INTERRUPT)
 771                return 0;
 772
 773        info->vector = vector;
 774
 775        addr = gate_offset(*val);
 776#ifdef CONFIG_X86_64
 777        /*
 778         * Look for known traps using IST, and substitute them
 779         * appropriately.  The debugger ones are the only ones we care
 780         * about.  Xen will handle faults like double_fault,
 781         * so we should never see them.  Warn if
 782         * there's an unexpected IST-using fault handler.
 783         */
 784        if (addr == (unsigned long)debug)
 785                addr = (unsigned long)xen_debug;
 786        else if (addr == (unsigned long)int3)
 787                addr = (unsigned long)xen_int3;
 788        else if (addr == (unsigned long)stack_segment)
 789                addr = (unsigned long)xen_stack_segment;
 790        else if (addr == (unsigned long)double_fault) {
 791                /* Don't need to handle these */
 792                return 0;
 793#ifdef CONFIG_X86_MCE
 794        } else if (addr == (unsigned long)machine_check) {
 795                /*
 796                 * when xen hypervisor inject vMCE to guest,
 797                 * use native mce handler to handle it
 798                 */
 799                ;
 800#endif
 801        } else if (addr == (unsigned long)nmi)
 802                /*
 803                 * Use the native version as well.
 804                 */
 805                ;
 806        else {
 807                /* Some other trap using IST? */
 808                if (WARN_ON(val->ist != 0))
 809                        return 0;
 810        }
 811#endif  /* CONFIG_X86_64 */
 812        info->address = addr;
 813
 814        info->cs = gate_segment(*val);
 815        info->flags = val->dpl;
 816        /* interrupt gates clear IF */
 817        if (val->type == GATE_INTERRUPT)
 818                info->flags |= 1 << 2;
 819
 820        return 1;
 821}
 822
 823/* Locations of each CPU's IDT */
 824static DEFINE_PER_CPU(struct desc_ptr, idt_desc);
 825
 826/* Set an IDT entry.  If the entry is part of the current IDT, then
 827   also update Xen. */
 828static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g)
 829{
 830        unsigned long p = (unsigned long)&dt[entrynum];
 831        unsigned long start, end;
 832
 833        trace_xen_cpu_write_idt_entry(dt, entrynum, g);
 834
 835        preempt_disable();
 836
 837        start = __this_cpu_read(idt_desc.address);
 838        end = start + __this_cpu_read(idt_desc.size) + 1;
 839
 840        xen_mc_flush();
 841
 842        native_write_idt_entry(dt, entrynum, g);
 843
 844        if (p >= start && (p + 8) <= end) {
 845                struct trap_info info[2];
 846
 847                info[1].address = 0;
 848
 849                if (cvt_gate_to_trap(entrynum, g, &info[0]))
 850                        if (HYPERVISOR_set_trap_table(info))
 851                                BUG();
 852        }
 853
 854        preempt_enable();
 855}
 856
 857static void xen_convert_trap_info(const struct desc_ptr *desc,
 858                                  struct trap_info *traps)
 859{
 860        unsigned in, out, count;
 861
 862        count = (desc->size+1) / sizeof(gate_desc);
 863        BUG_ON(count > 256);
 864
 865        for (in = out = 0; in < count; in++) {
 866                gate_desc *entry = (gate_desc*)(desc->address) + in;
 867
 868                if (cvt_gate_to_trap(in, entry, &traps[out]))
 869                        out++;
 870        }
 871        traps[out].address = 0;
 872}
 873
 874void xen_copy_trap_info(struct trap_info *traps)
 875{
 876        const struct desc_ptr *desc = this_cpu_ptr(&idt_desc);
 877
 878        xen_convert_trap_info(desc, traps);
 879}
 880
 881/* Load a new IDT into Xen.  In principle this can be per-CPU, so we
 882   hold a spinlock to protect the static traps[] array (static because
 883   it avoids allocation, and saves stack space). */
 884static void xen_load_idt(const struct desc_ptr *desc)
 885{
 886        static DEFINE_SPINLOCK(lock);
 887        static struct trap_info traps[257];
 888
 889        trace_xen_cpu_load_idt(desc);
 890
 891        spin_lock(&lock);
 892
 893        memcpy(this_cpu_ptr(&idt_desc), desc, sizeof(idt_desc));
 894
 895        xen_convert_trap_info(desc, traps);
 896
 897        xen_mc_flush();
 898        if (HYPERVISOR_set_trap_table(traps))
 899                BUG();
 900
 901        spin_unlock(&lock);
 902}
 903
 904/* Write a GDT descriptor entry.  Ignore LDT descriptors, since
 905   they're handled differently. */
 906static void xen_write_gdt_entry(struct desc_struct *dt, int entry,
 907                                const void *desc, int type)
 908{
 909        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 910
 911        preempt_disable();
 912
 913        switch (type) {
 914        case DESC_LDT:
 915        case DESC_TSS:
 916                /* ignore */
 917                break;
 918
 919        default: {
 920                xmaddr_t maddr = arbitrary_virt_to_machine(&dt[entry]);
 921
 922                xen_mc_flush();
 923                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 924                        BUG();
 925        }
 926
 927        }
 928
 929        preempt_enable();
 930}
 931
 932/*
 933 * Version of write_gdt_entry for use at early boot-time needed to
 934 * update an entry as simply as possible.
 935 */
 936static void __init xen_write_gdt_entry_boot(struct desc_struct *dt, int entry,
 937                                            const void *desc, int type)
 938{
 939        trace_xen_cpu_write_gdt_entry(dt, entry, desc, type);
 940
 941        switch (type) {
 942        case DESC_LDT:
 943        case DESC_TSS:
 944                /* ignore */
 945                break;
 946
 947        default: {
 948                xmaddr_t maddr = virt_to_machine(&dt[entry]);
 949
 950                if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc))
 951                        dt[entry] = *(struct desc_struct *)desc;
 952        }
 953
 954        }
 955}
 956
 957static void xen_load_sp0(struct tss_struct *tss,
 958                         struct thread_struct *thread)
 959{
 960        struct multicall_space mcs;
 961
 962        mcs = xen_mc_entry(0);
 963        MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0);
 964        xen_mc_issue(PARAVIRT_LAZY_CPU);
 965        tss->x86_tss.sp0 = thread->sp0;
 966}
 967
 968void xen_set_iopl_mask(unsigned mask)
 969{
 970        struct physdev_set_iopl set_iopl;
 971
 972        /* Force the change at ring 0. */
 973        set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3;
 974        HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
 975}
 976
 977static void xen_io_delay(void)
 978{
 979}
 980
 981static void xen_clts(void)
 982{
 983        struct multicall_space mcs;
 984
 985        mcs = xen_mc_entry(0);
 986
 987        MULTI_fpu_taskswitch(mcs.mc, 0);
 988
 989        xen_mc_issue(PARAVIRT_LAZY_CPU);
 990}
 991
 992static DEFINE_PER_CPU(unsigned long, xen_cr0_value);
 993
 994static unsigned long xen_read_cr0(void)
 995{
 996        unsigned long cr0 = this_cpu_read(xen_cr0_value);
 997
 998        if (unlikely(cr0 == 0)) {
 999                cr0 = native_read_cr0();
1000                this_cpu_write(xen_cr0_value, cr0);
1001        }
1002
1003        return cr0;
1004}
1005
1006static void xen_write_cr0(unsigned long cr0)
1007{
1008        struct multicall_space mcs;
1009
1010        this_cpu_write(xen_cr0_value, cr0);
1011
1012        /* Only pay attention to cr0.TS; everything else is
1013           ignored. */
1014        mcs = xen_mc_entry(0);
1015
1016        MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0);
1017
1018        xen_mc_issue(PARAVIRT_LAZY_CPU);
1019}
1020
1021static void xen_write_cr4(unsigned long cr4)
1022{
1023        cr4 &= ~(X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PCE);
1024
1025        native_write_cr4(cr4);
1026}
1027#ifdef CONFIG_X86_64
1028static inline unsigned long xen_read_cr8(void)
1029{
1030        return 0;
1031}
1032static inline void xen_write_cr8(unsigned long val)
1033{
1034        BUG_ON(val);
1035}
1036#endif
1037
1038static u64 xen_read_msr_safe(unsigned int msr, int *err)
1039{
1040        u64 val;
1041
1042        if (pmu_msr_read(msr, &val, err))
1043                return val;
1044
1045        val = native_read_msr_safe(msr, err);
1046        switch (msr) {
1047        case MSR_IA32_APICBASE:
1048#ifdef CONFIG_X86_X2APIC
1049                if (!(cpuid_ecx(1) & (1 << (X86_FEATURE_X2APIC & 31))))
1050#endif
1051                        val &= ~X2APIC_ENABLE;
1052                break;
1053        }
1054        return val;
1055}
1056
1057static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high)
1058{
1059        int ret;
1060
1061        ret = 0;
1062
1063        switch (msr) {
1064#ifdef CONFIG_X86_64
1065                unsigned which;
1066                u64 base;
1067
1068        case MSR_FS_BASE:               which = SEGBASE_FS; goto set;
1069        case MSR_KERNEL_GS_BASE:        which = SEGBASE_GS_USER; goto set;
1070        case MSR_GS_BASE:               which = SEGBASE_GS_KERNEL; goto set;
1071
1072        set:
1073                base = ((u64)high << 32) | low;
1074                if (HYPERVISOR_set_segment_base(which, base) != 0)
1075                        ret = -EIO;
1076                break;
1077#endif
1078
1079        case MSR_STAR:
1080        case MSR_CSTAR:
1081        case MSR_LSTAR:
1082        case MSR_SYSCALL_MASK:
1083        case MSR_IA32_SYSENTER_CS:
1084        case MSR_IA32_SYSENTER_ESP:
1085        case MSR_IA32_SYSENTER_EIP:
1086                /* Fast syscall setup is all done in hypercalls, so
1087                   these are all ignored.  Stub them out here to stop
1088                   Xen console noise. */
1089                break;
1090
1091        default:
1092                if (!pmu_msr_write(msr, low, high, &ret))
1093                        ret = native_write_msr_safe(msr, low, high);
1094        }
1095
1096        return ret;
1097}
1098
1099static u64 xen_read_msr(unsigned int msr)
1100{
1101        /*
1102         * This will silently swallow a #GP from RDMSR.  It may be worth
1103         * changing that.
1104         */
1105        int err;
1106
1107        return xen_read_msr_safe(msr, &err);
1108}
1109
1110static void xen_write_msr(unsigned int msr, unsigned low, unsigned high)
1111{
1112        /*
1113         * This will silently swallow a #GP from WRMSR.  It may be worth
1114         * changing that.
1115         */
1116        xen_write_msr_safe(msr, low, high);
1117}
1118
1119void xen_setup_shared_info(void)
1120{
1121        if (!xen_feature(XENFEAT_auto_translated_physmap)) {
1122                set_fixmap(FIX_PARAVIRT_BOOTMAP,
1123                           xen_start_info->shared_info);
1124
1125                HYPERVISOR_shared_info =
1126                        (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP);
1127        } else
1128                HYPERVISOR_shared_info =
1129                        (struct shared_info *)__va(xen_start_info->shared_info);
1130
1131#ifndef CONFIG_SMP
1132        /* In UP this is as good a place as any to set up shared info */
1133        xen_setup_vcpu_info_placement();
1134#endif
1135
1136        xen_setup_mfn_list_list();
1137}
1138
1139/* This is called once we have the cpu_possible_mask */
1140void xen_setup_vcpu_info_placement(void)
1141{
1142        int cpu;
1143
1144        for_each_possible_cpu(cpu) {
1145                /* Set up direct vCPU id mapping for PV guests. */
1146                per_cpu(xen_vcpu_id, cpu) = cpu;
1147                xen_vcpu_setup(cpu);
1148        }
1149
1150        /* xen_vcpu_setup managed to place the vcpu_info within the
1151         * percpu area for all cpus, so make use of it. Note that for
1152         * PVH we want to use native IRQ mechanism. */
1153        if (have_vcpu_info_placement && !xen_pvh_domain()) {
1154                pv_irq_ops.save_fl = __PV_IS_CALLEE_SAVE(xen_save_fl_direct);
1155                pv_irq_ops.restore_fl = __PV_IS_CALLEE_SAVE(xen_restore_fl_direct);
1156                pv_irq_ops.irq_disable = __PV_IS_CALLEE_SAVE(xen_irq_disable_direct);
1157                pv_irq_ops.irq_enable = __PV_IS_CALLEE_SAVE(xen_irq_enable_direct);
1158                pv_mmu_ops.read_cr2 = xen_read_cr2_direct;
1159        }
1160}
1161
1162static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf,
1163                          unsigned long addr, unsigned len)
1164{
1165        char *start, *end, *reloc;
1166        unsigned ret;
1167
1168        start = end = reloc = NULL;
1169
1170#define SITE(op, x)                                                     \
1171        case PARAVIRT_PATCH(op.x):                                      \
1172        if (have_vcpu_info_placement) {                                 \
1173                start = (char *)xen_##x##_direct;                       \
1174                end = xen_##x##_direct_end;                             \
1175                reloc = xen_##x##_direct_reloc;                         \
1176        }                                                               \
1177        goto patch_site
1178
1179        switch (type) {
1180                SITE(pv_irq_ops, irq_enable);
1181                SITE(pv_irq_ops, irq_disable);
1182                SITE(pv_irq_ops, save_fl);
1183                SITE(pv_irq_ops, restore_fl);
1184#undef SITE
1185
1186        patch_site:
1187                if (start == NULL || (end-start) > len)
1188                        goto default_patch;
1189
1190                ret = paravirt_patch_insns(insnbuf, len, start, end);
1191
1192                /* Note: because reloc is assigned from something that
1193                   appears to be an array, gcc assumes it's non-null,
1194                   but doesn't know its relationship with start and
1195                   end. */
1196                if (reloc > start && reloc < end) {
1197                        int reloc_off = reloc - start;
1198                        long *relocp = (long *)(insnbuf + reloc_off);
1199                        long delta = start - (char *)addr;
1200
1201                        *relocp += delta;
1202                }
1203                break;
1204
1205        default_patch:
1206        default:
1207                ret = paravirt_patch_default(type, clobbers, insnbuf,
1208                                             addr, len);
1209                break;
1210        }
1211
1212        return ret;
1213}
1214
1215static const struct pv_info xen_info __initconst = {
1216        .shared_kernel_pmd = 0,
1217
1218#ifdef CONFIG_X86_64
1219        .extra_user_64bit_cs = FLAT_USER_CS64,
1220#endif
1221        .name = "Xen",
1222};
1223
1224static const struct pv_init_ops xen_init_ops __initconst = {
1225        .patch = xen_patch,
1226};
1227
1228static const struct pv_cpu_ops xen_cpu_ops __initconst = {
1229        .cpuid = xen_cpuid,
1230
1231        .set_debugreg = xen_set_debugreg,
1232        .get_debugreg = xen_get_debugreg,
1233
1234        .clts = xen_clts,
1235
1236        .read_cr0 = xen_read_cr0,
1237        .write_cr0 = xen_write_cr0,
1238
1239        .read_cr4 = native_read_cr4,
1240        .read_cr4_safe = native_read_cr4_safe,
1241        .write_cr4 = xen_write_cr4,
1242
1243#ifdef CONFIG_X86_64
1244        .read_cr8 = xen_read_cr8,
1245        .write_cr8 = xen_write_cr8,
1246#endif
1247
1248        .wbinvd = native_wbinvd,
1249
1250        .read_msr = xen_read_msr,
1251        .write_msr = xen_write_msr,
1252
1253        .read_msr_safe = xen_read_msr_safe,
1254        .write_msr_safe = xen_write_msr_safe,
1255
1256        .read_pmc = xen_read_pmc,
1257
1258        .iret = xen_iret,
1259#ifdef CONFIG_X86_64
1260        .usergs_sysret64 = xen_sysret64,
1261#endif
1262
1263        .load_tr_desc = paravirt_nop,
1264        .set_ldt = xen_set_ldt,
1265        .load_gdt = xen_load_gdt,
1266        .load_idt = xen_load_idt,
1267        .load_tls = xen_load_tls,
1268#ifdef CONFIG_X86_64
1269        .load_gs_index = xen_load_gs_index,
1270#endif
1271
1272        .alloc_ldt = xen_alloc_ldt,
1273        .free_ldt = xen_free_ldt,
1274
1275        .store_idt = native_store_idt,
1276        .store_tr = xen_store_tr,
1277
1278        .write_ldt_entry = xen_write_ldt_entry,
1279        .write_gdt_entry = xen_write_gdt_entry,
1280        .write_idt_entry = xen_write_idt_entry,
1281        .load_sp0 = xen_load_sp0,
1282
1283        .set_iopl_mask = xen_set_iopl_mask,
1284        .io_delay = xen_io_delay,
1285
1286        /* Xen takes care of %gs when switching to usermode for us */
1287        .swapgs = paravirt_nop,
1288
1289        .start_context_switch = paravirt_start_context_switch,
1290        .end_context_switch = xen_end_context_switch,
1291};
1292
1293static void xen_reboot(int reason)
1294{
1295        struct sched_shutdown r = { .reason = reason };
1296        int cpu;
1297
1298        for_each_online_cpu(cpu)
1299                xen_pmu_finish(cpu);
1300
1301        if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r))
1302                BUG();
1303}
1304
1305static void xen_restart(char *msg)
1306{
1307        xen_reboot(SHUTDOWN_reboot);
1308}
1309
1310static void xen_emergency_restart(void)
1311{
1312        xen_reboot(SHUTDOWN_reboot);
1313}
1314
1315static void xen_machine_halt(void)
1316{
1317        xen_reboot(SHUTDOWN_poweroff);
1318}
1319
1320static void xen_machine_power_off(void)
1321{
1322        if (pm_power_off)
1323                pm_power_off();
1324        xen_reboot(SHUTDOWN_poweroff);
1325}
1326
1327static void xen_crash_shutdown(struct pt_regs *regs)
1328{
1329        xen_reboot(SHUTDOWN_crash);
1330}
1331
1332static int
1333xen_panic_event(struct notifier_block *this, unsigned long event, void *ptr)
1334{
1335        if (!kexec_crash_loaded())
1336                xen_reboot(SHUTDOWN_crash);
1337        return NOTIFY_DONE;
1338}
1339
1340static struct notifier_block xen_panic_block = {
1341        .notifier_call= xen_panic_event,
1342        .priority = INT_MIN
1343};
1344
1345int xen_panic_handler_init(void)
1346{
1347        atomic_notifier_chain_register(&panic_notifier_list, &xen_panic_block);
1348        return 0;
1349}
1350
1351static const struct machine_ops xen_machine_ops __initconst = {
1352        .restart = xen_restart,
1353        .halt = xen_machine_halt,
1354        .power_off = xen_machine_power_off,
1355        .shutdown = xen_machine_halt,
1356        .crash_shutdown = xen_crash_shutdown,
1357        .emergency_restart = xen_emergency_restart,
1358};
1359
1360static unsigned char xen_get_nmi_reason(void)
1361{
1362        unsigned char reason = 0;
1363
1364        /* Construct a value which looks like it came from port 0x61. */
1365        if (test_bit(_XEN_NMIREASON_io_error,
1366                     &HYPERVISOR_shared_info->arch.nmi_reason))
1367                reason |= NMI_REASON_IOCHK;
1368        if (test_bit(_XEN_NMIREASON_pci_serr,
1369                     &HYPERVISOR_shared_info->arch.nmi_reason))
1370                reason |= NMI_REASON_SERR;
1371
1372        return reason;
1373}
1374
1375static void __init xen_boot_params_init_edd(void)
1376{
1377#if IS_ENABLED(CONFIG_EDD)
1378        struct xen_platform_op op;
1379        struct edd_info *edd_info;
1380        u32 *mbr_signature;
1381        unsigned nr;
1382        int ret;
1383
1384        edd_info = boot_params.eddbuf;
1385        mbr_signature = boot_params.edd_mbr_sig_buffer;
1386
1387        op.cmd = XENPF_firmware_info;
1388
1389        op.u.firmware_info.type = XEN_FW_DISK_INFO;
1390        for (nr = 0; nr < EDDMAXNR; nr++) {
1391                struct edd_info *info = edd_info + nr;
1392
1393                op.u.firmware_info.index = nr;
1394                info->params.length = sizeof(info->params);
1395                set_xen_guest_handle(op.u.firmware_info.u.disk_info.edd_params,
1396                                     &info->params);
1397                ret = HYPERVISOR_platform_op(&op);
1398                if (ret)
1399                        break;
1400
1401#define C(x) info->x = op.u.firmware_info.u.disk_info.x
1402                C(device);
1403                C(version);
1404                C(interface_support);
1405                C(legacy_max_cylinder);
1406                C(legacy_max_head);
1407                C(legacy_sectors_per_track);
1408#undef C
1409        }
1410        boot_params.eddbuf_entries = nr;
1411
1412        op.u.firmware_info.type = XEN_FW_DISK_MBR_SIGNATURE;
1413        for (nr = 0; nr < EDD_MBR_SIG_MAX; nr++) {
1414                op.u.firmware_info.index = nr;
1415                ret = HYPERVISOR_platform_op(&op);
1416                if (ret)
1417                        break;
1418                mbr_signature[nr] = op.u.firmware_info.u.disk_mbr_signature.mbr_signature;
1419        }
1420        boot_params.edd_mbr_sig_buf_entries = nr;
1421#endif
1422}
1423
1424/*
1425 * Set up the GDT and segment registers for -fstack-protector.  Until
1426 * we do this, we have to be careful not to call any stack-protected
1427 * function, which is most of the kernel.
1428 *
1429 * Note, that it is __ref because the only caller of this after init
1430 * is PVH which is not going to use xen_load_gdt_boot or other
1431 * __init functions.
1432 */
1433static void __ref xen_setup_gdt(int cpu)
1434{
1435        if (xen_feature(XENFEAT_auto_translated_physmap)) {
1436#ifdef CONFIG_X86_64
1437                unsigned long dummy;
1438
1439                load_percpu_segment(cpu); /* We need to access per-cpu area */
1440                switch_to_new_gdt(cpu); /* GDT and GS set */
1441
1442                /* We are switching of the Xen provided GDT to our HVM mode
1443                 * GDT. The new GDT has  __KERNEL_CS with CS.L = 1
1444                 * and we are jumping to reload it.
1445                 */
1446                asm volatile ("pushq %0\n"
1447                              "leaq 1f(%%rip),%0\n"
1448                              "pushq %0\n"
1449                              "lretq\n"
1450                              "1:\n"
1451                              : "=&r" (dummy) : "0" (__KERNEL_CS));
1452
1453                /*
1454                 * While not needed, we also set the %es, %ds, and %fs
1455                 * to zero. We don't care about %ss as it is NULL.
1456                 * Strictly speaking this is not needed as Xen zeros those
1457                 * out (and also MSR_FS_BASE, MSR_GS_BASE, MSR_KERNEL_GS_BASE)
1458                 *
1459                 * Linux zeros them in cpu_init() and in secondary_startup_64
1460                 * (for BSP).
1461                 */
1462                loadsegment(es, 0);
1463                loadsegment(ds, 0);
1464                loadsegment(fs, 0);
1465#else
1466                /* PVH: TODO Implement. */
1467                BUG();
1468#endif
1469                return; /* PVH does not need any PV GDT ops. */
1470        }
1471        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry_boot;
1472        pv_cpu_ops.load_gdt = xen_load_gdt_boot;
1473
1474        setup_stack_canary_segment(0);
1475        switch_to_new_gdt(0);
1476
1477        pv_cpu_ops.write_gdt_entry = xen_write_gdt_entry;
1478        pv_cpu_ops.load_gdt = xen_load_gdt;
1479}
1480
1481#ifdef CONFIG_XEN_PVH
1482/*
1483 * A PV guest starts with default flags that are not set for PVH, set them
1484 * here asap.
1485 */
1486static void xen_pvh_set_cr_flags(int cpu)
1487{
1488
1489        /* Some of these are setup in 'secondary_startup_64'. The others:
1490         * X86_CR0_TS, X86_CR0_PE, X86_CR0_ET are set by Xen for HVM guests
1491         * (which PVH shared codepaths), while X86_CR0_PG is for PVH. */
1492        write_cr0(read_cr0() | X86_CR0_MP | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM);
1493
1494        if (!cpu)
1495                return;
1496        /*
1497         * For BSP, PSE PGE are set in probe_page_size_mask(), for APs
1498         * set them here. For all, OSFXSR OSXMMEXCPT are set in fpu__init_cpu().
1499        */
1500        if (boot_cpu_has(X86_FEATURE_PSE))
1501                cr4_set_bits_and_update_boot(X86_CR4_PSE);
1502
1503        if (boot_cpu_has(X86_FEATURE_PGE))
1504                cr4_set_bits_and_update_boot(X86_CR4_PGE);
1505}
1506
1507/*
1508 * Note, that it is ref - because the only caller of this after init
1509 * is PVH which is not going to use xen_load_gdt_boot or other
1510 * __init functions.
1511 */
1512void __ref xen_pvh_secondary_vcpu_init(int cpu)
1513{
1514        xen_setup_gdt(cpu);
1515        xen_pvh_set_cr_flags(cpu);
1516}
1517
1518static void __init xen_pvh_early_guest_init(void)
1519{
1520        if (!xen_feature(XENFEAT_auto_translated_physmap))
1521                return;
1522
1523        if (!xen_feature(XENFEAT_hvm_callback_vector))
1524                return;
1525
1526        xen_have_vector_callback = 1;
1527
1528        xen_pvh_early_cpu_init(0, false);
1529        xen_pvh_set_cr_flags(0);
1530
1531#ifdef CONFIG_X86_32
1532        BUG(); /* PVH: Implement proper support. */
1533#endif
1534}
1535#endif    /* CONFIG_XEN_PVH */
1536
1537static void __init xen_dom0_set_legacy_features(void)
1538{
1539        x86_platform.legacy.rtc = 1;
1540}
1541
1542/* First C function to be called on Xen boot */
1543asmlinkage __visible void __init xen_start_kernel(void)
1544{
1545        struct physdev_set_iopl set_iopl;
1546        unsigned long initrd_start = 0;
1547        int rc;
1548
1549        if (!xen_start_info)
1550                return;
1551
1552        xen_domain_type = XEN_PV_DOMAIN;
1553
1554        xen_setup_features();
1555#ifdef CONFIG_XEN_PVH
1556        xen_pvh_early_guest_init();
1557#endif
1558        xen_setup_machphys_mapping();
1559
1560        /* Install Xen paravirt ops */
1561        pv_info = xen_info;
1562        pv_init_ops = xen_init_ops;
1563        if (!xen_pvh_domain()) {
1564                pv_cpu_ops = xen_cpu_ops;
1565
1566                x86_platform.get_nmi_reason = xen_get_nmi_reason;
1567        }
1568
1569        if (xen_feature(XENFEAT_auto_translated_physmap))
1570                x86_init.resources.memory_setup = xen_auto_xlated_memory_setup;
1571        else
1572                x86_init.resources.memory_setup = xen_memory_setup;
1573        x86_init.oem.arch_setup = xen_arch_setup;
1574        x86_init.oem.banner = xen_banner;
1575
1576        xen_init_time_ops();
1577
1578        /*
1579         * Set up some pagetable state before starting to set any ptes.
1580         */
1581
1582        xen_init_mmu_ops();
1583
1584        /* Prevent unwanted bits from being set in PTEs. */
1585        __supported_pte_mask &= ~_PAGE_GLOBAL;
1586
1587        /*
1588         * Prevent page tables from being allocated in highmem, even
1589         * if CONFIG_HIGHPTE is enabled.
1590         */
1591        __userpte_alloc_gfp &= ~__GFP_HIGHMEM;
1592
1593        /* Work out if we support NX */
1594        x86_configure_nx();
1595
1596        /* Get mfn list */
1597        xen_build_dynamic_phys_to_machine();
1598
1599        /*
1600         * Set up kernel GDT and segment registers, mainly so that
1601         * -fstack-protector code can be executed.
1602         */
1603        xen_setup_gdt(0);
1604
1605        xen_init_irq_ops();
1606        xen_init_cpuid_mask();
1607
1608#ifdef CONFIG_X86_LOCAL_APIC
1609        /*
1610         * set up the basic apic ops.
1611         */
1612        xen_init_apic();
1613#endif
1614
1615        if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) {
1616                pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start;
1617                pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit;
1618        }
1619
1620        machine_ops = xen_machine_ops;
1621
1622        /*
1623         * The only reliable way to retain the initial address of the
1624         * percpu gdt_page is to remember it here, so we can go and
1625         * mark it RW later, when the initial percpu area is freed.
1626         */
1627        xen_initial_gdt = &per_cpu(gdt_page, 0);
1628
1629        xen_smp_init();
1630
1631#ifdef CONFIG_ACPI_NUMA
1632        /*
1633         * The pages we from Xen are not related to machine pages, so
1634         * any NUMA information the kernel tries to get from ACPI will
1635         * be meaningless.  Prevent it from trying.
1636         */
1637        acpi_numa = -1;
1638#endif
1639        /* Don't do the full vcpu_info placement stuff until we have a
1640           possible map and a non-dummy shared_info. */
1641        per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0];
1642
1643        local_irq_disable();
1644        early_boot_irqs_disabled = true;
1645
1646        xen_raw_console_write("mapping kernel into physical memory\n");
1647        xen_setup_kernel_pagetable((pgd_t *)xen_start_info->pt_base,
1648                                   xen_start_info->nr_pages);
1649        xen_reserve_special_pages();
1650
1651        /* keep using Xen gdt for now; no urgent need to change it */
1652
1653#ifdef CONFIG_X86_32
1654        pv_info.kernel_rpl = 1;
1655        if (xen_feature(XENFEAT_supervisor_mode_kernel))
1656                pv_info.kernel_rpl = 0;
1657#else
1658        pv_info.kernel_rpl = 0;
1659#endif
1660        /* set the limit of our address space */
1661        xen_reserve_top();
1662
1663        /* PVH: runs at default kernel iopl of 0 */
1664        if (!xen_pvh_domain()) {
1665                /*
1666                 * We used to do this in xen_arch_setup, but that is too late
1667                 * on AMD were early_cpu_init (run before ->arch_setup()) calls
1668                 * early_amd_init which pokes 0xcf8 port.
1669                 */
1670                set_iopl.iopl = 1;
1671                rc = HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl);
1672                if (rc != 0)
1673                        xen_raw_printk("physdev_op failed %d\n", rc);
1674        }
1675
1676#ifdef CONFIG_X86_32
1677        /* set up basic CPUID stuff */
1678        cpu_detect(&new_cpu_data);
1679        set_cpu_cap(&new_cpu_data, X86_FEATURE_FPU);
1680        new_cpu_data.wp_works_ok = 1;
1681        new_cpu_data.x86_capability[CPUID_1_EDX] = cpuid_edx(1);
1682#endif
1683
1684        if (xen_start_info->mod_start) {
1685            if (xen_start_info->flags & SIF_MOD_START_PFN)
1686                initrd_start = PFN_PHYS(xen_start_info->mod_start);
1687            else
1688                initrd_start = __pa(xen_start_info->mod_start);
1689        }
1690
1691        /* Poke various useful things into boot_params */
1692        boot_params.hdr.type_of_loader = (9 << 4) | 0;
1693        boot_params.hdr.ramdisk_image = initrd_start;
1694        boot_params.hdr.ramdisk_size = xen_start_info->mod_len;
1695        boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line);
1696        boot_params.hdr.hardware_subarch = X86_SUBARCH_XEN;
1697
1698        if (!xen_initial_domain()) {
1699                add_preferred_console("xenboot", 0, NULL);
1700                add_preferred_console("tty", 0, NULL);
1701                add_preferred_console("hvc", 0, NULL);
1702                if (pci_xen)
1703                        x86_init.pci.arch_init = pci_xen_init;
1704        } else {
1705                const struct dom0_vga_console_info *info =
1706                        (void *)((char *)xen_start_info +
1707                                 xen_start_info->console.dom0.info_off);
1708                struct xen_platform_op op = {
1709                        .cmd = XENPF_firmware_info,
1710                        .interface_version = XENPF_INTERFACE_VERSION,
1711                        .u.firmware_info.type = XEN_FW_KBD_SHIFT_FLAGS,
1712                };
1713
1714                x86_platform.set_legacy_features =
1715                                xen_dom0_set_legacy_features;
1716                xen_init_vga(info, xen_start_info->console.dom0.info_size);
1717                xen_start_info->console.domU.mfn = 0;
1718                xen_start_info->console.domU.evtchn = 0;
1719
1720                if (HYPERVISOR_platform_op(&op) == 0)
1721                        boot_params.kbd_status = op.u.firmware_info.u.kbd_shift_flags;
1722
1723                /* Make sure ACS will be enabled */
1724                pci_request_acs();
1725
1726                xen_acpi_sleep_register();
1727
1728                /* Avoid searching for BIOS MP tables */
1729                x86_init.mpparse.find_smp_config = x86_init_noop;
1730                x86_init.mpparse.get_smp_config = x86_init_uint_noop;
1731
1732                xen_boot_params_init_edd();
1733        }
1734#ifdef CONFIG_PCI
1735        /* PCI BIOS service won't work from a PV guest. */
1736        pci_probe &= ~PCI_PROBE_BIOS;
1737#endif
1738        xen_raw_console_write("about to get started...\n");
1739
1740        /* Let's presume PV guests always boot on vCPU with id 0. */
1741        per_cpu(xen_vcpu_id, 0) = 0;
1742
1743        xen_setup_runstate_info(0);
1744
1745        xen_efi_init();
1746
1747        /* Start the world */
1748#ifdef CONFIG_X86_32
1749        i386_start_kernel();
1750#else
1751        cr4_init_shadow(); /* 32b kernel does this in i386_start_kernel() */
1752        x86_64_start_reservations((char *)__pa_symbol(&boot_params));
1753#endif
1754}
1755
1756void __ref xen_hvm_init_shared_info(void)
1757{
1758        int cpu;
1759        struct xen_add_to_physmap xatp;
1760        static struct shared_info *shared_info_page = 0;
1761
1762        if (!shared_info_page)
1763                shared_info_page = (struct shared_info *)
1764                        extend_brk(PAGE_SIZE, PAGE_SIZE);
1765        xatp.domid = DOMID_SELF;
1766        xatp.idx = 0;
1767        xatp.space = XENMAPSPACE_shared_info;
1768        xatp.gpfn = __pa(shared_info_page) >> PAGE_SHIFT;
1769        if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp))
1770                BUG();
1771
1772        HYPERVISOR_shared_info = (struct shared_info *)shared_info_page;
1773
1774        /* xen_vcpu is a pointer to the vcpu_info struct in the shared_info
1775         * page, we use it in the event channel upcall and in some pvclock
1776         * related functions. We don't need the vcpu_info placement
1777         * optimizations because we don't use any pv_mmu or pv_irq op on
1778         * HVM.
1779         * When xen_hvm_init_shared_info is run at boot time only vcpu 0 is
1780         * online but xen_hvm_init_shared_info is run at resume time too and
1781         * in that case multiple vcpus might be online. */
1782        for_each_online_cpu(cpu) {
1783                /* Leave it to be NULL. */
1784                if (xen_vcpu_nr(cpu) >= MAX_VIRT_CPUS)
1785                        continue;
1786                per_cpu(xen_vcpu, cpu) =
1787                        &HYPERVISOR_shared_info->vcpu_info[xen_vcpu_nr(cpu)];
1788        }
1789}
1790
1791#ifdef CONFIG_XEN_PVHVM
1792static void __init init_hvm_pv_info(void)
1793{
1794        int major, minor;
1795        uint32_t eax, ebx, ecx, edx, pages, msr, base;
1796        u64 pfn;
1797
1798        base = xen_cpuid_base();
1799        cpuid(base + 1, &eax, &ebx, &ecx, &edx);
1800
1801        major = eax >> 16;
1802        minor = eax & 0xffff;
1803        printk(KERN_INFO "Xen version %d.%d.\n", major, minor);
1804
1805        cpuid(base + 2, &pages, &msr, &ecx, &edx);
1806
1807        pfn = __pa(hypercall_page);
1808        wrmsr_safe(msr, (u32)pfn, (u32)(pfn >> 32));
1809
1810        xen_setup_features();
1811
1812        cpuid(base + 4, &eax, &ebx, &ecx, &edx);
1813        if (eax & XEN_HVM_CPUID_VCPU_ID_PRESENT)
1814                this_cpu_write(xen_vcpu_id, ebx);
1815        else
1816                this_cpu_write(xen_vcpu_id, smp_processor_id());
1817
1818        pv_info.name = "Xen HVM";
1819
1820        xen_domain_type = XEN_HVM_DOMAIN;
1821}
1822
1823static int xen_hvm_cpu_notify(struct notifier_block *self, unsigned long action,
1824                              void *hcpu)
1825{
1826        int cpu = (long)hcpu;
1827        switch (action) {
1828        case CPU_UP_PREPARE:
1829                if (cpu_acpi_id(cpu) != U32_MAX)
1830                        per_cpu(xen_vcpu_id, cpu) = cpu_acpi_id(cpu);
1831                else
1832                        per_cpu(xen_vcpu_id, cpu) = cpu;
1833                xen_vcpu_setup(cpu);
1834                if (xen_have_vector_callback) {
1835                        if (xen_feature(XENFEAT_hvm_safe_pvclock))
1836                                xen_setup_timer(cpu);
1837                }
1838                break;
1839        default:
1840                break;
1841        }
1842        return NOTIFY_OK;
1843}
1844
1845static struct notifier_block xen_hvm_cpu_notifier = {
1846        .notifier_call  = xen_hvm_cpu_notify,
1847};
1848
1849#ifdef CONFIG_KEXEC_CORE
1850static void xen_hvm_shutdown(void)
1851{
1852        native_machine_shutdown();
1853        if (kexec_in_progress)
1854                xen_reboot(SHUTDOWN_soft_reset);
1855}
1856
1857static void xen_hvm_crash_shutdown(struct pt_regs *regs)
1858{
1859        native_machine_crash_shutdown(regs);
1860        xen_reboot(SHUTDOWN_soft_reset);
1861}
1862#endif
1863
1864static void __init xen_hvm_guest_init(void)
1865{
1866        if (xen_pv_domain())
1867                return;
1868
1869        init_hvm_pv_info();
1870
1871        xen_hvm_init_shared_info();
1872
1873        xen_panic_handler_init();
1874
1875        if (xen_feature(XENFEAT_hvm_callback_vector))
1876                xen_have_vector_callback = 1;
1877        xen_hvm_smp_init();
1878        register_cpu_notifier(&xen_hvm_cpu_notifier);
1879        xen_unplug_emulated_devices();
1880        x86_init.irqs.intr_init = xen_init_IRQ;
1881        xen_hvm_init_time_ops();
1882        xen_hvm_init_mmu_ops();
1883#ifdef CONFIG_KEXEC_CORE
1884        machine_ops.shutdown = xen_hvm_shutdown;
1885        machine_ops.crash_shutdown = xen_hvm_crash_shutdown;
1886#endif
1887}
1888#endif
1889
1890static bool xen_nopv = false;
1891static __init int xen_parse_nopv(char *arg)
1892{
1893       xen_nopv = true;
1894       return 0;
1895}
1896early_param("xen_nopv", xen_parse_nopv);
1897
1898static uint32_t __init xen_platform(void)
1899{
1900        if (xen_nopv)
1901                return 0;
1902
1903        return xen_cpuid_base();
1904}
1905
1906bool xen_hvm_need_lapic(void)
1907{
1908        if (xen_nopv)
1909                return false;
1910        if (xen_pv_domain())
1911                return false;
1912        if (!xen_hvm_domain())
1913                return false;
1914        if (xen_feature(XENFEAT_hvm_pirqs) && xen_have_vector_callback)
1915                return false;
1916        return true;
1917}
1918EXPORT_SYMBOL_GPL(xen_hvm_need_lapic);
1919
1920static void xen_set_cpu_features(struct cpuinfo_x86 *c)
1921{
1922        if (xen_pv_domain()) {
1923                clear_cpu_bug(c, X86_BUG_SYSRET_SS_ATTRS);
1924                set_cpu_cap(c, X86_FEATURE_XENPV);
1925        }
1926}
1927
1928const struct hypervisor_x86 x86_hyper_xen = {
1929        .name                   = "Xen",
1930        .detect                 = xen_platform,
1931#ifdef CONFIG_XEN_PVHVM
1932        .init_platform          = xen_hvm_guest_init,
1933#endif
1934        .x2apic_available       = xen_x2apic_para_available,
1935        .set_cpu_features       = xen_set_cpu_features,
1936};
1937EXPORT_SYMBOL(x86_hyper_xen);
1938
1939#ifdef CONFIG_HOTPLUG_CPU
1940void xen_arch_register_cpu(int num)
1941{
1942        arch_register_cpu(num);
1943}
1944EXPORT_SYMBOL(xen_arch_register_cpu);
1945
1946void xen_arch_unregister_cpu(int num)
1947{
1948        arch_unregister_cpu(num);
1949}
1950EXPORT_SYMBOL(xen_arch_unregister_cpu);
1951#endif
1952