linux/arch/xtensa/include/asm/uaccess.h
<<
>>
Prefs
   1/*
   2 * include/asm-xtensa/uaccess.h
   3 *
   4 * User space memory access functions
   5 *
   6 * These routines provide basic accessing functions to the user memory
   7 * space for the kernel. This header file provides functions such as:
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 *
  13 * Copyright (C) 2001 - 2005 Tensilica Inc.
  14 */
  15
  16#ifndef _XTENSA_UACCESS_H
  17#define _XTENSA_UACCESS_H
  18
  19#include <linux/errno.h>
  20#ifndef __ASSEMBLY__
  21#include <linux/prefetch.h>
  22#endif
  23#include <asm/types.h>
  24
  25#define VERIFY_READ    0
  26#define VERIFY_WRITE   1
  27
  28#ifdef __ASSEMBLY__
  29
  30#include <asm/current.h>
  31#include <asm/asm-offsets.h>
  32#include <asm/processor.h>
  33
  34/*
  35 * These assembly macros mirror the C macros that follow below.  They
  36 * should always have identical functionality.  See
  37 * arch/xtensa/kernel/sys.S for usage.
  38 */
  39
  40#define KERNEL_DS       0
  41#define USER_DS         1
  42
  43#define get_ds          (KERNEL_DS)
  44
  45/*
  46 * get_fs reads current->thread.current_ds into a register.
  47 * On Entry:
  48 *      <ad>    anything
  49 *      <sp>    stack
  50 * On Exit:
  51 *      <ad>    contains current->thread.current_ds
  52 */
  53        .macro  get_fs  ad, sp
  54        GET_CURRENT(\ad,\sp)
  55#if THREAD_CURRENT_DS > 1020
  56        addi    \ad, \ad, TASK_THREAD
  57        l32i    \ad, \ad, THREAD_CURRENT_DS - TASK_THREAD
  58#else
  59        l32i    \ad, \ad, THREAD_CURRENT_DS
  60#endif
  61        .endm
  62
  63/*
  64 * set_fs sets current->thread.current_ds to some value.
  65 * On Entry:
  66 *      <at>    anything (temp register)
  67 *      <av>    value to write
  68 *      <sp>    stack
  69 * On Exit:
  70 *      <at>    destroyed (actually, current)
  71 *      <av>    preserved, value to write
  72 */
  73        .macro  set_fs  at, av, sp
  74        GET_CURRENT(\at,\sp)
  75        s32i    \av, \at, THREAD_CURRENT_DS
  76        .endm
  77
  78/*
  79 * kernel_ok determines whether we should bypass addr/size checking.
  80 * See the equivalent C-macro version below for clarity.
  81 * On success, kernel_ok branches to a label indicated by parameter
  82 * <success>.  This implies that the macro falls through to the next
  83 * insruction on an error.
  84 *
  85 * Note that while this macro can be used independently, we designed
  86 * in for optimal use in the access_ok macro below (i.e., we fall
  87 * through on error).
  88 *
  89 * On Entry:
  90 *      <at>            anything (temp register)
  91 *      <success>       label to branch to on success; implies
  92 *                      fall-through macro on error
  93 *      <sp>            stack pointer
  94 * On Exit:
  95 *      <at>            destroyed (actually, current->thread.current_ds)
  96 */
  97
  98#if ((KERNEL_DS != 0) || (USER_DS == 0))
  99# error Assembly macro kernel_ok fails
 100#endif
 101        .macro  kernel_ok  at, sp, success
 102        get_fs  \at, \sp
 103        beqz    \at, \success
 104        .endm
 105
 106/*
 107 * user_ok determines whether the access to user-space memory is allowed.
 108 * See the equivalent C-macro version below for clarity.
 109 *
 110 * On error, user_ok branches to a label indicated by parameter
 111 * <error>.  This implies that the macro falls through to the next
 112 * instruction on success.
 113 *
 114 * Note that while this macro can be used independently, we designed
 115 * in for optimal use in the access_ok macro below (i.e., we fall
 116 * through on success).
 117 *
 118 * On Entry:
 119 *      <aa>    register containing memory address
 120 *      <as>    register containing memory size
 121 *      <at>    temp register
 122 *      <error> label to branch to on error; implies fall-through
 123 *              macro on success
 124 * On Exit:
 125 *      <aa>    preserved
 126 *      <as>    preserved
 127 *      <at>    destroyed (actually, (TASK_SIZE + 1 - size))
 128 */
 129        .macro  user_ok aa, as, at, error
 130        movi    \at, __XTENSA_UL_CONST(TASK_SIZE)
 131        bgeu    \as, \at, \error
 132        sub     \at, \at, \as
 133        bgeu    \aa, \at, \error
 134        .endm
 135
 136/*
 137 * access_ok determines whether a memory access is allowed.  See the
 138 * equivalent C-macro version below for clarity.
 139 *
 140 * On error, access_ok branches to a label indicated by parameter
 141 * <error>.  This implies that the macro falls through to the next
 142 * instruction on success.
 143 *
 144 * Note that we assume success is the common case, and we optimize the
 145 * branch fall-through case on success.
 146 *
 147 * On Entry:
 148 *      <aa>    register containing memory address
 149 *      <as>    register containing memory size
 150 *      <at>    temp register
 151 *      <sp>
 152 *      <error> label to branch to on error; implies fall-through
 153 *              macro on success
 154 * On Exit:
 155 *      <aa>    preserved
 156 *      <as>    preserved
 157 *      <at>    destroyed
 158 */
 159        .macro  access_ok  aa, as, at, sp, error
 160        kernel_ok  \at, \sp, .Laccess_ok_\@
 161        user_ok    \aa, \as, \at, \error
 162.Laccess_ok_\@:
 163        .endm
 164
 165#else /* __ASSEMBLY__ not defined */
 166
 167#include <linux/sched.h>
 168
 169/*
 170 * The fs value determines whether argument validity checking should
 171 * be performed or not.  If get_fs() == USER_DS, checking is
 172 * performed, with get_fs() == KERNEL_DS, checking is bypassed.
 173 *
 174 * For historical reasons (Data Segment Register?), these macros are
 175 * grossly misnamed.
 176 */
 177
 178#define KERNEL_DS       ((mm_segment_t) { 0 })
 179#define USER_DS         ((mm_segment_t) { 1 })
 180
 181#define get_ds()        (KERNEL_DS)
 182#define get_fs()        (current->thread.current_ds)
 183#define set_fs(val)     (current->thread.current_ds = (val))
 184
 185#define segment_eq(a, b)        ((a).seg == (b).seg)
 186
 187#define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
 188#define __user_ok(addr, size) \
 189                (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
 190#define __access_ok(addr, size) (__kernel_ok || __user_ok((addr), (size)))
 191#define access_ok(type, addr, size) __access_ok((unsigned long)(addr), (size))
 192
 193/*
 194 * These are the main single-value transfer routines.  They
 195 * automatically use the right size if we just have the right pointer
 196 * type.
 197 *
 198 * This gets kind of ugly. We want to return _two_ values in
 199 * "get_user()" and yet we don't want to do any pointers, because that
 200 * is too much of a performance impact. Thus we have a few rather ugly
 201 * macros here, and hide all the uglyness from the user.
 202 *
 203 * Careful to not
 204 * (a) re-use the arguments for side effects (sizeof is ok)
 205 * (b) require any knowledge of processes at this stage
 206 */
 207#define put_user(x, ptr)        __put_user_check((x), (ptr), sizeof(*(ptr)))
 208#define get_user(x, ptr) __get_user_check((x), (ptr), sizeof(*(ptr)))
 209
 210/*
 211 * The "__xxx" versions of the user access functions are versions that
 212 * do not verify the address space, that must have been done previously
 213 * with a separate "access_ok()" call (this is used when we do multiple
 214 * accesses to the same area of user memory).
 215 */
 216#define __put_user(x, ptr) __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 217#define __get_user(x, ptr) __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 218
 219
 220extern long __put_user_bad(void);
 221
 222#define __put_user_nocheck(x, ptr, size)                \
 223({                                                      \
 224        long __pu_err;                                  \
 225        __put_user_size((x), (ptr), (size), __pu_err);  \
 226        __pu_err;                                       \
 227})
 228
 229#define __put_user_check(x, ptr, size)                                  \
 230({                                                                      \
 231        long __pu_err = -EFAULT;                                        \
 232        __typeof__(*(ptr)) *__pu_addr = (ptr);                          \
 233        if (access_ok(VERIFY_WRITE, __pu_addr, size))                   \
 234                __put_user_size((x), __pu_addr, (size), __pu_err);      \
 235        __pu_err;                                                       \
 236})
 237
 238#define __put_user_size(x, ptr, size, retval)                           \
 239do {                                                                    \
 240        int __cb;                                                       \
 241        retval = 0;                                                     \
 242        switch (size) {                                                 \
 243        case 1: __put_user_asm(x, ptr, retval, 1, "s8i", __cb);  break; \
 244        case 2: __put_user_asm(x, ptr, retval, 2, "s16i", __cb); break; \
 245        case 4: __put_user_asm(x, ptr, retval, 4, "s32i", __cb); break; \
 246        case 8: {                                                       \
 247                     __typeof__(*ptr) __v64 = x;                        \
 248                     retval = __copy_to_user(ptr, &__v64, 8);           \
 249                     break;                                             \
 250                }                                                       \
 251        default: __put_user_bad();                                      \
 252        }                                                               \
 253} while (0)
 254
 255
 256/*
 257 * Consider a case of a user single load/store would cause both an
 258 * unaligned exception and an MMU-related exception (unaligned
 259 * exceptions happen first):
 260 *
 261 * User code passes a bad variable ptr to a system call.
 262 * Kernel tries to access the variable.
 263 * Unaligned exception occurs.
 264 * Unaligned exception handler tries to make aligned accesses.
 265 * Double exception occurs for MMU-related cause (e.g., page not mapped).
 266 * do_page_fault() thinks the fault address belongs to the kernel, not the
 267 * user, and panics.
 268 *
 269 * The kernel currently prohibits user unaligned accesses.  We use the
 270 * __check_align_* macros to check for unaligned addresses before
 271 * accessing user space so we don't crash the kernel.  Both
 272 * __put_user_asm and __get_user_asm use these alignment macros, so
 273 * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
 274 * sync.
 275 */
 276
 277#define __check_align_1  ""
 278
 279#define __check_align_2                         \
 280        "   _bbci.l %3,  0, 1f          \n"     \
 281        "   movi    %0, %4              \n"     \
 282        "   _j      2f                  \n"
 283
 284#define __check_align_4                         \
 285        "   _bbsi.l %3,  0, 0f          \n"     \
 286        "   _bbci.l %3,  1, 1f          \n"     \
 287        "0: movi    %0, %4              \n"     \
 288        "   _j      2f                  \n"
 289
 290
 291/*
 292 * We don't tell gcc that we are accessing memory, but this is OK
 293 * because we do not write to any memory gcc knows about, so there
 294 * are no aliasing issues.
 295 *
 296 * WARNING: If you modify this macro at all, verify that the
 297 * __check_align_* macros still work.
 298 */
 299#define __put_user_asm(x, addr, err, align, insn, cb)   \
 300__asm__ __volatile__(                                   \
 301        __check_align_##align                           \
 302        "1: "insn"  %2, %3, 0           \n"             \
 303        "2:                             \n"             \
 304        "   .section  .fixup,\"ax\"     \n"             \
 305        "   .align 4                    \n"             \
 306        "4:                             \n"             \
 307        "   .long  2b                   \n"             \
 308        "5:                             \n"             \
 309        "   l32r   %1, 4b               \n"             \
 310        "   movi   %0, %4               \n"             \
 311        "   jx     %1                   \n"             \
 312        "   .previous                   \n"             \
 313        "   .section  __ex_table,\"a\"  \n"             \
 314        "   .long       1b, 5b          \n"             \
 315        "   .previous"                                  \
 316        :"=r" (err), "=r" (cb)                          \
 317        :"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
 318
 319#define __get_user_nocheck(x, ptr, size)                        \
 320({                                                              \
 321        long __gu_err, __gu_val;                                \
 322        __get_user_size(__gu_val, (ptr), (size), __gu_err);     \
 323        (x) = (__force __typeof__(*(ptr)))__gu_val;             \
 324        __gu_err;                                               \
 325})
 326
 327#define __get_user_check(x, ptr, size)                                  \
 328({                                                                      \
 329        long __gu_err = -EFAULT, __gu_val = 0;                          \
 330        const __typeof__(*(ptr)) *__gu_addr = (ptr);                    \
 331        if (access_ok(VERIFY_READ, __gu_addr, size))                    \
 332                __get_user_size(__gu_val, __gu_addr, (size), __gu_err); \
 333        (x) = (__force __typeof__(*(ptr)))__gu_val;                     \
 334        __gu_err;                                                       \
 335})
 336
 337extern long __get_user_bad(void);
 338
 339#define __get_user_size(x, ptr, size, retval)                           \
 340do {                                                                    \
 341        int __cb;                                                       \
 342        retval = 0;                                                     \
 343        switch (size) {                                                 \
 344        case 1: __get_user_asm(x, ptr, retval, 1, "l8ui", __cb);  break;\
 345        case 2: __get_user_asm(x, ptr, retval, 2, "l16ui", __cb); break;\
 346        case 4: __get_user_asm(x, ptr, retval, 4, "l32i", __cb);  break;\
 347        case 8: retval = __copy_from_user(&x, ptr, 8);    break;        \
 348        default: (x) = __get_user_bad();                                \
 349        }                                                               \
 350} while (0)
 351
 352
 353/*
 354 * WARNING: If you modify this macro at all, verify that the
 355 * __check_align_* macros still work.
 356 */
 357#define __get_user_asm(x, addr, err, align, insn, cb) \
 358__asm__ __volatile__(                   \
 359        __check_align_##align                   \
 360        "1: "insn"  %2, %3, 0           \n"     \
 361        "2:                             \n"     \
 362        "   .section  .fixup,\"ax\"     \n"     \
 363        "   .align 4                    \n"     \
 364        "4:                             \n"     \
 365        "   .long  2b                   \n"     \
 366        "5:                             \n"     \
 367        "   l32r   %1, 4b               \n"     \
 368        "   movi   %2, 0                \n"     \
 369        "   movi   %0, %4               \n"     \
 370        "   jx     %1                   \n"     \
 371        "   .previous                   \n"     \
 372        "   .section  __ex_table,\"a\"  \n"     \
 373        "   .long       1b, 5b          \n"     \
 374        "   .previous"                          \
 375        :"=r" (err), "=r" (cb), "=r" (x)        \
 376        :"r" (addr), "i" (-EFAULT), "0" (err))
 377
 378
 379/*
 380 * Copy to/from user space
 381 */
 382
 383/*
 384 * We use a generic, arbitrary-sized copy subroutine.  The Xtensa
 385 * architecture would cause heavy code bloat if we tried to inline
 386 * these functions and provide __constant_copy_* equivalents like the
 387 * i386 versions.  __xtensa_copy_user is quite efficient.  See the
 388 * .fixup section of __xtensa_copy_user for a discussion on the
 389 * X_zeroing equivalents for Xtensa.
 390 */
 391
 392extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
 393#define __copy_user(to, from, size) __xtensa_copy_user(to, from, size)
 394
 395
 396static inline unsigned long
 397__generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
 398{
 399        return __copy_user(to, from, n);
 400}
 401
 402static inline unsigned long
 403__generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
 404{
 405        return __copy_user(to, from, n);
 406}
 407
 408static inline unsigned long
 409__generic_copy_to_user(void *to, const void *from, unsigned long n)
 410{
 411        prefetch(from);
 412        if (access_ok(VERIFY_WRITE, to, n))
 413                return __copy_user(to, from, n);
 414        return n;
 415}
 416
 417static inline unsigned long
 418__generic_copy_from_user(void *to, const void *from, unsigned long n)
 419{
 420        prefetchw(to);
 421        if (access_ok(VERIFY_READ, from, n))
 422                return __copy_user(to, from, n);
 423        else
 424                memset(to, 0, n);
 425        return n;
 426}
 427
 428#define copy_to_user(to, from, n) __generic_copy_to_user((to), (from), (n))
 429#define copy_from_user(to, from, n) __generic_copy_from_user((to), (from), (n))
 430#define __copy_to_user(to, from, n) \
 431        __generic_copy_to_user_nocheck((to), (from), (n))
 432#define __copy_from_user(to, from, n) \
 433        __generic_copy_from_user_nocheck((to), (from), (n))
 434#define __copy_to_user_inatomic __copy_to_user
 435#define __copy_from_user_inatomic __copy_from_user
 436
 437
 438/*
 439 * We need to return the number of bytes not cleared.  Our memset()
 440 * returns zero if a problem occurs while accessing user-space memory.
 441 * In that event, return no memory cleared.  Otherwise, zero for
 442 * success.
 443 */
 444
 445static inline unsigned long
 446__xtensa_clear_user(void *addr, unsigned long size)
 447{
 448        if ( ! memset(addr, 0, size) )
 449                return size;
 450        return 0;
 451}
 452
 453static inline unsigned long
 454clear_user(void *addr, unsigned long size)
 455{
 456        if (access_ok(VERIFY_WRITE, addr, size))
 457                return __xtensa_clear_user(addr, size);
 458        return size ? -EFAULT : 0;
 459}
 460
 461#define __clear_user  __xtensa_clear_user
 462
 463
 464extern long __strncpy_user(char *, const char *, long);
 465#define __strncpy_from_user __strncpy_user
 466
 467static inline long
 468strncpy_from_user(char *dst, const char *src, long count)
 469{
 470        if (access_ok(VERIFY_READ, src, 1))
 471                return __strncpy_from_user(dst, src, count);
 472        return -EFAULT;
 473}
 474
 475
 476#define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
 477
 478/*
 479 * Return the size of a string (including the ending 0!)
 480 */
 481extern long __strnlen_user(const char *, long);
 482
 483static inline long strnlen_user(const char *str, long len)
 484{
 485        unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
 486
 487        if ((unsigned long)str > top)
 488                return 0;
 489        return __strnlen_user(str, len);
 490}
 491
 492
 493struct exception_table_entry
 494{
 495        unsigned long insn, fixup;
 496};
 497
 498/* Returns 0 if exception not found and fixup.unit otherwise.  */
 499
 500extern unsigned long search_exception_table(unsigned long addr);
 501extern void sort_exception_table(void);
 502
 503/* Returns the new pc */
 504#define fixup_exception(map_reg, fixup_unit, pc)                \
 505({                                                              \
 506        fixup_unit;                                             \
 507})
 508
 509#endif  /* __ASSEMBLY__ */
 510#endif  /* _XTENSA_UACCESS_H */
 511