linux/crypto/drbg.c
<<
>>
Prefs
   1/*
   2 * DRBG: Deterministic Random Bits Generator
   3 *       Based on NIST Recommended DRBG from NIST SP800-90A with the following
   4 *       properties:
   5 *              * CTR DRBG with DF with AES-128, AES-192, AES-256 cores
   6 *              * Hash DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   7 *              * HMAC DRBG with DF with SHA-1, SHA-256, SHA-384, SHA-512 cores
   8 *              * with and without prediction resistance
   9 *
  10 * Copyright Stephan Mueller <smueller@chronox.de>, 2014
  11 *
  12 * Redistribution and use in source and binary forms, with or without
  13 * modification, are permitted provided that the following conditions
  14 * are met:
  15 * 1. Redistributions of source code must retain the above copyright
  16 *    notice, and the entire permission notice in its entirety,
  17 *    including the disclaimer of warranties.
  18 * 2. Redistributions in binary form must reproduce the above copyright
  19 *    notice, this list of conditions and the following disclaimer in the
  20 *    documentation and/or other materials provided with the distribution.
  21 * 3. The name of the author may not be used to endorse or promote
  22 *    products derived from this software without specific prior
  23 *    written permission.
  24 *
  25 * ALTERNATIVELY, this product may be distributed under the terms of
  26 * the GNU General Public License, in which case the provisions of the GPL are
  27 * required INSTEAD OF the above restrictions.  (This clause is
  28 * necessary due to a potential bad interaction between the GPL and
  29 * the restrictions contained in a BSD-style copyright.)
  30 *
  31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
  33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
  34 * WHICH ARE HEREBY DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE
  35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
  37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
  42 * DAMAGE.
  43 *
  44 * DRBG Usage
  45 * ==========
  46 * The SP 800-90A DRBG allows the user to specify a personalization string
  47 * for initialization as well as an additional information string for each
  48 * random number request. The following code fragments show how a caller
  49 * uses the kernel crypto API to use the full functionality of the DRBG.
  50 *
  51 * Usage without any additional data
  52 * ---------------------------------
  53 * struct crypto_rng *drng;
  54 * int err;
  55 * char data[DATALEN];
  56 *
  57 * drng = crypto_alloc_rng(drng_name, 0, 0);
  58 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  59 * crypto_free_rng(drng);
  60 *
  61 *
  62 * Usage with personalization string during initialization
  63 * -------------------------------------------------------
  64 * struct crypto_rng *drng;
  65 * int err;
  66 * char data[DATALEN];
  67 * struct drbg_string pers;
  68 * char personalization[11] = "some-string";
  69 *
  70 * drbg_string_fill(&pers, personalization, strlen(personalization));
  71 * drng = crypto_alloc_rng(drng_name, 0, 0);
  72 * // The reset completely re-initializes the DRBG with the provided
  73 * // personalization string
  74 * err = crypto_rng_reset(drng, &personalization, strlen(personalization));
  75 * err = crypto_rng_get_bytes(drng, &data, DATALEN);
  76 * crypto_free_rng(drng);
  77 *
  78 *
  79 * Usage with additional information string during random number request
  80 * ---------------------------------------------------------------------
  81 * struct crypto_rng *drng;
  82 * int err;
  83 * char data[DATALEN];
  84 * char addtl_string[11] = "some-string";
  85 * string drbg_string addtl;
  86 *
  87 * drbg_string_fill(&addtl, addtl_string, strlen(addtl_string));
  88 * drng = crypto_alloc_rng(drng_name, 0, 0);
  89 * // The following call is a wrapper to crypto_rng_get_bytes() and returns
  90 * // the same error codes.
  91 * err = crypto_drbg_get_bytes_addtl(drng, &data, DATALEN, &addtl);
  92 * crypto_free_rng(drng);
  93 *
  94 *
  95 * Usage with personalization and additional information strings
  96 * -------------------------------------------------------------
  97 * Just mix both scenarios above.
  98 */
  99
 100#include <crypto/drbg.h>
 101#include <linux/kernel.h>
 102
 103/***************************************************************
 104 * Backend cipher definitions available to DRBG
 105 ***************************************************************/
 106
 107/*
 108 * The order of the DRBG definitions here matter: every DRBG is registered
 109 * as stdrng. Each DRBG receives an increasing cra_priority values the later
 110 * they are defined in this array (see drbg_fill_array).
 111 *
 112 * HMAC DRBGs are favored over Hash DRBGs over CTR DRBGs, and
 113 * the SHA256 / AES 256 over other ciphers. Thus, the favored
 114 * DRBGs are the latest entries in this array.
 115 */
 116static const struct drbg_core drbg_cores[] = {
 117#ifdef CONFIG_CRYPTO_DRBG_CTR
 118        {
 119                .flags = DRBG_CTR | DRBG_STRENGTH128,
 120                .statelen = 32, /* 256 bits as defined in 10.2.1 */
 121                .blocklen_bytes = 16,
 122                .cra_name = "ctr_aes128",
 123                .backend_cra_name = "aes",
 124        }, {
 125                .flags = DRBG_CTR | DRBG_STRENGTH192,
 126                .statelen = 40, /* 320 bits as defined in 10.2.1 */
 127                .blocklen_bytes = 16,
 128                .cra_name = "ctr_aes192",
 129                .backend_cra_name = "aes",
 130        }, {
 131                .flags = DRBG_CTR | DRBG_STRENGTH256,
 132                .statelen = 48, /* 384 bits as defined in 10.2.1 */
 133                .blocklen_bytes = 16,
 134                .cra_name = "ctr_aes256",
 135                .backend_cra_name = "aes",
 136        },
 137#endif /* CONFIG_CRYPTO_DRBG_CTR */
 138#ifdef CONFIG_CRYPTO_DRBG_HASH
 139        {
 140                .flags = DRBG_HASH | DRBG_STRENGTH128,
 141                .statelen = 55, /* 440 bits */
 142                .blocklen_bytes = 20,
 143                .cra_name = "sha1",
 144                .backend_cra_name = "sha1",
 145        }, {
 146                .flags = DRBG_HASH | DRBG_STRENGTH256,
 147                .statelen = 111, /* 888 bits */
 148                .blocklen_bytes = 48,
 149                .cra_name = "sha384",
 150                .backend_cra_name = "sha384",
 151        }, {
 152                .flags = DRBG_HASH | DRBG_STRENGTH256,
 153                .statelen = 111, /* 888 bits */
 154                .blocklen_bytes = 64,
 155                .cra_name = "sha512",
 156                .backend_cra_name = "sha512",
 157        }, {
 158                .flags = DRBG_HASH | DRBG_STRENGTH256,
 159                .statelen = 55, /* 440 bits */
 160                .blocklen_bytes = 32,
 161                .cra_name = "sha256",
 162                .backend_cra_name = "sha256",
 163        },
 164#endif /* CONFIG_CRYPTO_DRBG_HASH */
 165#ifdef CONFIG_CRYPTO_DRBG_HMAC
 166        {
 167                .flags = DRBG_HMAC | DRBG_STRENGTH128,
 168                .statelen = 20, /* block length of cipher */
 169                .blocklen_bytes = 20,
 170                .cra_name = "hmac_sha1",
 171                .backend_cra_name = "hmac(sha1)",
 172        }, {
 173                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 174                .statelen = 48, /* block length of cipher */
 175                .blocklen_bytes = 48,
 176                .cra_name = "hmac_sha384",
 177                .backend_cra_name = "hmac(sha384)",
 178        }, {
 179                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 180                .statelen = 64, /* block length of cipher */
 181                .blocklen_bytes = 64,
 182                .cra_name = "hmac_sha512",
 183                .backend_cra_name = "hmac(sha512)",
 184        }, {
 185                .flags = DRBG_HMAC | DRBG_STRENGTH256,
 186                .statelen = 32, /* block length of cipher */
 187                .blocklen_bytes = 32,
 188                .cra_name = "hmac_sha256",
 189                .backend_cra_name = "hmac(sha256)",
 190        },
 191#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 192};
 193
 194static int drbg_uninstantiate(struct drbg_state *drbg);
 195
 196/******************************************************************
 197 * Generic helper functions
 198 ******************************************************************/
 199
 200/*
 201 * Return strength of DRBG according to SP800-90A section 8.4
 202 *
 203 * @flags DRBG flags reference
 204 *
 205 * Return: normalized strength in *bytes* value or 32 as default
 206 *         to counter programming errors
 207 */
 208static inline unsigned short drbg_sec_strength(drbg_flag_t flags)
 209{
 210        switch (flags & DRBG_STRENGTH_MASK) {
 211        case DRBG_STRENGTH128:
 212                return 16;
 213        case DRBG_STRENGTH192:
 214                return 24;
 215        case DRBG_STRENGTH256:
 216                return 32;
 217        default:
 218                return 32;
 219        }
 220}
 221
 222/*
 223 * Convert an integer into a byte representation of this integer.
 224 * The byte representation is big-endian
 225 *
 226 * @val value to be converted
 227 * @buf buffer holding the converted integer -- caller must ensure that
 228 *      buffer size is at least 32 bit
 229 */
 230#if (defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR))
 231static inline void drbg_cpu_to_be32(__u32 val, unsigned char *buf)
 232{
 233        struct s {
 234                __be32 conv;
 235        };
 236        struct s *conversion = (struct s *) buf;
 237
 238        conversion->conv = cpu_to_be32(val);
 239}
 240#endif /* defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_CTR) */
 241
 242/******************************************************************
 243 * CTR DRBG callback functions
 244 ******************************************************************/
 245
 246#ifdef CONFIG_CRYPTO_DRBG_CTR
 247#define CRYPTO_DRBG_CTR_STRING "CTR "
 248MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes256");
 249MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes256");
 250MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes192");
 251MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes192");
 252MODULE_ALIAS_CRYPTO("drbg_pr_ctr_aes128");
 253MODULE_ALIAS_CRYPTO("drbg_nopr_ctr_aes128");
 254
 255static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
 256                                 const unsigned char *key);
 257static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
 258                          const struct drbg_string *in);
 259static int drbg_init_sym_kernel(struct drbg_state *drbg);
 260static int drbg_fini_sym_kernel(struct drbg_state *drbg);
 261static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
 262                              u8 *inbuf, u32 inbuflen,
 263                              u8 *outbuf, u32 outlen);
 264#define DRBG_CTR_NULL_LEN 128
 265
 266/* BCC function for CTR DRBG as defined in 10.4.3 */
 267static int drbg_ctr_bcc(struct drbg_state *drbg,
 268                        unsigned char *out, const unsigned char *key,
 269                        struct list_head *in)
 270{
 271        int ret = 0;
 272        struct drbg_string *curr = NULL;
 273        struct drbg_string data;
 274        short cnt = 0;
 275
 276        drbg_string_fill(&data, out, drbg_blocklen(drbg));
 277
 278        /* 10.4.3 step 2 / 4 */
 279        drbg_kcapi_symsetkey(drbg, key);
 280        list_for_each_entry(curr, in, list) {
 281                const unsigned char *pos = curr->buf;
 282                size_t len = curr->len;
 283                /* 10.4.3 step 4.1 */
 284                while (len) {
 285                        /* 10.4.3 step 4.2 */
 286                        if (drbg_blocklen(drbg) == cnt) {
 287                                cnt = 0;
 288                                ret = drbg_kcapi_sym(drbg, out, &data);
 289                                if (ret)
 290                                        return ret;
 291                        }
 292                        out[cnt] ^= *pos;
 293                        pos++;
 294                        cnt++;
 295                        len--;
 296                }
 297        }
 298        /* 10.4.3 step 4.2 for last block */
 299        if (cnt)
 300                ret = drbg_kcapi_sym(drbg, out, &data);
 301
 302        return ret;
 303}
 304
 305/*
 306 * scratchpad usage: drbg_ctr_update is interlinked with drbg_ctr_df
 307 * (and drbg_ctr_bcc, but this function does not need any temporary buffers),
 308 * the scratchpad is used as follows:
 309 * drbg_ctr_update:
 310 *      temp
 311 *              start: drbg->scratchpad
 312 *              length: drbg_statelen(drbg) + drbg_blocklen(drbg)
 313 *                      note: the cipher writing into this variable works
 314 *                      blocklen-wise. Now, when the statelen is not a multiple
 315 *                      of blocklen, the generateion loop below "spills over"
 316 *                      by at most blocklen. Thus, we need to give sufficient
 317 *                      memory.
 318 *      df_data
 319 *              start: drbg->scratchpad +
 320 *                              drbg_statelen(drbg) + drbg_blocklen(drbg)
 321 *              length: drbg_statelen(drbg)
 322 *
 323 * drbg_ctr_df:
 324 *      pad
 325 *              start: df_data + drbg_statelen(drbg)
 326 *              length: drbg_blocklen(drbg)
 327 *      iv
 328 *              start: pad + drbg_blocklen(drbg)
 329 *              length: drbg_blocklen(drbg)
 330 *      temp
 331 *              start: iv + drbg_blocklen(drbg)
 332 *              length: drbg_satelen(drbg) + drbg_blocklen(drbg)
 333 *                      note: temp is the buffer that the BCC function operates
 334 *                      on. BCC operates blockwise. drbg_statelen(drbg)
 335 *                      is sufficient when the DRBG state length is a multiple
 336 *                      of the block size. For AES192 (and maybe other ciphers)
 337 *                      this is not correct and the length for temp is
 338 *                      insufficient (yes, that also means for such ciphers,
 339 *                      the final output of all BCC rounds are truncated).
 340 *                      Therefore, add drbg_blocklen(drbg) to cover all
 341 *                      possibilities.
 342 */
 343
 344/* Derivation Function for CTR DRBG as defined in 10.4.2 */
 345static int drbg_ctr_df(struct drbg_state *drbg,
 346                       unsigned char *df_data, size_t bytes_to_return,
 347                       struct list_head *seedlist)
 348{
 349        int ret = -EFAULT;
 350        unsigned char L_N[8];
 351        /* S3 is input */
 352        struct drbg_string S1, S2, S4, cipherin;
 353        LIST_HEAD(bcc_list);
 354        unsigned char *pad = df_data + drbg_statelen(drbg);
 355        unsigned char *iv = pad + drbg_blocklen(drbg);
 356        unsigned char *temp = iv + drbg_blocklen(drbg);
 357        size_t padlen = 0;
 358        unsigned int templen = 0;
 359        /* 10.4.2 step 7 */
 360        unsigned int i = 0;
 361        /* 10.4.2 step 8 */
 362        const unsigned char *K = (unsigned char *)
 363                           "\x00\x01\x02\x03\x04\x05\x06\x07"
 364                           "\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
 365                           "\x10\x11\x12\x13\x14\x15\x16\x17"
 366                           "\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f";
 367        unsigned char *X;
 368        size_t generated_len = 0;
 369        size_t inputlen = 0;
 370        struct drbg_string *seed = NULL;
 371
 372        memset(pad, 0, drbg_blocklen(drbg));
 373        memset(iv, 0, drbg_blocklen(drbg));
 374
 375        /* 10.4.2 step 1 is implicit as we work byte-wise */
 376
 377        /* 10.4.2 step 2 */
 378        if ((512/8) < bytes_to_return)
 379                return -EINVAL;
 380
 381        /* 10.4.2 step 2 -- calculate the entire length of all input data */
 382        list_for_each_entry(seed, seedlist, list)
 383                inputlen += seed->len;
 384        drbg_cpu_to_be32(inputlen, &L_N[0]);
 385
 386        /* 10.4.2 step 3 */
 387        drbg_cpu_to_be32(bytes_to_return, &L_N[4]);
 388
 389        /* 10.4.2 step 5: length is L_N, input_string, one byte, padding */
 390        padlen = (inputlen + sizeof(L_N) + 1) % (drbg_blocklen(drbg));
 391        /* wrap the padlen appropriately */
 392        if (padlen)
 393                padlen = drbg_blocklen(drbg) - padlen;
 394        /*
 395         * pad / padlen contains the 0x80 byte and the following zero bytes.
 396         * As the calculated padlen value only covers the number of zero
 397         * bytes, this value has to be incremented by one for the 0x80 byte.
 398         */
 399        padlen++;
 400        pad[0] = 0x80;
 401
 402        /* 10.4.2 step 4 -- first fill the linked list and then order it */
 403        drbg_string_fill(&S1, iv, drbg_blocklen(drbg));
 404        list_add_tail(&S1.list, &bcc_list);
 405        drbg_string_fill(&S2, L_N, sizeof(L_N));
 406        list_add_tail(&S2.list, &bcc_list);
 407        list_splice_tail(seedlist, &bcc_list);
 408        drbg_string_fill(&S4, pad, padlen);
 409        list_add_tail(&S4.list, &bcc_list);
 410
 411        /* 10.4.2 step 9 */
 412        while (templen < (drbg_keylen(drbg) + (drbg_blocklen(drbg)))) {
 413                /*
 414                 * 10.4.2 step 9.1 - the padding is implicit as the buffer
 415                 * holds zeros after allocation -- even the increment of i
 416                 * is irrelevant as the increment remains within length of i
 417                 */
 418                drbg_cpu_to_be32(i, iv);
 419                /* 10.4.2 step 9.2 -- BCC and concatenation with temp */
 420                ret = drbg_ctr_bcc(drbg, temp + templen, K, &bcc_list);
 421                if (ret)
 422                        goto out;
 423                /* 10.4.2 step 9.3 */
 424                i++;
 425                templen += drbg_blocklen(drbg);
 426        }
 427
 428        /* 10.4.2 step 11 */
 429        X = temp + (drbg_keylen(drbg));
 430        drbg_string_fill(&cipherin, X, drbg_blocklen(drbg));
 431
 432        /* 10.4.2 step 12: overwriting of outval is implemented in next step */
 433
 434        /* 10.4.2 step 13 */
 435        drbg_kcapi_symsetkey(drbg, temp);
 436        while (generated_len < bytes_to_return) {
 437                short blocklen = 0;
 438                /*
 439                 * 10.4.2 step 13.1: the truncation of the key length is
 440                 * implicit as the key is only drbg_blocklen in size based on
 441                 * the implementation of the cipher function callback
 442                 */
 443                ret = drbg_kcapi_sym(drbg, X, &cipherin);
 444                if (ret)
 445                        goto out;
 446                blocklen = (drbg_blocklen(drbg) <
 447                                (bytes_to_return - generated_len)) ?
 448                            drbg_blocklen(drbg) :
 449                                (bytes_to_return - generated_len);
 450                /* 10.4.2 step 13.2 and 14 */
 451                memcpy(df_data + generated_len, X, blocklen);
 452                generated_len += blocklen;
 453        }
 454
 455        ret = 0;
 456
 457out:
 458        memset(iv, 0, drbg_blocklen(drbg));
 459        memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 460        memset(pad, 0, drbg_blocklen(drbg));
 461        return ret;
 462}
 463
 464/*
 465 * update function of CTR DRBG as defined in 10.2.1.2
 466 *
 467 * The reseed variable has an enhanced meaning compared to the update
 468 * functions of the other DRBGs as follows:
 469 * 0 => initial seed from initialization
 470 * 1 => reseed via drbg_seed
 471 * 2 => first invocation from drbg_ctr_update when addtl is present. In
 472 *      this case, the df_data scratchpad is not deleted so that it is
 473 *      available for another calls to prevent calling the DF function
 474 *      again.
 475 * 3 => second invocation from drbg_ctr_update. When the update function
 476 *      was called with addtl, the df_data memory already contains the
 477 *      DFed addtl information and we do not need to call DF again.
 478 */
 479static int drbg_ctr_update(struct drbg_state *drbg, struct list_head *seed,
 480                           int reseed)
 481{
 482        int ret = -EFAULT;
 483        /* 10.2.1.2 step 1 */
 484        unsigned char *temp = drbg->scratchpad;
 485        unsigned char *df_data = drbg->scratchpad + drbg_statelen(drbg) +
 486                                 drbg_blocklen(drbg);
 487
 488        if (3 > reseed)
 489                memset(df_data, 0, drbg_statelen(drbg));
 490
 491        if (!reseed) {
 492                /*
 493                 * The DRBG uses the CTR mode of the underlying AES cipher. The
 494                 * CTR mode increments the counter value after the AES operation
 495                 * but SP800-90A requires that the counter is incremented before
 496                 * the AES operation. Hence, we increment it at the time we set
 497                 * it by one.
 498                 */
 499                crypto_inc(drbg->V, drbg_blocklen(drbg));
 500
 501                ret = crypto_skcipher_setkey(drbg->ctr_handle, drbg->C,
 502                                             drbg_keylen(drbg));
 503                if (ret)
 504                        goto out;
 505        }
 506
 507        /* 10.2.1.3.2 step 2 and 10.2.1.4.2 step 2 */
 508        if (seed) {
 509                ret = drbg_ctr_df(drbg, df_data, drbg_statelen(drbg), seed);
 510                if (ret)
 511                        goto out;
 512        }
 513
 514        ret = drbg_kcapi_sym_ctr(drbg, df_data, drbg_statelen(drbg),
 515                                 temp, drbg_statelen(drbg));
 516        if (ret)
 517                return ret;
 518
 519        /* 10.2.1.2 step 5 */
 520        ret = crypto_skcipher_setkey(drbg->ctr_handle, temp,
 521                                     drbg_keylen(drbg));
 522        if (ret)
 523                goto out;
 524        /* 10.2.1.2 step 6 */
 525        memcpy(drbg->V, temp + drbg_keylen(drbg), drbg_blocklen(drbg));
 526        /* See above: increment counter by one to compensate timing of CTR op */
 527        crypto_inc(drbg->V, drbg_blocklen(drbg));
 528        ret = 0;
 529
 530out:
 531        memset(temp, 0, drbg_statelen(drbg) + drbg_blocklen(drbg));
 532        if (2 != reseed)
 533                memset(df_data, 0, drbg_statelen(drbg));
 534        return ret;
 535}
 536
 537/*
 538 * scratchpad use: drbg_ctr_update is called independently from
 539 * drbg_ctr_extract_bytes. Therefore, the scratchpad is reused
 540 */
 541/* Generate function of CTR DRBG as defined in 10.2.1.5.2 */
 542static int drbg_ctr_generate(struct drbg_state *drbg,
 543                             unsigned char *buf, unsigned int buflen,
 544                             struct list_head *addtl)
 545{
 546        int ret;
 547        int len = min_t(int, buflen, INT_MAX);
 548
 549        /* 10.2.1.5.2 step 2 */
 550        if (addtl && !list_empty(addtl)) {
 551                ret = drbg_ctr_update(drbg, addtl, 2);
 552                if (ret)
 553                        return 0;
 554        }
 555
 556        /* 10.2.1.5.2 step 4.1 */
 557        ret = drbg_kcapi_sym_ctr(drbg, drbg->ctr_null_value, DRBG_CTR_NULL_LEN,
 558                                 buf, len);
 559        if (ret)
 560                return ret;
 561
 562        /* 10.2.1.5.2 step 6 */
 563        ret = drbg_ctr_update(drbg, NULL, 3);
 564        if (ret)
 565                len = ret;
 566
 567        return len;
 568}
 569
 570static const struct drbg_state_ops drbg_ctr_ops = {
 571        .update         = drbg_ctr_update,
 572        .generate       = drbg_ctr_generate,
 573        .crypto_init    = drbg_init_sym_kernel,
 574        .crypto_fini    = drbg_fini_sym_kernel,
 575};
 576#endif /* CONFIG_CRYPTO_DRBG_CTR */
 577
 578/******************************************************************
 579 * HMAC DRBG callback functions
 580 ******************************************************************/
 581
 582#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
 583static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
 584                           const struct list_head *in);
 585static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
 586                                  const unsigned char *key);
 587static int drbg_init_hash_kernel(struct drbg_state *drbg);
 588static int drbg_fini_hash_kernel(struct drbg_state *drbg);
 589#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
 590
 591#ifdef CONFIG_CRYPTO_DRBG_HMAC
 592#define CRYPTO_DRBG_HMAC_STRING "HMAC "
 593MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha512");
 594MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha512");
 595MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha384");
 596MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha384");
 597MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha256");
 598MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha256");
 599MODULE_ALIAS_CRYPTO("drbg_pr_hmac_sha1");
 600MODULE_ALIAS_CRYPTO("drbg_nopr_hmac_sha1");
 601
 602/* update function of HMAC DRBG as defined in 10.1.2.2 */
 603static int drbg_hmac_update(struct drbg_state *drbg, struct list_head *seed,
 604                            int reseed)
 605{
 606        int ret = -EFAULT;
 607        int i = 0;
 608        struct drbg_string seed1, seed2, vdata;
 609        LIST_HEAD(seedlist);
 610        LIST_HEAD(vdatalist);
 611
 612        if (!reseed) {
 613                /* 10.1.2.3 step 2 -- memset(0) of C is implicit with kzalloc */
 614                memset(drbg->V, 1, drbg_statelen(drbg));
 615                drbg_kcapi_hmacsetkey(drbg, drbg->C);
 616        }
 617
 618        drbg_string_fill(&seed1, drbg->V, drbg_statelen(drbg));
 619        list_add_tail(&seed1.list, &seedlist);
 620        /* buffer of seed2 will be filled in for loop below with one byte */
 621        drbg_string_fill(&seed2, NULL, 1);
 622        list_add_tail(&seed2.list, &seedlist);
 623        /* input data of seed is allowed to be NULL at this point */
 624        if (seed)
 625                list_splice_tail(seed, &seedlist);
 626
 627        drbg_string_fill(&vdata, drbg->V, drbg_statelen(drbg));
 628        list_add_tail(&vdata.list, &vdatalist);
 629        for (i = 2; 0 < i; i--) {
 630                /* first round uses 0x0, second 0x1 */
 631                unsigned char prefix = DRBG_PREFIX0;
 632                if (1 == i)
 633                        prefix = DRBG_PREFIX1;
 634                /* 10.1.2.2 step 1 and 4 -- concatenation and HMAC for key */
 635                seed2.buf = &prefix;
 636                ret = drbg_kcapi_hash(drbg, drbg->C, &seedlist);
 637                if (ret)
 638                        return ret;
 639                drbg_kcapi_hmacsetkey(drbg, drbg->C);
 640
 641                /* 10.1.2.2 step 2 and 5 -- HMAC for V */
 642                ret = drbg_kcapi_hash(drbg, drbg->V, &vdatalist);
 643                if (ret)
 644                        return ret;
 645
 646                /* 10.1.2.2 step 3 */
 647                if (!seed)
 648                        return ret;
 649        }
 650
 651        return 0;
 652}
 653
 654/* generate function of HMAC DRBG as defined in 10.1.2.5 */
 655static int drbg_hmac_generate(struct drbg_state *drbg,
 656                              unsigned char *buf,
 657                              unsigned int buflen,
 658                              struct list_head *addtl)
 659{
 660        int len = 0;
 661        int ret = 0;
 662        struct drbg_string data;
 663        LIST_HEAD(datalist);
 664
 665        /* 10.1.2.5 step 2 */
 666        if (addtl && !list_empty(addtl)) {
 667                ret = drbg_hmac_update(drbg, addtl, 1);
 668                if (ret)
 669                        return ret;
 670        }
 671
 672        drbg_string_fill(&data, drbg->V, drbg_statelen(drbg));
 673        list_add_tail(&data.list, &datalist);
 674        while (len < buflen) {
 675                unsigned int outlen = 0;
 676                /* 10.1.2.5 step 4.1 */
 677                ret = drbg_kcapi_hash(drbg, drbg->V, &datalist);
 678                if (ret)
 679                        return ret;
 680                outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 681                          drbg_blocklen(drbg) : (buflen - len);
 682
 683                /* 10.1.2.5 step 4.2 */
 684                memcpy(buf + len, drbg->V, outlen);
 685                len += outlen;
 686        }
 687
 688        /* 10.1.2.5 step 6 */
 689        if (addtl && !list_empty(addtl))
 690                ret = drbg_hmac_update(drbg, addtl, 1);
 691        else
 692                ret = drbg_hmac_update(drbg, NULL, 1);
 693        if (ret)
 694                return ret;
 695
 696        return len;
 697}
 698
 699static const struct drbg_state_ops drbg_hmac_ops = {
 700        .update         = drbg_hmac_update,
 701        .generate       = drbg_hmac_generate,
 702        .crypto_init    = drbg_init_hash_kernel,
 703        .crypto_fini    = drbg_fini_hash_kernel,
 704};
 705#endif /* CONFIG_CRYPTO_DRBG_HMAC */
 706
 707/******************************************************************
 708 * Hash DRBG callback functions
 709 ******************************************************************/
 710
 711#ifdef CONFIG_CRYPTO_DRBG_HASH
 712#define CRYPTO_DRBG_HASH_STRING "HASH "
 713MODULE_ALIAS_CRYPTO("drbg_pr_sha512");
 714MODULE_ALIAS_CRYPTO("drbg_nopr_sha512");
 715MODULE_ALIAS_CRYPTO("drbg_pr_sha384");
 716MODULE_ALIAS_CRYPTO("drbg_nopr_sha384");
 717MODULE_ALIAS_CRYPTO("drbg_pr_sha256");
 718MODULE_ALIAS_CRYPTO("drbg_nopr_sha256");
 719MODULE_ALIAS_CRYPTO("drbg_pr_sha1");
 720MODULE_ALIAS_CRYPTO("drbg_nopr_sha1");
 721
 722/*
 723 * Increment buffer
 724 *
 725 * @dst buffer to increment
 726 * @add value to add
 727 */
 728static inline void drbg_add_buf(unsigned char *dst, size_t dstlen,
 729                                const unsigned char *add, size_t addlen)
 730{
 731        /* implied: dstlen > addlen */
 732        unsigned char *dstptr;
 733        const unsigned char *addptr;
 734        unsigned int remainder = 0;
 735        size_t len = addlen;
 736
 737        dstptr = dst + (dstlen-1);
 738        addptr = add + (addlen-1);
 739        while (len) {
 740                remainder += *dstptr + *addptr;
 741                *dstptr = remainder & 0xff;
 742                remainder >>= 8;
 743                len--; dstptr--; addptr--;
 744        }
 745        len = dstlen - addlen;
 746        while (len && remainder > 0) {
 747                remainder = *dstptr + 1;
 748                *dstptr = remainder & 0xff;
 749                remainder >>= 8;
 750                len--; dstptr--;
 751        }
 752}
 753
 754/*
 755 * scratchpad usage: as drbg_hash_update and drbg_hash_df are used
 756 * interlinked, the scratchpad is used as follows:
 757 * drbg_hash_update
 758 *      start: drbg->scratchpad
 759 *      length: drbg_statelen(drbg)
 760 * drbg_hash_df:
 761 *      start: drbg->scratchpad + drbg_statelen(drbg)
 762 *      length: drbg_blocklen(drbg)
 763 *
 764 * drbg_hash_process_addtl uses the scratchpad, but fully completes
 765 * before either of the functions mentioned before are invoked. Therefore,
 766 * drbg_hash_process_addtl does not need to be specifically considered.
 767 */
 768
 769/* Derivation Function for Hash DRBG as defined in 10.4.1 */
 770static int drbg_hash_df(struct drbg_state *drbg,
 771                        unsigned char *outval, size_t outlen,
 772                        struct list_head *entropylist)
 773{
 774        int ret = 0;
 775        size_t len = 0;
 776        unsigned char input[5];
 777        unsigned char *tmp = drbg->scratchpad + drbg_statelen(drbg);
 778        struct drbg_string data;
 779
 780        /* 10.4.1 step 3 */
 781        input[0] = 1;
 782        drbg_cpu_to_be32((outlen * 8), &input[1]);
 783
 784        /* 10.4.1 step 4.1 -- concatenation of data for input into hash */
 785        drbg_string_fill(&data, input, 5);
 786        list_add(&data.list, entropylist);
 787
 788        /* 10.4.1 step 4 */
 789        while (len < outlen) {
 790                short blocklen = 0;
 791                /* 10.4.1 step 4.1 */
 792                ret = drbg_kcapi_hash(drbg, tmp, entropylist);
 793                if (ret)
 794                        goto out;
 795                /* 10.4.1 step 4.2 */
 796                input[0]++;
 797                blocklen = (drbg_blocklen(drbg) < (outlen - len)) ?
 798                            drbg_blocklen(drbg) : (outlen - len);
 799                memcpy(outval + len, tmp, blocklen);
 800                len += blocklen;
 801        }
 802
 803out:
 804        memset(tmp, 0, drbg_blocklen(drbg));
 805        return ret;
 806}
 807
 808/* update function for Hash DRBG as defined in 10.1.1.2 / 10.1.1.3 */
 809static int drbg_hash_update(struct drbg_state *drbg, struct list_head *seed,
 810                            int reseed)
 811{
 812        int ret = 0;
 813        struct drbg_string data1, data2;
 814        LIST_HEAD(datalist);
 815        LIST_HEAD(datalist2);
 816        unsigned char *V = drbg->scratchpad;
 817        unsigned char prefix = DRBG_PREFIX1;
 818
 819        if (!seed)
 820                return -EINVAL;
 821
 822        if (reseed) {
 823                /* 10.1.1.3 step 1 */
 824                memcpy(V, drbg->V, drbg_statelen(drbg));
 825                drbg_string_fill(&data1, &prefix, 1);
 826                list_add_tail(&data1.list, &datalist);
 827                drbg_string_fill(&data2, V, drbg_statelen(drbg));
 828                list_add_tail(&data2.list, &datalist);
 829        }
 830        list_splice_tail(seed, &datalist);
 831
 832        /* 10.1.1.2 / 10.1.1.3 step 2 and 3 */
 833        ret = drbg_hash_df(drbg, drbg->V, drbg_statelen(drbg), &datalist);
 834        if (ret)
 835                goto out;
 836
 837        /* 10.1.1.2 / 10.1.1.3 step 4  */
 838        prefix = DRBG_PREFIX0;
 839        drbg_string_fill(&data1, &prefix, 1);
 840        list_add_tail(&data1.list, &datalist2);
 841        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 842        list_add_tail(&data2.list, &datalist2);
 843        /* 10.1.1.2 / 10.1.1.3 step 4 */
 844        ret = drbg_hash_df(drbg, drbg->C, drbg_statelen(drbg), &datalist2);
 845
 846out:
 847        memset(drbg->scratchpad, 0, drbg_statelen(drbg));
 848        return ret;
 849}
 850
 851/* processing of additional information string for Hash DRBG */
 852static int drbg_hash_process_addtl(struct drbg_state *drbg,
 853                                   struct list_head *addtl)
 854{
 855        int ret = 0;
 856        struct drbg_string data1, data2;
 857        LIST_HEAD(datalist);
 858        unsigned char prefix = DRBG_PREFIX2;
 859
 860        /* 10.1.1.4 step 2 */
 861        if (!addtl || list_empty(addtl))
 862                return 0;
 863
 864        /* 10.1.1.4 step 2a */
 865        drbg_string_fill(&data1, &prefix, 1);
 866        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 867        list_add_tail(&data1.list, &datalist);
 868        list_add_tail(&data2.list, &datalist);
 869        list_splice_tail(addtl, &datalist);
 870        ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
 871        if (ret)
 872                goto out;
 873
 874        /* 10.1.1.4 step 2b */
 875        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 876                     drbg->scratchpad, drbg_blocklen(drbg));
 877
 878out:
 879        memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 880        return ret;
 881}
 882
 883/* Hashgen defined in 10.1.1.4 */
 884static int drbg_hash_hashgen(struct drbg_state *drbg,
 885                             unsigned char *buf,
 886                             unsigned int buflen)
 887{
 888        int len = 0;
 889        int ret = 0;
 890        unsigned char *src = drbg->scratchpad;
 891        unsigned char *dst = drbg->scratchpad + drbg_statelen(drbg);
 892        struct drbg_string data;
 893        LIST_HEAD(datalist);
 894
 895        /* 10.1.1.4 step hashgen 2 */
 896        memcpy(src, drbg->V, drbg_statelen(drbg));
 897
 898        drbg_string_fill(&data, src, drbg_statelen(drbg));
 899        list_add_tail(&data.list, &datalist);
 900        while (len < buflen) {
 901                unsigned int outlen = 0;
 902                /* 10.1.1.4 step hashgen 4.1 */
 903                ret = drbg_kcapi_hash(drbg, dst, &datalist);
 904                if (ret) {
 905                        len = ret;
 906                        goto out;
 907                }
 908                outlen = (drbg_blocklen(drbg) < (buflen - len)) ?
 909                          drbg_blocklen(drbg) : (buflen - len);
 910                /* 10.1.1.4 step hashgen 4.2 */
 911                memcpy(buf + len, dst, outlen);
 912                len += outlen;
 913                /* 10.1.1.4 hashgen step 4.3 */
 914                if (len < buflen)
 915                        crypto_inc(src, drbg_statelen(drbg));
 916        }
 917
 918out:
 919        memset(drbg->scratchpad, 0,
 920               (drbg_statelen(drbg) + drbg_blocklen(drbg)));
 921        return len;
 922}
 923
 924/* generate function for Hash DRBG as defined in  10.1.1.4 */
 925static int drbg_hash_generate(struct drbg_state *drbg,
 926                              unsigned char *buf, unsigned int buflen,
 927                              struct list_head *addtl)
 928{
 929        int len = 0;
 930        int ret = 0;
 931        union {
 932                unsigned char req[8];
 933                __be64 req_int;
 934        } u;
 935        unsigned char prefix = DRBG_PREFIX3;
 936        struct drbg_string data1, data2;
 937        LIST_HEAD(datalist);
 938
 939        /* 10.1.1.4 step 2 */
 940        ret = drbg_hash_process_addtl(drbg, addtl);
 941        if (ret)
 942                return ret;
 943        /* 10.1.1.4 step 3 */
 944        len = drbg_hash_hashgen(drbg, buf, buflen);
 945
 946        /* this is the value H as documented in 10.1.1.4 */
 947        /* 10.1.1.4 step 4 */
 948        drbg_string_fill(&data1, &prefix, 1);
 949        list_add_tail(&data1.list, &datalist);
 950        drbg_string_fill(&data2, drbg->V, drbg_statelen(drbg));
 951        list_add_tail(&data2.list, &datalist);
 952        ret = drbg_kcapi_hash(drbg, drbg->scratchpad, &datalist);
 953        if (ret) {
 954                len = ret;
 955                goto out;
 956        }
 957
 958        /* 10.1.1.4 step 5 */
 959        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 960                     drbg->scratchpad, drbg_blocklen(drbg));
 961        drbg_add_buf(drbg->V, drbg_statelen(drbg),
 962                     drbg->C, drbg_statelen(drbg));
 963        u.req_int = cpu_to_be64(drbg->reseed_ctr);
 964        drbg_add_buf(drbg->V, drbg_statelen(drbg), u.req, 8);
 965
 966out:
 967        memset(drbg->scratchpad, 0, drbg_blocklen(drbg));
 968        return len;
 969}
 970
 971/*
 972 * scratchpad usage: as update and generate are used isolated, both
 973 * can use the scratchpad
 974 */
 975static const struct drbg_state_ops drbg_hash_ops = {
 976        .update         = drbg_hash_update,
 977        .generate       = drbg_hash_generate,
 978        .crypto_init    = drbg_init_hash_kernel,
 979        .crypto_fini    = drbg_fini_hash_kernel,
 980};
 981#endif /* CONFIG_CRYPTO_DRBG_HASH */
 982
 983/******************************************************************
 984 * Functions common for DRBG implementations
 985 ******************************************************************/
 986
 987static inline int __drbg_seed(struct drbg_state *drbg, struct list_head *seed,
 988                              int reseed)
 989{
 990        int ret = drbg->d_ops->update(drbg, seed, reseed);
 991
 992        if (ret)
 993                return ret;
 994
 995        drbg->seeded = true;
 996        /* 10.1.1.2 / 10.1.1.3 step 5 */
 997        drbg->reseed_ctr = 1;
 998
 999        return ret;
1000}
1001
1002static void drbg_async_seed(struct work_struct *work)
1003{
1004        struct drbg_string data;
1005        LIST_HEAD(seedlist);
1006        struct drbg_state *drbg = container_of(work, struct drbg_state,
1007                                               seed_work);
1008        unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1009        unsigned char entropy[32];
1010
1011        BUG_ON(!entropylen);
1012        BUG_ON(entropylen > sizeof(entropy));
1013        get_random_bytes(entropy, entropylen);
1014
1015        drbg_string_fill(&data, entropy, entropylen);
1016        list_add_tail(&data.list, &seedlist);
1017
1018        mutex_lock(&drbg->drbg_mutex);
1019
1020        /* If nonblocking pool is initialized, deactivate Jitter RNG */
1021        crypto_free_rng(drbg->jent);
1022        drbg->jent = NULL;
1023
1024        /* Set seeded to false so that if __drbg_seed fails the
1025         * next generate call will trigger a reseed.
1026         */
1027        drbg->seeded = false;
1028
1029        __drbg_seed(drbg, &seedlist, true);
1030
1031        if (drbg->seeded)
1032                drbg->reseed_threshold = drbg_max_requests(drbg);
1033
1034        mutex_unlock(&drbg->drbg_mutex);
1035
1036        memzero_explicit(entropy, entropylen);
1037}
1038
1039/*
1040 * Seeding or reseeding of the DRBG
1041 *
1042 * @drbg: DRBG state struct
1043 * @pers: personalization / additional information buffer
1044 * @reseed: 0 for initial seed process, 1 for reseeding
1045 *
1046 * return:
1047 *      0 on success
1048 *      error value otherwise
1049 */
1050static int drbg_seed(struct drbg_state *drbg, struct drbg_string *pers,
1051                     bool reseed)
1052{
1053        int ret;
1054        unsigned char entropy[((32 + 16) * 2)];
1055        unsigned int entropylen = drbg_sec_strength(drbg->core->flags);
1056        struct drbg_string data1;
1057        LIST_HEAD(seedlist);
1058
1059        /* 9.1 / 9.2 / 9.3.1 step 3 */
1060        if (pers && pers->len > (drbg_max_addtl(drbg))) {
1061                pr_devel("DRBG: personalization string too long %zu\n",
1062                         pers->len);
1063                return -EINVAL;
1064        }
1065
1066        if (list_empty(&drbg->test_data.list)) {
1067                drbg_string_fill(&data1, drbg->test_data.buf,
1068                                 drbg->test_data.len);
1069                pr_devel("DRBG: using test entropy\n");
1070        } else {
1071                /*
1072                 * Gather entropy equal to the security strength of the DRBG.
1073                 * With a derivation function, a nonce is required in addition
1074                 * to the entropy. A nonce must be at least 1/2 of the security
1075                 * strength of the DRBG in size. Thus, entropy + nonce is 3/2
1076                 * of the strength. The consideration of a nonce is only
1077                 * applicable during initial seeding.
1078                 */
1079                BUG_ON(!entropylen);
1080                if (!reseed)
1081                        entropylen = ((entropylen + 1) / 2) * 3;
1082                BUG_ON((entropylen * 2) > sizeof(entropy));
1083
1084                /* Get seed from in-kernel /dev/urandom */
1085                get_random_bytes(entropy, entropylen);
1086
1087                if (!drbg->jent) {
1088                        drbg_string_fill(&data1, entropy, entropylen);
1089                        pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1090                                 entropylen);
1091                } else {
1092                        /* Get seed from Jitter RNG */
1093                        ret = crypto_rng_get_bytes(drbg->jent,
1094                                                   entropy + entropylen,
1095                                                   entropylen);
1096                        if (ret) {
1097                                pr_devel("DRBG: jent failed with %d\n", ret);
1098                                return ret;
1099                        }
1100
1101                        drbg_string_fill(&data1, entropy, entropylen * 2);
1102                        pr_devel("DRBG: (re)seeding with %u bytes of entropy\n",
1103                                 entropylen * 2);
1104                }
1105        }
1106        list_add_tail(&data1.list, &seedlist);
1107
1108        /*
1109         * concatenation of entropy with personalization str / addtl input)
1110         * the variable pers is directly handed in by the caller, so check its
1111         * contents whether it is appropriate
1112         */
1113        if (pers && pers->buf && 0 < pers->len) {
1114                list_add_tail(&pers->list, &seedlist);
1115                pr_devel("DRBG: using personalization string\n");
1116        }
1117
1118        if (!reseed) {
1119                memset(drbg->V, 0, drbg_statelen(drbg));
1120                memset(drbg->C, 0, drbg_statelen(drbg));
1121        }
1122
1123        ret = __drbg_seed(drbg, &seedlist, reseed);
1124
1125        memzero_explicit(entropy, entropylen * 2);
1126
1127        return ret;
1128}
1129
1130/* Free all substructures in a DRBG state without the DRBG state structure */
1131static inline void drbg_dealloc_state(struct drbg_state *drbg)
1132{
1133        if (!drbg)
1134                return;
1135        kzfree(drbg->V);
1136        drbg->Vbuf = NULL;
1137        kzfree(drbg->C);
1138        drbg->Cbuf = NULL;
1139        kzfree(drbg->scratchpadbuf);
1140        drbg->scratchpadbuf = NULL;
1141        drbg->reseed_ctr = 0;
1142        drbg->d_ops = NULL;
1143        drbg->core = NULL;
1144}
1145
1146/*
1147 * Allocate all sub-structures for a DRBG state.
1148 * The DRBG state structure must already be allocated.
1149 */
1150static inline int drbg_alloc_state(struct drbg_state *drbg)
1151{
1152        int ret = -ENOMEM;
1153        unsigned int sb_size = 0;
1154
1155        switch (drbg->core->flags & DRBG_TYPE_MASK) {
1156#ifdef CONFIG_CRYPTO_DRBG_HMAC
1157        case DRBG_HMAC:
1158                drbg->d_ops = &drbg_hmac_ops;
1159                break;
1160#endif /* CONFIG_CRYPTO_DRBG_HMAC */
1161#ifdef CONFIG_CRYPTO_DRBG_HASH
1162        case DRBG_HASH:
1163                drbg->d_ops = &drbg_hash_ops;
1164                break;
1165#endif /* CONFIG_CRYPTO_DRBG_HASH */
1166#ifdef CONFIG_CRYPTO_DRBG_CTR
1167        case DRBG_CTR:
1168                drbg->d_ops = &drbg_ctr_ops;
1169                break;
1170#endif /* CONFIG_CRYPTO_DRBG_CTR */
1171        default:
1172                ret = -EOPNOTSUPP;
1173                goto err;
1174        }
1175
1176        ret = drbg->d_ops->crypto_init(drbg);
1177        if (ret < 0)
1178                goto err;
1179
1180        drbg->Vbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1181        if (!drbg->Vbuf)
1182                goto fini;
1183        drbg->V = PTR_ALIGN(drbg->Vbuf, ret + 1);
1184        drbg->Cbuf = kmalloc(drbg_statelen(drbg) + ret, GFP_KERNEL);
1185        if (!drbg->Cbuf)
1186                goto fini;
1187        drbg->C = PTR_ALIGN(drbg->Cbuf, ret + 1);
1188        /* scratchpad is only generated for CTR and Hash */
1189        if (drbg->core->flags & DRBG_HMAC)
1190                sb_size = 0;
1191        else if (drbg->core->flags & DRBG_CTR)
1192                sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg) + /* temp */
1193                          drbg_statelen(drbg) + /* df_data */
1194                          drbg_blocklen(drbg) + /* pad */
1195                          drbg_blocklen(drbg) + /* iv */
1196                          drbg_statelen(drbg) + drbg_blocklen(drbg); /* temp */
1197        else
1198                sb_size = drbg_statelen(drbg) + drbg_blocklen(drbg);
1199
1200        if (0 < sb_size) {
1201                drbg->scratchpadbuf = kzalloc(sb_size + ret, GFP_KERNEL);
1202                if (!drbg->scratchpadbuf)
1203                        goto fini;
1204                drbg->scratchpad = PTR_ALIGN(drbg->scratchpadbuf, ret + 1);
1205        }
1206
1207        return 0;
1208
1209fini:
1210        drbg->d_ops->crypto_fini(drbg);
1211err:
1212        drbg_dealloc_state(drbg);
1213        return ret;
1214}
1215
1216/*************************************************************************
1217 * DRBG interface functions
1218 *************************************************************************/
1219
1220/*
1221 * DRBG generate function as required by SP800-90A - this function
1222 * generates random numbers
1223 *
1224 * @drbg DRBG state handle
1225 * @buf Buffer where to store the random numbers -- the buffer must already
1226 *      be pre-allocated by caller
1227 * @buflen Length of output buffer - this value defines the number of random
1228 *         bytes pulled from DRBG
1229 * @addtl Additional input that is mixed into state, may be NULL -- note
1230 *        the entropy is pulled by the DRBG internally unconditionally
1231 *        as defined in SP800-90A. The additional input is mixed into
1232 *        the state in addition to the pulled entropy.
1233 *
1234 * return: 0 when all bytes are generated; < 0 in case of an error
1235 */
1236static int drbg_generate(struct drbg_state *drbg,
1237                         unsigned char *buf, unsigned int buflen,
1238                         struct drbg_string *addtl)
1239{
1240        int len = 0;
1241        LIST_HEAD(addtllist);
1242
1243        if (!drbg->core) {
1244                pr_devel("DRBG: not yet seeded\n");
1245                return -EINVAL;
1246        }
1247        if (0 == buflen || !buf) {
1248                pr_devel("DRBG: no output buffer provided\n");
1249                return -EINVAL;
1250        }
1251        if (addtl && NULL == addtl->buf && 0 < addtl->len) {
1252                pr_devel("DRBG: wrong format of additional information\n");
1253                return -EINVAL;
1254        }
1255
1256        /* 9.3.1 step 2 */
1257        len = -EINVAL;
1258        if (buflen > (drbg_max_request_bytes(drbg))) {
1259                pr_devel("DRBG: requested random numbers too large %u\n",
1260                         buflen);
1261                goto err;
1262        }
1263
1264        /* 9.3.1 step 3 is implicit with the chosen DRBG */
1265
1266        /* 9.3.1 step 4 */
1267        if (addtl && addtl->len > (drbg_max_addtl(drbg))) {
1268                pr_devel("DRBG: additional information string too long %zu\n",
1269                         addtl->len);
1270                goto err;
1271        }
1272        /* 9.3.1 step 5 is implicit with the chosen DRBG */
1273
1274        /*
1275         * 9.3.1 step 6 and 9 supplemented by 9.3.2 step c is implemented
1276         * here. The spec is a bit convoluted here, we make it simpler.
1277         */
1278        if (drbg->reseed_threshold < drbg->reseed_ctr)
1279                drbg->seeded = false;
1280
1281        if (drbg->pr || !drbg->seeded) {
1282                pr_devel("DRBG: reseeding before generation (prediction "
1283                         "resistance: %s, state %s)\n",
1284                         drbg->pr ? "true" : "false",
1285                         drbg->seeded ? "seeded" : "unseeded");
1286                /* 9.3.1 steps 7.1 through 7.3 */
1287                len = drbg_seed(drbg, addtl, true);
1288                if (len)
1289                        goto err;
1290                /* 9.3.1 step 7.4 */
1291                addtl = NULL;
1292        }
1293
1294        if (addtl && 0 < addtl->len)
1295                list_add_tail(&addtl->list, &addtllist);
1296        /* 9.3.1 step 8 and 10 */
1297        len = drbg->d_ops->generate(drbg, buf, buflen, &addtllist);
1298
1299        /* 10.1.1.4 step 6, 10.1.2.5 step 7, 10.2.1.5.2 step 7 */
1300        drbg->reseed_ctr++;
1301        if (0 >= len)
1302                goto err;
1303
1304        /*
1305         * Section 11.3.3 requires to re-perform self tests after some
1306         * generated random numbers. The chosen value after which self
1307         * test is performed is arbitrary, but it should be reasonable.
1308         * However, we do not perform the self tests because of the following
1309         * reasons: it is mathematically impossible that the initial self tests
1310         * were successfully and the following are not. If the initial would
1311         * pass and the following would not, the kernel integrity is violated.
1312         * In this case, the entire kernel operation is questionable and it
1313         * is unlikely that the integrity violation only affects the
1314         * correct operation of the DRBG.
1315         *
1316         * Albeit the following code is commented out, it is provided in
1317         * case somebody has a need to implement the test of 11.3.3.
1318         */
1319#if 0
1320        if (drbg->reseed_ctr && !(drbg->reseed_ctr % 4096)) {
1321                int err = 0;
1322                pr_devel("DRBG: start to perform self test\n");
1323                if (drbg->core->flags & DRBG_HMAC)
1324                        err = alg_test("drbg_pr_hmac_sha256",
1325                                       "drbg_pr_hmac_sha256", 0, 0);
1326                else if (drbg->core->flags & DRBG_CTR)
1327                        err = alg_test("drbg_pr_ctr_aes128",
1328                                       "drbg_pr_ctr_aes128", 0, 0);
1329                else
1330                        err = alg_test("drbg_pr_sha256",
1331                                       "drbg_pr_sha256", 0, 0);
1332                if (err) {
1333                        pr_err("DRBG: periodical self test failed\n");
1334                        /*
1335                         * uninstantiate implies that from now on, only errors
1336                         * are returned when reusing this DRBG cipher handle
1337                         */
1338                        drbg_uninstantiate(drbg);
1339                        return 0;
1340                } else {
1341                        pr_devel("DRBG: self test successful\n");
1342                }
1343        }
1344#endif
1345
1346        /*
1347         * All operations were successful, return 0 as mandated by
1348         * the kernel crypto API interface.
1349         */
1350        len = 0;
1351err:
1352        return len;
1353}
1354
1355/*
1356 * Wrapper around drbg_generate which can pull arbitrary long strings
1357 * from the DRBG without hitting the maximum request limitation.
1358 *
1359 * Parameters: see drbg_generate
1360 * Return codes: see drbg_generate -- if one drbg_generate request fails,
1361 *               the entire drbg_generate_long request fails
1362 */
1363static int drbg_generate_long(struct drbg_state *drbg,
1364                              unsigned char *buf, unsigned int buflen,
1365                              struct drbg_string *addtl)
1366{
1367        unsigned int len = 0;
1368        unsigned int slice = 0;
1369        do {
1370                int err = 0;
1371                unsigned int chunk = 0;
1372                slice = ((buflen - len) / drbg_max_request_bytes(drbg));
1373                chunk = slice ? drbg_max_request_bytes(drbg) : (buflen - len);
1374                mutex_lock(&drbg->drbg_mutex);
1375                err = drbg_generate(drbg, buf + len, chunk, addtl);
1376                mutex_unlock(&drbg->drbg_mutex);
1377                if (0 > err)
1378                        return err;
1379                len += chunk;
1380        } while (slice > 0 && (len < buflen));
1381        return 0;
1382}
1383
1384static void drbg_schedule_async_seed(struct random_ready_callback *rdy)
1385{
1386        struct drbg_state *drbg = container_of(rdy, struct drbg_state,
1387                                               random_ready);
1388
1389        schedule_work(&drbg->seed_work);
1390}
1391
1392static int drbg_prepare_hrng(struct drbg_state *drbg)
1393{
1394        int err;
1395
1396        /* We do not need an HRNG in test mode. */
1397        if (list_empty(&drbg->test_data.list))
1398                return 0;
1399
1400        INIT_WORK(&drbg->seed_work, drbg_async_seed);
1401
1402        drbg->random_ready.owner = THIS_MODULE;
1403        drbg->random_ready.func = drbg_schedule_async_seed;
1404
1405        err = add_random_ready_callback(&drbg->random_ready);
1406
1407        switch (err) {
1408        case 0:
1409                break;
1410
1411        case -EALREADY:
1412                err = 0;
1413                /* fall through */
1414
1415        default:
1416                drbg->random_ready.func = NULL;
1417                return err;
1418        }
1419
1420        drbg->jent = crypto_alloc_rng("jitterentropy_rng", 0, 0);
1421
1422        /*
1423         * Require frequent reseeds until the seed source is fully
1424         * initialized.
1425         */
1426        drbg->reseed_threshold = 50;
1427
1428        return err;
1429}
1430
1431/*
1432 * DRBG instantiation function as required by SP800-90A - this function
1433 * sets up the DRBG handle, performs the initial seeding and all sanity
1434 * checks required by SP800-90A
1435 *
1436 * @drbg memory of state -- if NULL, new memory is allocated
1437 * @pers Personalization string that is mixed into state, may be NULL -- note
1438 *       the entropy is pulled by the DRBG internally unconditionally
1439 *       as defined in SP800-90A. The additional input is mixed into
1440 *       the state in addition to the pulled entropy.
1441 * @coreref reference to core
1442 * @pr prediction resistance enabled
1443 *
1444 * return
1445 *      0 on success
1446 *      error value otherwise
1447 */
1448static int drbg_instantiate(struct drbg_state *drbg, struct drbg_string *pers,
1449                            int coreref, bool pr)
1450{
1451        int ret;
1452        bool reseed = true;
1453
1454        pr_devel("DRBG: Initializing DRBG core %d with prediction resistance "
1455                 "%s\n", coreref, pr ? "enabled" : "disabled");
1456        mutex_lock(&drbg->drbg_mutex);
1457
1458        /* 9.1 step 1 is implicit with the selected DRBG type */
1459
1460        /*
1461         * 9.1 step 2 is implicit as caller can select prediction resistance
1462         * and the flag is copied into drbg->flags --
1463         * all DRBG types support prediction resistance
1464         */
1465
1466        /* 9.1 step 4 is implicit in  drbg_sec_strength */
1467
1468        if (!drbg->core) {
1469                drbg->core = &drbg_cores[coreref];
1470                drbg->pr = pr;
1471                drbg->seeded = false;
1472                drbg->reseed_threshold = drbg_max_requests(drbg);
1473
1474                ret = drbg_alloc_state(drbg);
1475                if (ret)
1476                        goto unlock;
1477
1478                ret = drbg_prepare_hrng(drbg);
1479                if (ret)
1480                        goto free_everything;
1481
1482                if (IS_ERR(drbg->jent)) {
1483                        ret = PTR_ERR(drbg->jent);
1484                        drbg->jent = NULL;
1485                        if (fips_enabled || ret != -ENOENT)
1486                                goto free_everything;
1487                        pr_info("DRBG: Continuing without Jitter RNG\n");
1488                }
1489
1490                reseed = false;
1491        }
1492
1493        ret = drbg_seed(drbg, pers, reseed);
1494
1495        if (ret && !reseed)
1496                goto free_everything;
1497
1498        mutex_unlock(&drbg->drbg_mutex);
1499        return ret;
1500
1501unlock:
1502        mutex_unlock(&drbg->drbg_mutex);
1503        return ret;
1504
1505free_everything:
1506        mutex_unlock(&drbg->drbg_mutex);
1507        drbg_uninstantiate(drbg);
1508        return ret;
1509}
1510
1511/*
1512 * DRBG uninstantiate function as required by SP800-90A - this function
1513 * frees all buffers and the DRBG handle
1514 *
1515 * @drbg DRBG state handle
1516 *
1517 * return
1518 *      0 on success
1519 */
1520static int drbg_uninstantiate(struct drbg_state *drbg)
1521{
1522        if (drbg->random_ready.func) {
1523                del_random_ready_callback(&drbg->random_ready);
1524                cancel_work_sync(&drbg->seed_work);
1525                crypto_free_rng(drbg->jent);
1526                drbg->jent = NULL;
1527        }
1528
1529        if (drbg->d_ops)
1530                drbg->d_ops->crypto_fini(drbg);
1531        drbg_dealloc_state(drbg);
1532        /* no scrubbing of test_data -- this shall survive an uninstantiate */
1533        return 0;
1534}
1535
1536/*
1537 * Helper function for setting the test data in the DRBG
1538 *
1539 * @drbg DRBG state handle
1540 * @data test data
1541 * @len test data length
1542 */
1543static void drbg_kcapi_set_entropy(struct crypto_rng *tfm,
1544                                   const u8 *data, unsigned int len)
1545{
1546        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1547
1548        mutex_lock(&drbg->drbg_mutex);
1549        drbg_string_fill(&drbg->test_data, data, len);
1550        mutex_unlock(&drbg->drbg_mutex);
1551}
1552
1553/***************************************************************
1554 * Kernel crypto API cipher invocations requested by DRBG
1555 ***************************************************************/
1556
1557#if defined(CONFIG_CRYPTO_DRBG_HASH) || defined(CONFIG_CRYPTO_DRBG_HMAC)
1558struct sdesc {
1559        struct shash_desc shash;
1560        char ctx[];
1561};
1562
1563static int drbg_init_hash_kernel(struct drbg_state *drbg)
1564{
1565        struct sdesc *sdesc;
1566        struct crypto_shash *tfm;
1567
1568        tfm = crypto_alloc_shash(drbg->core->backend_cra_name, 0, 0);
1569        if (IS_ERR(tfm)) {
1570                pr_info("DRBG: could not allocate digest TFM handle: %s\n",
1571                                drbg->core->backend_cra_name);
1572                return PTR_ERR(tfm);
1573        }
1574        BUG_ON(drbg_blocklen(drbg) != crypto_shash_digestsize(tfm));
1575        sdesc = kzalloc(sizeof(struct shash_desc) + crypto_shash_descsize(tfm),
1576                        GFP_KERNEL);
1577        if (!sdesc) {
1578                crypto_free_shash(tfm);
1579                return -ENOMEM;
1580        }
1581
1582        sdesc->shash.tfm = tfm;
1583        sdesc->shash.flags = 0;
1584        drbg->priv_data = sdesc;
1585
1586        return crypto_shash_alignmask(tfm);
1587}
1588
1589static int drbg_fini_hash_kernel(struct drbg_state *drbg)
1590{
1591        struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1592        if (sdesc) {
1593                crypto_free_shash(sdesc->shash.tfm);
1594                kzfree(sdesc);
1595        }
1596        drbg->priv_data = NULL;
1597        return 0;
1598}
1599
1600static void drbg_kcapi_hmacsetkey(struct drbg_state *drbg,
1601                                  const unsigned char *key)
1602{
1603        struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1604
1605        crypto_shash_setkey(sdesc->shash.tfm, key, drbg_statelen(drbg));
1606}
1607
1608static int drbg_kcapi_hash(struct drbg_state *drbg, unsigned char *outval,
1609                           const struct list_head *in)
1610{
1611        struct sdesc *sdesc = (struct sdesc *)drbg->priv_data;
1612        struct drbg_string *input = NULL;
1613
1614        crypto_shash_init(&sdesc->shash);
1615        list_for_each_entry(input, in, list)
1616                crypto_shash_update(&sdesc->shash, input->buf, input->len);
1617        return crypto_shash_final(&sdesc->shash, outval);
1618}
1619#endif /* (CONFIG_CRYPTO_DRBG_HASH || CONFIG_CRYPTO_DRBG_HMAC) */
1620
1621#ifdef CONFIG_CRYPTO_DRBG_CTR
1622static int drbg_fini_sym_kernel(struct drbg_state *drbg)
1623{
1624        struct crypto_cipher *tfm =
1625                (struct crypto_cipher *)drbg->priv_data;
1626        if (tfm)
1627                crypto_free_cipher(tfm);
1628        drbg->priv_data = NULL;
1629
1630        if (drbg->ctr_handle)
1631                crypto_free_skcipher(drbg->ctr_handle);
1632        drbg->ctr_handle = NULL;
1633
1634        if (drbg->ctr_req)
1635                skcipher_request_free(drbg->ctr_req);
1636        drbg->ctr_req = NULL;
1637
1638        kfree(drbg->ctr_null_value_buf);
1639        drbg->ctr_null_value = NULL;
1640
1641        return 0;
1642}
1643
1644static void drbg_skcipher_cb(struct crypto_async_request *req, int error)
1645{
1646        struct drbg_state *drbg = req->data;
1647
1648        if (error == -EINPROGRESS)
1649                return;
1650        drbg->ctr_async_err = error;
1651        complete(&drbg->ctr_completion);
1652}
1653
1654static int drbg_init_sym_kernel(struct drbg_state *drbg)
1655{
1656        struct crypto_cipher *tfm;
1657        struct crypto_skcipher *sk_tfm;
1658        struct skcipher_request *req;
1659        unsigned int alignmask;
1660        char ctr_name[CRYPTO_MAX_ALG_NAME];
1661
1662        tfm = crypto_alloc_cipher(drbg->core->backend_cra_name, 0, 0);
1663        if (IS_ERR(tfm)) {
1664                pr_info("DRBG: could not allocate cipher TFM handle: %s\n",
1665                                drbg->core->backend_cra_name);
1666                return PTR_ERR(tfm);
1667        }
1668        BUG_ON(drbg_blocklen(drbg) != crypto_cipher_blocksize(tfm));
1669        drbg->priv_data = tfm;
1670
1671        if (snprintf(ctr_name, CRYPTO_MAX_ALG_NAME, "ctr(%s)",
1672            drbg->core->backend_cra_name) >= CRYPTO_MAX_ALG_NAME) {
1673                drbg_fini_sym_kernel(drbg);
1674                return -EINVAL;
1675        }
1676        sk_tfm = crypto_alloc_skcipher(ctr_name, 0, 0);
1677        if (IS_ERR(sk_tfm)) {
1678                pr_info("DRBG: could not allocate CTR cipher TFM handle: %s\n",
1679                                ctr_name);
1680                drbg_fini_sym_kernel(drbg);
1681                return PTR_ERR(sk_tfm);
1682        }
1683        drbg->ctr_handle = sk_tfm;
1684
1685        req = skcipher_request_alloc(sk_tfm, GFP_KERNEL);
1686        if (!req) {
1687                pr_info("DRBG: could not allocate request queue\n");
1688                drbg_fini_sym_kernel(drbg);
1689                return -ENOMEM;
1690        }
1691        drbg->ctr_req = req;
1692        skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
1693                                        drbg_skcipher_cb, drbg);
1694
1695        alignmask = crypto_skcipher_alignmask(sk_tfm);
1696        drbg->ctr_null_value_buf = kzalloc(DRBG_CTR_NULL_LEN + alignmask,
1697                                           GFP_KERNEL);
1698        if (!drbg->ctr_null_value_buf) {
1699                drbg_fini_sym_kernel(drbg);
1700                return -ENOMEM;
1701        }
1702        drbg->ctr_null_value = (u8 *)PTR_ALIGN(drbg->ctr_null_value_buf,
1703                                               alignmask + 1);
1704
1705        return alignmask;
1706}
1707
1708static void drbg_kcapi_symsetkey(struct drbg_state *drbg,
1709                                 const unsigned char *key)
1710{
1711        struct crypto_cipher *tfm =
1712                (struct crypto_cipher *)drbg->priv_data;
1713
1714        crypto_cipher_setkey(tfm, key, (drbg_keylen(drbg)));
1715}
1716
1717static int drbg_kcapi_sym(struct drbg_state *drbg, unsigned char *outval,
1718                          const struct drbg_string *in)
1719{
1720        struct crypto_cipher *tfm =
1721                (struct crypto_cipher *)drbg->priv_data;
1722
1723        /* there is only component in *in */
1724        BUG_ON(in->len < drbg_blocklen(drbg));
1725        crypto_cipher_encrypt_one(tfm, outval, in->buf);
1726        return 0;
1727}
1728
1729static int drbg_kcapi_sym_ctr(struct drbg_state *drbg,
1730                              u8 *inbuf, u32 inlen,
1731                              u8 *outbuf, u32 outlen)
1732{
1733        struct scatterlist sg_in;
1734
1735        sg_init_one(&sg_in, inbuf, inlen);
1736
1737        while (outlen) {
1738                u32 cryptlen = min_t(u32, inlen, outlen);
1739                struct scatterlist sg_out;
1740                int ret;
1741
1742                sg_init_one(&sg_out, outbuf, cryptlen);
1743                skcipher_request_set_crypt(drbg->ctr_req, &sg_in, &sg_out,
1744                                           cryptlen, drbg->V);
1745                ret = crypto_skcipher_encrypt(drbg->ctr_req);
1746                switch (ret) {
1747                case 0:
1748                        break;
1749                case -EINPROGRESS:
1750                case -EBUSY:
1751                        ret = wait_for_completion_interruptible(
1752                                &drbg->ctr_completion);
1753                        if (!ret && !drbg->ctr_async_err) {
1754                                reinit_completion(&drbg->ctr_completion);
1755                                break;
1756                        }
1757                default:
1758                        return ret;
1759                }
1760                init_completion(&drbg->ctr_completion);
1761
1762                outlen -= cryptlen;
1763        }
1764
1765        return 0;
1766}
1767#endif /* CONFIG_CRYPTO_DRBG_CTR */
1768
1769/***************************************************************
1770 * Kernel crypto API interface to register DRBG
1771 ***************************************************************/
1772
1773/*
1774 * Look up the DRBG flags by given kernel crypto API cra_name
1775 * The code uses the drbg_cores definition to do this
1776 *
1777 * @cra_name kernel crypto API cra_name
1778 * @coreref reference to integer which is filled with the pointer to
1779 *  the applicable core
1780 * @pr reference for setting prediction resistance
1781 *
1782 * return: flags
1783 */
1784static inline void drbg_convert_tfm_core(const char *cra_driver_name,
1785                                         int *coreref, bool *pr)
1786{
1787        int i = 0;
1788        size_t start = 0;
1789        int len = 0;
1790
1791        *pr = true;
1792        /* disassemble the names */
1793        if (!memcmp(cra_driver_name, "drbg_nopr_", 10)) {
1794                start = 10;
1795                *pr = false;
1796        } else if (!memcmp(cra_driver_name, "drbg_pr_", 8)) {
1797                start = 8;
1798        } else {
1799                return;
1800        }
1801
1802        /* remove the first part */
1803        len = strlen(cra_driver_name) - start;
1804        for (i = 0; ARRAY_SIZE(drbg_cores) > i; i++) {
1805                if (!memcmp(cra_driver_name + start, drbg_cores[i].cra_name,
1806                            len)) {
1807                        *coreref = i;
1808                        return;
1809                }
1810        }
1811}
1812
1813static int drbg_kcapi_init(struct crypto_tfm *tfm)
1814{
1815        struct drbg_state *drbg = crypto_tfm_ctx(tfm);
1816
1817        mutex_init(&drbg->drbg_mutex);
1818
1819        return 0;
1820}
1821
1822static void drbg_kcapi_cleanup(struct crypto_tfm *tfm)
1823{
1824        drbg_uninstantiate(crypto_tfm_ctx(tfm));
1825}
1826
1827/*
1828 * Generate random numbers invoked by the kernel crypto API:
1829 * The API of the kernel crypto API is extended as follows:
1830 *
1831 * src is additional input supplied to the RNG.
1832 * slen is the length of src.
1833 * dst is the output buffer where random data is to be stored.
1834 * dlen is the length of dst.
1835 */
1836static int drbg_kcapi_random(struct crypto_rng *tfm,
1837                             const u8 *src, unsigned int slen,
1838                             u8 *dst, unsigned int dlen)
1839{
1840        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1841        struct drbg_string *addtl = NULL;
1842        struct drbg_string string;
1843
1844        if (slen) {
1845                /* linked list variable is now local to allow modification */
1846                drbg_string_fill(&string, src, slen);
1847                addtl = &string;
1848        }
1849
1850        return drbg_generate_long(drbg, dst, dlen, addtl);
1851}
1852
1853/*
1854 * Seed the DRBG invoked by the kernel crypto API
1855 */
1856static int drbg_kcapi_seed(struct crypto_rng *tfm,
1857                           const u8 *seed, unsigned int slen)
1858{
1859        struct drbg_state *drbg = crypto_rng_ctx(tfm);
1860        struct crypto_tfm *tfm_base = crypto_rng_tfm(tfm);
1861        bool pr = false;
1862        struct drbg_string string;
1863        struct drbg_string *seed_string = NULL;
1864        int coreref = 0;
1865
1866        drbg_convert_tfm_core(crypto_tfm_alg_driver_name(tfm_base), &coreref,
1867                              &pr);
1868        if (0 < slen) {
1869                drbg_string_fill(&string, seed, slen);
1870                seed_string = &string;
1871        }
1872
1873        return drbg_instantiate(drbg, seed_string, coreref, pr);
1874}
1875
1876/***************************************************************
1877 * Kernel module: code to load the module
1878 ***************************************************************/
1879
1880/*
1881 * Tests as defined in 11.3.2 in addition to the cipher tests: testing
1882 * of the error handling.
1883 *
1884 * Note: testing of failing seed source as defined in 11.3.2 is not applicable
1885 * as seed source of get_random_bytes does not fail.
1886 *
1887 * Note 2: There is no sensible way of testing the reseed counter
1888 * enforcement, so skip it.
1889 */
1890static inline int __init drbg_healthcheck_sanity(void)
1891{
1892        int len = 0;
1893#define OUTBUFLEN 16
1894        unsigned char buf[OUTBUFLEN];
1895        struct drbg_state *drbg = NULL;
1896        int ret = -EFAULT;
1897        int rc = -EFAULT;
1898        bool pr = false;
1899        int coreref = 0;
1900        struct drbg_string addtl;
1901        size_t max_addtllen, max_request_bytes;
1902
1903        /* only perform test in FIPS mode */
1904        if (!fips_enabled)
1905                return 0;
1906
1907#ifdef CONFIG_CRYPTO_DRBG_CTR
1908        drbg_convert_tfm_core("drbg_nopr_ctr_aes128", &coreref, &pr);
1909#elif defined CONFIG_CRYPTO_DRBG_HASH
1910        drbg_convert_tfm_core("drbg_nopr_sha256", &coreref, &pr);
1911#else
1912        drbg_convert_tfm_core("drbg_nopr_hmac_sha256", &coreref, &pr);
1913#endif
1914
1915        drbg = kzalloc(sizeof(struct drbg_state), GFP_KERNEL);
1916        if (!drbg)
1917                return -ENOMEM;
1918
1919        mutex_init(&drbg->drbg_mutex);
1920
1921        /*
1922         * if the following tests fail, it is likely that there is a buffer
1923         * overflow as buf is much smaller than the requested or provided
1924         * string lengths -- in case the error handling does not succeed
1925         * we may get an OOPS. And we want to get an OOPS as this is a
1926         * grave bug.
1927         */
1928
1929        /* get a valid instance of DRBG for following tests */
1930        ret = drbg_instantiate(drbg, NULL, coreref, pr);
1931        if (ret) {
1932                rc = ret;
1933                goto outbuf;
1934        }
1935        max_addtllen = drbg_max_addtl(drbg);
1936        max_request_bytes = drbg_max_request_bytes(drbg);
1937        drbg_string_fill(&addtl, buf, max_addtllen + 1);
1938        /* overflow addtllen with additonal info string */
1939        len = drbg_generate(drbg, buf, OUTBUFLEN, &addtl);
1940        BUG_ON(0 < len);
1941        /* overflow max_bits */
1942        len = drbg_generate(drbg, buf, (max_request_bytes + 1), NULL);
1943        BUG_ON(0 < len);
1944        drbg_uninstantiate(drbg);
1945
1946        /* overflow max addtllen with personalization string */
1947        ret = drbg_instantiate(drbg, &addtl, coreref, pr);
1948        BUG_ON(0 == ret);
1949        /* all tests passed */
1950        rc = 0;
1951
1952        pr_devel("DRBG: Sanity tests for failure code paths successfully "
1953                 "completed\n");
1954
1955        drbg_uninstantiate(drbg);
1956outbuf:
1957        kzfree(drbg);
1958        return rc;
1959}
1960
1961static struct rng_alg drbg_algs[22];
1962
1963/*
1964 * Fill the array drbg_algs used to register the different DRBGs
1965 * with the kernel crypto API. To fill the array, the information
1966 * from drbg_cores[] is used.
1967 */
1968static inline void __init drbg_fill_array(struct rng_alg *alg,
1969                                          const struct drbg_core *core, int pr)
1970{
1971        int pos = 0;
1972        static int priority = 200;
1973
1974        memcpy(alg->base.cra_name, "stdrng", 6);
1975        if (pr) {
1976                memcpy(alg->base.cra_driver_name, "drbg_pr_", 8);
1977                pos = 8;
1978        } else {
1979                memcpy(alg->base.cra_driver_name, "drbg_nopr_", 10);
1980                pos = 10;
1981        }
1982        memcpy(alg->base.cra_driver_name + pos, core->cra_name,
1983               strlen(core->cra_name));
1984
1985        alg->base.cra_priority = priority;
1986        priority++;
1987        /*
1988         * If FIPS mode enabled, the selected DRBG shall have the
1989         * highest cra_priority over other stdrng instances to ensure
1990         * it is selected.
1991         */
1992        if (fips_enabled)
1993                alg->base.cra_priority += 200;
1994
1995        alg->base.cra_ctxsize   = sizeof(struct drbg_state);
1996        alg->base.cra_module    = THIS_MODULE;
1997        alg->base.cra_init      = drbg_kcapi_init;
1998        alg->base.cra_exit      = drbg_kcapi_cleanup;
1999        alg->generate           = drbg_kcapi_random;
2000        alg->seed               = drbg_kcapi_seed;
2001        alg->set_ent            = drbg_kcapi_set_entropy;
2002        alg->seedsize           = 0;
2003}
2004
2005static int __init drbg_init(void)
2006{
2007        unsigned int i = 0; /* pointer to drbg_algs */
2008        unsigned int j = 0; /* pointer to drbg_cores */
2009        int ret = -EFAULT;
2010
2011        ret = drbg_healthcheck_sanity();
2012        if (ret)
2013                return ret;
2014
2015        if (ARRAY_SIZE(drbg_cores) * 2 > ARRAY_SIZE(drbg_algs)) {
2016                pr_info("DRBG: Cannot register all DRBG types"
2017                        "(slots needed: %zu, slots available: %zu)\n",
2018                        ARRAY_SIZE(drbg_cores) * 2, ARRAY_SIZE(drbg_algs));
2019                return ret;
2020        }
2021
2022        /*
2023         * each DRBG definition can be used with PR and without PR, thus
2024         * we instantiate each DRBG in drbg_cores[] twice.
2025         *
2026         * As the order of placing them into the drbg_algs array matters
2027         * (the later DRBGs receive a higher cra_priority) we register the
2028         * prediction resistance DRBGs first as the should not be too
2029         * interesting.
2030         */
2031        for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2032                drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 1);
2033        for (j = 0; ARRAY_SIZE(drbg_cores) > j; j++, i++)
2034                drbg_fill_array(&drbg_algs[i], &drbg_cores[j], 0);
2035        return crypto_register_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2036}
2037
2038static void __exit drbg_exit(void)
2039{
2040        crypto_unregister_rngs(drbg_algs, (ARRAY_SIZE(drbg_cores) * 2));
2041}
2042
2043module_init(drbg_init);
2044module_exit(drbg_exit);
2045#ifndef CRYPTO_DRBG_HASH_STRING
2046#define CRYPTO_DRBG_HASH_STRING ""
2047#endif
2048#ifndef CRYPTO_DRBG_HMAC_STRING
2049#define CRYPTO_DRBG_HMAC_STRING ""
2050#endif
2051#ifndef CRYPTO_DRBG_CTR_STRING
2052#define CRYPTO_DRBG_CTR_STRING ""
2053#endif
2054MODULE_LICENSE("GPL");
2055MODULE_AUTHOR("Stephan Mueller <smueller@chronox.de>");
2056MODULE_DESCRIPTION("NIST SP800-90A Deterministic Random Bit Generator (DRBG) "
2057                   "using following cores: "
2058                   CRYPTO_DRBG_HASH_STRING
2059                   CRYPTO_DRBG_HMAC_STRING
2060                   CRYPTO_DRBG_CTR_STRING);
2061MODULE_ALIAS_CRYPTO("stdrng");
2062