linux/drivers/clk/clk.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010-2011 Canonical Ltd <jeremy.kerr@canonical.com>
   3 * Copyright (C) 2011-2012 Linaro Ltd <mturquette@linaro.org>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * Standard functionality for the common clock API.  See Documentation/clk.txt
  10 */
  11
  12#include <linux/clk.h>
  13#include <linux/clk-provider.h>
  14#include <linux/clk/clk-conf.h>
  15#include <linux/module.h>
  16#include <linux/mutex.h>
  17#include <linux/spinlock.h>
  18#include <linux/err.h>
  19#include <linux/list.h>
  20#include <linux/slab.h>
  21#include <linux/of.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/sched.h>
  25#include <linux/clkdev.h>
  26
  27#include "clk.h"
  28
  29static DEFINE_SPINLOCK(enable_lock);
  30static DEFINE_MUTEX(prepare_lock);
  31
  32static struct task_struct *prepare_owner;
  33static struct task_struct *enable_owner;
  34
  35static int prepare_refcnt;
  36static int enable_refcnt;
  37
  38static HLIST_HEAD(clk_root_list);
  39static HLIST_HEAD(clk_orphan_list);
  40static LIST_HEAD(clk_notifier_list);
  41
  42/***    private data structures    ***/
  43
  44struct clk_core {
  45        const char              *name;
  46        const struct clk_ops    *ops;
  47        struct clk_hw           *hw;
  48        struct module           *owner;
  49        struct clk_core         *parent;
  50        const char              **parent_names;
  51        struct clk_core         **parents;
  52        u8                      num_parents;
  53        u8                      new_parent_index;
  54        unsigned long           rate;
  55        unsigned long           req_rate;
  56        unsigned long           new_rate;
  57        struct clk_core         *new_parent;
  58        struct clk_core         *new_child;
  59        unsigned long           flags;
  60        bool                    orphan;
  61        unsigned int            enable_count;
  62        unsigned int            prepare_count;
  63        unsigned long           min_rate;
  64        unsigned long           max_rate;
  65        unsigned long           accuracy;
  66        int                     phase;
  67        struct hlist_head       children;
  68        struct hlist_node       child_node;
  69        struct hlist_head       clks;
  70        unsigned int            notifier_count;
  71#ifdef CONFIG_DEBUG_FS
  72        struct dentry           *dentry;
  73        struct hlist_node       debug_node;
  74#endif
  75        struct kref             ref;
  76};
  77
  78#define CREATE_TRACE_POINTS
  79#include <trace/events/clk.h>
  80
  81struct clk {
  82        struct clk_core *core;
  83        const char *dev_id;
  84        const char *con_id;
  85        unsigned long min_rate;
  86        unsigned long max_rate;
  87        struct hlist_node clks_node;
  88};
  89
  90/***           locking             ***/
  91static void clk_prepare_lock(void)
  92{
  93        if (!mutex_trylock(&prepare_lock)) {
  94                if (prepare_owner == current) {
  95                        prepare_refcnt++;
  96                        return;
  97                }
  98                mutex_lock(&prepare_lock);
  99        }
 100        WARN_ON_ONCE(prepare_owner != NULL);
 101        WARN_ON_ONCE(prepare_refcnt != 0);
 102        prepare_owner = current;
 103        prepare_refcnt = 1;
 104}
 105
 106static void clk_prepare_unlock(void)
 107{
 108        WARN_ON_ONCE(prepare_owner != current);
 109        WARN_ON_ONCE(prepare_refcnt == 0);
 110
 111        if (--prepare_refcnt)
 112                return;
 113        prepare_owner = NULL;
 114        mutex_unlock(&prepare_lock);
 115}
 116
 117static unsigned long clk_enable_lock(void)
 118        __acquires(enable_lock)
 119{
 120        unsigned long flags;
 121
 122        if (!spin_trylock_irqsave(&enable_lock, flags)) {
 123                if (enable_owner == current) {
 124                        enable_refcnt++;
 125                        __acquire(enable_lock);
 126                        return flags;
 127                }
 128                spin_lock_irqsave(&enable_lock, flags);
 129        }
 130        WARN_ON_ONCE(enable_owner != NULL);
 131        WARN_ON_ONCE(enable_refcnt != 0);
 132        enable_owner = current;
 133        enable_refcnt = 1;
 134        return flags;
 135}
 136
 137static void clk_enable_unlock(unsigned long flags)
 138        __releases(enable_lock)
 139{
 140        WARN_ON_ONCE(enable_owner != current);
 141        WARN_ON_ONCE(enable_refcnt == 0);
 142
 143        if (--enable_refcnt) {
 144                __release(enable_lock);
 145                return;
 146        }
 147        enable_owner = NULL;
 148        spin_unlock_irqrestore(&enable_lock, flags);
 149}
 150
 151static bool clk_core_is_prepared(struct clk_core *core)
 152{
 153        /*
 154         * .is_prepared is optional for clocks that can prepare
 155         * fall back to software usage counter if it is missing
 156         */
 157        if (!core->ops->is_prepared)
 158                return core->prepare_count;
 159
 160        return core->ops->is_prepared(core->hw);
 161}
 162
 163static bool clk_core_is_enabled(struct clk_core *core)
 164{
 165        /*
 166         * .is_enabled is only mandatory for clocks that gate
 167         * fall back to software usage counter if .is_enabled is missing
 168         */
 169        if (!core->ops->is_enabled)
 170                return core->enable_count;
 171
 172        return core->ops->is_enabled(core->hw);
 173}
 174
 175/***    helper functions   ***/
 176
 177const char *__clk_get_name(const struct clk *clk)
 178{
 179        return !clk ? NULL : clk->core->name;
 180}
 181EXPORT_SYMBOL_GPL(__clk_get_name);
 182
 183const char *clk_hw_get_name(const struct clk_hw *hw)
 184{
 185        return hw->core->name;
 186}
 187EXPORT_SYMBOL_GPL(clk_hw_get_name);
 188
 189struct clk_hw *__clk_get_hw(struct clk *clk)
 190{
 191        return !clk ? NULL : clk->core->hw;
 192}
 193EXPORT_SYMBOL_GPL(__clk_get_hw);
 194
 195unsigned int clk_hw_get_num_parents(const struct clk_hw *hw)
 196{
 197        return hw->core->num_parents;
 198}
 199EXPORT_SYMBOL_GPL(clk_hw_get_num_parents);
 200
 201struct clk_hw *clk_hw_get_parent(const struct clk_hw *hw)
 202{
 203        return hw->core->parent ? hw->core->parent->hw : NULL;
 204}
 205EXPORT_SYMBOL_GPL(clk_hw_get_parent);
 206
 207static struct clk_core *__clk_lookup_subtree(const char *name,
 208                                             struct clk_core *core)
 209{
 210        struct clk_core *child;
 211        struct clk_core *ret;
 212
 213        if (!strcmp(core->name, name))
 214                return core;
 215
 216        hlist_for_each_entry(child, &core->children, child_node) {
 217                ret = __clk_lookup_subtree(name, child);
 218                if (ret)
 219                        return ret;
 220        }
 221
 222        return NULL;
 223}
 224
 225static struct clk_core *clk_core_lookup(const char *name)
 226{
 227        struct clk_core *root_clk;
 228        struct clk_core *ret;
 229
 230        if (!name)
 231                return NULL;
 232
 233        /* search the 'proper' clk tree first */
 234        hlist_for_each_entry(root_clk, &clk_root_list, child_node) {
 235                ret = __clk_lookup_subtree(name, root_clk);
 236                if (ret)
 237                        return ret;
 238        }
 239
 240        /* if not found, then search the orphan tree */
 241        hlist_for_each_entry(root_clk, &clk_orphan_list, child_node) {
 242                ret = __clk_lookup_subtree(name, root_clk);
 243                if (ret)
 244                        return ret;
 245        }
 246
 247        return NULL;
 248}
 249
 250static struct clk_core *clk_core_get_parent_by_index(struct clk_core *core,
 251                                                         u8 index)
 252{
 253        if (!core || index >= core->num_parents)
 254                return NULL;
 255
 256        if (!core->parents[index])
 257                core->parents[index] =
 258                                clk_core_lookup(core->parent_names[index]);
 259
 260        return core->parents[index];
 261}
 262
 263struct clk_hw *
 264clk_hw_get_parent_by_index(const struct clk_hw *hw, unsigned int index)
 265{
 266        struct clk_core *parent;
 267
 268        parent = clk_core_get_parent_by_index(hw->core, index);
 269
 270        return !parent ? NULL : parent->hw;
 271}
 272EXPORT_SYMBOL_GPL(clk_hw_get_parent_by_index);
 273
 274unsigned int __clk_get_enable_count(struct clk *clk)
 275{
 276        return !clk ? 0 : clk->core->enable_count;
 277}
 278
 279static unsigned long clk_core_get_rate_nolock(struct clk_core *core)
 280{
 281        unsigned long ret;
 282
 283        if (!core) {
 284                ret = 0;
 285                goto out;
 286        }
 287
 288        ret = core->rate;
 289
 290        if (!core->num_parents)
 291                goto out;
 292
 293        if (!core->parent)
 294                ret = 0;
 295
 296out:
 297        return ret;
 298}
 299
 300unsigned long clk_hw_get_rate(const struct clk_hw *hw)
 301{
 302        return clk_core_get_rate_nolock(hw->core);
 303}
 304EXPORT_SYMBOL_GPL(clk_hw_get_rate);
 305
 306static unsigned long __clk_get_accuracy(struct clk_core *core)
 307{
 308        if (!core)
 309                return 0;
 310
 311        return core->accuracy;
 312}
 313
 314unsigned long __clk_get_flags(struct clk *clk)
 315{
 316        return !clk ? 0 : clk->core->flags;
 317}
 318EXPORT_SYMBOL_GPL(__clk_get_flags);
 319
 320unsigned long clk_hw_get_flags(const struct clk_hw *hw)
 321{
 322        return hw->core->flags;
 323}
 324EXPORT_SYMBOL_GPL(clk_hw_get_flags);
 325
 326bool clk_hw_is_prepared(const struct clk_hw *hw)
 327{
 328        return clk_core_is_prepared(hw->core);
 329}
 330
 331bool clk_hw_is_enabled(const struct clk_hw *hw)
 332{
 333        return clk_core_is_enabled(hw->core);
 334}
 335
 336bool __clk_is_enabled(struct clk *clk)
 337{
 338        if (!clk)
 339                return false;
 340
 341        return clk_core_is_enabled(clk->core);
 342}
 343EXPORT_SYMBOL_GPL(__clk_is_enabled);
 344
 345static bool mux_is_better_rate(unsigned long rate, unsigned long now,
 346                           unsigned long best, unsigned long flags)
 347{
 348        if (flags & CLK_MUX_ROUND_CLOSEST)
 349                return abs(now - rate) < abs(best - rate);
 350
 351        return now <= rate && now > best;
 352}
 353
 354static int
 355clk_mux_determine_rate_flags(struct clk_hw *hw, struct clk_rate_request *req,
 356                             unsigned long flags)
 357{
 358        struct clk_core *core = hw->core, *parent, *best_parent = NULL;
 359        int i, num_parents, ret;
 360        unsigned long best = 0;
 361        struct clk_rate_request parent_req = *req;
 362
 363        /* if NO_REPARENT flag set, pass through to current parent */
 364        if (core->flags & CLK_SET_RATE_NO_REPARENT) {
 365                parent = core->parent;
 366                if (core->flags & CLK_SET_RATE_PARENT) {
 367                        ret = __clk_determine_rate(parent ? parent->hw : NULL,
 368                                                   &parent_req);
 369                        if (ret)
 370                                return ret;
 371
 372                        best = parent_req.rate;
 373                } else if (parent) {
 374                        best = clk_core_get_rate_nolock(parent);
 375                } else {
 376                        best = clk_core_get_rate_nolock(core);
 377                }
 378
 379                goto out;
 380        }
 381
 382        /* find the parent that can provide the fastest rate <= rate */
 383        num_parents = core->num_parents;
 384        for (i = 0; i < num_parents; i++) {
 385                parent = clk_core_get_parent_by_index(core, i);
 386                if (!parent)
 387                        continue;
 388
 389                if (core->flags & CLK_SET_RATE_PARENT) {
 390                        parent_req = *req;
 391                        ret = __clk_determine_rate(parent->hw, &parent_req);
 392                        if (ret)
 393                                continue;
 394                } else {
 395                        parent_req.rate = clk_core_get_rate_nolock(parent);
 396                }
 397
 398                if (mux_is_better_rate(req->rate, parent_req.rate,
 399                                       best, flags)) {
 400                        best_parent = parent;
 401                        best = parent_req.rate;
 402                }
 403        }
 404
 405        if (!best_parent)
 406                return -EINVAL;
 407
 408out:
 409        if (best_parent)
 410                req->best_parent_hw = best_parent->hw;
 411        req->best_parent_rate = best;
 412        req->rate = best;
 413
 414        return 0;
 415}
 416
 417struct clk *__clk_lookup(const char *name)
 418{
 419        struct clk_core *core = clk_core_lookup(name);
 420
 421        return !core ? NULL : core->hw->clk;
 422}
 423
 424static void clk_core_get_boundaries(struct clk_core *core,
 425                                    unsigned long *min_rate,
 426                                    unsigned long *max_rate)
 427{
 428        struct clk *clk_user;
 429
 430        *min_rate = core->min_rate;
 431        *max_rate = core->max_rate;
 432
 433        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 434                *min_rate = max(*min_rate, clk_user->min_rate);
 435
 436        hlist_for_each_entry(clk_user, &core->clks, clks_node)
 437                *max_rate = min(*max_rate, clk_user->max_rate);
 438}
 439
 440void clk_hw_set_rate_range(struct clk_hw *hw, unsigned long min_rate,
 441                           unsigned long max_rate)
 442{
 443        hw->core->min_rate = min_rate;
 444        hw->core->max_rate = max_rate;
 445}
 446EXPORT_SYMBOL_GPL(clk_hw_set_rate_range);
 447
 448/*
 449 * Helper for finding best parent to provide a given frequency. This can be used
 450 * directly as a determine_rate callback (e.g. for a mux), or from a more
 451 * complex clock that may combine a mux with other operations.
 452 */
 453int __clk_mux_determine_rate(struct clk_hw *hw,
 454                             struct clk_rate_request *req)
 455{
 456        return clk_mux_determine_rate_flags(hw, req, 0);
 457}
 458EXPORT_SYMBOL_GPL(__clk_mux_determine_rate);
 459
 460int __clk_mux_determine_rate_closest(struct clk_hw *hw,
 461                                     struct clk_rate_request *req)
 462{
 463        return clk_mux_determine_rate_flags(hw, req, CLK_MUX_ROUND_CLOSEST);
 464}
 465EXPORT_SYMBOL_GPL(__clk_mux_determine_rate_closest);
 466
 467/***        clk api        ***/
 468
 469static void clk_core_unprepare(struct clk_core *core)
 470{
 471        lockdep_assert_held(&prepare_lock);
 472
 473        if (!core)
 474                return;
 475
 476        if (WARN_ON(core->prepare_count == 0))
 477                return;
 478
 479        if (WARN_ON(core->prepare_count == 1 && core->flags & CLK_IS_CRITICAL))
 480                return;
 481
 482        if (--core->prepare_count > 0)
 483                return;
 484
 485        WARN_ON(core->enable_count > 0);
 486
 487        trace_clk_unprepare(core);
 488
 489        if (core->ops->unprepare)
 490                core->ops->unprepare(core->hw);
 491
 492        trace_clk_unprepare_complete(core);
 493        clk_core_unprepare(core->parent);
 494}
 495
 496static void clk_core_unprepare_lock(struct clk_core *core)
 497{
 498        clk_prepare_lock();
 499        clk_core_unprepare(core);
 500        clk_prepare_unlock();
 501}
 502
 503/**
 504 * clk_unprepare - undo preparation of a clock source
 505 * @clk: the clk being unprepared
 506 *
 507 * clk_unprepare may sleep, which differentiates it from clk_disable.  In a
 508 * simple case, clk_unprepare can be used instead of clk_disable to gate a clk
 509 * if the operation may sleep.  One example is a clk which is accessed over
 510 * I2c.  In the complex case a clk gate operation may require a fast and a slow
 511 * part.  It is this reason that clk_unprepare and clk_disable are not mutually
 512 * exclusive.  In fact clk_disable must be called before clk_unprepare.
 513 */
 514void clk_unprepare(struct clk *clk)
 515{
 516        if (IS_ERR_OR_NULL(clk))
 517                return;
 518
 519        clk_core_unprepare_lock(clk->core);
 520}
 521EXPORT_SYMBOL_GPL(clk_unprepare);
 522
 523static int clk_core_prepare(struct clk_core *core)
 524{
 525        int ret = 0;
 526
 527        lockdep_assert_held(&prepare_lock);
 528
 529        if (!core)
 530                return 0;
 531
 532        if (core->prepare_count == 0) {
 533                ret = clk_core_prepare(core->parent);
 534                if (ret)
 535                        return ret;
 536
 537                trace_clk_prepare(core);
 538
 539                if (core->ops->prepare)
 540                        ret = core->ops->prepare(core->hw);
 541
 542                trace_clk_prepare_complete(core);
 543
 544                if (ret) {
 545                        clk_core_unprepare(core->parent);
 546                        return ret;
 547                }
 548        }
 549
 550        core->prepare_count++;
 551
 552        return 0;
 553}
 554
 555static int clk_core_prepare_lock(struct clk_core *core)
 556{
 557        int ret;
 558
 559        clk_prepare_lock();
 560        ret = clk_core_prepare(core);
 561        clk_prepare_unlock();
 562
 563        return ret;
 564}
 565
 566/**
 567 * clk_prepare - prepare a clock source
 568 * @clk: the clk being prepared
 569 *
 570 * clk_prepare may sleep, which differentiates it from clk_enable.  In a simple
 571 * case, clk_prepare can be used instead of clk_enable to ungate a clk if the
 572 * operation may sleep.  One example is a clk which is accessed over I2c.  In
 573 * the complex case a clk ungate operation may require a fast and a slow part.
 574 * It is this reason that clk_prepare and clk_enable are not mutually
 575 * exclusive.  In fact clk_prepare must be called before clk_enable.
 576 * Returns 0 on success, -EERROR otherwise.
 577 */
 578int clk_prepare(struct clk *clk)
 579{
 580        if (!clk)
 581                return 0;
 582
 583        return clk_core_prepare_lock(clk->core);
 584}
 585EXPORT_SYMBOL_GPL(clk_prepare);
 586
 587static void clk_core_disable(struct clk_core *core)
 588{
 589        lockdep_assert_held(&enable_lock);
 590
 591        if (!core)
 592                return;
 593
 594        if (WARN_ON(core->enable_count == 0))
 595                return;
 596
 597        if (WARN_ON(core->enable_count == 1 && core->flags & CLK_IS_CRITICAL))
 598                return;
 599
 600        if (--core->enable_count > 0)
 601                return;
 602
 603        trace_clk_disable_rcuidle(core);
 604
 605        if (core->ops->disable)
 606                core->ops->disable(core->hw);
 607
 608        trace_clk_disable_complete_rcuidle(core);
 609
 610        clk_core_disable(core->parent);
 611}
 612
 613static void clk_core_disable_lock(struct clk_core *core)
 614{
 615        unsigned long flags;
 616
 617        flags = clk_enable_lock();
 618        clk_core_disable(core);
 619        clk_enable_unlock(flags);
 620}
 621
 622/**
 623 * clk_disable - gate a clock
 624 * @clk: the clk being gated
 625 *
 626 * clk_disable must not sleep, which differentiates it from clk_unprepare.  In
 627 * a simple case, clk_disable can be used instead of clk_unprepare to gate a
 628 * clk if the operation is fast and will never sleep.  One example is a
 629 * SoC-internal clk which is controlled via simple register writes.  In the
 630 * complex case a clk gate operation may require a fast and a slow part.  It is
 631 * this reason that clk_unprepare and clk_disable are not mutually exclusive.
 632 * In fact clk_disable must be called before clk_unprepare.
 633 */
 634void clk_disable(struct clk *clk)
 635{
 636        if (IS_ERR_OR_NULL(clk))
 637                return;
 638
 639        clk_core_disable_lock(clk->core);
 640}
 641EXPORT_SYMBOL_GPL(clk_disable);
 642
 643static int clk_core_enable(struct clk_core *core)
 644{
 645        int ret = 0;
 646
 647        lockdep_assert_held(&enable_lock);
 648
 649        if (!core)
 650                return 0;
 651
 652        if (WARN_ON(core->prepare_count == 0))
 653                return -ESHUTDOWN;
 654
 655        if (core->enable_count == 0) {
 656                ret = clk_core_enable(core->parent);
 657
 658                if (ret)
 659                        return ret;
 660
 661                trace_clk_enable_rcuidle(core);
 662
 663                if (core->ops->enable)
 664                        ret = core->ops->enable(core->hw);
 665
 666                trace_clk_enable_complete_rcuidle(core);
 667
 668                if (ret) {
 669                        clk_core_disable(core->parent);
 670                        return ret;
 671                }
 672        }
 673
 674        core->enable_count++;
 675        return 0;
 676}
 677
 678static int clk_core_enable_lock(struct clk_core *core)
 679{
 680        unsigned long flags;
 681        int ret;
 682
 683        flags = clk_enable_lock();
 684        ret = clk_core_enable(core);
 685        clk_enable_unlock(flags);
 686
 687        return ret;
 688}
 689
 690/**
 691 * clk_enable - ungate a clock
 692 * @clk: the clk being ungated
 693 *
 694 * clk_enable must not sleep, which differentiates it from clk_prepare.  In a
 695 * simple case, clk_enable can be used instead of clk_prepare to ungate a clk
 696 * if the operation will never sleep.  One example is a SoC-internal clk which
 697 * is controlled via simple register writes.  In the complex case a clk ungate
 698 * operation may require a fast and a slow part.  It is this reason that
 699 * clk_enable and clk_prepare are not mutually exclusive.  In fact clk_prepare
 700 * must be called before clk_enable.  Returns 0 on success, -EERROR
 701 * otherwise.
 702 */
 703int clk_enable(struct clk *clk)
 704{
 705        if (!clk)
 706                return 0;
 707
 708        return clk_core_enable_lock(clk->core);
 709}
 710EXPORT_SYMBOL_GPL(clk_enable);
 711
 712static int clk_core_prepare_enable(struct clk_core *core)
 713{
 714        int ret;
 715
 716        ret = clk_core_prepare_lock(core);
 717        if (ret)
 718                return ret;
 719
 720        ret = clk_core_enable_lock(core);
 721        if (ret)
 722                clk_core_unprepare_lock(core);
 723
 724        return ret;
 725}
 726
 727static void clk_core_disable_unprepare(struct clk_core *core)
 728{
 729        clk_core_disable_lock(core);
 730        clk_core_unprepare_lock(core);
 731}
 732
 733static void clk_unprepare_unused_subtree(struct clk_core *core)
 734{
 735        struct clk_core *child;
 736
 737        lockdep_assert_held(&prepare_lock);
 738
 739        hlist_for_each_entry(child, &core->children, child_node)
 740                clk_unprepare_unused_subtree(child);
 741
 742        if (core->prepare_count)
 743                return;
 744
 745        if (core->flags & CLK_IGNORE_UNUSED)
 746                return;
 747
 748        if (clk_core_is_prepared(core)) {
 749                trace_clk_unprepare(core);
 750                if (core->ops->unprepare_unused)
 751                        core->ops->unprepare_unused(core->hw);
 752                else if (core->ops->unprepare)
 753                        core->ops->unprepare(core->hw);
 754                trace_clk_unprepare_complete(core);
 755        }
 756}
 757
 758static void clk_disable_unused_subtree(struct clk_core *core)
 759{
 760        struct clk_core *child;
 761        unsigned long flags;
 762
 763        lockdep_assert_held(&prepare_lock);
 764
 765        hlist_for_each_entry(child, &core->children, child_node)
 766                clk_disable_unused_subtree(child);
 767
 768        if (core->flags & CLK_OPS_PARENT_ENABLE)
 769                clk_core_prepare_enable(core->parent);
 770
 771        flags = clk_enable_lock();
 772
 773        if (core->enable_count)
 774                goto unlock_out;
 775
 776        if (core->flags & CLK_IGNORE_UNUSED)
 777                goto unlock_out;
 778
 779        /*
 780         * some gate clocks have special needs during the disable-unused
 781         * sequence.  call .disable_unused if available, otherwise fall
 782         * back to .disable
 783         */
 784        if (clk_core_is_enabled(core)) {
 785                trace_clk_disable(core);
 786                if (core->ops->disable_unused)
 787                        core->ops->disable_unused(core->hw);
 788                else if (core->ops->disable)
 789                        core->ops->disable(core->hw);
 790                trace_clk_disable_complete(core);
 791        }
 792
 793unlock_out:
 794        clk_enable_unlock(flags);
 795        if (core->flags & CLK_OPS_PARENT_ENABLE)
 796                clk_core_disable_unprepare(core->parent);
 797}
 798
 799static bool clk_ignore_unused;
 800static int __init clk_ignore_unused_setup(char *__unused)
 801{
 802        clk_ignore_unused = true;
 803        return 1;
 804}
 805__setup("clk_ignore_unused", clk_ignore_unused_setup);
 806
 807static int clk_disable_unused(void)
 808{
 809        struct clk_core *core;
 810
 811        if (clk_ignore_unused) {
 812                pr_warn("clk: Not disabling unused clocks\n");
 813                return 0;
 814        }
 815
 816        clk_prepare_lock();
 817
 818        hlist_for_each_entry(core, &clk_root_list, child_node)
 819                clk_disable_unused_subtree(core);
 820
 821        hlist_for_each_entry(core, &clk_orphan_list, child_node)
 822                clk_disable_unused_subtree(core);
 823
 824        hlist_for_each_entry(core, &clk_root_list, child_node)
 825                clk_unprepare_unused_subtree(core);
 826
 827        hlist_for_each_entry(core, &clk_orphan_list, child_node)
 828                clk_unprepare_unused_subtree(core);
 829
 830        clk_prepare_unlock();
 831
 832        return 0;
 833}
 834late_initcall_sync(clk_disable_unused);
 835
 836static int clk_core_round_rate_nolock(struct clk_core *core,
 837                                      struct clk_rate_request *req)
 838{
 839        struct clk_core *parent;
 840        long rate;
 841
 842        lockdep_assert_held(&prepare_lock);
 843
 844        if (!core)
 845                return 0;
 846
 847        parent = core->parent;
 848        if (parent) {
 849                req->best_parent_hw = parent->hw;
 850                req->best_parent_rate = parent->rate;
 851        } else {
 852                req->best_parent_hw = NULL;
 853                req->best_parent_rate = 0;
 854        }
 855
 856        if (core->ops->determine_rate) {
 857                return core->ops->determine_rate(core->hw, req);
 858        } else if (core->ops->round_rate) {
 859                rate = core->ops->round_rate(core->hw, req->rate,
 860                                             &req->best_parent_rate);
 861                if (rate < 0)
 862                        return rate;
 863
 864                req->rate = rate;
 865        } else if (core->flags & CLK_SET_RATE_PARENT) {
 866                return clk_core_round_rate_nolock(parent, req);
 867        } else {
 868                req->rate = core->rate;
 869        }
 870
 871        return 0;
 872}
 873
 874/**
 875 * __clk_determine_rate - get the closest rate actually supported by a clock
 876 * @hw: determine the rate of this clock
 877 * @req: target rate request
 878 *
 879 * Useful for clk_ops such as .set_rate and .determine_rate.
 880 */
 881int __clk_determine_rate(struct clk_hw *hw, struct clk_rate_request *req)
 882{
 883        if (!hw) {
 884                req->rate = 0;
 885                return 0;
 886        }
 887
 888        return clk_core_round_rate_nolock(hw->core, req);
 889}
 890EXPORT_SYMBOL_GPL(__clk_determine_rate);
 891
 892unsigned long clk_hw_round_rate(struct clk_hw *hw, unsigned long rate)
 893{
 894        int ret;
 895        struct clk_rate_request req;
 896
 897        clk_core_get_boundaries(hw->core, &req.min_rate, &req.max_rate);
 898        req.rate = rate;
 899
 900        ret = clk_core_round_rate_nolock(hw->core, &req);
 901        if (ret)
 902                return 0;
 903
 904        return req.rate;
 905}
 906EXPORT_SYMBOL_GPL(clk_hw_round_rate);
 907
 908/**
 909 * clk_round_rate - round the given rate for a clk
 910 * @clk: the clk for which we are rounding a rate
 911 * @rate: the rate which is to be rounded
 912 *
 913 * Takes in a rate as input and rounds it to a rate that the clk can actually
 914 * use which is then returned.  If clk doesn't support round_rate operation
 915 * then the parent rate is returned.
 916 */
 917long clk_round_rate(struct clk *clk, unsigned long rate)
 918{
 919        struct clk_rate_request req;
 920        int ret;
 921
 922        if (!clk)
 923                return 0;
 924
 925        clk_prepare_lock();
 926
 927        clk_core_get_boundaries(clk->core, &req.min_rate, &req.max_rate);
 928        req.rate = rate;
 929
 930        ret = clk_core_round_rate_nolock(clk->core, &req);
 931        clk_prepare_unlock();
 932
 933        if (ret)
 934                return ret;
 935
 936        return req.rate;
 937}
 938EXPORT_SYMBOL_GPL(clk_round_rate);
 939
 940/**
 941 * __clk_notify - call clk notifier chain
 942 * @core: clk that is changing rate
 943 * @msg: clk notifier type (see include/linux/clk.h)
 944 * @old_rate: old clk rate
 945 * @new_rate: new clk rate
 946 *
 947 * Triggers a notifier call chain on the clk rate-change notification
 948 * for 'clk'.  Passes a pointer to the struct clk and the previous
 949 * and current rates to the notifier callback.  Intended to be called by
 950 * internal clock code only.  Returns NOTIFY_DONE from the last driver
 951 * called if all went well, or NOTIFY_STOP or NOTIFY_BAD immediately if
 952 * a driver returns that.
 953 */
 954static int __clk_notify(struct clk_core *core, unsigned long msg,
 955                unsigned long old_rate, unsigned long new_rate)
 956{
 957        struct clk_notifier *cn;
 958        struct clk_notifier_data cnd;
 959        int ret = NOTIFY_DONE;
 960
 961        cnd.old_rate = old_rate;
 962        cnd.new_rate = new_rate;
 963
 964        list_for_each_entry(cn, &clk_notifier_list, node) {
 965                if (cn->clk->core == core) {
 966                        cnd.clk = cn->clk;
 967                        ret = srcu_notifier_call_chain(&cn->notifier_head, msg,
 968                                        &cnd);
 969                }
 970        }
 971
 972        return ret;
 973}
 974
 975/**
 976 * __clk_recalc_accuracies
 977 * @core: first clk in the subtree
 978 *
 979 * Walks the subtree of clks starting with clk and recalculates accuracies as
 980 * it goes.  Note that if a clk does not implement the .recalc_accuracy
 981 * callback then it is assumed that the clock will take on the accuracy of its
 982 * parent.
 983 */
 984static void __clk_recalc_accuracies(struct clk_core *core)
 985{
 986        unsigned long parent_accuracy = 0;
 987        struct clk_core *child;
 988
 989        lockdep_assert_held(&prepare_lock);
 990
 991        if (core->parent)
 992                parent_accuracy = core->parent->accuracy;
 993
 994        if (core->ops->recalc_accuracy)
 995                core->accuracy = core->ops->recalc_accuracy(core->hw,
 996                                                          parent_accuracy);
 997        else
 998                core->accuracy = parent_accuracy;
 999
1000        hlist_for_each_entry(child, &core->children, child_node)
1001                __clk_recalc_accuracies(child);
1002}
1003
1004static long clk_core_get_accuracy(struct clk_core *core)
1005{
1006        unsigned long accuracy;
1007
1008        clk_prepare_lock();
1009        if (core && (core->flags & CLK_GET_ACCURACY_NOCACHE))
1010                __clk_recalc_accuracies(core);
1011
1012        accuracy = __clk_get_accuracy(core);
1013        clk_prepare_unlock();
1014
1015        return accuracy;
1016}
1017
1018/**
1019 * clk_get_accuracy - return the accuracy of clk
1020 * @clk: the clk whose accuracy is being returned
1021 *
1022 * Simply returns the cached accuracy of the clk, unless
1023 * CLK_GET_ACCURACY_NOCACHE flag is set, which means a recalc_rate will be
1024 * issued.
1025 * If clk is NULL then returns 0.
1026 */
1027long clk_get_accuracy(struct clk *clk)
1028{
1029        if (!clk)
1030                return 0;
1031
1032        return clk_core_get_accuracy(clk->core);
1033}
1034EXPORT_SYMBOL_GPL(clk_get_accuracy);
1035
1036static unsigned long clk_recalc(struct clk_core *core,
1037                                unsigned long parent_rate)
1038{
1039        if (core->ops->recalc_rate)
1040                return core->ops->recalc_rate(core->hw, parent_rate);
1041        return parent_rate;
1042}
1043
1044/**
1045 * __clk_recalc_rates
1046 * @core: first clk in the subtree
1047 * @msg: notification type (see include/linux/clk.h)
1048 *
1049 * Walks the subtree of clks starting with clk and recalculates rates as it
1050 * goes.  Note that if a clk does not implement the .recalc_rate callback then
1051 * it is assumed that the clock will take on the rate of its parent.
1052 *
1053 * clk_recalc_rates also propagates the POST_RATE_CHANGE notification,
1054 * if necessary.
1055 */
1056static void __clk_recalc_rates(struct clk_core *core, unsigned long msg)
1057{
1058        unsigned long old_rate;
1059        unsigned long parent_rate = 0;
1060        struct clk_core *child;
1061
1062        lockdep_assert_held(&prepare_lock);
1063
1064        old_rate = core->rate;
1065
1066        if (core->parent)
1067                parent_rate = core->parent->rate;
1068
1069        core->rate = clk_recalc(core, parent_rate);
1070
1071        /*
1072         * ignore NOTIFY_STOP and NOTIFY_BAD return values for POST_RATE_CHANGE
1073         * & ABORT_RATE_CHANGE notifiers
1074         */
1075        if (core->notifier_count && msg)
1076                __clk_notify(core, msg, old_rate, core->rate);
1077
1078        hlist_for_each_entry(child, &core->children, child_node)
1079                __clk_recalc_rates(child, msg);
1080}
1081
1082static unsigned long clk_core_get_rate(struct clk_core *core)
1083{
1084        unsigned long rate;
1085
1086        clk_prepare_lock();
1087
1088        if (core && (core->flags & CLK_GET_RATE_NOCACHE))
1089                __clk_recalc_rates(core, 0);
1090
1091        rate = clk_core_get_rate_nolock(core);
1092        clk_prepare_unlock();
1093
1094        return rate;
1095}
1096
1097/**
1098 * clk_get_rate - return the rate of clk
1099 * @clk: the clk whose rate is being returned
1100 *
1101 * Simply returns the cached rate of the clk, unless CLK_GET_RATE_NOCACHE flag
1102 * is set, which means a recalc_rate will be issued.
1103 * If clk is NULL then returns 0.
1104 */
1105unsigned long clk_get_rate(struct clk *clk)
1106{
1107        if (!clk)
1108                return 0;
1109
1110        return clk_core_get_rate(clk->core);
1111}
1112EXPORT_SYMBOL_GPL(clk_get_rate);
1113
1114static int clk_fetch_parent_index(struct clk_core *core,
1115                                  struct clk_core *parent)
1116{
1117        int i;
1118
1119        if (!parent)
1120                return -EINVAL;
1121
1122        for (i = 0; i < core->num_parents; i++)
1123                if (clk_core_get_parent_by_index(core, i) == parent)
1124                        return i;
1125
1126        return -EINVAL;
1127}
1128
1129/*
1130 * Update the orphan status of @core and all its children.
1131 */
1132static void clk_core_update_orphan_status(struct clk_core *core, bool is_orphan)
1133{
1134        struct clk_core *child;
1135
1136        core->orphan = is_orphan;
1137
1138        hlist_for_each_entry(child, &core->children, child_node)
1139                clk_core_update_orphan_status(child, is_orphan);
1140}
1141
1142static void clk_reparent(struct clk_core *core, struct clk_core *new_parent)
1143{
1144        bool was_orphan = core->orphan;
1145
1146        hlist_del(&core->child_node);
1147
1148        if (new_parent) {
1149                bool becomes_orphan = new_parent->orphan;
1150
1151                /* avoid duplicate POST_RATE_CHANGE notifications */
1152                if (new_parent->new_child == core)
1153                        new_parent->new_child = NULL;
1154
1155                hlist_add_head(&core->child_node, &new_parent->children);
1156
1157                if (was_orphan != becomes_orphan)
1158                        clk_core_update_orphan_status(core, becomes_orphan);
1159        } else {
1160                hlist_add_head(&core->child_node, &clk_orphan_list);
1161                if (!was_orphan)
1162                        clk_core_update_orphan_status(core, true);
1163        }
1164
1165        core->parent = new_parent;
1166}
1167
1168static struct clk_core *__clk_set_parent_before(struct clk_core *core,
1169                                           struct clk_core *parent)
1170{
1171        unsigned long flags;
1172        struct clk_core *old_parent = core->parent;
1173
1174        /*
1175         * 1. enable parents for CLK_OPS_PARENT_ENABLE clock
1176         *
1177         * 2. Migrate prepare state between parents and prevent race with
1178         * clk_enable().
1179         *
1180         * If the clock is not prepared, then a race with
1181         * clk_enable/disable() is impossible since we already have the
1182         * prepare lock (future calls to clk_enable() need to be preceded by
1183         * a clk_prepare()).
1184         *
1185         * If the clock is prepared, migrate the prepared state to the new
1186         * parent and also protect against a race with clk_enable() by
1187         * forcing the clock and the new parent on.  This ensures that all
1188         * future calls to clk_enable() are practically NOPs with respect to
1189         * hardware and software states.
1190         *
1191         * See also: Comment for clk_set_parent() below.
1192         */
1193
1194        /* enable old_parent & parent if CLK_OPS_PARENT_ENABLE is set */
1195        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1196                clk_core_prepare_enable(old_parent);
1197                clk_core_prepare_enable(parent);
1198        }
1199
1200        /* migrate prepare count if > 0 */
1201        if (core->prepare_count) {
1202                clk_core_prepare_enable(parent);
1203                clk_core_enable_lock(core);
1204        }
1205
1206        /* update the clk tree topology */
1207        flags = clk_enable_lock();
1208        clk_reparent(core, parent);
1209        clk_enable_unlock(flags);
1210
1211        return old_parent;
1212}
1213
1214static void __clk_set_parent_after(struct clk_core *core,
1215                                   struct clk_core *parent,
1216                                   struct clk_core *old_parent)
1217{
1218        /*
1219         * Finish the migration of prepare state and undo the changes done
1220         * for preventing a race with clk_enable().
1221         */
1222        if (core->prepare_count) {
1223                clk_core_disable_lock(core);
1224                clk_core_disable_unprepare(old_parent);
1225        }
1226
1227        /* re-balance ref counting if CLK_OPS_PARENT_ENABLE is set */
1228        if (core->flags & CLK_OPS_PARENT_ENABLE) {
1229                clk_core_disable_unprepare(parent);
1230                clk_core_disable_unprepare(old_parent);
1231        }
1232}
1233
1234static int __clk_set_parent(struct clk_core *core, struct clk_core *parent,
1235                            u8 p_index)
1236{
1237        unsigned long flags;
1238        int ret = 0;
1239        struct clk_core *old_parent;
1240
1241        old_parent = __clk_set_parent_before(core, parent);
1242
1243        trace_clk_set_parent(core, parent);
1244
1245        /* change clock input source */
1246        if (parent && core->ops->set_parent)
1247                ret = core->ops->set_parent(core->hw, p_index);
1248
1249        trace_clk_set_parent_complete(core, parent);
1250
1251        if (ret) {
1252                flags = clk_enable_lock();
1253                clk_reparent(core, old_parent);
1254                clk_enable_unlock(flags);
1255                __clk_set_parent_after(core, old_parent, parent);
1256
1257                return ret;
1258        }
1259
1260        __clk_set_parent_after(core, parent, old_parent);
1261
1262        return 0;
1263}
1264
1265/**
1266 * __clk_speculate_rates
1267 * @core: first clk in the subtree
1268 * @parent_rate: the "future" rate of clk's parent
1269 *
1270 * Walks the subtree of clks starting with clk, speculating rates as it
1271 * goes and firing off PRE_RATE_CHANGE notifications as necessary.
1272 *
1273 * Unlike clk_recalc_rates, clk_speculate_rates exists only for sending
1274 * pre-rate change notifications and returns early if no clks in the
1275 * subtree have subscribed to the notifications.  Note that if a clk does not
1276 * implement the .recalc_rate callback then it is assumed that the clock will
1277 * take on the rate of its parent.
1278 */
1279static int __clk_speculate_rates(struct clk_core *core,
1280                                 unsigned long parent_rate)
1281{
1282        struct clk_core *child;
1283        unsigned long new_rate;
1284        int ret = NOTIFY_DONE;
1285
1286        lockdep_assert_held(&prepare_lock);
1287
1288        new_rate = clk_recalc(core, parent_rate);
1289
1290        /* abort rate change if a driver returns NOTIFY_BAD or NOTIFY_STOP */
1291        if (core->notifier_count)
1292                ret = __clk_notify(core, PRE_RATE_CHANGE, core->rate, new_rate);
1293
1294        if (ret & NOTIFY_STOP_MASK) {
1295                pr_debug("%s: clk notifier callback for clock %s aborted with error %d\n",
1296                                __func__, core->name, ret);
1297                goto out;
1298        }
1299
1300        hlist_for_each_entry(child, &core->children, child_node) {
1301                ret = __clk_speculate_rates(child, new_rate);
1302                if (ret & NOTIFY_STOP_MASK)
1303                        break;
1304        }
1305
1306out:
1307        return ret;
1308}
1309
1310static void clk_calc_subtree(struct clk_core *core, unsigned long new_rate,
1311                             struct clk_core *new_parent, u8 p_index)
1312{
1313        struct clk_core *child;
1314
1315        core->new_rate = new_rate;
1316        core->new_parent = new_parent;
1317        core->new_parent_index = p_index;
1318        /* include clk in new parent's PRE_RATE_CHANGE notifications */
1319        core->new_child = NULL;
1320        if (new_parent && new_parent != core->parent)
1321                new_parent->new_child = core;
1322
1323        hlist_for_each_entry(child, &core->children, child_node) {
1324                child->new_rate = clk_recalc(child, new_rate);
1325                clk_calc_subtree(child, child->new_rate, NULL, 0);
1326        }
1327}
1328
1329/*
1330 * calculate the new rates returning the topmost clock that has to be
1331 * changed.
1332 */
1333static struct clk_core *clk_calc_new_rates(struct clk_core *core,
1334                                           unsigned long rate)
1335{
1336        struct clk_core *top = core;
1337        struct clk_core *old_parent, *parent;
1338        unsigned long best_parent_rate = 0;
1339        unsigned long new_rate;
1340        unsigned long min_rate;
1341        unsigned long max_rate;
1342        int p_index = 0;
1343        long ret;
1344
1345        /* sanity */
1346        if (IS_ERR_OR_NULL(core))
1347                return NULL;
1348
1349        /* save parent rate, if it exists */
1350        parent = old_parent = core->parent;
1351        if (parent)
1352                best_parent_rate = parent->rate;
1353
1354        clk_core_get_boundaries(core, &min_rate, &max_rate);
1355
1356        /* find the closest rate and parent clk/rate */
1357        if (core->ops->determine_rate) {
1358                struct clk_rate_request req;
1359
1360                req.rate = rate;
1361                req.min_rate = min_rate;
1362                req.max_rate = max_rate;
1363                if (parent) {
1364                        req.best_parent_hw = parent->hw;
1365                        req.best_parent_rate = parent->rate;
1366                } else {
1367                        req.best_parent_hw = NULL;
1368                        req.best_parent_rate = 0;
1369                }
1370
1371                ret = core->ops->determine_rate(core->hw, &req);
1372                if (ret < 0)
1373                        return NULL;
1374
1375                best_parent_rate = req.best_parent_rate;
1376                new_rate = req.rate;
1377                parent = req.best_parent_hw ? req.best_parent_hw->core : NULL;
1378        } else if (core->ops->round_rate) {
1379                ret = core->ops->round_rate(core->hw, rate,
1380                                            &best_parent_rate);
1381                if (ret < 0)
1382                        return NULL;
1383
1384                new_rate = ret;
1385                if (new_rate < min_rate || new_rate > max_rate)
1386                        return NULL;
1387        } else if (!parent || !(core->flags & CLK_SET_RATE_PARENT)) {
1388                /* pass-through clock without adjustable parent */
1389                core->new_rate = core->rate;
1390                return NULL;
1391        } else {
1392                /* pass-through clock with adjustable parent */
1393                top = clk_calc_new_rates(parent, rate);
1394                new_rate = parent->new_rate;
1395                goto out;
1396        }
1397
1398        /* some clocks must be gated to change parent */
1399        if (parent != old_parent &&
1400            (core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1401                pr_debug("%s: %s not gated but wants to reparent\n",
1402                         __func__, core->name);
1403                return NULL;
1404        }
1405
1406        /* try finding the new parent index */
1407        if (parent && core->num_parents > 1) {
1408                p_index = clk_fetch_parent_index(core, parent);
1409                if (p_index < 0) {
1410                        pr_debug("%s: clk %s can not be parent of clk %s\n",
1411                                 __func__, parent->name, core->name);
1412                        return NULL;
1413                }
1414        }
1415
1416        if ((core->flags & CLK_SET_RATE_PARENT) && parent &&
1417            best_parent_rate != parent->rate)
1418                top = clk_calc_new_rates(parent, best_parent_rate);
1419
1420out:
1421        clk_calc_subtree(core, new_rate, parent, p_index);
1422
1423        return top;
1424}
1425
1426/*
1427 * Notify about rate changes in a subtree. Always walk down the whole tree
1428 * so that in case of an error we can walk down the whole tree again and
1429 * abort the change.
1430 */
1431static struct clk_core *clk_propagate_rate_change(struct clk_core *core,
1432                                                  unsigned long event)
1433{
1434        struct clk_core *child, *tmp_clk, *fail_clk = NULL;
1435        int ret = NOTIFY_DONE;
1436
1437        if (core->rate == core->new_rate)
1438                return NULL;
1439
1440        if (core->notifier_count) {
1441                ret = __clk_notify(core, event, core->rate, core->new_rate);
1442                if (ret & NOTIFY_STOP_MASK)
1443                        fail_clk = core;
1444        }
1445
1446        hlist_for_each_entry(child, &core->children, child_node) {
1447                /* Skip children who will be reparented to another clock */
1448                if (child->new_parent && child->new_parent != core)
1449                        continue;
1450                tmp_clk = clk_propagate_rate_change(child, event);
1451                if (tmp_clk)
1452                        fail_clk = tmp_clk;
1453        }
1454
1455        /* handle the new child who might not be in core->children yet */
1456        if (core->new_child) {
1457                tmp_clk = clk_propagate_rate_change(core->new_child, event);
1458                if (tmp_clk)
1459                        fail_clk = tmp_clk;
1460        }
1461
1462        return fail_clk;
1463}
1464
1465/*
1466 * walk down a subtree and set the new rates notifying the rate
1467 * change on the way
1468 */
1469static void clk_change_rate(struct clk_core *core)
1470{
1471        struct clk_core *child;
1472        struct hlist_node *tmp;
1473        unsigned long old_rate;
1474        unsigned long best_parent_rate = 0;
1475        bool skip_set_rate = false;
1476        struct clk_core *old_parent;
1477        struct clk_core *parent = NULL;
1478
1479        old_rate = core->rate;
1480
1481        if (core->new_parent) {
1482                parent = core->new_parent;
1483                best_parent_rate = core->new_parent->rate;
1484        } else if (core->parent) {
1485                parent = core->parent;
1486                best_parent_rate = core->parent->rate;
1487        }
1488
1489        if (core->flags & CLK_SET_RATE_UNGATE) {
1490                unsigned long flags;
1491
1492                clk_core_prepare(core);
1493                flags = clk_enable_lock();
1494                clk_core_enable(core);
1495                clk_enable_unlock(flags);
1496        }
1497
1498        if (core->new_parent && core->new_parent != core->parent) {
1499                old_parent = __clk_set_parent_before(core, core->new_parent);
1500                trace_clk_set_parent(core, core->new_parent);
1501
1502                if (core->ops->set_rate_and_parent) {
1503                        skip_set_rate = true;
1504                        core->ops->set_rate_and_parent(core->hw, core->new_rate,
1505                                        best_parent_rate,
1506                                        core->new_parent_index);
1507                } else if (core->ops->set_parent) {
1508                        core->ops->set_parent(core->hw, core->new_parent_index);
1509                }
1510
1511                trace_clk_set_parent_complete(core, core->new_parent);
1512                __clk_set_parent_after(core, core->new_parent, old_parent);
1513        }
1514
1515        if (core->flags & CLK_OPS_PARENT_ENABLE)
1516                clk_core_prepare_enable(parent);
1517
1518        trace_clk_set_rate(core, core->new_rate);
1519
1520        if (!skip_set_rate && core->ops->set_rate)
1521                core->ops->set_rate(core->hw, core->new_rate, best_parent_rate);
1522
1523        trace_clk_set_rate_complete(core, core->new_rate);
1524
1525        core->rate = clk_recalc(core, best_parent_rate);
1526
1527        if (core->flags & CLK_SET_RATE_UNGATE) {
1528                unsigned long flags;
1529
1530                flags = clk_enable_lock();
1531                clk_core_disable(core);
1532                clk_enable_unlock(flags);
1533                clk_core_unprepare(core);
1534        }
1535
1536        if (core->flags & CLK_OPS_PARENT_ENABLE)
1537                clk_core_disable_unprepare(parent);
1538
1539        if (core->notifier_count && old_rate != core->rate)
1540                __clk_notify(core, POST_RATE_CHANGE, old_rate, core->rate);
1541
1542        if (core->flags & CLK_RECALC_NEW_RATES)
1543                (void)clk_calc_new_rates(core, core->new_rate);
1544
1545        /*
1546         * Use safe iteration, as change_rate can actually swap parents
1547         * for certain clock types.
1548         */
1549        hlist_for_each_entry_safe(child, tmp, &core->children, child_node) {
1550                /* Skip children who will be reparented to another clock */
1551                if (child->new_parent && child->new_parent != core)
1552                        continue;
1553                clk_change_rate(child);
1554        }
1555
1556        /* handle the new child who might not be in core->children yet */
1557        if (core->new_child)
1558                clk_change_rate(core->new_child);
1559}
1560
1561static int clk_core_set_rate_nolock(struct clk_core *core,
1562                                    unsigned long req_rate)
1563{
1564        struct clk_core *top, *fail_clk;
1565        unsigned long rate = req_rate;
1566
1567        if (!core)
1568                return 0;
1569
1570        /* bail early if nothing to do */
1571        if (rate == clk_core_get_rate_nolock(core))
1572                return 0;
1573
1574        if ((core->flags & CLK_SET_RATE_GATE) && core->prepare_count)
1575                return -EBUSY;
1576
1577        /* calculate new rates and get the topmost changed clock */
1578        top = clk_calc_new_rates(core, rate);
1579        if (!top)
1580                return -EINVAL;
1581
1582        /* notify that we are about to change rates */
1583        fail_clk = clk_propagate_rate_change(top, PRE_RATE_CHANGE);
1584        if (fail_clk) {
1585                pr_debug("%s: failed to set %s rate\n", __func__,
1586                                fail_clk->name);
1587                clk_propagate_rate_change(top, ABORT_RATE_CHANGE);
1588                return -EBUSY;
1589        }
1590
1591        /* change the rates */
1592        clk_change_rate(top);
1593
1594        core->req_rate = req_rate;
1595
1596        return 0;
1597}
1598
1599/**
1600 * clk_set_rate - specify a new rate for clk
1601 * @clk: the clk whose rate is being changed
1602 * @rate: the new rate for clk
1603 *
1604 * In the simplest case clk_set_rate will only adjust the rate of clk.
1605 *
1606 * Setting the CLK_SET_RATE_PARENT flag allows the rate change operation to
1607 * propagate up to clk's parent; whether or not this happens depends on the
1608 * outcome of clk's .round_rate implementation.  If *parent_rate is unchanged
1609 * after calling .round_rate then upstream parent propagation is ignored.  If
1610 * *parent_rate comes back with a new rate for clk's parent then we propagate
1611 * up to clk's parent and set its rate.  Upward propagation will continue
1612 * until either a clk does not support the CLK_SET_RATE_PARENT flag or
1613 * .round_rate stops requesting changes to clk's parent_rate.
1614 *
1615 * Rate changes are accomplished via tree traversal that also recalculates the
1616 * rates for the clocks and fires off POST_RATE_CHANGE notifiers.
1617 *
1618 * Returns 0 on success, -EERROR otherwise.
1619 */
1620int clk_set_rate(struct clk *clk, unsigned long rate)
1621{
1622        int ret;
1623
1624        if (!clk)
1625                return 0;
1626
1627        /* prevent racing with updates to the clock topology */
1628        clk_prepare_lock();
1629
1630        ret = clk_core_set_rate_nolock(clk->core, rate);
1631
1632        clk_prepare_unlock();
1633
1634        return ret;
1635}
1636EXPORT_SYMBOL_GPL(clk_set_rate);
1637
1638/**
1639 * clk_set_rate_range - set a rate range for a clock source
1640 * @clk: clock source
1641 * @min: desired minimum clock rate in Hz, inclusive
1642 * @max: desired maximum clock rate in Hz, inclusive
1643 *
1644 * Returns success (0) or negative errno.
1645 */
1646int clk_set_rate_range(struct clk *clk, unsigned long min, unsigned long max)
1647{
1648        int ret = 0;
1649
1650        if (!clk)
1651                return 0;
1652
1653        if (min > max) {
1654                pr_err("%s: clk %s dev %s con %s: invalid range [%lu, %lu]\n",
1655                       __func__, clk->core->name, clk->dev_id, clk->con_id,
1656                       min, max);
1657                return -EINVAL;
1658        }
1659
1660        clk_prepare_lock();
1661
1662        if (min != clk->min_rate || max != clk->max_rate) {
1663                clk->min_rate = min;
1664                clk->max_rate = max;
1665                ret = clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
1666        }
1667
1668        clk_prepare_unlock();
1669
1670        return ret;
1671}
1672EXPORT_SYMBOL_GPL(clk_set_rate_range);
1673
1674/**
1675 * clk_set_min_rate - set a minimum clock rate for a clock source
1676 * @clk: clock source
1677 * @rate: desired minimum clock rate in Hz, inclusive
1678 *
1679 * Returns success (0) or negative errno.
1680 */
1681int clk_set_min_rate(struct clk *clk, unsigned long rate)
1682{
1683        if (!clk)
1684                return 0;
1685
1686        return clk_set_rate_range(clk, rate, clk->max_rate);
1687}
1688EXPORT_SYMBOL_GPL(clk_set_min_rate);
1689
1690/**
1691 * clk_set_max_rate - set a maximum clock rate for a clock source
1692 * @clk: clock source
1693 * @rate: desired maximum clock rate in Hz, inclusive
1694 *
1695 * Returns success (0) or negative errno.
1696 */
1697int clk_set_max_rate(struct clk *clk, unsigned long rate)
1698{
1699        if (!clk)
1700                return 0;
1701
1702        return clk_set_rate_range(clk, clk->min_rate, rate);
1703}
1704EXPORT_SYMBOL_GPL(clk_set_max_rate);
1705
1706/**
1707 * clk_get_parent - return the parent of a clk
1708 * @clk: the clk whose parent gets returned
1709 *
1710 * Simply returns clk->parent.  Returns NULL if clk is NULL.
1711 */
1712struct clk *clk_get_parent(struct clk *clk)
1713{
1714        struct clk *parent;
1715
1716        if (!clk)
1717                return NULL;
1718
1719        clk_prepare_lock();
1720        /* TODO: Create a per-user clk and change callers to call clk_put */
1721        parent = !clk->core->parent ? NULL : clk->core->parent->hw->clk;
1722        clk_prepare_unlock();
1723
1724        return parent;
1725}
1726EXPORT_SYMBOL_GPL(clk_get_parent);
1727
1728static struct clk_core *__clk_init_parent(struct clk_core *core)
1729{
1730        u8 index = 0;
1731
1732        if (core->num_parents > 1 && core->ops->get_parent)
1733                index = core->ops->get_parent(core->hw);
1734
1735        return clk_core_get_parent_by_index(core, index);
1736}
1737
1738static void clk_core_reparent(struct clk_core *core,
1739                                  struct clk_core *new_parent)
1740{
1741        clk_reparent(core, new_parent);
1742        __clk_recalc_accuracies(core);
1743        __clk_recalc_rates(core, POST_RATE_CHANGE);
1744}
1745
1746void clk_hw_reparent(struct clk_hw *hw, struct clk_hw *new_parent)
1747{
1748        if (!hw)
1749                return;
1750
1751        clk_core_reparent(hw->core, !new_parent ? NULL : new_parent->core);
1752}
1753
1754/**
1755 * clk_has_parent - check if a clock is a possible parent for another
1756 * @clk: clock source
1757 * @parent: parent clock source
1758 *
1759 * This function can be used in drivers that need to check that a clock can be
1760 * the parent of another without actually changing the parent.
1761 *
1762 * Returns true if @parent is a possible parent for @clk, false otherwise.
1763 */
1764bool clk_has_parent(struct clk *clk, struct clk *parent)
1765{
1766        struct clk_core *core, *parent_core;
1767        unsigned int i;
1768
1769        /* NULL clocks should be nops, so return success if either is NULL. */
1770        if (!clk || !parent)
1771                return true;
1772
1773        core = clk->core;
1774        parent_core = parent->core;
1775
1776        /* Optimize for the case where the parent is already the parent. */
1777        if (core->parent == parent_core)
1778                return true;
1779
1780        for (i = 0; i < core->num_parents; i++)
1781                if (strcmp(core->parent_names[i], parent_core->name) == 0)
1782                        return true;
1783
1784        return false;
1785}
1786EXPORT_SYMBOL_GPL(clk_has_parent);
1787
1788static int clk_core_set_parent(struct clk_core *core, struct clk_core *parent)
1789{
1790        int ret = 0;
1791        int p_index = 0;
1792        unsigned long p_rate = 0;
1793
1794        if (!core)
1795                return 0;
1796
1797        /* prevent racing with updates to the clock topology */
1798        clk_prepare_lock();
1799
1800        if (core->parent == parent)
1801                goto out;
1802
1803        /* verify ops for for multi-parent clks */
1804        if ((core->num_parents > 1) && (!core->ops->set_parent)) {
1805                ret = -ENOSYS;
1806                goto out;
1807        }
1808
1809        /* check that we are allowed to re-parent if the clock is in use */
1810        if ((core->flags & CLK_SET_PARENT_GATE) && core->prepare_count) {
1811                ret = -EBUSY;
1812                goto out;
1813        }
1814
1815        /* try finding the new parent index */
1816        if (parent) {
1817                p_index = clk_fetch_parent_index(core, parent);
1818                if (p_index < 0) {
1819                        pr_debug("%s: clk %s can not be parent of clk %s\n",
1820                                        __func__, parent->name, core->name);
1821                        ret = p_index;
1822                        goto out;
1823                }
1824                p_rate = parent->rate;
1825        }
1826
1827        /* propagate PRE_RATE_CHANGE notifications */
1828        ret = __clk_speculate_rates(core, p_rate);
1829
1830        /* abort if a driver objects */
1831        if (ret & NOTIFY_STOP_MASK)
1832                goto out;
1833
1834        /* do the re-parent */
1835        ret = __clk_set_parent(core, parent, p_index);
1836
1837        /* propagate rate an accuracy recalculation accordingly */
1838        if (ret) {
1839                __clk_recalc_rates(core, ABORT_RATE_CHANGE);
1840        } else {
1841                __clk_recalc_rates(core, POST_RATE_CHANGE);
1842                __clk_recalc_accuracies(core);
1843        }
1844
1845out:
1846        clk_prepare_unlock();
1847
1848        return ret;
1849}
1850
1851/**
1852 * clk_set_parent - switch the parent of a mux clk
1853 * @clk: the mux clk whose input we are switching
1854 * @parent: the new input to clk
1855 *
1856 * Re-parent clk to use parent as its new input source.  If clk is in
1857 * prepared state, the clk will get enabled for the duration of this call. If
1858 * that's not acceptable for a specific clk (Eg: the consumer can't handle
1859 * that, the reparenting is glitchy in hardware, etc), use the
1860 * CLK_SET_PARENT_GATE flag to allow reparenting only when clk is unprepared.
1861 *
1862 * After successfully changing clk's parent clk_set_parent will update the
1863 * clk topology, sysfs topology and propagate rate recalculation via
1864 * __clk_recalc_rates.
1865 *
1866 * Returns 0 on success, -EERROR otherwise.
1867 */
1868int clk_set_parent(struct clk *clk, struct clk *parent)
1869{
1870        if (!clk)
1871                return 0;
1872
1873        return clk_core_set_parent(clk->core, parent ? parent->core : NULL);
1874}
1875EXPORT_SYMBOL_GPL(clk_set_parent);
1876
1877/**
1878 * clk_set_phase - adjust the phase shift of a clock signal
1879 * @clk: clock signal source
1880 * @degrees: number of degrees the signal is shifted
1881 *
1882 * Shifts the phase of a clock signal by the specified
1883 * degrees. Returns 0 on success, -EERROR otherwise.
1884 *
1885 * This function makes no distinction about the input or reference
1886 * signal that we adjust the clock signal phase against. For example
1887 * phase locked-loop clock signal generators we may shift phase with
1888 * respect to feedback clock signal input, but for other cases the
1889 * clock phase may be shifted with respect to some other, unspecified
1890 * signal.
1891 *
1892 * Additionally the concept of phase shift does not propagate through
1893 * the clock tree hierarchy, which sets it apart from clock rates and
1894 * clock accuracy. A parent clock phase attribute does not have an
1895 * impact on the phase attribute of a child clock.
1896 */
1897int clk_set_phase(struct clk *clk, int degrees)
1898{
1899        int ret = -EINVAL;
1900
1901        if (!clk)
1902                return 0;
1903
1904        /* sanity check degrees */
1905        degrees %= 360;
1906        if (degrees < 0)
1907                degrees += 360;
1908
1909        clk_prepare_lock();
1910
1911        /* bail early if nothing to do */
1912        if (degrees == clk->core->phase)
1913                goto out;
1914
1915        trace_clk_set_phase(clk->core, degrees);
1916
1917        if (clk->core->ops->set_phase)
1918                ret = clk->core->ops->set_phase(clk->core->hw, degrees);
1919
1920        trace_clk_set_phase_complete(clk->core, degrees);
1921
1922        if (!ret)
1923                clk->core->phase = degrees;
1924
1925out:
1926        clk_prepare_unlock();
1927
1928        return ret;
1929}
1930EXPORT_SYMBOL_GPL(clk_set_phase);
1931
1932static int clk_core_get_phase(struct clk_core *core)
1933{
1934        int ret;
1935
1936        clk_prepare_lock();
1937        ret = core->phase;
1938        clk_prepare_unlock();
1939
1940        return ret;
1941}
1942
1943/**
1944 * clk_get_phase - return the phase shift of a clock signal
1945 * @clk: clock signal source
1946 *
1947 * Returns the phase shift of a clock node in degrees, otherwise returns
1948 * -EERROR.
1949 */
1950int clk_get_phase(struct clk *clk)
1951{
1952        if (!clk)
1953                return 0;
1954
1955        return clk_core_get_phase(clk->core);
1956}
1957EXPORT_SYMBOL_GPL(clk_get_phase);
1958
1959/**
1960 * clk_is_match - check if two clk's point to the same hardware clock
1961 * @p: clk compared against q
1962 * @q: clk compared against p
1963 *
1964 * Returns true if the two struct clk pointers both point to the same hardware
1965 * clock node. Put differently, returns true if struct clk *p and struct clk *q
1966 * share the same struct clk_core object.
1967 *
1968 * Returns false otherwise. Note that two NULL clks are treated as matching.
1969 */
1970bool clk_is_match(const struct clk *p, const struct clk *q)
1971{
1972        /* trivial case: identical struct clk's or both NULL */
1973        if (p == q)
1974                return true;
1975
1976        /* true if clk->core pointers match. Avoid dereferencing garbage */
1977        if (!IS_ERR_OR_NULL(p) && !IS_ERR_OR_NULL(q))
1978                if (p->core == q->core)
1979                        return true;
1980
1981        return false;
1982}
1983EXPORT_SYMBOL_GPL(clk_is_match);
1984
1985/***        debugfs support        ***/
1986
1987#ifdef CONFIG_DEBUG_FS
1988#include <linux/debugfs.h>
1989
1990static struct dentry *rootdir;
1991static int inited = 0;
1992static DEFINE_MUTEX(clk_debug_lock);
1993static HLIST_HEAD(clk_debug_list);
1994
1995static struct hlist_head *all_lists[] = {
1996        &clk_root_list,
1997        &clk_orphan_list,
1998        NULL,
1999};
2000
2001static struct hlist_head *orphan_list[] = {
2002        &clk_orphan_list,
2003        NULL,
2004};
2005
2006static void clk_summary_show_one(struct seq_file *s, struct clk_core *c,
2007                                 int level)
2008{
2009        if (!c)
2010                return;
2011
2012        seq_printf(s, "%*s%-*s %11d %12d %11lu %10lu %-3d\n",
2013                   level * 3 + 1, "",
2014                   30 - level * 3, c->name,
2015                   c->enable_count, c->prepare_count, clk_core_get_rate(c),
2016                   clk_core_get_accuracy(c), clk_core_get_phase(c));
2017}
2018
2019static void clk_summary_show_subtree(struct seq_file *s, struct clk_core *c,
2020                                     int level)
2021{
2022        struct clk_core *child;
2023
2024        if (!c)
2025                return;
2026
2027        clk_summary_show_one(s, c, level);
2028
2029        hlist_for_each_entry(child, &c->children, child_node)
2030                clk_summary_show_subtree(s, child, level + 1);
2031}
2032
2033static int clk_summary_show(struct seq_file *s, void *data)
2034{
2035        struct clk_core *c;
2036        struct hlist_head **lists = (struct hlist_head **)s->private;
2037
2038        seq_puts(s, "   clock                         enable_cnt  prepare_cnt        rate   accuracy   phase\n");
2039        seq_puts(s, "----------------------------------------------------------------------------------------\n");
2040
2041        clk_prepare_lock();
2042
2043        for (; *lists; lists++)
2044                hlist_for_each_entry(c, *lists, child_node)
2045                        clk_summary_show_subtree(s, c, 0);
2046
2047        clk_prepare_unlock();
2048
2049        return 0;
2050}
2051
2052
2053static int clk_summary_open(struct inode *inode, struct file *file)
2054{
2055        return single_open(file, clk_summary_show, inode->i_private);
2056}
2057
2058static const struct file_operations clk_summary_fops = {
2059        .open           = clk_summary_open,
2060        .read           = seq_read,
2061        .llseek         = seq_lseek,
2062        .release        = single_release,
2063};
2064
2065static void clk_dump_one(struct seq_file *s, struct clk_core *c, int level)
2066{
2067        if (!c)
2068                return;
2069
2070        /* This should be JSON format, i.e. elements separated with a comma */
2071        seq_printf(s, "\"%s\": { ", c->name);
2072        seq_printf(s, "\"enable_count\": %d,", c->enable_count);
2073        seq_printf(s, "\"prepare_count\": %d,", c->prepare_count);
2074        seq_printf(s, "\"rate\": %lu,", clk_core_get_rate(c));
2075        seq_printf(s, "\"accuracy\": %lu,", clk_core_get_accuracy(c));
2076        seq_printf(s, "\"phase\": %d", clk_core_get_phase(c));
2077}
2078
2079static void clk_dump_subtree(struct seq_file *s, struct clk_core *c, int level)
2080{
2081        struct clk_core *child;
2082
2083        if (!c)
2084                return;
2085
2086        clk_dump_one(s, c, level);
2087
2088        hlist_for_each_entry(child, &c->children, child_node) {
2089                seq_printf(s, ",");
2090                clk_dump_subtree(s, child, level + 1);
2091        }
2092
2093        seq_printf(s, "}");
2094}
2095
2096static int clk_dump(struct seq_file *s, void *data)
2097{
2098        struct clk_core *c;
2099        bool first_node = true;
2100        struct hlist_head **lists = (struct hlist_head **)s->private;
2101
2102        seq_printf(s, "{");
2103
2104        clk_prepare_lock();
2105
2106        for (; *lists; lists++) {
2107                hlist_for_each_entry(c, *lists, child_node) {
2108                        if (!first_node)
2109                                seq_puts(s, ",");
2110                        first_node = false;
2111                        clk_dump_subtree(s, c, 0);
2112                }
2113        }
2114
2115        clk_prepare_unlock();
2116
2117        seq_puts(s, "}\n");
2118        return 0;
2119}
2120
2121
2122static int clk_dump_open(struct inode *inode, struct file *file)
2123{
2124        return single_open(file, clk_dump, inode->i_private);
2125}
2126
2127static const struct file_operations clk_dump_fops = {
2128        .open           = clk_dump_open,
2129        .read           = seq_read,
2130        .llseek         = seq_lseek,
2131        .release        = single_release,
2132};
2133
2134static int clk_debug_create_one(struct clk_core *core, struct dentry *pdentry)
2135{
2136        struct dentry *d;
2137        int ret = -ENOMEM;
2138
2139        if (!core || !pdentry) {
2140                ret = -EINVAL;
2141                goto out;
2142        }
2143
2144        d = debugfs_create_dir(core->name, pdentry);
2145        if (!d)
2146                goto out;
2147
2148        core->dentry = d;
2149
2150        d = debugfs_create_u32("clk_rate", S_IRUGO, core->dentry,
2151                        (u32 *)&core->rate);
2152        if (!d)
2153                goto err_out;
2154
2155        d = debugfs_create_u32("clk_accuracy", S_IRUGO, core->dentry,
2156                        (u32 *)&core->accuracy);
2157        if (!d)
2158                goto err_out;
2159
2160        d = debugfs_create_u32("clk_phase", S_IRUGO, core->dentry,
2161                        (u32 *)&core->phase);
2162        if (!d)
2163                goto err_out;
2164
2165        d = debugfs_create_x32("clk_flags", S_IRUGO, core->dentry,
2166                        (u32 *)&core->flags);
2167        if (!d)
2168                goto err_out;
2169
2170        d = debugfs_create_u32("clk_prepare_count", S_IRUGO, core->dentry,
2171                        (u32 *)&core->prepare_count);
2172        if (!d)
2173                goto err_out;
2174
2175        d = debugfs_create_u32("clk_enable_count", S_IRUGO, core->dentry,
2176                        (u32 *)&core->enable_count);
2177        if (!d)
2178                goto err_out;
2179
2180        d = debugfs_create_u32("clk_notifier_count", S_IRUGO, core->dentry,
2181                        (u32 *)&core->notifier_count);
2182        if (!d)
2183                goto err_out;
2184
2185        if (core->ops->debug_init) {
2186                ret = core->ops->debug_init(core->hw, core->dentry);
2187                if (ret)
2188                        goto err_out;
2189        }
2190
2191        ret = 0;
2192        goto out;
2193
2194err_out:
2195        debugfs_remove_recursive(core->dentry);
2196        core->dentry = NULL;
2197out:
2198        return ret;
2199}
2200
2201/**
2202 * clk_debug_register - add a clk node to the debugfs clk directory
2203 * @core: the clk being added to the debugfs clk directory
2204 *
2205 * Dynamically adds a clk to the debugfs clk directory if debugfs has been
2206 * initialized.  Otherwise it bails out early since the debugfs clk directory
2207 * will be created lazily by clk_debug_init as part of a late_initcall.
2208 */
2209static int clk_debug_register(struct clk_core *core)
2210{
2211        int ret = 0;
2212
2213        mutex_lock(&clk_debug_lock);
2214        hlist_add_head(&core->debug_node, &clk_debug_list);
2215
2216        if (!inited)
2217                goto unlock;
2218
2219        ret = clk_debug_create_one(core, rootdir);
2220unlock:
2221        mutex_unlock(&clk_debug_lock);
2222
2223        return ret;
2224}
2225
2226 /**
2227 * clk_debug_unregister - remove a clk node from the debugfs clk directory
2228 * @core: the clk being removed from the debugfs clk directory
2229 *
2230 * Dynamically removes a clk and all its child nodes from the
2231 * debugfs clk directory if clk->dentry points to debugfs created by
2232 * clk_debug_register in __clk_core_init.
2233 */
2234static void clk_debug_unregister(struct clk_core *core)
2235{
2236        mutex_lock(&clk_debug_lock);
2237        hlist_del_init(&core->debug_node);
2238        debugfs_remove_recursive(core->dentry);
2239        core->dentry = NULL;
2240        mutex_unlock(&clk_debug_lock);
2241}
2242
2243struct dentry *clk_debugfs_add_file(struct clk_hw *hw, char *name, umode_t mode,
2244                                void *data, const struct file_operations *fops)
2245{
2246        struct dentry *d = NULL;
2247
2248        if (hw->core->dentry)
2249                d = debugfs_create_file(name, mode, hw->core->dentry, data,
2250                                        fops);
2251
2252        return d;
2253}
2254EXPORT_SYMBOL_GPL(clk_debugfs_add_file);
2255
2256/**
2257 * clk_debug_init - lazily populate the debugfs clk directory
2258 *
2259 * clks are often initialized very early during boot before memory can be
2260 * dynamically allocated and well before debugfs is setup. This function
2261 * populates the debugfs clk directory once at boot-time when we know that
2262 * debugfs is setup. It should only be called once at boot-time, all other clks
2263 * added dynamically will be done so with clk_debug_register.
2264 */
2265static int __init clk_debug_init(void)
2266{
2267        struct clk_core *core;
2268        struct dentry *d;
2269
2270        rootdir = debugfs_create_dir("clk", NULL);
2271
2272        if (!rootdir)
2273                return -ENOMEM;
2274
2275        d = debugfs_create_file("clk_summary", S_IRUGO, rootdir, &all_lists,
2276                                &clk_summary_fops);
2277        if (!d)
2278                return -ENOMEM;
2279
2280        d = debugfs_create_file("clk_dump", S_IRUGO, rootdir, &all_lists,
2281                                &clk_dump_fops);
2282        if (!d)
2283                return -ENOMEM;
2284
2285        d = debugfs_create_file("clk_orphan_summary", S_IRUGO, rootdir,
2286                                &orphan_list, &clk_summary_fops);
2287        if (!d)
2288                return -ENOMEM;
2289
2290        d = debugfs_create_file("clk_orphan_dump", S_IRUGO, rootdir,
2291                                &orphan_list, &clk_dump_fops);
2292        if (!d)
2293                return -ENOMEM;
2294
2295        mutex_lock(&clk_debug_lock);
2296        hlist_for_each_entry(core, &clk_debug_list, debug_node)
2297                clk_debug_create_one(core, rootdir);
2298
2299        inited = 1;
2300        mutex_unlock(&clk_debug_lock);
2301
2302        return 0;
2303}
2304late_initcall(clk_debug_init);
2305#else
2306static inline int clk_debug_register(struct clk_core *core) { return 0; }
2307static inline void clk_debug_reparent(struct clk_core *core,
2308                                      struct clk_core *new_parent)
2309{
2310}
2311static inline void clk_debug_unregister(struct clk_core *core)
2312{
2313}
2314#endif
2315
2316/**
2317 * __clk_core_init - initialize the data structures in a struct clk_core
2318 * @core:       clk_core being initialized
2319 *
2320 * Initializes the lists in struct clk_core, queries the hardware for the
2321 * parent and rate and sets them both.
2322 */
2323static int __clk_core_init(struct clk_core *core)
2324{
2325        int i, ret = 0;
2326        struct clk_core *orphan;
2327        struct hlist_node *tmp2;
2328        unsigned long rate;
2329
2330        if (!core)
2331                return -EINVAL;
2332
2333        clk_prepare_lock();
2334
2335        /* check to see if a clock with this name is already registered */
2336        if (clk_core_lookup(core->name)) {
2337                pr_debug("%s: clk %s already initialized\n",
2338                                __func__, core->name);
2339                ret = -EEXIST;
2340                goto out;
2341        }
2342
2343        /* check that clk_ops are sane.  See Documentation/clk.txt */
2344        if (core->ops->set_rate &&
2345            !((core->ops->round_rate || core->ops->determine_rate) &&
2346              core->ops->recalc_rate)) {
2347                pr_err("%s: %s must implement .round_rate or .determine_rate in addition to .recalc_rate\n",
2348                       __func__, core->name);
2349                ret = -EINVAL;
2350                goto out;
2351        }
2352
2353        if (core->ops->set_parent && !core->ops->get_parent) {
2354                pr_err("%s: %s must implement .get_parent & .set_parent\n",
2355                       __func__, core->name);
2356                ret = -EINVAL;
2357                goto out;
2358        }
2359
2360        if (core->num_parents > 1 && !core->ops->get_parent) {
2361                pr_err("%s: %s must implement .get_parent as it has multi parents\n",
2362                       __func__, core->name);
2363                ret = -EINVAL;
2364                goto out;
2365        }
2366
2367        if (core->ops->set_rate_and_parent &&
2368                        !(core->ops->set_parent && core->ops->set_rate)) {
2369                pr_err("%s: %s must implement .set_parent & .set_rate\n",
2370                                __func__, core->name);
2371                ret = -EINVAL;
2372                goto out;
2373        }
2374
2375        /* throw a WARN if any entries in parent_names are NULL */
2376        for (i = 0; i < core->num_parents; i++)
2377                WARN(!core->parent_names[i],
2378                                "%s: invalid NULL in %s's .parent_names\n",
2379                                __func__, core->name);
2380
2381        core->parent = __clk_init_parent(core);
2382
2383        /*
2384         * Populate core->parent if parent has already been clk_core_init'd. If
2385         * parent has not yet been clk_core_init'd then place clk in the orphan
2386         * list.  If clk doesn't have any parents then place it in the root
2387         * clk list.
2388         *
2389         * Every time a new clk is clk_init'd then we walk the list of orphan
2390         * clocks and re-parent any that are children of the clock currently
2391         * being clk_init'd.
2392         */
2393        if (core->parent) {
2394                hlist_add_head(&core->child_node,
2395                                &core->parent->children);
2396                core->orphan = core->parent->orphan;
2397        } else if (!core->num_parents) {
2398                hlist_add_head(&core->child_node, &clk_root_list);
2399                core->orphan = false;
2400        } else {
2401                hlist_add_head(&core->child_node, &clk_orphan_list);
2402                core->orphan = true;
2403        }
2404
2405        /*
2406         * Set clk's accuracy.  The preferred method is to use
2407         * .recalc_accuracy. For simple clocks and lazy developers the default
2408         * fallback is to use the parent's accuracy.  If a clock doesn't have a
2409         * parent (or is orphaned) then accuracy is set to zero (perfect
2410         * clock).
2411         */
2412        if (core->ops->recalc_accuracy)
2413                core->accuracy = core->ops->recalc_accuracy(core->hw,
2414                                        __clk_get_accuracy(core->parent));
2415        else if (core->parent)
2416                core->accuracy = core->parent->accuracy;
2417        else
2418                core->accuracy = 0;
2419
2420        /*
2421         * Set clk's phase.
2422         * Since a phase is by definition relative to its parent, just
2423         * query the current clock phase, or just assume it's in phase.
2424         */
2425        if (core->ops->get_phase)
2426                core->phase = core->ops->get_phase(core->hw);
2427        else
2428                core->phase = 0;
2429
2430        /*
2431         * Set clk's rate.  The preferred method is to use .recalc_rate.  For
2432         * simple clocks and lazy developers the default fallback is to use the
2433         * parent's rate.  If a clock doesn't have a parent (or is orphaned)
2434         * then rate is set to zero.
2435         */
2436        if (core->ops->recalc_rate)
2437                rate = core->ops->recalc_rate(core->hw,
2438                                clk_core_get_rate_nolock(core->parent));
2439        else if (core->parent)
2440                rate = core->parent->rate;
2441        else
2442                rate = 0;
2443        core->rate = core->req_rate = rate;
2444
2445        /*
2446         * walk the list of orphan clocks and reparent any that newly finds a
2447         * parent.
2448         */
2449        hlist_for_each_entry_safe(orphan, tmp2, &clk_orphan_list, child_node) {
2450                struct clk_core *parent = __clk_init_parent(orphan);
2451
2452                if (parent)
2453                        clk_core_reparent(orphan, parent);
2454        }
2455
2456        /*
2457         * optional platform-specific magic
2458         *
2459         * The .init callback is not used by any of the basic clock types, but
2460         * exists for weird hardware that must perform initialization magic.
2461         * Please consider other ways of solving initialization problems before
2462         * using this callback, as its use is discouraged.
2463         */
2464        if (core->ops->init)
2465                core->ops->init(core->hw);
2466
2467        if (core->flags & CLK_IS_CRITICAL) {
2468                unsigned long flags;
2469
2470                clk_core_prepare(core);
2471
2472                flags = clk_enable_lock();
2473                clk_core_enable(core);
2474                clk_enable_unlock(flags);
2475        }
2476
2477        kref_init(&core->ref);
2478out:
2479        clk_prepare_unlock();
2480
2481        if (!ret)
2482                clk_debug_register(core);
2483
2484        return ret;
2485}
2486
2487struct clk *__clk_create_clk(struct clk_hw *hw, const char *dev_id,
2488                             const char *con_id)
2489{
2490        struct clk *clk;
2491
2492        /* This is to allow this function to be chained to others */
2493        if (IS_ERR_OR_NULL(hw))
2494                return (struct clk *) hw;
2495
2496        clk = kzalloc(sizeof(*clk), GFP_KERNEL);
2497        if (!clk)
2498                return ERR_PTR(-ENOMEM);
2499
2500        clk->core = hw->core;
2501        clk->dev_id = dev_id;
2502        clk->con_id = con_id;
2503        clk->max_rate = ULONG_MAX;
2504
2505        clk_prepare_lock();
2506        hlist_add_head(&clk->clks_node, &hw->core->clks);
2507        clk_prepare_unlock();
2508
2509        return clk;
2510}
2511
2512void __clk_free_clk(struct clk *clk)
2513{
2514        clk_prepare_lock();
2515        hlist_del(&clk->clks_node);
2516        clk_prepare_unlock();
2517
2518        kfree(clk);
2519}
2520
2521/**
2522 * clk_register - allocate a new clock, register it and return an opaque cookie
2523 * @dev: device that is registering this clock
2524 * @hw: link to hardware-specific clock data
2525 *
2526 * clk_register is the primary interface for populating the clock tree with new
2527 * clock nodes.  It returns a pointer to the newly allocated struct clk which
2528 * cannot be dereferenced by driver code but may be used in conjunction with the
2529 * rest of the clock API.  In the event of an error clk_register will return an
2530 * error code; drivers must test for an error code after calling clk_register.
2531 */
2532struct clk *clk_register(struct device *dev, struct clk_hw *hw)
2533{
2534        int i, ret;
2535        struct clk_core *core;
2536
2537        core = kzalloc(sizeof(*core), GFP_KERNEL);
2538        if (!core) {
2539                ret = -ENOMEM;
2540                goto fail_out;
2541        }
2542
2543        core->name = kstrdup_const(hw->init->name, GFP_KERNEL);
2544        if (!core->name) {
2545                ret = -ENOMEM;
2546                goto fail_name;
2547        }
2548        core->ops = hw->init->ops;
2549        if (dev && dev->driver)
2550                core->owner = dev->driver->owner;
2551        core->hw = hw;
2552        core->flags = hw->init->flags;
2553        core->num_parents = hw->init->num_parents;
2554        core->min_rate = 0;
2555        core->max_rate = ULONG_MAX;
2556        hw->core = core;
2557
2558        /* allocate local copy in case parent_names is __initdata */
2559        core->parent_names = kcalloc(core->num_parents, sizeof(char *),
2560                                        GFP_KERNEL);
2561
2562        if (!core->parent_names) {
2563                ret = -ENOMEM;
2564                goto fail_parent_names;
2565        }
2566
2567
2568        /* copy each string name in case parent_names is __initdata */
2569        for (i = 0; i < core->num_parents; i++) {
2570                core->parent_names[i] = kstrdup_const(hw->init->parent_names[i],
2571                                                GFP_KERNEL);
2572                if (!core->parent_names[i]) {
2573                        ret = -ENOMEM;
2574                        goto fail_parent_names_copy;
2575                }
2576        }
2577
2578        /* avoid unnecessary string look-ups of clk_core's possible parents. */
2579        core->parents = kcalloc(core->num_parents, sizeof(*core->parents),
2580                                GFP_KERNEL);
2581        if (!core->parents) {
2582                ret = -ENOMEM;
2583                goto fail_parents;
2584        };
2585
2586        INIT_HLIST_HEAD(&core->clks);
2587
2588        hw->clk = __clk_create_clk(hw, NULL, NULL);
2589        if (IS_ERR(hw->clk)) {
2590                ret = PTR_ERR(hw->clk);
2591                goto fail_parents;
2592        }
2593
2594        ret = __clk_core_init(core);
2595        if (!ret)
2596                return hw->clk;
2597
2598        __clk_free_clk(hw->clk);
2599        hw->clk = NULL;
2600
2601fail_parents:
2602        kfree(core->parents);
2603fail_parent_names_copy:
2604        while (--i >= 0)
2605                kfree_const(core->parent_names[i]);
2606        kfree(core->parent_names);
2607fail_parent_names:
2608        kfree_const(core->name);
2609fail_name:
2610        kfree(core);
2611fail_out:
2612        return ERR_PTR(ret);
2613}
2614EXPORT_SYMBOL_GPL(clk_register);
2615
2616/**
2617 * clk_hw_register - register a clk_hw and return an error code
2618 * @dev: device that is registering this clock
2619 * @hw: link to hardware-specific clock data
2620 *
2621 * clk_hw_register is the primary interface for populating the clock tree with
2622 * new clock nodes. It returns an integer equal to zero indicating success or
2623 * less than zero indicating failure. Drivers must test for an error code after
2624 * calling clk_hw_register().
2625 */
2626int clk_hw_register(struct device *dev, struct clk_hw *hw)
2627{
2628        return PTR_ERR_OR_ZERO(clk_register(dev, hw));
2629}
2630EXPORT_SYMBOL_GPL(clk_hw_register);
2631
2632/* Free memory allocated for a clock. */
2633static void __clk_release(struct kref *ref)
2634{
2635        struct clk_core *core = container_of(ref, struct clk_core, ref);
2636        int i = core->num_parents;
2637
2638        lockdep_assert_held(&prepare_lock);
2639
2640        kfree(core->parents);
2641        while (--i >= 0)
2642                kfree_const(core->parent_names[i]);
2643
2644        kfree(core->parent_names);
2645        kfree_const(core->name);
2646        kfree(core);
2647}
2648
2649/*
2650 * Empty clk_ops for unregistered clocks. These are used temporarily
2651 * after clk_unregister() was called on a clock and until last clock
2652 * consumer calls clk_put() and the struct clk object is freed.
2653 */
2654static int clk_nodrv_prepare_enable(struct clk_hw *hw)
2655{
2656        return -ENXIO;
2657}
2658
2659static void clk_nodrv_disable_unprepare(struct clk_hw *hw)
2660{
2661        WARN_ON_ONCE(1);
2662}
2663
2664static int clk_nodrv_set_rate(struct clk_hw *hw, unsigned long rate,
2665                                        unsigned long parent_rate)
2666{
2667        return -ENXIO;
2668}
2669
2670static int clk_nodrv_set_parent(struct clk_hw *hw, u8 index)
2671{
2672        return -ENXIO;
2673}
2674
2675static const struct clk_ops clk_nodrv_ops = {
2676        .enable         = clk_nodrv_prepare_enable,
2677        .disable        = clk_nodrv_disable_unprepare,
2678        .prepare        = clk_nodrv_prepare_enable,
2679        .unprepare      = clk_nodrv_disable_unprepare,
2680        .set_rate       = clk_nodrv_set_rate,
2681        .set_parent     = clk_nodrv_set_parent,
2682};
2683
2684/**
2685 * clk_unregister - unregister a currently registered clock
2686 * @clk: clock to unregister
2687 */
2688void clk_unregister(struct clk *clk)
2689{
2690        unsigned long flags;
2691
2692        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2693                return;
2694
2695        clk_debug_unregister(clk->core);
2696
2697        clk_prepare_lock();
2698
2699        if (clk->core->ops == &clk_nodrv_ops) {
2700                pr_err("%s: unregistered clock: %s\n", __func__,
2701                       clk->core->name);
2702                goto unlock;
2703        }
2704        /*
2705         * Assign empty clock ops for consumers that might still hold
2706         * a reference to this clock.
2707         */
2708        flags = clk_enable_lock();
2709        clk->core->ops = &clk_nodrv_ops;
2710        clk_enable_unlock(flags);
2711
2712        if (!hlist_empty(&clk->core->children)) {
2713                struct clk_core *child;
2714                struct hlist_node *t;
2715
2716                /* Reparent all children to the orphan list. */
2717                hlist_for_each_entry_safe(child, t, &clk->core->children,
2718                                          child_node)
2719                        clk_core_set_parent(child, NULL);
2720        }
2721
2722        hlist_del_init(&clk->core->child_node);
2723
2724        if (clk->core->prepare_count)
2725                pr_warn("%s: unregistering prepared clock: %s\n",
2726                                        __func__, clk->core->name);
2727        kref_put(&clk->core->ref, __clk_release);
2728unlock:
2729        clk_prepare_unlock();
2730}
2731EXPORT_SYMBOL_GPL(clk_unregister);
2732
2733/**
2734 * clk_hw_unregister - unregister a currently registered clk_hw
2735 * @hw: hardware-specific clock data to unregister
2736 */
2737void clk_hw_unregister(struct clk_hw *hw)
2738{
2739        clk_unregister(hw->clk);
2740}
2741EXPORT_SYMBOL_GPL(clk_hw_unregister);
2742
2743static void devm_clk_release(struct device *dev, void *res)
2744{
2745        clk_unregister(*(struct clk **)res);
2746}
2747
2748static void devm_clk_hw_release(struct device *dev, void *res)
2749{
2750        clk_hw_unregister(*(struct clk_hw **)res);
2751}
2752
2753/**
2754 * devm_clk_register - resource managed clk_register()
2755 * @dev: device that is registering this clock
2756 * @hw: link to hardware-specific clock data
2757 *
2758 * Managed clk_register(). Clocks returned from this function are
2759 * automatically clk_unregister()ed on driver detach. See clk_register() for
2760 * more information.
2761 */
2762struct clk *devm_clk_register(struct device *dev, struct clk_hw *hw)
2763{
2764        struct clk *clk;
2765        struct clk **clkp;
2766
2767        clkp = devres_alloc(devm_clk_release, sizeof(*clkp), GFP_KERNEL);
2768        if (!clkp)
2769                return ERR_PTR(-ENOMEM);
2770
2771        clk = clk_register(dev, hw);
2772        if (!IS_ERR(clk)) {
2773                *clkp = clk;
2774                devres_add(dev, clkp);
2775        } else {
2776                devres_free(clkp);
2777        }
2778
2779        return clk;
2780}
2781EXPORT_SYMBOL_GPL(devm_clk_register);
2782
2783/**
2784 * devm_clk_hw_register - resource managed clk_hw_register()
2785 * @dev: device that is registering this clock
2786 * @hw: link to hardware-specific clock data
2787 *
2788 * Managed clk_hw_register(). Clocks registered by this function are
2789 * automatically clk_hw_unregister()ed on driver detach. See clk_hw_register()
2790 * for more information.
2791 */
2792int devm_clk_hw_register(struct device *dev, struct clk_hw *hw)
2793{
2794        struct clk_hw **hwp;
2795        int ret;
2796
2797        hwp = devres_alloc(devm_clk_hw_release, sizeof(*hwp), GFP_KERNEL);
2798        if (!hwp)
2799                return -ENOMEM;
2800
2801        ret = clk_hw_register(dev, hw);
2802        if (!ret) {
2803                *hwp = hw;
2804                devres_add(dev, hwp);
2805        } else {
2806                devres_free(hwp);
2807        }
2808
2809        return ret;
2810}
2811EXPORT_SYMBOL_GPL(devm_clk_hw_register);
2812
2813static int devm_clk_match(struct device *dev, void *res, void *data)
2814{
2815        struct clk *c = res;
2816        if (WARN_ON(!c))
2817                return 0;
2818        return c == data;
2819}
2820
2821static int devm_clk_hw_match(struct device *dev, void *res, void *data)
2822{
2823        struct clk_hw *hw = res;
2824
2825        if (WARN_ON(!hw))
2826                return 0;
2827        return hw == data;
2828}
2829
2830/**
2831 * devm_clk_unregister - resource managed clk_unregister()
2832 * @clk: clock to unregister
2833 *
2834 * Deallocate a clock allocated with devm_clk_register(). Normally
2835 * this function will not need to be called and the resource management
2836 * code will ensure that the resource is freed.
2837 */
2838void devm_clk_unregister(struct device *dev, struct clk *clk)
2839{
2840        WARN_ON(devres_release(dev, devm_clk_release, devm_clk_match, clk));
2841}
2842EXPORT_SYMBOL_GPL(devm_clk_unregister);
2843
2844/**
2845 * devm_clk_hw_unregister - resource managed clk_hw_unregister()
2846 * @dev: device that is unregistering the hardware-specific clock data
2847 * @hw: link to hardware-specific clock data
2848 *
2849 * Unregister a clk_hw registered with devm_clk_hw_register(). Normally
2850 * this function will not need to be called and the resource management
2851 * code will ensure that the resource is freed.
2852 */
2853void devm_clk_hw_unregister(struct device *dev, struct clk_hw *hw)
2854{
2855        WARN_ON(devres_release(dev, devm_clk_hw_release, devm_clk_hw_match,
2856                                hw));
2857}
2858EXPORT_SYMBOL_GPL(devm_clk_hw_unregister);
2859
2860/*
2861 * clkdev helpers
2862 */
2863int __clk_get(struct clk *clk)
2864{
2865        struct clk_core *core = !clk ? NULL : clk->core;
2866
2867        if (core) {
2868                if (!try_module_get(core->owner))
2869                        return 0;
2870
2871                kref_get(&core->ref);
2872        }
2873        return 1;
2874}
2875
2876void __clk_put(struct clk *clk)
2877{
2878        struct module *owner;
2879
2880        if (!clk || WARN_ON_ONCE(IS_ERR(clk)))
2881                return;
2882
2883        clk_prepare_lock();
2884
2885        hlist_del(&clk->clks_node);
2886        if (clk->min_rate > clk->core->req_rate ||
2887            clk->max_rate < clk->core->req_rate)
2888                clk_core_set_rate_nolock(clk->core, clk->core->req_rate);
2889
2890        owner = clk->core->owner;
2891        kref_put(&clk->core->ref, __clk_release);
2892
2893        clk_prepare_unlock();
2894
2895        module_put(owner);
2896
2897        kfree(clk);
2898}
2899
2900/***        clk rate change notifiers        ***/
2901
2902/**
2903 * clk_notifier_register - add a clk rate change notifier
2904 * @clk: struct clk * to watch
2905 * @nb: struct notifier_block * with callback info
2906 *
2907 * Request notification when clk's rate changes.  This uses an SRCU
2908 * notifier because we want it to block and notifier unregistrations are
2909 * uncommon.  The callbacks associated with the notifier must not
2910 * re-enter into the clk framework by calling any top-level clk APIs;
2911 * this will cause a nested prepare_lock mutex.
2912 *
2913 * In all notification cases (pre, post and abort rate change) the original
2914 * clock rate is passed to the callback via struct clk_notifier_data.old_rate
2915 * and the new frequency is passed via struct clk_notifier_data.new_rate.
2916 *
2917 * clk_notifier_register() must be called from non-atomic context.
2918 * Returns -EINVAL if called with null arguments, -ENOMEM upon
2919 * allocation failure; otherwise, passes along the return value of
2920 * srcu_notifier_chain_register().
2921 */
2922int clk_notifier_register(struct clk *clk, struct notifier_block *nb)
2923{
2924        struct clk_notifier *cn;
2925        int ret = -ENOMEM;
2926
2927        if (!clk || !nb)
2928                return -EINVAL;
2929
2930        clk_prepare_lock();
2931
2932        /* search the list of notifiers for this clk */
2933        list_for_each_entry(cn, &clk_notifier_list, node)
2934                if (cn->clk == clk)
2935                        break;
2936
2937        /* if clk wasn't in the notifier list, allocate new clk_notifier */
2938        if (cn->clk != clk) {
2939                cn = kzalloc(sizeof(struct clk_notifier), GFP_KERNEL);
2940                if (!cn)
2941                        goto out;
2942
2943                cn->clk = clk;
2944                srcu_init_notifier_head(&cn->notifier_head);
2945
2946                list_add(&cn->node, &clk_notifier_list);
2947        }
2948
2949        ret = srcu_notifier_chain_register(&cn->notifier_head, nb);
2950
2951        clk->core->notifier_count++;
2952
2953out:
2954        clk_prepare_unlock();
2955
2956        return ret;
2957}
2958EXPORT_SYMBOL_GPL(clk_notifier_register);
2959
2960/**
2961 * clk_notifier_unregister - remove a clk rate change notifier
2962 * @clk: struct clk *
2963 * @nb: struct notifier_block * with callback info
2964 *
2965 * Request no further notification for changes to 'clk' and frees memory
2966 * allocated in clk_notifier_register.
2967 *
2968 * Returns -EINVAL if called with null arguments; otherwise, passes
2969 * along the return value of srcu_notifier_chain_unregister().
2970 */
2971int clk_notifier_unregister(struct clk *clk, struct notifier_block *nb)
2972{
2973        struct clk_notifier *cn = NULL;
2974        int ret = -EINVAL;
2975
2976        if (!clk || !nb)
2977                return -EINVAL;
2978
2979        clk_prepare_lock();
2980
2981        list_for_each_entry(cn, &clk_notifier_list, node)
2982                if (cn->clk == clk)
2983                        break;
2984
2985        if (cn->clk == clk) {
2986                ret = srcu_notifier_chain_unregister(&cn->notifier_head, nb);
2987
2988                clk->core->notifier_count--;
2989
2990                /* XXX the notifier code should handle this better */
2991                if (!cn->notifier_head.head) {
2992                        srcu_cleanup_notifier_head(&cn->notifier_head);
2993                        list_del(&cn->node);
2994                        kfree(cn);
2995                }
2996
2997        } else {
2998                ret = -ENOENT;
2999        }
3000
3001        clk_prepare_unlock();
3002
3003        return ret;
3004}
3005EXPORT_SYMBOL_GPL(clk_notifier_unregister);
3006
3007#ifdef CONFIG_OF
3008/**
3009 * struct of_clk_provider - Clock provider registration structure
3010 * @link: Entry in global list of clock providers
3011 * @node: Pointer to device tree node of clock provider
3012 * @get: Get clock callback.  Returns NULL or a struct clk for the
3013 *       given clock specifier
3014 * @data: context pointer to be passed into @get callback
3015 */
3016struct of_clk_provider {
3017        struct list_head link;
3018
3019        struct device_node *node;
3020        struct clk *(*get)(struct of_phandle_args *clkspec, void *data);
3021        struct clk_hw *(*get_hw)(struct of_phandle_args *clkspec, void *data);
3022        void *data;
3023};
3024
3025static const struct of_device_id __clk_of_table_sentinel
3026        __used __section(__clk_of_table_end);
3027
3028static LIST_HEAD(of_clk_providers);
3029static DEFINE_MUTEX(of_clk_mutex);
3030
3031struct clk *of_clk_src_simple_get(struct of_phandle_args *clkspec,
3032                                     void *data)
3033{
3034        return data;
3035}
3036EXPORT_SYMBOL_GPL(of_clk_src_simple_get);
3037
3038struct clk_hw *of_clk_hw_simple_get(struct of_phandle_args *clkspec, void *data)
3039{
3040        return data;
3041}
3042EXPORT_SYMBOL_GPL(of_clk_hw_simple_get);
3043
3044struct clk *of_clk_src_onecell_get(struct of_phandle_args *clkspec, void *data)
3045{
3046        struct clk_onecell_data *clk_data = data;
3047        unsigned int idx = clkspec->args[0];
3048
3049        if (idx >= clk_data->clk_num) {
3050                pr_err("%s: invalid clock index %u\n", __func__, idx);
3051                return ERR_PTR(-EINVAL);
3052        }
3053
3054        return clk_data->clks[idx];
3055}
3056EXPORT_SYMBOL_GPL(of_clk_src_onecell_get);
3057
3058struct clk_hw *
3059of_clk_hw_onecell_get(struct of_phandle_args *clkspec, void *data)
3060{
3061        struct clk_hw_onecell_data *hw_data = data;
3062        unsigned int idx = clkspec->args[0];
3063
3064        if (idx >= hw_data->num) {
3065                pr_err("%s: invalid index %u\n", __func__, idx);
3066                return ERR_PTR(-EINVAL);
3067        }
3068
3069        return hw_data->hws[idx];
3070}
3071EXPORT_SYMBOL_GPL(of_clk_hw_onecell_get);
3072
3073/**
3074 * of_clk_add_provider() - Register a clock provider for a node
3075 * @np: Device node pointer associated with clock provider
3076 * @clk_src_get: callback for decoding clock
3077 * @data: context pointer for @clk_src_get callback.
3078 */
3079int of_clk_add_provider(struct device_node *np,
3080                        struct clk *(*clk_src_get)(struct of_phandle_args *clkspec,
3081                                                   void *data),
3082                        void *data)
3083{
3084        struct of_clk_provider *cp;
3085        int ret;
3086
3087        cp = kzalloc(sizeof(struct of_clk_provider), GFP_KERNEL);
3088        if (!cp)
3089                return -ENOMEM;
3090
3091        cp->node = of_node_get(np);
3092        cp->data = data;
3093        cp->get = clk_src_get;
3094
3095        mutex_lock(&of_clk_mutex);
3096        list_add(&cp->link, &of_clk_providers);
3097        mutex_unlock(&of_clk_mutex);
3098        pr_debug("Added clock from %s\n", np->full_name);
3099
3100        ret = of_clk_set_defaults(np, true);
3101        if (ret < 0)
3102                of_clk_del_provider(np);
3103
3104        return ret;
3105}
3106EXPORT_SYMBOL_GPL(of_clk_add_provider);
3107
3108/**
3109 * of_clk_add_hw_provider() - Register a clock provider for a node
3110 * @np: Device node pointer associated with clock provider
3111 * @get: callback for decoding clk_hw
3112 * @data: context pointer for @get callback.
3113 */
3114int of_clk_add_hw_provider(struct device_node *np,
3115                           struct clk_hw *(*get)(struct of_phandle_args *clkspec,
3116                                                 void *data),
3117                           void *data)
3118{
3119        struct of_clk_provider *cp;
3120        int ret;
3121
3122        cp = kzalloc(sizeof(*cp), GFP_KERNEL);
3123        if (!cp)
3124                return -ENOMEM;
3125
3126        cp->node = of_node_get(np);
3127        cp->data = data;
3128        cp->get_hw = get;
3129
3130        mutex_lock(&of_clk_mutex);
3131        list_add(&cp->link, &of_clk_providers);
3132        mutex_unlock(&of_clk_mutex);
3133        pr_debug("Added clk_hw provider from %s\n", np->full_name);
3134
3135        ret = of_clk_set_defaults(np, true);
3136        if (ret < 0)
3137                of_clk_del_provider(np);
3138
3139        return ret;
3140}
3141EXPORT_SYMBOL_GPL(of_clk_add_hw_provider);
3142
3143/**
3144 * of_clk_del_provider() - Remove a previously registered clock provider
3145 * @np: Device node pointer associated with clock provider
3146 */
3147void of_clk_del_provider(struct device_node *np)
3148{
3149        struct of_clk_provider *cp;
3150
3151        mutex_lock(&of_clk_mutex);
3152        list_for_each_entry(cp, &of_clk_providers, link) {
3153                if (cp->node == np) {
3154                        list_del(&cp->link);
3155                        of_node_put(cp->node);
3156                        kfree(cp);
3157                        break;
3158                }
3159        }
3160        mutex_unlock(&of_clk_mutex);
3161}
3162EXPORT_SYMBOL_GPL(of_clk_del_provider);
3163
3164static struct clk_hw *
3165__of_clk_get_hw_from_provider(struct of_clk_provider *provider,
3166                              struct of_phandle_args *clkspec)
3167{
3168        struct clk *clk;
3169        struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
3170
3171        if (provider->get_hw) {
3172                hw = provider->get_hw(clkspec, provider->data);
3173        } else if (provider->get) {
3174                clk = provider->get(clkspec, provider->data);
3175                if (!IS_ERR(clk))
3176                        hw = __clk_get_hw(clk);
3177                else
3178                        hw = ERR_CAST(clk);
3179        }
3180
3181        return hw;
3182}
3183
3184struct clk *__of_clk_get_from_provider(struct of_phandle_args *clkspec,
3185                                       const char *dev_id, const char *con_id)
3186{
3187        struct of_clk_provider *provider;
3188        struct clk *clk = ERR_PTR(-EPROBE_DEFER);
3189        struct clk_hw *hw = ERR_PTR(-EPROBE_DEFER);
3190
3191        if (!clkspec)
3192                return ERR_PTR(-EINVAL);
3193
3194        /* Check if we have such a provider in our array */
3195        mutex_lock(&of_clk_mutex);
3196        list_for_each_entry(provider, &of_clk_providers, link) {
3197                if (provider->node == clkspec->np)
3198                        hw = __of_clk_get_hw_from_provider(provider, clkspec);
3199                if (!IS_ERR(hw)) {
3200                        clk = __clk_create_clk(hw, dev_id, con_id);
3201
3202                        if (!IS_ERR(clk) && !__clk_get(clk)) {
3203                                __clk_free_clk(clk);
3204                                clk = ERR_PTR(-ENOENT);
3205                        }
3206
3207                        break;
3208                }
3209        }
3210        mutex_unlock(&of_clk_mutex);
3211
3212        return clk;
3213}
3214
3215/**
3216 * of_clk_get_from_provider() - Lookup a clock from a clock provider
3217 * @clkspec: pointer to a clock specifier data structure
3218 *
3219 * This function looks up a struct clk from the registered list of clock
3220 * providers, an input is a clock specifier data structure as returned
3221 * from the of_parse_phandle_with_args() function call.
3222 */
3223struct clk *of_clk_get_from_provider(struct of_phandle_args *clkspec)
3224{
3225        return __of_clk_get_from_provider(clkspec, NULL, __func__);
3226}
3227EXPORT_SYMBOL_GPL(of_clk_get_from_provider);
3228
3229/**
3230 * of_clk_get_parent_count() - Count the number of clocks a device node has
3231 * @np: device node to count
3232 *
3233 * Returns: The number of clocks that are possible parents of this node
3234 */
3235unsigned int of_clk_get_parent_count(struct device_node *np)
3236{
3237        int count;
3238
3239        count = of_count_phandle_with_args(np, "clocks", "#clock-cells");
3240        if (count < 0)
3241                return 0;
3242
3243        return count;
3244}
3245EXPORT_SYMBOL_GPL(of_clk_get_parent_count);
3246
3247const char *of_clk_get_parent_name(struct device_node *np, int index)
3248{
3249        struct of_phandle_args clkspec;
3250        struct property *prop;
3251        const char *clk_name;
3252        const __be32 *vp;
3253        u32 pv;
3254        int rc;
3255        int count;
3256        struct clk *clk;
3257
3258        rc = of_parse_phandle_with_args(np, "clocks", "#clock-cells", index,
3259                                        &clkspec);
3260        if (rc)
3261                return NULL;
3262
3263        index = clkspec.args_count ? clkspec.args[0] : 0;
3264        count = 0;
3265
3266        /* if there is an indices property, use it to transfer the index
3267         * specified into an array offset for the clock-output-names property.
3268         */
3269        of_property_for_each_u32(clkspec.np, "clock-indices", prop, vp, pv) {
3270                if (index == pv) {
3271                        index = count;
3272                        break;
3273                }
3274                count++;
3275        }
3276        /* We went off the end of 'clock-indices' without finding it */
3277        if (prop && !vp)
3278                return NULL;
3279
3280        if (of_property_read_string_index(clkspec.np, "clock-output-names",
3281                                          index,
3282                                          &clk_name) < 0) {
3283                /*
3284                 * Best effort to get the name if the clock has been
3285                 * registered with the framework. If the clock isn't
3286                 * registered, we return the node name as the name of
3287                 * the clock as long as #clock-cells = 0.
3288                 */
3289                clk = of_clk_get_from_provider(&clkspec);
3290                if (IS_ERR(clk)) {
3291                        if (clkspec.args_count == 0)
3292                                clk_name = clkspec.np->name;
3293                        else
3294                                clk_name = NULL;
3295                } else {
3296                        clk_name = __clk_get_name(clk);
3297                        clk_put(clk);
3298                }
3299        }
3300
3301
3302        of_node_put(clkspec.np);
3303        return clk_name;
3304}
3305EXPORT_SYMBOL_GPL(of_clk_get_parent_name);
3306
3307/**
3308 * of_clk_parent_fill() - Fill @parents with names of @np's parents and return
3309 * number of parents
3310 * @np: Device node pointer associated with clock provider
3311 * @parents: pointer to char array that hold the parents' names
3312 * @size: size of the @parents array
3313 *
3314 * Return: number of parents for the clock node.
3315 */
3316int of_clk_parent_fill(struct device_node *np, const char **parents,
3317                       unsigned int size)
3318{
3319        unsigned int i = 0;
3320
3321        while (i < size && (parents[i] = of_clk_get_parent_name(np, i)) != NULL)
3322                i++;
3323
3324        return i;
3325}
3326EXPORT_SYMBOL_GPL(of_clk_parent_fill);
3327
3328struct clock_provider {
3329        of_clk_init_cb_t clk_init_cb;
3330        struct device_node *np;
3331        struct list_head node;
3332};
3333
3334/*
3335 * This function looks for a parent clock. If there is one, then it
3336 * checks that the provider for this parent clock was initialized, in
3337 * this case the parent clock will be ready.
3338 */
3339static int parent_ready(struct device_node *np)
3340{
3341        int i = 0;
3342
3343        while (true) {
3344                struct clk *clk = of_clk_get(np, i);
3345
3346                /* this parent is ready we can check the next one */
3347                if (!IS_ERR(clk)) {
3348                        clk_put(clk);
3349                        i++;
3350                        continue;
3351                }
3352
3353                /* at least one parent is not ready, we exit now */
3354                if (PTR_ERR(clk) == -EPROBE_DEFER)
3355                        return 0;
3356
3357                /*
3358                 * Here we make assumption that the device tree is
3359                 * written correctly. So an error means that there is
3360                 * no more parent. As we didn't exit yet, then the
3361                 * previous parent are ready. If there is no clock
3362                 * parent, no need to wait for them, then we can
3363                 * consider their absence as being ready
3364                 */
3365                return 1;
3366        }
3367}
3368
3369/**
3370 * of_clk_detect_critical() - set CLK_IS_CRITICAL flag from Device Tree
3371 * @np: Device node pointer associated with clock provider
3372 * @index: clock index
3373 * @flags: pointer to clk_core->flags
3374 *
3375 * Detects if the clock-critical property exists and, if so, sets the
3376 * corresponding CLK_IS_CRITICAL flag.
3377 *
3378 * Do not use this function. It exists only for legacy Device Tree
3379 * bindings, such as the one-clock-per-node style that are outdated.
3380 * Those bindings typically put all clock data into .dts and the Linux
3381 * driver has no clock data, thus making it impossible to set this flag
3382 * correctly from the driver. Only those drivers may call
3383 * of_clk_detect_critical from their setup functions.
3384 *
3385 * Return: error code or zero on success
3386 */
3387int of_clk_detect_critical(struct device_node *np,
3388                                          int index, unsigned long *flags)
3389{
3390        struct property *prop;
3391        const __be32 *cur;
3392        uint32_t idx;
3393
3394        if (!np || !flags)
3395                return -EINVAL;
3396
3397        of_property_for_each_u32(np, "clock-critical", prop, cur, idx)
3398                if (index == idx)
3399                        *flags |= CLK_IS_CRITICAL;
3400
3401        return 0;
3402}
3403
3404/**
3405 * of_clk_init() - Scan and init clock providers from the DT
3406 * @matches: array of compatible values and init functions for providers.
3407 *
3408 * This function scans the device tree for matching clock providers
3409 * and calls their initialization functions. It also does it by trying
3410 * to follow the dependencies.
3411 */
3412void __init of_clk_init(const struct of_device_id *matches)
3413{
3414        const struct of_device_id *match;
3415        struct device_node *np;
3416        struct clock_provider *clk_provider, *next;
3417        bool is_init_done;
3418        bool force = false;
3419        LIST_HEAD(clk_provider_list);
3420
3421        if (!matches)
3422                matches = &__clk_of_table;
3423
3424        /* First prepare the list of the clocks providers */
3425        for_each_matching_node_and_match(np, matches, &match) {
3426                struct clock_provider *parent;
3427
3428                if (!of_device_is_available(np))
3429                        continue;
3430
3431                parent = kzalloc(sizeof(*parent), GFP_KERNEL);
3432                if (!parent) {
3433                        list_for_each_entry_safe(clk_provider, next,
3434                                                 &clk_provider_list, node) {
3435                                list_del(&clk_provider->node);
3436                                of_node_put(clk_provider->np);
3437                                kfree(clk_provider);
3438                        }
3439                        of_node_put(np);
3440                        return;
3441                }
3442
3443                parent->clk_init_cb = match->data;
3444                parent->np = of_node_get(np);
3445                list_add_tail(&parent->node, &clk_provider_list);
3446        }
3447
3448        while (!list_empty(&clk_provider_list)) {
3449                is_init_done = false;
3450                list_for_each_entry_safe(clk_provider, next,
3451                                        &clk_provider_list, node) {
3452                        if (force || parent_ready(clk_provider->np)) {
3453
3454                                clk_provider->clk_init_cb(clk_provider->np);
3455                                of_clk_set_defaults(clk_provider->np, true);
3456
3457                                list_del(&clk_provider->node);
3458                                of_node_put(clk_provider->np);
3459                                kfree(clk_provider);
3460                                is_init_done = true;
3461                        }
3462                }
3463
3464                /*
3465                 * We didn't manage to initialize any of the
3466                 * remaining providers during the last loop, so now we
3467                 * initialize all the remaining ones unconditionally
3468                 * in case the clock parent was not mandatory
3469                 */
3470                if (!is_init_done)
3471                        force = true;
3472        }
3473}
3474#endif
3475