linux/drivers/gpu/drm/i915/intel_ringbuffer.h
<<
>>
Prefs
   1#ifndef _INTEL_RINGBUFFER_H_
   2#define _INTEL_RINGBUFFER_H_
   3
   4#include <linux/hashtable.h>
   5#include "i915_gem_batch_pool.h"
   6
   7#define I915_CMD_HASH_ORDER 9
   8
   9/* Early gen2 devices have a cacheline of just 32 bytes, using 64 is overkill,
  10 * but keeps the logic simple. Indeed, the whole purpose of this macro is just
  11 * to give some inclination as to some of the magic values used in the various
  12 * workarounds!
  13 */
  14#define CACHELINE_BYTES 64
  15#define CACHELINE_DWORDS (CACHELINE_BYTES / sizeof(uint32_t))
  16
  17/*
  18 * Gen2 BSpec "1. Programming Environment" / 1.4.4.6 "Ring Buffer Use"
  19 * Gen3 BSpec "vol1c Memory Interface Functions" / 2.3.4.5 "Ring Buffer Use"
  20 * Gen4+ BSpec "vol1c Memory Interface and Command Stream" / 5.3.4.5 "Ring Buffer Use"
  21 *
  22 * "If the Ring Buffer Head Pointer and the Tail Pointer are on the same
  23 * cacheline, the Head Pointer must not be greater than the Tail
  24 * Pointer."
  25 */
  26#define I915_RING_FREE_SPACE 64
  27
  28struct  intel_hw_status_page {
  29        u32             *page_addr;
  30        unsigned int    gfx_addr;
  31        struct          drm_i915_gem_object *obj;
  32};
  33
  34#define I915_READ_TAIL(ring) I915_READ(RING_TAIL((ring)->mmio_base))
  35#define I915_WRITE_TAIL(ring, val) I915_WRITE(RING_TAIL((ring)->mmio_base), val)
  36
  37#define I915_READ_START(ring) I915_READ(RING_START((ring)->mmio_base))
  38#define I915_WRITE_START(ring, val) I915_WRITE(RING_START((ring)->mmio_base), val)
  39
  40#define I915_READ_HEAD(ring)  I915_READ(RING_HEAD((ring)->mmio_base))
  41#define I915_WRITE_HEAD(ring, val) I915_WRITE(RING_HEAD((ring)->mmio_base), val)
  42
  43#define I915_READ_CTL(ring) I915_READ(RING_CTL((ring)->mmio_base))
  44#define I915_WRITE_CTL(ring, val) I915_WRITE(RING_CTL((ring)->mmio_base), val)
  45
  46#define I915_READ_IMR(ring) I915_READ(RING_IMR((ring)->mmio_base))
  47#define I915_WRITE_IMR(ring, val) I915_WRITE(RING_IMR((ring)->mmio_base), val)
  48
  49#define I915_READ_MODE(ring) I915_READ(RING_MI_MODE((ring)->mmio_base))
  50#define I915_WRITE_MODE(ring, val) I915_WRITE(RING_MI_MODE((ring)->mmio_base), val)
  51
  52/* seqno size is actually only a uint32, but since we plan to use MI_FLUSH_DW to
  53 * do the writes, and that must have qw aligned offsets, simply pretend it's 8b.
  54 */
  55#define gen8_semaphore_seqno_size sizeof(uint64_t)
  56#define GEN8_SEMAPHORE_OFFSET(__from, __to)                          \
  57        (((__from) * I915_NUM_ENGINES  + (__to)) * gen8_semaphore_seqno_size)
  58#define GEN8_SIGNAL_OFFSET(__ring, to)                       \
  59        (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  60         GEN8_SEMAPHORE_OFFSET((__ring)->id, (to)))
  61#define GEN8_WAIT_OFFSET(__ring, from)                       \
  62        (i915_gem_obj_ggtt_offset(dev_priv->semaphore_obj) + \
  63         GEN8_SEMAPHORE_OFFSET(from, (__ring)->id))
  64
  65enum intel_ring_hangcheck_action {
  66        HANGCHECK_IDLE = 0,
  67        HANGCHECK_WAIT,
  68        HANGCHECK_ACTIVE,
  69        HANGCHECK_KICK,
  70        HANGCHECK_HUNG,
  71};
  72
  73#define HANGCHECK_SCORE_RING_HUNG 31
  74
  75struct intel_ring_hangcheck {
  76        u64 acthd;
  77        unsigned long user_interrupts;
  78        u32 seqno;
  79        int score;
  80        enum intel_ring_hangcheck_action action;
  81        int deadlock;
  82        u32 instdone[I915_NUM_INSTDONE_REG];
  83};
  84
  85struct intel_ringbuffer {
  86        struct drm_i915_gem_object *obj;
  87        void __iomem *virtual_start;
  88        struct i915_vma *vma;
  89
  90        struct intel_engine_cs *engine;
  91        struct list_head link;
  92
  93        u32 head;
  94        u32 tail;
  95        int space;
  96        int size;
  97        int effective_size;
  98
  99        /** We track the position of the requests in the ring buffer, and
 100         * when each is retired we increment last_retired_head as the GPU
 101         * must have finished processing the request and so we know we
 102         * can advance the ringbuffer up to that position.
 103         *
 104         * last_retired_head is set to -1 after the value is consumed so
 105         * we can detect new retirements.
 106         */
 107        u32 last_retired_head;
 108};
 109
 110struct i915_gem_context;
 111struct drm_i915_reg_table;
 112
 113/*
 114 * we use a single page to load ctx workarounds so all of these
 115 * values are referred in terms of dwords
 116 *
 117 * struct i915_wa_ctx_bb:
 118 *  offset: specifies batch starting position, also helpful in case
 119 *    if we want to have multiple batches at different offsets based on
 120 *    some criteria. It is not a requirement at the moment but provides
 121 *    an option for future use.
 122 *  size: size of the batch in DWORDS
 123 */
 124struct  i915_ctx_workarounds {
 125        struct i915_wa_ctx_bb {
 126                u32 offset;
 127                u32 size;
 128        } indirect_ctx, per_ctx;
 129        struct drm_i915_gem_object *obj;
 130};
 131
 132struct drm_i915_gem_request;
 133
 134struct intel_engine_cs {
 135        struct drm_i915_private *i915;
 136        const char      *name;
 137        enum intel_engine_id {
 138                RCS = 0,
 139                BCS,
 140                VCS,
 141                VCS2,   /* Keep instances of the same type engine together. */
 142                VECS
 143        } id;
 144#define I915_NUM_ENGINES 5
 145#define _VCS(n) (VCS + (n))
 146        unsigned int exec_id;
 147        unsigned int hw_id;
 148        unsigned int guc_id; /* XXX same as hw_id? */
 149        u32             mmio_base;
 150        struct intel_ringbuffer *buffer;
 151        struct list_head buffers;
 152
 153        /* Rather than have every client wait upon all user interrupts,
 154         * with the herd waking after every interrupt and each doing the
 155         * heavyweight seqno dance, we delegate the task (of being the
 156         * bottom-half of the user interrupt) to the first client. After
 157         * every interrupt, we wake up one client, who does the heavyweight
 158         * coherent seqno read and either goes back to sleep (if incomplete),
 159         * or wakes up all the completed clients in parallel, before then
 160         * transferring the bottom-half status to the next client in the queue.
 161         *
 162         * Compared to walking the entire list of waiters in a single dedicated
 163         * bottom-half, we reduce the latency of the first waiter by avoiding
 164         * a context switch, but incur additional coherent seqno reads when
 165         * following the chain of request breadcrumbs. Since it is most likely
 166         * that we have a single client waiting on each seqno, then reducing
 167         * the overhead of waking that client is much preferred.
 168         */
 169        struct intel_breadcrumbs {
 170                struct task_struct *irq_seqno_bh; /* bh for user interrupts */
 171                unsigned long irq_wakeups;
 172                bool irq_posted;
 173
 174                spinlock_t lock; /* protects the lists of requests */
 175                struct rb_root waiters; /* sorted by retirement, priority */
 176                struct rb_root signals; /* sorted by retirement */
 177                struct intel_wait *first_wait; /* oldest waiter by retirement */
 178                struct task_struct *signaler; /* used for fence signalling */
 179                struct drm_i915_gem_request *first_signal;
 180                struct timer_list fake_irq; /* used after a missed interrupt */
 181
 182                bool irq_enabled : 1;
 183                bool rpm_wakelock : 1;
 184        } breadcrumbs;
 185
 186        /*
 187         * A pool of objects to use as shadow copies of client batch buffers
 188         * when the command parser is enabled. Prevents the client from
 189         * modifying the batch contents after software parsing.
 190         */
 191        struct i915_gem_batch_pool batch_pool;
 192
 193        struct intel_hw_status_page status_page;
 194        struct i915_ctx_workarounds wa_ctx;
 195
 196        u32             irq_keep_mask; /* always keep these interrupts */
 197        u32             irq_enable_mask; /* bitmask to enable ring interrupt */
 198        void            (*irq_enable)(struct intel_engine_cs *ring);
 199        void            (*irq_disable)(struct intel_engine_cs *ring);
 200
 201        int             (*init_hw)(struct intel_engine_cs *ring);
 202
 203        int             (*init_context)(struct drm_i915_gem_request *req);
 204
 205        void            (*write_tail)(struct intel_engine_cs *ring,
 206                                      u32 value);
 207        int __must_check (*flush)(struct drm_i915_gem_request *req,
 208                                  u32   invalidate_domains,
 209                                  u32   flush_domains);
 210        int             (*add_request)(struct drm_i915_gem_request *req);
 211        /* Some chipsets are not quite as coherent as advertised and need
 212         * an expensive kick to force a true read of the up-to-date seqno.
 213         * However, the up-to-date seqno is not always required and the last
 214         * seen value is good enough. Note that the seqno will always be
 215         * monotonic, even if not coherent.
 216         */
 217        void            (*irq_seqno_barrier)(struct intel_engine_cs *ring);
 218        int             (*dispatch_execbuffer)(struct drm_i915_gem_request *req,
 219                                               u64 offset, u32 length,
 220                                               unsigned dispatch_flags);
 221#define I915_DISPATCH_SECURE 0x1
 222#define I915_DISPATCH_PINNED 0x2
 223#define I915_DISPATCH_RS     0x4
 224        void            (*cleanup)(struct intel_engine_cs *ring);
 225
 226        /* GEN8 signal/wait table - never trust comments!
 227         *        signal to     signal to    signal to   signal to      signal to
 228         *          RCS            VCS          BCS        VECS          VCS2
 229         *      --------------------------------------------------------------------
 230         *  RCS | NOP (0x00) | VCS (0x08) | BCS (0x10) | VECS (0x18) | VCS2 (0x20) |
 231         *      |-------------------------------------------------------------------
 232         *  VCS | RCS (0x28) | NOP (0x30) | BCS (0x38) | VECS (0x40) | VCS2 (0x48) |
 233         *      |-------------------------------------------------------------------
 234         *  BCS | RCS (0x50) | VCS (0x58) | NOP (0x60) | VECS (0x68) | VCS2 (0x70) |
 235         *      |-------------------------------------------------------------------
 236         * VECS | RCS (0x78) | VCS (0x80) | BCS (0x88) |  NOP (0x90) | VCS2 (0x98) |
 237         *      |-------------------------------------------------------------------
 238         * VCS2 | RCS (0xa0) | VCS (0xa8) | BCS (0xb0) | VECS (0xb8) | NOP  (0xc0) |
 239         *      |-------------------------------------------------------------------
 240         *
 241         * Generalization:
 242         *  f(x, y) := (x->id * NUM_RINGS * seqno_size) + (seqno_size * y->id)
 243         *  ie. transpose of g(x, y)
 244         *
 245         *       sync from      sync from    sync from    sync from     sync from
 246         *          RCS            VCS          BCS        VECS          VCS2
 247         *      --------------------------------------------------------------------
 248         *  RCS | NOP (0x00) | VCS (0x28) | BCS (0x50) | VECS (0x78) | VCS2 (0xa0) |
 249         *      |-------------------------------------------------------------------
 250         *  VCS | RCS (0x08) | NOP (0x30) | BCS (0x58) | VECS (0x80) | VCS2 (0xa8) |
 251         *      |-------------------------------------------------------------------
 252         *  BCS | RCS (0x10) | VCS (0x38) | NOP (0x60) | VECS (0x88) | VCS2 (0xb0) |
 253         *      |-------------------------------------------------------------------
 254         * VECS | RCS (0x18) | VCS (0x40) | BCS (0x68) |  NOP (0x90) | VCS2 (0xb8) |
 255         *      |-------------------------------------------------------------------
 256         * VCS2 | RCS (0x20) | VCS (0x48) | BCS (0x70) | VECS (0x98) |  NOP (0xc0) |
 257         *      |-------------------------------------------------------------------
 258         *
 259         * Generalization:
 260         *  g(x, y) := (y->id * NUM_RINGS * seqno_size) + (seqno_size * x->id)
 261         *  ie. transpose of f(x, y)
 262         */
 263        struct {
 264                u32     sync_seqno[I915_NUM_ENGINES-1];
 265
 266                union {
 267                        struct {
 268                                /* our mbox written by others */
 269                                u32             wait[I915_NUM_ENGINES];
 270                                /* mboxes this ring signals to */
 271                                i915_reg_t      signal[I915_NUM_ENGINES];
 272                        } mbox;
 273                        u64             signal_ggtt[I915_NUM_ENGINES];
 274                };
 275
 276                /* AKA wait() */
 277                int     (*sync_to)(struct drm_i915_gem_request *to_req,
 278                                   struct intel_engine_cs *from,
 279                                   u32 seqno);
 280                int     (*signal)(struct drm_i915_gem_request *signaller_req,
 281                                  /* num_dwords needed by caller */
 282                                  unsigned int num_dwords);
 283        } semaphore;
 284
 285        /* Execlists */
 286        struct tasklet_struct irq_tasklet;
 287        spinlock_t execlist_lock; /* used inside tasklet, use spin_lock_bh */
 288        struct list_head execlist_queue;
 289        unsigned int fw_domains;
 290        unsigned int next_context_status_buffer;
 291        unsigned int idle_lite_restore_wa;
 292        bool disable_lite_restore_wa;
 293        u32 ctx_desc_template;
 294        int             (*emit_request)(struct drm_i915_gem_request *request);
 295        int             (*emit_flush)(struct drm_i915_gem_request *request,
 296                                      u32 invalidate_domains,
 297                                      u32 flush_domains);
 298        int             (*emit_bb_start)(struct drm_i915_gem_request *req,
 299                                         u64 offset, unsigned dispatch_flags);
 300
 301        /**
 302         * List of objects currently involved in rendering from the
 303         * ringbuffer.
 304         *
 305         * Includes buffers having the contents of their GPU caches
 306         * flushed, not necessarily primitives.  last_read_req
 307         * represents when the rendering involved will be completed.
 308         *
 309         * A reference is held on the buffer while on this list.
 310         */
 311        struct list_head active_list;
 312
 313        /**
 314         * List of breadcrumbs associated with GPU requests currently
 315         * outstanding.
 316         */
 317        struct list_head request_list;
 318
 319        /**
 320         * Seqno of request most recently submitted to request_list.
 321         * Used exclusively by hang checker to avoid grabbing lock while
 322         * inspecting request list.
 323         */
 324        u32 last_submitted_seqno;
 325
 326        bool gpu_caches_dirty;
 327
 328        struct i915_gem_context *last_context;
 329
 330        struct intel_ring_hangcheck hangcheck;
 331
 332        struct {
 333                struct drm_i915_gem_object *obj;
 334                u32 gtt_offset;
 335        } scratch;
 336
 337        bool needs_cmd_parser;
 338
 339        /*
 340         * Table of commands the command parser needs to know about
 341         * for this ring.
 342         */
 343        DECLARE_HASHTABLE(cmd_hash, I915_CMD_HASH_ORDER);
 344
 345        /*
 346         * Table of registers allowed in commands that read/write registers.
 347         */
 348        const struct drm_i915_reg_table *reg_tables;
 349        int reg_table_count;
 350
 351        /*
 352         * Returns the bitmask for the length field of the specified command.
 353         * Return 0 for an unrecognized/invalid command.
 354         *
 355         * If the command parser finds an entry for a command in the ring's
 356         * cmd_tables, it gets the command's length based on the table entry.
 357         * If not, it calls this function to determine the per-ring length field
 358         * encoding for the command (i.e. certain opcode ranges use certain bits
 359         * to encode the command length in the header).
 360         */
 361        u32 (*get_cmd_length_mask)(u32 cmd_header);
 362};
 363
 364static inline bool
 365intel_engine_initialized(const struct intel_engine_cs *engine)
 366{
 367        return engine->i915 != NULL;
 368}
 369
 370static inline unsigned
 371intel_engine_flag(const struct intel_engine_cs *engine)
 372{
 373        return 1 << engine->id;
 374}
 375
 376static inline u32
 377intel_ring_sync_index(struct intel_engine_cs *engine,
 378                      struct intel_engine_cs *other)
 379{
 380        int idx;
 381
 382        /*
 383         * rcs -> 0 = vcs, 1 = bcs, 2 = vecs, 3 = vcs2;
 384         * vcs -> 0 = bcs, 1 = vecs, 2 = vcs2, 3 = rcs;
 385         * bcs -> 0 = vecs, 1 = vcs2. 2 = rcs, 3 = vcs;
 386         * vecs -> 0 = vcs2, 1 = rcs, 2 = vcs, 3 = bcs;
 387         * vcs2 -> 0 = rcs, 1 = vcs, 2 = bcs, 3 = vecs;
 388         */
 389
 390        idx = (other - engine) - 1;
 391        if (idx < 0)
 392                idx += I915_NUM_ENGINES;
 393
 394        return idx;
 395}
 396
 397static inline void
 398intel_flush_status_page(struct intel_engine_cs *engine, int reg)
 399{
 400        mb();
 401        clflush(&engine->status_page.page_addr[reg]);
 402        mb();
 403}
 404
 405static inline u32
 406intel_read_status_page(struct intel_engine_cs *engine, int reg)
 407{
 408        /* Ensure that the compiler doesn't optimize away the load. */
 409        return READ_ONCE(engine->status_page.page_addr[reg]);
 410}
 411
 412static inline void
 413intel_write_status_page(struct intel_engine_cs *engine,
 414                        int reg, u32 value)
 415{
 416        engine->status_page.page_addr[reg] = value;
 417}
 418
 419/*
 420 * Reads a dword out of the status page, which is written to from the command
 421 * queue by automatic updates, MI_REPORT_HEAD, MI_STORE_DATA_INDEX, or
 422 * MI_STORE_DATA_IMM.
 423 *
 424 * The following dwords have a reserved meaning:
 425 * 0x00: ISR copy, updated when an ISR bit not set in the HWSTAM changes.
 426 * 0x04: ring 0 head pointer
 427 * 0x05: ring 1 head pointer (915-class)
 428 * 0x06: ring 2 head pointer (915-class)
 429 * 0x10-0x1b: Context status DWords (GM45)
 430 * 0x1f: Last written status offset. (GM45)
 431 * 0x20-0x2f: Reserved (Gen6+)
 432 *
 433 * The area from dword 0x30 to 0x3ff is available for driver usage.
 434 */
 435#define I915_GEM_HWS_INDEX              0x30
 436#define I915_GEM_HWS_INDEX_ADDR (I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 437#define I915_GEM_HWS_SCRATCH_INDEX      0x40
 438#define I915_GEM_HWS_SCRATCH_ADDR (I915_GEM_HWS_SCRATCH_INDEX << MI_STORE_DWORD_INDEX_SHIFT)
 439
 440struct intel_ringbuffer *
 441intel_engine_create_ringbuffer(struct intel_engine_cs *engine, int size);
 442int intel_pin_and_map_ringbuffer_obj(struct drm_i915_private *dev_priv,
 443                                     struct intel_ringbuffer *ringbuf);
 444void intel_unpin_ringbuffer_obj(struct intel_ringbuffer *ringbuf);
 445void intel_ringbuffer_free(struct intel_ringbuffer *ring);
 446
 447void intel_stop_engine(struct intel_engine_cs *engine);
 448void intel_cleanup_engine(struct intel_engine_cs *engine);
 449
 450int intel_ring_alloc_request_extras(struct drm_i915_gem_request *request);
 451
 452int __must_check intel_ring_begin(struct drm_i915_gem_request *req, int n);
 453int __must_check intel_ring_cacheline_align(struct drm_i915_gem_request *req);
 454static inline void intel_ring_emit(struct intel_engine_cs *engine,
 455                                   u32 data)
 456{
 457        struct intel_ringbuffer *ringbuf = engine->buffer;
 458        iowrite32(data, ringbuf->virtual_start + ringbuf->tail);
 459        ringbuf->tail += 4;
 460}
 461static inline void intel_ring_emit_reg(struct intel_engine_cs *engine,
 462                                       i915_reg_t reg)
 463{
 464        intel_ring_emit(engine, i915_mmio_reg_offset(reg));
 465}
 466static inline void intel_ring_advance(struct intel_engine_cs *engine)
 467{
 468        struct intel_ringbuffer *ringbuf = engine->buffer;
 469        ringbuf->tail &= ringbuf->size - 1;
 470}
 471int __intel_ring_space(int head, int tail, int size);
 472void intel_ring_update_space(struct intel_ringbuffer *ringbuf);
 473
 474int __must_check intel_engine_idle(struct intel_engine_cs *engine);
 475void intel_ring_init_seqno(struct intel_engine_cs *engine, u32 seqno);
 476int intel_ring_flush_all_caches(struct drm_i915_gem_request *req);
 477int intel_ring_invalidate_all_caches(struct drm_i915_gem_request *req);
 478
 479int intel_init_pipe_control(struct intel_engine_cs *engine, int size);
 480void intel_fini_pipe_control(struct intel_engine_cs *engine);
 481
 482int intel_init_render_ring_buffer(struct drm_device *dev);
 483int intel_init_bsd_ring_buffer(struct drm_device *dev);
 484int intel_init_bsd2_ring_buffer(struct drm_device *dev);
 485int intel_init_blt_ring_buffer(struct drm_device *dev);
 486int intel_init_vebox_ring_buffer(struct drm_device *dev);
 487
 488u64 intel_ring_get_active_head(struct intel_engine_cs *engine);
 489static inline u32 intel_engine_get_seqno(struct intel_engine_cs *engine)
 490{
 491        return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
 492}
 493
 494int init_workarounds_ring(struct intel_engine_cs *engine);
 495
 496static inline u32 intel_ring_get_tail(struct intel_ringbuffer *ringbuf)
 497{
 498        return ringbuf->tail;
 499}
 500
 501/*
 502 * Arbitrary size for largest possible 'add request' sequence. The code paths
 503 * are complex and variable. Empirical measurement shows that the worst case
 504 * is BDW at 192 bytes (6 + 6 + 36 dwords), then ILK at 136 bytes. However,
 505 * we need to allocate double the largest single packet within that emission
 506 * to account for tail wraparound (so 6 + 6 + 72 dwords for BDW).
 507 */
 508#define MIN_SPACE_FOR_ADD_REQUEST 336
 509
 510static inline u32 intel_hws_seqno_address(struct intel_engine_cs *engine)
 511{
 512        return engine->status_page.gfx_addr + I915_GEM_HWS_INDEX_ADDR;
 513}
 514
 515/* intel_breadcrumbs.c -- user interrupt bottom-half for waiters */
 516struct intel_wait {
 517        struct rb_node node;
 518        struct task_struct *tsk;
 519        u32 seqno;
 520};
 521
 522struct intel_signal_node {
 523        struct rb_node node;
 524        struct intel_wait wait;
 525};
 526
 527int intel_engine_init_breadcrumbs(struct intel_engine_cs *engine);
 528
 529static inline void intel_wait_init(struct intel_wait *wait, u32 seqno)
 530{
 531        wait->tsk = current;
 532        wait->seqno = seqno;
 533}
 534
 535static inline bool intel_wait_complete(const struct intel_wait *wait)
 536{
 537        return RB_EMPTY_NODE(&wait->node);
 538}
 539
 540bool intel_engine_add_wait(struct intel_engine_cs *engine,
 541                           struct intel_wait *wait);
 542void intel_engine_remove_wait(struct intel_engine_cs *engine,
 543                              struct intel_wait *wait);
 544void intel_engine_enable_signaling(struct drm_i915_gem_request *request);
 545
 546static inline bool intel_engine_has_waiter(struct intel_engine_cs *engine)
 547{
 548        return READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
 549}
 550
 551static inline bool intel_engine_wakeup(struct intel_engine_cs *engine)
 552{
 553        bool wakeup = false;
 554        struct task_struct *tsk = READ_ONCE(engine->breadcrumbs.irq_seqno_bh);
 555        /* Note that for this not to dangerously chase a dangling pointer,
 556         * the caller is responsible for ensure that the task remain valid for
 557         * wake_up_process() i.e. that the RCU grace period cannot expire.
 558         *
 559         * Also note that tsk is likely to be in !TASK_RUNNING state so an
 560         * early test for tsk->state != TASK_RUNNING before wake_up_process()
 561         * is unlikely to be beneficial.
 562         */
 563        if (tsk)
 564                wakeup = wake_up_process(tsk);
 565        return wakeup;
 566}
 567
 568void intel_engine_enable_fake_irq(struct intel_engine_cs *engine);
 569void intel_engine_fini_breadcrumbs(struct intel_engine_cs *engine);
 570unsigned int intel_kick_waiters(struct drm_i915_private *i915);
 571unsigned int intel_kick_signalers(struct drm_i915_private *i915);
 572
 573#endif /* _INTEL_RINGBUFFER_H_ */
 574