linux/drivers/iommu/intel_irq_remapping.c
<<
>>
Prefs
   1
   2#define pr_fmt(fmt)     "DMAR-IR: " fmt
   3
   4#include <linux/interrupt.h>
   5#include <linux/dmar.h>
   6#include <linux/spinlock.h>
   7#include <linux/slab.h>
   8#include <linux/jiffies.h>
   9#include <linux/hpet.h>
  10#include <linux/pci.h>
  11#include <linux/irq.h>
  12#include <linux/intel-iommu.h>
  13#include <linux/acpi.h>
  14#include <linux/irqdomain.h>
  15#include <linux/crash_dump.h>
  16#include <asm/io_apic.h>
  17#include <asm/smp.h>
  18#include <asm/cpu.h>
  19#include <asm/irq_remapping.h>
  20#include <asm/pci-direct.h>
  21#include <asm/msidef.h>
  22
  23#include "irq_remapping.h"
  24
  25enum irq_mode {
  26        IRQ_REMAPPING,
  27        IRQ_POSTING,
  28};
  29
  30struct ioapic_scope {
  31        struct intel_iommu *iommu;
  32        unsigned int id;
  33        unsigned int bus;       /* PCI bus number */
  34        unsigned int devfn;     /* PCI devfn number */
  35};
  36
  37struct hpet_scope {
  38        struct intel_iommu *iommu;
  39        u8 id;
  40        unsigned int bus;
  41        unsigned int devfn;
  42};
  43
  44struct irq_2_iommu {
  45        struct intel_iommu *iommu;
  46        u16 irte_index;
  47        u16 sub_handle;
  48        u8  irte_mask;
  49        enum irq_mode mode;
  50};
  51
  52struct intel_ir_data {
  53        struct irq_2_iommu                      irq_2_iommu;
  54        struct irte                             irte_entry;
  55        union {
  56                struct msi_msg                  msi_entry;
  57        };
  58};
  59
  60#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
  61#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
  62
  63static int __read_mostly eim_mode;
  64static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  65static struct hpet_scope ir_hpet[MAX_HPET_TBS];
  66
  67/*
  68 * Lock ordering:
  69 * ->dmar_global_lock
  70 *      ->irq_2_ir_lock
  71 *              ->qi->q_lock
  72 *      ->iommu->register_lock
  73 * Note:
  74 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
  75 * in single-threaded environment with interrupt disabled, so no need to tabke
  76 * the dmar_global_lock.
  77 */
  78static DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
  79static struct irq_domain_ops intel_ir_domain_ops;
  80
  81static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
  82static int __init parse_ioapics_under_ir(void);
  83
  84static bool ir_pre_enabled(struct intel_iommu *iommu)
  85{
  86        return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
  87}
  88
  89static void clear_ir_pre_enabled(struct intel_iommu *iommu)
  90{
  91        iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
  92}
  93
  94static void init_ir_status(struct intel_iommu *iommu)
  95{
  96        u32 gsts;
  97
  98        gsts = readl(iommu->reg + DMAR_GSTS_REG);
  99        if (gsts & DMA_GSTS_IRES)
 100                iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
 101}
 102
 103static int alloc_irte(struct intel_iommu *iommu, int irq,
 104                      struct irq_2_iommu *irq_iommu, u16 count)
 105{
 106        struct ir_table *table = iommu->ir_table;
 107        unsigned int mask = 0;
 108        unsigned long flags;
 109        int index;
 110
 111        if (!count || !irq_iommu)
 112                return -1;
 113
 114        if (count > 1) {
 115                count = __roundup_pow_of_two(count);
 116                mask = ilog2(count);
 117        }
 118
 119        if (mask > ecap_max_handle_mask(iommu->ecap)) {
 120                pr_err("Requested mask %x exceeds the max invalidation handle"
 121                       " mask value %Lx\n", mask,
 122                       ecap_max_handle_mask(iommu->ecap));
 123                return -1;
 124        }
 125
 126        raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 127        index = bitmap_find_free_region(table->bitmap,
 128                                        INTR_REMAP_TABLE_ENTRIES, mask);
 129        if (index < 0) {
 130                pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
 131        } else {
 132                irq_iommu->iommu = iommu;
 133                irq_iommu->irte_index =  index;
 134                irq_iommu->sub_handle = 0;
 135                irq_iommu->irte_mask = mask;
 136                irq_iommu->mode = IRQ_REMAPPING;
 137        }
 138        raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 139
 140        return index;
 141}
 142
 143static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
 144{
 145        struct qi_desc desc;
 146
 147        desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
 148                   | QI_IEC_SELECTIVE;
 149        desc.high = 0;
 150
 151        return qi_submit_sync(&desc, iommu);
 152}
 153
 154static int modify_irte(struct irq_2_iommu *irq_iommu,
 155                       struct irte *irte_modified)
 156{
 157        struct intel_iommu *iommu;
 158        unsigned long flags;
 159        struct irte *irte;
 160        int rc, index;
 161
 162        if (!irq_iommu)
 163                return -1;
 164
 165        raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 166
 167        iommu = irq_iommu->iommu;
 168
 169        index = irq_iommu->irte_index + irq_iommu->sub_handle;
 170        irte = &iommu->ir_table->base[index];
 171
 172#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE)
 173        if ((irte->pst == 1) || (irte_modified->pst == 1)) {
 174                bool ret;
 175
 176                ret = cmpxchg_double(&irte->low, &irte->high,
 177                                     irte->low, irte->high,
 178                                     irte_modified->low, irte_modified->high);
 179                /*
 180                 * We use cmpxchg16 to atomically update the 128-bit IRTE,
 181                 * and it cannot be updated by the hardware or other processors
 182                 * behind us, so the return value of cmpxchg16 should be the
 183                 * same as the old value.
 184                 */
 185                WARN_ON(!ret);
 186        } else
 187#endif
 188        {
 189                set_64bit(&irte->low, irte_modified->low);
 190                set_64bit(&irte->high, irte_modified->high);
 191        }
 192        __iommu_flush_cache(iommu, irte, sizeof(*irte));
 193
 194        rc = qi_flush_iec(iommu, index, 0);
 195
 196        /* Update iommu mode according to the IRTE mode */
 197        irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
 198        raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 199
 200        return rc;
 201}
 202
 203static struct intel_iommu *map_hpet_to_ir(u8 hpet_id)
 204{
 205        int i;
 206
 207        for (i = 0; i < MAX_HPET_TBS; i++)
 208                if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
 209                        return ir_hpet[i].iommu;
 210        return NULL;
 211}
 212
 213static struct intel_iommu *map_ioapic_to_ir(int apic)
 214{
 215        int i;
 216
 217        for (i = 0; i < MAX_IO_APICS; i++)
 218                if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
 219                        return ir_ioapic[i].iommu;
 220        return NULL;
 221}
 222
 223static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev)
 224{
 225        struct dmar_drhd_unit *drhd;
 226
 227        drhd = dmar_find_matched_drhd_unit(dev);
 228        if (!drhd)
 229                return NULL;
 230
 231        return drhd->iommu;
 232}
 233
 234static int clear_entries(struct irq_2_iommu *irq_iommu)
 235{
 236        struct irte *start, *entry, *end;
 237        struct intel_iommu *iommu;
 238        int index;
 239
 240        if (irq_iommu->sub_handle)
 241                return 0;
 242
 243        iommu = irq_iommu->iommu;
 244        index = irq_iommu->irte_index;
 245
 246        start = iommu->ir_table->base + index;
 247        end = start + (1 << irq_iommu->irte_mask);
 248
 249        for (entry = start; entry < end; entry++) {
 250                set_64bit(&entry->low, 0);
 251                set_64bit(&entry->high, 0);
 252        }
 253        bitmap_release_region(iommu->ir_table->bitmap, index,
 254                              irq_iommu->irte_mask);
 255
 256        return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
 257}
 258
 259/*
 260 * source validation type
 261 */
 262#define SVT_NO_VERIFY           0x0  /* no verification is required */
 263#define SVT_VERIFY_SID_SQ       0x1  /* verify using SID and SQ fields */
 264#define SVT_VERIFY_BUS          0x2  /* verify bus of request-id */
 265
 266/*
 267 * source-id qualifier
 268 */
 269#define SQ_ALL_16       0x0  /* verify all 16 bits of request-id */
 270#define SQ_13_IGNORE_1  0x1  /* verify most significant 13 bits, ignore
 271                              * the third least significant bit
 272                              */
 273#define SQ_13_IGNORE_2  0x2  /* verify most significant 13 bits, ignore
 274                              * the second and third least significant bits
 275                              */
 276#define SQ_13_IGNORE_3  0x3  /* verify most significant 13 bits, ignore
 277                              * the least three significant bits
 278                              */
 279
 280/*
 281 * set SVT, SQ and SID fields of irte to verify
 282 * source ids of interrupt requests
 283 */
 284static void set_irte_sid(struct irte *irte, unsigned int svt,
 285                         unsigned int sq, unsigned int sid)
 286{
 287        if (disable_sourceid_checking)
 288                svt = SVT_NO_VERIFY;
 289        irte->svt = svt;
 290        irte->sq = sq;
 291        irte->sid = sid;
 292}
 293
 294static int set_ioapic_sid(struct irte *irte, int apic)
 295{
 296        int i;
 297        u16 sid = 0;
 298
 299        if (!irte)
 300                return -1;
 301
 302        down_read(&dmar_global_lock);
 303        for (i = 0; i < MAX_IO_APICS; i++) {
 304                if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
 305                        sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn;
 306                        break;
 307                }
 308        }
 309        up_read(&dmar_global_lock);
 310
 311        if (sid == 0) {
 312                pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
 313                return -1;
 314        }
 315
 316        set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
 317
 318        return 0;
 319}
 320
 321static int set_hpet_sid(struct irte *irte, u8 id)
 322{
 323        int i;
 324        u16 sid = 0;
 325
 326        if (!irte)
 327                return -1;
 328
 329        down_read(&dmar_global_lock);
 330        for (i = 0; i < MAX_HPET_TBS; i++) {
 331                if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
 332                        sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn;
 333                        break;
 334                }
 335        }
 336        up_read(&dmar_global_lock);
 337
 338        if (sid == 0) {
 339                pr_warn("Failed to set source-id of HPET block (%d)\n", id);
 340                return -1;
 341        }
 342
 343        /*
 344         * Should really use SQ_ALL_16. Some platforms are broken.
 345         * While we figure out the right quirks for these broken platforms, use
 346         * SQ_13_IGNORE_3 for now.
 347         */
 348        set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
 349
 350        return 0;
 351}
 352
 353struct set_msi_sid_data {
 354        struct pci_dev *pdev;
 355        u16 alias;
 356};
 357
 358static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
 359{
 360        struct set_msi_sid_data *data = opaque;
 361
 362        data->pdev = pdev;
 363        data->alias = alias;
 364
 365        return 0;
 366}
 367
 368static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
 369{
 370        struct set_msi_sid_data data;
 371
 372        if (!irte || !dev)
 373                return -1;
 374
 375        pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
 376
 377        /*
 378         * DMA alias provides us with a PCI device and alias.  The only case
 379         * where the it will return an alias on a different bus than the
 380         * device is the case of a PCIe-to-PCI bridge, where the alias is for
 381         * the subordinate bus.  In this case we can only verify the bus.
 382         *
 383         * If the alias device is on a different bus than our source device
 384         * then we have a topology based alias, use it.
 385         *
 386         * Otherwise, the alias is for a device DMA quirk and we cannot
 387         * assume that MSI uses the same requester ID.  Therefore use the
 388         * original device.
 389         */
 390        if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
 391                set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
 392                             PCI_DEVID(PCI_BUS_NUM(data.alias),
 393                                       dev->bus->number));
 394        else if (data.pdev->bus->number != dev->bus->number)
 395                set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
 396        else
 397                set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
 398                             PCI_DEVID(dev->bus->number, dev->devfn));
 399
 400        return 0;
 401}
 402
 403static int iommu_load_old_irte(struct intel_iommu *iommu)
 404{
 405        struct irte *old_ir_table;
 406        phys_addr_t irt_phys;
 407        unsigned int i;
 408        size_t size;
 409        u64 irta;
 410
 411        if (!is_kdump_kernel()) {
 412                pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n",
 413                        iommu->name);
 414                clear_ir_pre_enabled(iommu);
 415                iommu_disable_irq_remapping(iommu);
 416                return -EINVAL;
 417        }
 418
 419        /* Check whether the old ir-table has the same size as ours */
 420        irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
 421        if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
 422             != INTR_REMAP_TABLE_REG_SIZE)
 423                return -EINVAL;
 424
 425        irt_phys = irta & VTD_PAGE_MASK;
 426        size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
 427
 428        /* Map the old IR table */
 429        old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
 430        if (!old_ir_table)
 431                return -ENOMEM;
 432
 433        /* Copy data over */
 434        memcpy(iommu->ir_table->base, old_ir_table, size);
 435
 436        __iommu_flush_cache(iommu, iommu->ir_table->base, size);
 437
 438        /*
 439         * Now check the table for used entries and mark those as
 440         * allocated in the bitmap
 441         */
 442        for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
 443                if (iommu->ir_table->base[i].present)
 444                        bitmap_set(iommu->ir_table->bitmap, i, 1);
 445        }
 446
 447        memunmap(old_ir_table);
 448
 449        return 0;
 450}
 451
 452
 453static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
 454{
 455        unsigned long flags;
 456        u64 addr;
 457        u32 sts;
 458
 459        addr = virt_to_phys((void *)iommu->ir_table->base);
 460
 461        raw_spin_lock_irqsave(&iommu->register_lock, flags);
 462
 463        dmar_writeq(iommu->reg + DMAR_IRTA_REG,
 464                    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
 465
 466        /* Set interrupt-remapping table pointer */
 467        writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
 468
 469        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 470                      readl, (sts & DMA_GSTS_IRTPS), sts);
 471        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 472
 473        /*
 474         * Global invalidation of interrupt entry cache to make sure the
 475         * hardware uses the new irq remapping table.
 476         */
 477        qi_global_iec(iommu);
 478}
 479
 480static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
 481{
 482        unsigned long flags;
 483        u32 sts;
 484
 485        raw_spin_lock_irqsave(&iommu->register_lock, flags);
 486
 487        /* Enable interrupt-remapping */
 488        iommu->gcmd |= DMA_GCMD_IRE;
 489        iommu->gcmd &= ~DMA_GCMD_CFI;  /* Block compatibility-format MSIs */
 490        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 491
 492        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 493                      readl, (sts & DMA_GSTS_IRES), sts);
 494
 495        /*
 496         * With CFI clear in the Global Command register, we should be
 497         * protected from dangerous (i.e. compatibility) interrupts
 498         * regardless of x2apic status.  Check just to be sure.
 499         */
 500        if (sts & DMA_GSTS_CFIS)
 501                WARN(1, KERN_WARNING
 502                        "Compatibility-format IRQs enabled despite intr remapping;\n"
 503                        "you are vulnerable to IRQ injection.\n");
 504
 505        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 506}
 507
 508static int intel_setup_irq_remapping(struct intel_iommu *iommu)
 509{
 510        struct ir_table *ir_table;
 511        struct page *pages;
 512        unsigned long *bitmap;
 513
 514        if (iommu->ir_table)
 515                return 0;
 516
 517        ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
 518        if (!ir_table)
 519                return -ENOMEM;
 520
 521        pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO,
 522                                 INTR_REMAP_PAGE_ORDER);
 523        if (!pages) {
 524                pr_err("IR%d: failed to allocate pages of order %d\n",
 525                       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
 526                goto out_free_table;
 527        }
 528
 529        bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES),
 530                         sizeof(long), GFP_ATOMIC);
 531        if (bitmap == NULL) {
 532                pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
 533                goto out_free_pages;
 534        }
 535
 536        iommu->ir_domain = irq_domain_add_hierarchy(arch_get_ir_parent_domain(),
 537                                                    0, INTR_REMAP_TABLE_ENTRIES,
 538                                                    NULL, &intel_ir_domain_ops,
 539                                                    iommu);
 540        if (!iommu->ir_domain) {
 541                pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
 542                goto out_free_bitmap;
 543        }
 544        iommu->ir_msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
 545
 546        ir_table->base = page_address(pages);
 547        ir_table->bitmap = bitmap;
 548        iommu->ir_table = ir_table;
 549
 550        /*
 551         * If the queued invalidation is already initialized,
 552         * shouldn't disable it.
 553         */
 554        if (!iommu->qi) {
 555                /*
 556                 * Clear previous faults.
 557                 */
 558                dmar_fault(-1, iommu);
 559                dmar_disable_qi(iommu);
 560
 561                if (dmar_enable_qi(iommu)) {
 562                        pr_err("Failed to enable queued invalidation\n");
 563                        goto out_free_bitmap;
 564                }
 565        }
 566
 567        init_ir_status(iommu);
 568
 569        if (ir_pre_enabled(iommu)) {
 570                if (iommu_load_old_irte(iommu))
 571                        pr_err("Failed to copy IR table for %s from previous kernel\n",
 572                               iommu->name);
 573                else
 574                        pr_info("Copied IR table for %s from previous kernel\n",
 575                                iommu->name);
 576        }
 577
 578        iommu_set_irq_remapping(iommu, eim_mode);
 579
 580        return 0;
 581
 582out_free_bitmap:
 583        kfree(bitmap);
 584out_free_pages:
 585        __free_pages(pages, INTR_REMAP_PAGE_ORDER);
 586out_free_table:
 587        kfree(ir_table);
 588
 589        iommu->ir_table  = NULL;
 590
 591        return -ENOMEM;
 592}
 593
 594static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
 595{
 596        if (iommu && iommu->ir_table) {
 597                if (iommu->ir_msi_domain) {
 598                        irq_domain_remove(iommu->ir_msi_domain);
 599                        iommu->ir_msi_domain = NULL;
 600                }
 601                if (iommu->ir_domain) {
 602                        irq_domain_remove(iommu->ir_domain);
 603                        iommu->ir_domain = NULL;
 604                }
 605                free_pages((unsigned long)iommu->ir_table->base,
 606                           INTR_REMAP_PAGE_ORDER);
 607                kfree(iommu->ir_table->bitmap);
 608                kfree(iommu->ir_table);
 609                iommu->ir_table = NULL;
 610        }
 611}
 612
 613/*
 614 * Disable Interrupt Remapping.
 615 */
 616static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
 617{
 618        unsigned long flags;
 619        u32 sts;
 620
 621        if (!ecap_ir_support(iommu->ecap))
 622                return;
 623
 624        /*
 625         * global invalidation of interrupt entry cache before disabling
 626         * interrupt-remapping.
 627         */
 628        qi_global_iec(iommu);
 629
 630        raw_spin_lock_irqsave(&iommu->register_lock, flags);
 631
 632        sts = readl(iommu->reg + DMAR_GSTS_REG);
 633        if (!(sts & DMA_GSTS_IRES))
 634                goto end;
 635
 636        iommu->gcmd &= ~DMA_GCMD_IRE;
 637        writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 638
 639        IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 640                      readl, !(sts & DMA_GSTS_IRES), sts);
 641
 642end:
 643        raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 644}
 645
 646static int __init dmar_x2apic_optout(void)
 647{
 648        struct acpi_table_dmar *dmar;
 649        dmar = (struct acpi_table_dmar *)dmar_tbl;
 650        if (!dmar || no_x2apic_optout)
 651                return 0;
 652        return dmar->flags & DMAR_X2APIC_OPT_OUT;
 653}
 654
 655static void __init intel_cleanup_irq_remapping(void)
 656{
 657        struct dmar_drhd_unit *drhd;
 658        struct intel_iommu *iommu;
 659
 660        for_each_iommu(iommu, drhd) {
 661                if (ecap_ir_support(iommu->ecap)) {
 662                        iommu_disable_irq_remapping(iommu);
 663                        intel_teardown_irq_remapping(iommu);
 664                }
 665        }
 666
 667        if (x2apic_supported())
 668                pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
 669}
 670
 671static int __init intel_prepare_irq_remapping(void)
 672{
 673        struct dmar_drhd_unit *drhd;
 674        struct intel_iommu *iommu;
 675        int eim = 0;
 676
 677        if (irq_remap_broken) {
 678                pr_warn("This system BIOS has enabled interrupt remapping\n"
 679                        "on a chipset that contains an erratum making that\n"
 680                        "feature unstable.  To maintain system stability\n"
 681                        "interrupt remapping is being disabled.  Please\n"
 682                        "contact your BIOS vendor for an update\n");
 683                add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 684                return -ENODEV;
 685        }
 686
 687        if (dmar_table_init() < 0)
 688                return -ENODEV;
 689
 690        if (!dmar_ir_support())
 691                return -ENODEV;
 692
 693        if (parse_ioapics_under_ir()) {
 694                pr_info("Not enabling interrupt remapping\n");
 695                goto error;
 696        }
 697
 698        /* First make sure all IOMMUs support IRQ remapping */
 699        for_each_iommu(iommu, drhd)
 700                if (!ecap_ir_support(iommu->ecap))
 701                        goto error;
 702
 703        /* Detect remapping mode: lapic or x2apic */
 704        if (x2apic_supported()) {
 705                eim = !dmar_x2apic_optout();
 706                if (!eim) {
 707                        pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
 708                        pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
 709                }
 710        }
 711
 712        for_each_iommu(iommu, drhd) {
 713                if (eim && !ecap_eim_support(iommu->ecap)) {
 714                        pr_info("%s does not support EIM\n", iommu->name);
 715                        eim = 0;
 716                }
 717        }
 718
 719        eim_mode = eim;
 720        if (eim)
 721                pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
 722
 723        /* Do the initializations early */
 724        for_each_iommu(iommu, drhd) {
 725                if (intel_setup_irq_remapping(iommu)) {
 726                        pr_err("Failed to setup irq remapping for %s\n",
 727                               iommu->name);
 728                        goto error;
 729                }
 730        }
 731
 732        return 0;
 733
 734error:
 735        intel_cleanup_irq_remapping();
 736        return -ENODEV;
 737}
 738
 739/*
 740 * Set Posted-Interrupts capability.
 741 */
 742static inline void set_irq_posting_cap(void)
 743{
 744        struct dmar_drhd_unit *drhd;
 745        struct intel_iommu *iommu;
 746
 747        if (!disable_irq_post) {
 748                /*
 749                 * If IRTE is in posted format, the 'pda' field goes across the
 750                 * 64-bit boundary, we need use cmpxchg16b to atomically update
 751                 * it. We only expose posted-interrupt when X86_FEATURE_CX16
 752                 * is supported. Actually, hardware platforms supporting PI
 753                 * should have X86_FEATURE_CX16 support, this has been confirmed
 754                 * with Intel hardware guys.
 755                 */
 756                if (boot_cpu_has(X86_FEATURE_CX16))
 757                        intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
 758
 759                for_each_iommu(iommu, drhd)
 760                        if (!cap_pi_support(iommu->cap)) {
 761                                intel_irq_remap_ops.capability &=
 762                                                ~(1 << IRQ_POSTING_CAP);
 763                                break;
 764                        }
 765        }
 766}
 767
 768static int __init intel_enable_irq_remapping(void)
 769{
 770        struct dmar_drhd_unit *drhd;
 771        struct intel_iommu *iommu;
 772        bool setup = false;
 773
 774        /*
 775         * Setup Interrupt-remapping for all the DRHD's now.
 776         */
 777        for_each_iommu(iommu, drhd) {
 778                if (!ir_pre_enabled(iommu))
 779                        iommu_enable_irq_remapping(iommu);
 780                setup = true;
 781        }
 782
 783        if (!setup)
 784                goto error;
 785
 786        irq_remapping_enabled = 1;
 787
 788        set_irq_posting_cap();
 789
 790        pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
 791
 792        return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
 793
 794error:
 795        intel_cleanup_irq_remapping();
 796        return -1;
 797}
 798
 799static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
 800                                   struct intel_iommu *iommu,
 801                                   struct acpi_dmar_hardware_unit *drhd)
 802{
 803        struct acpi_dmar_pci_path *path;
 804        u8 bus;
 805        int count, free = -1;
 806
 807        bus = scope->bus;
 808        path = (struct acpi_dmar_pci_path *)(scope + 1);
 809        count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 810                / sizeof(struct acpi_dmar_pci_path);
 811
 812        while (--count > 0) {
 813                /*
 814                 * Access PCI directly due to the PCI
 815                 * subsystem isn't initialized yet.
 816                 */
 817                bus = read_pci_config_byte(bus, path->device, path->function,
 818                                           PCI_SECONDARY_BUS);
 819                path++;
 820        }
 821
 822        for (count = 0; count < MAX_HPET_TBS; count++) {
 823                if (ir_hpet[count].iommu == iommu &&
 824                    ir_hpet[count].id == scope->enumeration_id)
 825                        return 0;
 826                else if (ir_hpet[count].iommu == NULL && free == -1)
 827                        free = count;
 828        }
 829        if (free == -1) {
 830                pr_warn("Exceeded Max HPET blocks\n");
 831                return -ENOSPC;
 832        }
 833
 834        ir_hpet[free].iommu = iommu;
 835        ir_hpet[free].id    = scope->enumeration_id;
 836        ir_hpet[free].bus   = bus;
 837        ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
 838        pr_info("HPET id %d under DRHD base 0x%Lx\n",
 839                scope->enumeration_id, drhd->address);
 840
 841        return 0;
 842}
 843
 844static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
 845                                     struct intel_iommu *iommu,
 846                                     struct acpi_dmar_hardware_unit *drhd)
 847{
 848        struct acpi_dmar_pci_path *path;
 849        u8 bus;
 850        int count, free = -1;
 851
 852        bus = scope->bus;
 853        path = (struct acpi_dmar_pci_path *)(scope + 1);
 854        count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 855                / sizeof(struct acpi_dmar_pci_path);
 856
 857        while (--count > 0) {
 858                /*
 859                 * Access PCI directly due to the PCI
 860                 * subsystem isn't initialized yet.
 861                 */
 862                bus = read_pci_config_byte(bus, path->device, path->function,
 863                                           PCI_SECONDARY_BUS);
 864                path++;
 865        }
 866
 867        for (count = 0; count < MAX_IO_APICS; count++) {
 868                if (ir_ioapic[count].iommu == iommu &&
 869                    ir_ioapic[count].id == scope->enumeration_id)
 870                        return 0;
 871                else if (ir_ioapic[count].iommu == NULL && free == -1)
 872                        free = count;
 873        }
 874        if (free == -1) {
 875                pr_warn("Exceeded Max IO APICS\n");
 876                return -ENOSPC;
 877        }
 878
 879        ir_ioapic[free].bus   = bus;
 880        ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
 881        ir_ioapic[free].iommu = iommu;
 882        ir_ioapic[free].id    = scope->enumeration_id;
 883        pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
 884                scope->enumeration_id, drhd->address, iommu->seq_id);
 885
 886        return 0;
 887}
 888
 889static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
 890                                      struct intel_iommu *iommu)
 891{
 892        int ret = 0;
 893        struct acpi_dmar_hardware_unit *drhd;
 894        struct acpi_dmar_device_scope *scope;
 895        void *start, *end;
 896
 897        drhd = (struct acpi_dmar_hardware_unit *)header;
 898        start = (void *)(drhd + 1);
 899        end = ((void *)drhd) + header->length;
 900
 901        while (start < end && ret == 0) {
 902                scope = start;
 903                if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
 904                        ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
 905                else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
 906                        ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
 907                start += scope->length;
 908        }
 909
 910        return ret;
 911}
 912
 913static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
 914{
 915        int i;
 916
 917        for (i = 0; i < MAX_HPET_TBS; i++)
 918                if (ir_hpet[i].iommu == iommu)
 919                        ir_hpet[i].iommu = NULL;
 920
 921        for (i = 0; i < MAX_IO_APICS; i++)
 922                if (ir_ioapic[i].iommu == iommu)
 923                        ir_ioapic[i].iommu = NULL;
 924}
 925
 926/*
 927 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 928 * hardware unit.
 929 */
 930static int __init parse_ioapics_under_ir(void)
 931{
 932        struct dmar_drhd_unit *drhd;
 933        struct intel_iommu *iommu;
 934        bool ir_supported = false;
 935        int ioapic_idx;
 936
 937        for_each_iommu(iommu, drhd) {
 938                int ret;
 939
 940                if (!ecap_ir_support(iommu->ecap))
 941                        continue;
 942
 943                ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
 944                if (ret)
 945                        return ret;
 946
 947                ir_supported = true;
 948        }
 949
 950        if (!ir_supported)
 951                return -ENODEV;
 952
 953        for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
 954                int ioapic_id = mpc_ioapic_id(ioapic_idx);
 955                if (!map_ioapic_to_ir(ioapic_id)) {
 956                        pr_err(FW_BUG "ioapic %d has no mapping iommu, "
 957                               "interrupt remapping will be disabled\n",
 958                               ioapic_id);
 959                        return -1;
 960                }
 961        }
 962
 963        return 0;
 964}
 965
 966static int __init ir_dev_scope_init(void)
 967{
 968        int ret;
 969
 970        if (!irq_remapping_enabled)
 971                return 0;
 972
 973        down_write(&dmar_global_lock);
 974        ret = dmar_dev_scope_init();
 975        up_write(&dmar_global_lock);
 976
 977        return ret;
 978}
 979rootfs_initcall(ir_dev_scope_init);
 980
 981static void disable_irq_remapping(void)
 982{
 983        struct dmar_drhd_unit *drhd;
 984        struct intel_iommu *iommu = NULL;
 985
 986        /*
 987         * Disable Interrupt-remapping for all the DRHD's now.
 988         */
 989        for_each_iommu(iommu, drhd) {
 990                if (!ecap_ir_support(iommu->ecap))
 991                        continue;
 992
 993                iommu_disable_irq_remapping(iommu);
 994        }
 995
 996        /*
 997         * Clear Posted-Interrupts capability.
 998         */
 999        if (!disable_irq_post)
1000                intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1001}
1002
1003static int reenable_irq_remapping(int eim)
1004{
1005        struct dmar_drhd_unit *drhd;
1006        bool setup = false;
1007        struct intel_iommu *iommu = NULL;
1008
1009        for_each_iommu(iommu, drhd)
1010                if (iommu->qi)
1011                        dmar_reenable_qi(iommu);
1012
1013        /*
1014         * Setup Interrupt-remapping for all the DRHD's now.
1015         */
1016        for_each_iommu(iommu, drhd) {
1017                if (!ecap_ir_support(iommu->ecap))
1018                        continue;
1019
1020                /* Set up interrupt remapping for iommu.*/
1021                iommu_set_irq_remapping(iommu, eim);
1022                iommu_enable_irq_remapping(iommu);
1023                setup = true;
1024        }
1025
1026        if (!setup)
1027                goto error;
1028
1029        set_irq_posting_cap();
1030
1031        return 0;
1032
1033error:
1034        /*
1035         * handle error condition gracefully here!
1036         */
1037        return -1;
1038}
1039
1040static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1041{
1042        memset(irte, 0, sizeof(*irte));
1043
1044        irte->present = 1;
1045        irte->dst_mode = apic->irq_dest_mode;
1046        /*
1047         * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1048         * actual level or edge trigger will be setup in the IO-APIC
1049         * RTE. This will help simplify level triggered irq migration.
1050         * For more details, see the comments (in io_apic.c) explainig IO-APIC
1051         * irq migration in the presence of interrupt-remapping.
1052        */
1053        irte->trigger_mode = 0;
1054        irte->dlvry_mode = apic->irq_delivery_mode;
1055        irte->vector = vector;
1056        irte->dest_id = IRTE_DEST(dest);
1057        irte->redir_hint = 1;
1058}
1059
1060static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info)
1061{
1062        struct intel_iommu *iommu = NULL;
1063
1064        if (!info)
1065                return NULL;
1066
1067        switch (info->type) {
1068        case X86_IRQ_ALLOC_TYPE_IOAPIC:
1069                iommu = map_ioapic_to_ir(info->ioapic_id);
1070                break;
1071        case X86_IRQ_ALLOC_TYPE_HPET:
1072                iommu = map_hpet_to_ir(info->hpet_id);
1073                break;
1074        case X86_IRQ_ALLOC_TYPE_MSI:
1075        case X86_IRQ_ALLOC_TYPE_MSIX:
1076                iommu = map_dev_to_ir(info->msi_dev);
1077                break;
1078        default:
1079                BUG_ON(1);
1080                break;
1081        }
1082
1083        return iommu ? iommu->ir_domain : NULL;
1084}
1085
1086static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info)
1087{
1088        struct intel_iommu *iommu;
1089
1090        if (!info)
1091                return NULL;
1092
1093        switch (info->type) {
1094        case X86_IRQ_ALLOC_TYPE_MSI:
1095        case X86_IRQ_ALLOC_TYPE_MSIX:
1096                iommu = map_dev_to_ir(info->msi_dev);
1097                if (iommu)
1098                        return iommu->ir_msi_domain;
1099                break;
1100        default:
1101                break;
1102        }
1103
1104        return NULL;
1105}
1106
1107struct irq_remap_ops intel_irq_remap_ops = {
1108        .prepare                = intel_prepare_irq_remapping,
1109        .enable                 = intel_enable_irq_remapping,
1110        .disable                = disable_irq_remapping,
1111        .reenable               = reenable_irq_remapping,
1112        .enable_faulting        = enable_drhd_fault_handling,
1113        .get_ir_irq_domain      = intel_get_ir_irq_domain,
1114        .get_irq_domain         = intel_get_irq_domain,
1115};
1116
1117/*
1118 * Migrate the IO-APIC irq in the presence of intr-remapping.
1119 *
1120 * For both level and edge triggered, irq migration is a simple atomic
1121 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1122 *
1123 * For level triggered, we eliminate the io-apic RTE modification (with the
1124 * updated vector information), by using a virtual vector (io-apic pin number).
1125 * Real vector that is used for interrupting cpu will be coming from
1126 * the interrupt-remapping table entry.
1127 *
1128 * As the migration is a simple atomic update of IRTE, the same mechanism
1129 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1130 */
1131static int
1132intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1133                      bool force)
1134{
1135        struct intel_ir_data *ir_data = data->chip_data;
1136        struct irte *irte = &ir_data->irte_entry;
1137        struct irq_cfg *cfg = irqd_cfg(data);
1138        struct irq_data *parent = data->parent_data;
1139        int ret;
1140
1141        ret = parent->chip->irq_set_affinity(parent, mask, force);
1142        if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1143                return ret;
1144
1145        /*
1146         * Atomically updates the IRTE with the new destination, vector
1147         * and flushes the interrupt entry cache.
1148         */
1149        irte->vector = cfg->vector;
1150        irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1151
1152        /* Update the hardware only if the interrupt is in remapped mode. */
1153        if (ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1154                modify_irte(&ir_data->irq_2_iommu, irte);
1155
1156        /*
1157         * After this point, all the interrupts will start arriving
1158         * at the new destination. So, time to cleanup the previous
1159         * vector allocation.
1160         */
1161        send_cleanup_vector(cfg);
1162
1163        return IRQ_SET_MASK_OK_DONE;
1164}
1165
1166static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1167                                     struct msi_msg *msg)
1168{
1169        struct intel_ir_data *ir_data = irq_data->chip_data;
1170
1171        *msg = ir_data->msi_entry;
1172}
1173
1174static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1175{
1176        struct intel_ir_data *ir_data = data->chip_data;
1177        struct vcpu_data *vcpu_pi_info = info;
1178
1179        /* stop posting interrupts, back to remapping mode */
1180        if (!vcpu_pi_info) {
1181                modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1182        } else {
1183                struct irte irte_pi;
1184
1185                /*
1186                 * We are not caching the posted interrupt entry. We
1187                 * copy the data from the remapped entry and modify
1188                 * the fields which are relevant for posted mode. The
1189                 * cached remapped entry is used for switching back to
1190                 * remapped mode.
1191                 */
1192                memset(&irte_pi, 0, sizeof(irte_pi));
1193                dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1194
1195                /* Update the posted mode fields */
1196                irte_pi.p_pst = 1;
1197                irte_pi.p_urgent = 0;
1198                irte_pi.p_vector = vcpu_pi_info->vector;
1199                irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1200                                (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1201                irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1202                                ~(-1UL << PDA_HIGH_BIT);
1203
1204                modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1205        }
1206
1207        return 0;
1208}
1209
1210static struct irq_chip intel_ir_chip = {
1211        .irq_ack = ir_ack_apic_edge,
1212        .irq_set_affinity = intel_ir_set_affinity,
1213        .irq_compose_msi_msg = intel_ir_compose_msi_msg,
1214        .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity,
1215};
1216
1217static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1218                                             struct irq_cfg *irq_cfg,
1219                                             struct irq_alloc_info *info,
1220                                             int index, int sub_handle)
1221{
1222        struct IR_IO_APIC_route_entry *entry;
1223        struct irte *irte = &data->irte_entry;
1224        struct msi_msg *msg = &data->msi_entry;
1225
1226        prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1227        switch (info->type) {
1228        case X86_IRQ_ALLOC_TYPE_IOAPIC:
1229                /* Set source-id of interrupt request */
1230                set_ioapic_sid(irte, info->ioapic_id);
1231                apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1232                        info->ioapic_id, irte->present, irte->fpd,
1233                        irte->dst_mode, irte->redir_hint,
1234                        irte->trigger_mode, irte->dlvry_mode,
1235                        irte->avail, irte->vector, irte->dest_id,
1236                        irte->sid, irte->sq, irte->svt);
1237
1238                entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry;
1239                info->ioapic_entry = NULL;
1240                memset(entry, 0, sizeof(*entry));
1241                entry->index2   = (index >> 15) & 0x1;
1242                entry->zero     = 0;
1243                entry->format   = 1;
1244                entry->index    = (index & 0x7fff);
1245                /*
1246                 * IO-APIC RTE will be configured with virtual vector.
1247                 * irq handler will do the explicit EOI to the io-apic.
1248                 */
1249                entry->vector   = info->ioapic_pin;
1250                entry->mask     = 0;                    /* enable IRQ */
1251                entry->trigger  = info->ioapic_trigger;
1252                entry->polarity = info->ioapic_polarity;
1253                if (info->ioapic_trigger)
1254                        entry->mask = 1; /* Mask level triggered irqs. */
1255                break;
1256
1257        case X86_IRQ_ALLOC_TYPE_HPET:
1258        case X86_IRQ_ALLOC_TYPE_MSI:
1259        case X86_IRQ_ALLOC_TYPE_MSIX:
1260                if (info->type == X86_IRQ_ALLOC_TYPE_HPET)
1261                        set_hpet_sid(irte, info->hpet_id);
1262                else
1263                        set_msi_sid(irte, info->msi_dev);
1264
1265                msg->address_hi = MSI_ADDR_BASE_HI;
1266                msg->data = sub_handle;
1267                msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT |
1268                                  MSI_ADDR_IR_SHV |
1269                                  MSI_ADDR_IR_INDEX1(index) |
1270                                  MSI_ADDR_IR_INDEX2(index);
1271                break;
1272
1273        default:
1274                BUG_ON(1);
1275                break;
1276        }
1277}
1278
1279static void intel_free_irq_resources(struct irq_domain *domain,
1280                                     unsigned int virq, unsigned int nr_irqs)
1281{
1282        struct irq_data *irq_data;
1283        struct intel_ir_data *data;
1284        struct irq_2_iommu *irq_iommu;
1285        unsigned long flags;
1286        int i;
1287        for (i = 0; i < nr_irqs; i++) {
1288                irq_data = irq_domain_get_irq_data(domain, virq  + i);
1289                if (irq_data && irq_data->chip_data) {
1290                        data = irq_data->chip_data;
1291                        irq_iommu = &data->irq_2_iommu;
1292                        raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1293                        clear_entries(irq_iommu);
1294                        raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1295                        irq_domain_reset_irq_data(irq_data);
1296                        kfree(data);
1297                }
1298        }
1299}
1300
1301static int intel_irq_remapping_alloc(struct irq_domain *domain,
1302                                     unsigned int virq, unsigned int nr_irqs,
1303                                     void *arg)
1304{
1305        struct intel_iommu *iommu = domain->host_data;
1306        struct irq_alloc_info *info = arg;
1307        struct intel_ir_data *data, *ird;
1308        struct irq_data *irq_data;
1309        struct irq_cfg *irq_cfg;
1310        int i, ret, index;
1311
1312        if (!info || !iommu)
1313                return -EINVAL;
1314        if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
1315            info->type != X86_IRQ_ALLOC_TYPE_MSIX)
1316                return -EINVAL;
1317
1318        /*
1319         * With IRQ remapping enabled, don't need contiguous CPU vectors
1320         * to support multiple MSI interrupts.
1321         */
1322        if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
1323                info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
1324
1325        ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1326        if (ret < 0)
1327                return ret;
1328
1329        ret = -ENOMEM;
1330        data = kzalloc(sizeof(*data), GFP_KERNEL);
1331        if (!data)
1332                goto out_free_parent;
1333
1334        down_read(&dmar_global_lock);
1335        index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs);
1336        up_read(&dmar_global_lock);
1337        if (index < 0) {
1338                pr_warn("Failed to allocate IRTE\n");
1339                kfree(data);
1340                goto out_free_parent;
1341        }
1342
1343        for (i = 0; i < nr_irqs; i++) {
1344                irq_data = irq_domain_get_irq_data(domain, virq + i);
1345                irq_cfg = irqd_cfg(irq_data);
1346                if (!irq_data || !irq_cfg) {
1347                        ret = -EINVAL;
1348                        goto out_free_data;
1349                }
1350
1351                if (i > 0) {
1352                        ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1353                        if (!ird)
1354                                goto out_free_data;
1355                        /* Initialize the common data */
1356                        ird->irq_2_iommu = data->irq_2_iommu;
1357                        ird->irq_2_iommu.sub_handle = i;
1358                } else {
1359                        ird = data;
1360                }
1361
1362                irq_data->hwirq = (index << 16) + i;
1363                irq_data->chip_data = ird;
1364                irq_data->chip = &intel_ir_chip;
1365                intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1366                irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1367        }
1368        return 0;
1369
1370out_free_data:
1371        intel_free_irq_resources(domain, virq, i);
1372out_free_parent:
1373        irq_domain_free_irqs_common(domain, virq, nr_irqs);
1374        return ret;
1375}
1376
1377static void intel_irq_remapping_free(struct irq_domain *domain,
1378                                     unsigned int virq, unsigned int nr_irqs)
1379{
1380        intel_free_irq_resources(domain, virq, nr_irqs);
1381        irq_domain_free_irqs_common(domain, virq, nr_irqs);
1382}
1383
1384static void intel_irq_remapping_activate(struct irq_domain *domain,
1385                                         struct irq_data *irq_data)
1386{
1387        struct intel_ir_data *data = irq_data->chip_data;
1388
1389        modify_irte(&data->irq_2_iommu, &data->irte_entry);
1390}
1391
1392static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1393                                           struct irq_data *irq_data)
1394{
1395        struct intel_ir_data *data = irq_data->chip_data;
1396        struct irte entry;
1397
1398        memset(&entry, 0, sizeof(entry));
1399        modify_irte(&data->irq_2_iommu, &entry);
1400}
1401
1402static struct irq_domain_ops intel_ir_domain_ops = {
1403        .alloc = intel_irq_remapping_alloc,
1404        .free = intel_irq_remapping_free,
1405        .activate = intel_irq_remapping_activate,
1406        .deactivate = intel_irq_remapping_deactivate,
1407};
1408
1409/*
1410 * Support of Interrupt Remapping Unit Hotplug
1411 */
1412static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1413{
1414        int ret;
1415        int eim = x2apic_enabled();
1416
1417        if (eim && !ecap_eim_support(iommu->ecap)) {
1418                pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1419                        iommu->reg_phys, iommu->ecap);
1420                return -ENODEV;
1421        }
1422
1423        if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1424                pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1425                        iommu->reg_phys);
1426                return -ENODEV;
1427        }
1428
1429        /* TODO: check all IOAPICs are covered by IOMMU */
1430
1431        /* Setup Interrupt-remapping now. */
1432        ret = intel_setup_irq_remapping(iommu);
1433        if (ret) {
1434                pr_err("Failed to setup irq remapping for %s\n",
1435                       iommu->name);
1436                intel_teardown_irq_remapping(iommu);
1437                ir_remove_ioapic_hpet_scope(iommu);
1438        } else {
1439                iommu_enable_irq_remapping(iommu);
1440        }
1441
1442        return ret;
1443}
1444
1445int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1446{
1447        int ret = 0;
1448        struct intel_iommu *iommu = dmaru->iommu;
1449
1450        if (!irq_remapping_enabled)
1451                return 0;
1452        if (iommu == NULL)
1453                return -EINVAL;
1454        if (!ecap_ir_support(iommu->ecap))
1455                return 0;
1456        if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1457            !cap_pi_support(iommu->cap))
1458                return -EBUSY;
1459
1460        if (insert) {
1461                if (!iommu->ir_table)
1462                        ret = dmar_ir_add(dmaru, iommu);
1463        } else {
1464                if (iommu->ir_table) {
1465                        if (!bitmap_empty(iommu->ir_table->bitmap,
1466                                          INTR_REMAP_TABLE_ENTRIES)) {
1467                                ret = -EBUSY;
1468                        } else {
1469                                iommu_disable_irq_remapping(iommu);
1470                                intel_teardown_irq_remapping(iommu);
1471                                ir_remove_ioapic_hpet_scope(iommu);
1472                        }
1473                }
1474        }
1475
1476        return ret;
1477}
1478