linux/drivers/misc/mei/hw-txe.c
<<
>>
Prefs
   1/*
   2 *
   3 * Intel Management Engine Interface (Intel MEI) Linux driver
   4 * Copyright (c) 2013-2014, Intel Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms and conditions of the GNU General Public License,
   8 * version 2, as published by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13 * more details.
  14 *
  15 */
  16
  17#include <linux/pci.h>
  18#include <linux/jiffies.h>
  19#include <linux/ktime.h>
  20#include <linux/delay.h>
  21#include <linux/kthread.h>
  22#include <linux/irqreturn.h>
  23
  24#include <linux/mei.h>
  25
  26#include "mei_dev.h"
  27#include "hw-txe.h"
  28#include "client.h"
  29#include "hbm.h"
  30
  31#include "mei-trace.h"
  32
  33
  34/**
  35 * mei_txe_reg_read - Reads 32bit data from the txe device
  36 *
  37 * @base_addr: registers base address
  38 * @offset: register offset
  39 *
  40 * Return: register value
  41 */
  42static inline u32 mei_txe_reg_read(void __iomem *base_addr,
  43                                        unsigned long offset)
  44{
  45        return ioread32(base_addr + offset);
  46}
  47
  48/**
  49 * mei_txe_reg_write - Writes 32bit data to the txe device
  50 *
  51 * @base_addr: registers base address
  52 * @offset: register offset
  53 * @value: the value to write
  54 */
  55static inline void mei_txe_reg_write(void __iomem *base_addr,
  56                                unsigned long offset, u32 value)
  57{
  58        iowrite32(value, base_addr + offset);
  59}
  60
  61/**
  62 * mei_txe_sec_reg_read_silent - Reads 32bit data from the SeC BAR
  63 *
  64 * @hw: the txe hardware structure
  65 * @offset: register offset
  66 *
  67 * Doesn't check for aliveness while Reads 32bit data from the SeC BAR
  68 *
  69 * Return: register value
  70 */
  71static inline u32 mei_txe_sec_reg_read_silent(struct mei_txe_hw *hw,
  72                                unsigned long offset)
  73{
  74        return mei_txe_reg_read(hw->mem_addr[SEC_BAR], offset);
  75}
  76
  77/**
  78 * mei_txe_sec_reg_read - Reads 32bit data from the SeC BAR
  79 *
  80 * @hw: the txe hardware structure
  81 * @offset: register offset
  82 *
  83 * Reads 32bit data from the SeC BAR and shout loud if aliveness is not set
  84 *
  85 * Return: register value
  86 */
  87static inline u32 mei_txe_sec_reg_read(struct mei_txe_hw *hw,
  88                                unsigned long offset)
  89{
  90        WARN(!hw->aliveness, "sec read: aliveness not asserted\n");
  91        return mei_txe_sec_reg_read_silent(hw, offset);
  92}
  93/**
  94 * mei_txe_sec_reg_write_silent - Writes 32bit data to the SeC BAR
  95 *   doesn't check for aliveness
  96 *
  97 * @hw: the txe hardware structure
  98 * @offset: register offset
  99 * @value: value to write
 100 *
 101 * Doesn't check for aliveness while writes 32bit data from to the SeC BAR
 102 */
 103static inline void mei_txe_sec_reg_write_silent(struct mei_txe_hw *hw,
 104                                unsigned long offset, u32 value)
 105{
 106        mei_txe_reg_write(hw->mem_addr[SEC_BAR], offset, value);
 107}
 108
 109/**
 110 * mei_txe_sec_reg_write - Writes 32bit data to the SeC BAR
 111 *
 112 * @hw: the txe hardware structure
 113 * @offset: register offset
 114 * @value: value to write
 115 *
 116 * Writes 32bit data from the SeC BAR and shout loud if aliveness is not set
 117 */
 118static inline void mei_txe_sec_reg_write(struct mei_txe_hw *hw,
 119                                unsigned long offset, u32 value)
 120{
 121        WARN(!hw->aliveness, "sec write: aliveness not asserted\n");
 122        mei_txe_sec_reg_write_silent(hw, offset, value);
 123}
 124/**
 125 * mei_txe_br_reg_read - Reads 32bit data from the Bridge BAR
 126 *
 127 * @hw: the txe hardware structure
 128 * @offset: offset from which to read the data
 129 *
 130 * Return: the byte read.
 131 */
 132static inline u32 mei_txe_br_reg_read(struct mei_txe_hw *hw,
 133                                unsigned long offset)
 134{
 135        return mei_txe_reg_read(hw->mem_addr[BRIDGE_BAR], offset);
 136}
 137
 138/**
 139 * mei_txe_br_reg_write - Writes 32bit data to the Bridge BAR
 140 *
 141 * @hw: the txe hardware structure
 142 * @offset: offset from which to write the data
 143 * @value: the byte to write
 144 */
 145static inline void mei_txe_br_reg_write(struct mei_txe_hw *hw,
 146                                unsigned long offset, u32 value)
 147{
 148        mei_txe_reg_write(hw->mem_addr[BRIDGE_BAR], offset, value);
 149}
 150
 151/**
 152 * mei_txe_aliveness_set - request for aliveness change
 153 *
 154 * @dev: the device structure
 155 * @req: requested aliveness value
 156 *
 157 * Request for aliveness change and returns true if the change is
 158 *   really needed and false if aliveness is already
 159 *   in the requested state
 160 *
 161 * Locking: called under "dev->device_lock" lock
 162 *
 163 * Return: true if request was send
 164 */
 165static bool mei_txe_aliveness_set(struct mei_device *dev, u32 req)
 166{
 167
 168        struct mei_txe_hw *hw = to_txe_hw(dev);
 169        bool do_req = hw->aliveness != req;
 170
 171        dev_dbg(dev->dev, "Aliveness current=%d request=%d\n",
 172                                hw->aliveness, req);
 173        if (do_req) {
 174                dev->pg_event = MEI_PG_EVENT_WAIT;
 175                mei_txe_br_reg_write(hw, SICR_HOST_ALIVENESS_REQ_REG, req);
 176        }
 177        return do_req;
 178}
 179
 180
 181/**
 182 * mei_txe_aliveness_req_get - get aliveness requested register value
 183 *
 184 * @dev: the device structure
 185 *
 186 * Extract HICR_HOST_ALIVENESS_RESP_ACK bit from
 187 * from HICR_HOST_ALIVENESS_REQ register value
 188 *
 189 * Return: SICR_HOST_ALIVENESS_REQ_REQUESTED bit value
 190 */
 191static u32 mei_txe_aliveness_req_get(struct mei_device *dev)
 192{
 193        struct mei_txe_hw *hw = to_txe_hw(dev);
 194        u32 reg;
 195
 196        reg = mei_txe_br_reg_read(hw, SICR_HOST_ALIVENESS_REQ_REG);
 197        return reg & SICR_HOST_ALIVENESS_REQ_REQUESTED;
 198}
 199
 200/**
 201 * mei_txe_aliveness_get - get aliveness response register value
 202 *
 203 * @dev: the device structure
 204 *
 205 * Return: HICR_HOST_ALIVENESS_RESP_ACK bit from HICR_HOST_ALIVENESS_RESP
 206 *         register
 207 */
 208static u32 mei_txe_aliveness_get(struct mei_device *dev)
 209{
 210        struct mei_txe_hw *hw = to_txe_hw(dev);
 211        u32 reg;
 212
 213        reg = mei_txe_br_reg_read(hw, HICR_HOST_ALIVENESS_RESP_REG);
 214        return reg & HICR_HOST_ALIVENESS_RESP_ACK;
 215}
 216
 217/**
 218 * mei_txe_aliveness_poll - waits for aliveness to settle
 219 *
 220 * @dev: the device structure
 221 * @expected: expected aliveness value
 222 *
 223 * Polls for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 224 *
 225 * Return: 0 if the expected value was received, -ETIME otherwise
 226 */
 227static int mei_txe_aliveness_poll(struct mei_device *dev, u32 expected)
 228{
 229        struct mei_txe_hw *hw = to_txe_hw(dev);
 230        ktime_t stop, start;
 231
 232        start = ktime_get();
 233        stop = ktime_add(start, ms_to_ktime(SEC_ALIVENESS_WAIT_TIMEOUT));
 234        do {
 235                hw->aliveness = mei_txe_aliveness_get(dev);
 236                if (hw->aliveness == expected) {
 237                        dev->pg_event = MEI_PG_EVENT_IDLE;
 238                        dev_dbg(dev->dev, "aliveness settled after %lld usecs\n",
 239                                ktime_to_us(ktime_sub(ktime_get(), start)));
 240                        return 0;
 241                }
 242                usleep_range(20, 50);
 243        } while (ktime_before(ktime_get(), stop));
 244
 245        dev->pg_event = MEI_PG_EVENT_IDLE;
 246        dev_err(dev->dev, "aliveness timed out\n");
 247        return -ETIME;
 248}
 249
 250/**
 251 * mei_txe_aliveness_wait - waits for aliveness to settle
 252 *
 253 * @dev: the device structure
 254 * @expected: expected aliveness value
 255 *
 256 * Waits for HICR_HOST_ALIVENESS_RESP.ALIVENESS_RESP to be set
 257 *
 258 * Return: 0 on success and < 0 otherwise
 259 */
 260static int mei_txe_aliveness_wait(struct mei_device *dev, u32 expected)
 261{
 262        struct mei_txe_hw *hw = to_txe_hw(dev);
 263        const unsigned long timeout =
 264                        msecs_to_jiffies(SEC_ALIVENESS_WAIT_TIMEOUT);
 265        long err;
 266        int ret;
 267
 268        hw->aliveness = mei_txe_aliveness_get(dev);
 269        if (hw->aliveness == expected)
 270                return 0;
 271
 272        mutex_unlock(&dev->device_lock);
 273        err = wait_event_timeout(hw->wait_aliveness_resp,
 274                        dev->pg_event == MEI_PG_EVENT_RECEIVED, timeout);
 275        mutex_lock(&dev->device_lock);
 276
 277        hw->aliveness = mei_txe_aliveness_get(dev);
 278        ret = hw->aliveness == expected ? 0 : -ETIME;
 279
 280        if (ret)
 281                dev_warn(dev->dev, "aliveness timed out = %ld aliveness = %d event = %d\n",
 282                        err, hw->aliveness, dev->pg_event);
 283        else
 284                dev_dbg(dev->dev, "aliveness settled after = %d msec aliveness = %d event = %d\n",
 285                        jiffies_to_msecs(timeout - err),
 286                        hw->aliveness, dev->pg_event);
 287
 288        dev->pg_event = MEI_PG_EVENT_IDLE;
 289        return ret;
 290}
 291
 292/**
 293 * mei_txe_aliveness_set_sync - sets an wait for aliveness to complete
 294 *
 295 * @dev: the device structure
 296 * @req: requested aliveness value
 297 *
 298 * Return: 0 on success and < 0 otherwise
 299 */
 300int mei_txe_aliveness_set_sync(struct mei_device *dev, u32 req)
 301{
 302        if (mei_txe_aliveness_set(dev, req))
 303                return mei_txe_aliveness_wait(dev, req);
 304        return 0;
 305}
 306
 307/**
 308 * mei_txe_pg_in_transition - is device now in pg transition
 309 *
 310 * @dev: the device structure
 311 *
 312 * Return: true if in pg transition, false otherwise
 313 */
 314static bool mei_txe_pg_in_transition(struct mei_device *dev)
 315{
 316        return dev->pg_event == MEI_PG_EVENT_WAIT;
 317}
 318
 319/**
 320 * mei_txe_pg_is_enabled - detect if PG is supported by HW
 321 *
 322 * @dev: the device structure
 323 *
 324 * Return: true is pg supported, false otherwise
 325 */
 326static bool mei_txe_pg_is_enabled(struct mei_device *dev)
 327{
 328        return true;
 329}
 330
 331/**
 332 * mei_txe_pg_state  - translate aliveness register value
 333 *   to the mei power gating state
 334 *
 335 * @dev: the device structure
 336 *
 337 * Return: MEI_PG_OFF if aliveness is on and MEI_PG_ON otherwise
 338 */
 339static inline enum mei_pg_state mei_txe_pg_state(struct mei_device *dev)
 340{
 341        struct mei_txe_hw *hw = to_txe_hw(dev);
 342
 343        return hw->aliveness ? MEI_PG_OFF : MEI_PG_ON;
 344}
 345
 346/**
 347 * mei_txe_input_ready_interrupt_enable - sets the Input Ready Interrupt
 348 *
 349 * @dev: the device structure
 350 */
 351static void mei_txe_input_ready_interrupt_enable(struct mei_device *dev)
 352{
 353        struct mei_txe_hw *hw = to_txe_hw(dev);
 354        u32 hintmsk;
 355        /* Enable the SEC_IPC_HOST_INT_MASK_IN_RDY interrupt */
 356        hintmsk = mei_txe_sec_reg_read(hw, SEC_IPC_HOST_INT_MASK_REG);
 357        hintmsk |= SEC_IPC_HOST_INT_MASK_IN_RDY;
 358        mei_txe_sec_reg_write(hw, SEC_IPC_HOST_INT_MASK_REG, hintmsk);
 359}
 360
 361/**
 362 * mei_txe_input_doorbell_set - sets bit 0 in
 363 *    SEC_IPC_INPUT_DOORBELL.IPC_INPUT_DOORBELL.
 364 *
 365 * @hw: the txe hardware structure
 366 */
 367static void mei_txe_input_doorbell_set(struct mei_txe_hw *hw)
 368{
 369        /* Clear the interrupt cause */
 370        clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause);
 371        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_DOORBELL_REG, 1);
 372}
 373
 374/**
 375 * mei_txe_output_ready_set - Sets the SICR_SEC_IPC_OUTPUT_STATUS bit to 1
 376 *
 377 * @hw: the txe hardware structure
 378 */
 379static void mei_txe_output_ready_set(struct mei_txe_hw *hw)
 380{
 381        mei_txe_br_reg_write(hw,
 382                        SICR_SEC_IPC_OUTPUT_STATUS_REG,
 383                        SEC_IPC_OUTPUT_STATUS_RDY);
 384}
 385
 386/**
 387 * mei_txe_is_input_ready - check if TXE is ready for receiving data
 388 *
 389 * @dev: the device structure
 390 *
 391 * Return: true if INPUT STATUS READY bit is set
 392 */
 393static bool mei_txe_is_input_ready(struct mei_device *dev)
 394{
 395        struct mei_txe_hw *hw = to_txe_hw(dev);
 396        u32 status;
 397
 398        status = mei_txe_sec_reg_read(hw, SEC_IPC_INPUT_STATUS_REG);
 399        return !!(SEC_IPC_INPUT_STATUS_RDY & status);
 400}
 401
 402/**
 403 * mei_txe_intr_clear - clear all interrupts
 404 *
 405 * @dev: the device structure
 406 */
 407static inline void mei_txe_intr_clear(struct mei_device *dev)
 408{
 409        struct mei_txe_hw *hw = to_txe_hw(dev);
 410
 411        mei_txe_sec_reg_write_silent(hw, SEC_IPC_HOST_INT_STATUS_REG,
 412                SEC_IPC_HOST_INT_STATUS_PENDING);
 413        mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_STS_MSK);
 414        mei_txe_br_reg_write(hw, HHISR_REG, IPC_HHIER_MSK);
 415}
 416
 417/**
 418 * mei_txe_intr_disable - disable all interrupts
 419 *
 420 * @dev: the device structure
 421 */
 422static void mei_txe_intr_disable(struct mei_device *dev)
 423{
 424        struct mei_txe_hw *hw = to_txe_hw(dev);
 425
 426        mei_txe_br_reg_write(hw, HHIER_REG, 0);
 427        mei_txe_br_reg_write(hw, HIER_REG, 0);
 428}
 429/**
 430 * mei_txe_intr_enable - enable all interrupts
 431 *
 432 * @dev: the device structure
 433 */
 434static void mei_txe_intr_enable(struct mei_device *dev)
 435{
 436        struct mei_txe_hw *hw = to_txe_hw(dev);
 437
 438        mei_txe_br_reg_write(hw, HHIER_REG, IPC_HHIER_MSK);
 439        mei_txe_br_reg_write(hw, HIER_REG, HIER_INT_EN_MSK);
 440}
 441
 442/**
 443 * mei_txe_pending_interrupts - check if there are pending interrupts
 444 *      only Aliveness, Input ready, and output doorbell are of relevance
 445 *
 446 * @dev: the device structure
 447 *
 448 * Checks if there are pending interrupts
 449 * only Aliveness, Readiness, Input ready, and Output doorbell are relevant
 450 *
 451 * Return: true if there are pending interrupts
 452 */
 453static bool mei_txe_pending_interrupts(struct mei_device *dev)
 454{
 455
 456        struct mei_txe_hw *hw = to_txe_hw(dev);
 457        bool ret = (hw->intr_cause & (TXE_INTR_READINESS |
 458                                      TXE_INTR_ALIVENESS |
 459                                      TXE_INTR_IN_READY  |
 460                                      TXE_INTR_OUT_DB));
 461
 462        if (ret) {
 463                dev_dbg(dev->dev,
 464                        "Pending Interrupts InReady=%01d Readiness=%01d, Aliveness=%01d, OutDoor=%01d\n",
 465                        !!(hw->intr_cause & TXE_INTR_IN_READY),
 466                        !!(hw->intr_cause & TXE_INTR_READINESS),
 467                        !!(hw->intr_cause & TXE_INTR_ALIVENESS),
 468                        !!(hw->intr_cause & TXE_INTR_OUT_DB));
 469        }
 470        return ret;
 471}
 472
 473/**
 474 * mei_txe_input_payload_write - write a dword to the host buffer
 475 *      at offset idx
 476 *
 477 * @dev: the device structure
 478 * @idx: index in the host buffer
 479 * @value: value
 480 */
 481static void mei_txe_input_payload_write(struct mei_device *dev,
 482                        unsigned long idx, u32 value)
 483{
 484        struct mei_txe_hw *hw = to_txe_hw(dev);
 485
 486        mei_txe_sec_reg_write(hw, SEC_IPC_INPUT_PAYLOAD_REG +
 487                        (idx * sizeof(u32)), value);
 488}
 489
 490/**
 491 * mei_txe_out_data_read - read dword from the device buffer
 492 *      at offset idx
 493 *
 494 * @dev: the device structure
 495 * @idx: index in the device buffer
 496 *
 497 * Return: register value at index
 498 */
 499static u32 mei_txe_out_data_read(const struct mei_device *dev,
 500                                        unsigned long idx)
 501{
 502        struct mei_txe_hw *hw = to_txe_hw(dev);
 503
 504        return mei_txe_br_reg_read(hw,
 505                BRIDGE_IPC_OUTPUT_PAYLOAD_REG + (idx * sizeof(u32)));
 506}
 507
 508/* Readiness */
 509
 510/**
 511 * mei_txe_readiness_set_host_rdy - set host readiness bit
 512 *
 513 * @dev: the device structure
 514 */
 515static void mei_txe_readiness_set_host_rdy(struct mei_device *dev)
 516{
 517        struct mei_txe_hw *hw = to_txe_hw(dev);
 518
 519        mei_txe_br_reg_write(hw,
 520                SICR_HOST_IPC_READINESS_REQ_REG,
 521                SICR_HOST_IPC_READINESS_HOST_RDY);
 522}
 523
 524/**
 525 * mei_txe_readiness_clear - clear host readiness bit
 526 *
 527 * @dev: the device structure
 528 */
 529static void mei_txe_readiness_clear(struct mei_device *dev)
 530{
 531        struct mei_txe_hw *hw = to_txe_hw(dev);
 532
 533        mei_txe_br_reg_write(hw, SICR_HOST_IPC_READINESS_REQ_REG,
 534                                SICR_HOST_IPC_READINESS_RDY_CLR);
 535}
 536/**
 537 * mei_txe_readiness_get - Reads and returns
 538 *      the HICR_SEC_IPC_READINESS register value
 539 *
 540 * @dev: the device structure
 541 *
 542 * Return: the HICR_SEC_IPC_READINESS register value
 543 */
 544static u32 mei_txe_readiness_get(struct mei_device *dev)
 545{
 546        struct mei_txe_hw *hw = to_txe_hw(dev);
 547
 548        return mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 549}
 550
 551
 552/**
 553 * mei_txe_readiness_is_sec_rdy - check readiness
 554 *  for HICR_SEC_IPC_READINESS_SEC_RDY
 555 *
 556 * @readiness: cached readiness state
 557 *
 558 * Return: true if readiness bit is set
 559 */
 560static inline bool mei_txe_readiness_is_sec_rdy(u32 readiness)
 561{
 562        return !!(readiness & HICR_SEC_IPC_READINESS_SEC_RDY);
 563}
 564
 565/**
 566 * mei_txe_hw_is_ready - check if the hw is ready
 567 *
 568 * @dev: the device structure
 569 *
 570 * Return: true if sec is ready
 571 */
 572static bool mei_txe_hw_is_ready(struct mei_device *dev)
 573{
 574        u32 readiness =  mei_txe_readiness_get(dev);
 575
 576        return mei_txe_readiness_is_sec_rdy(readiness);
 577}
 578
 579/**
 580 * mei_txe_host_is_ready - check if the host is ready
 581 *
 582 * @dev: the device structure
 583 *
 584 * Return: true if host is ready
 585 */
 586static inline bool mei_txe_host_is_ready(struct mei_device *dev)
 587{
 588        struct mei_txe_hw *hw = to_txe_hw(dev);
 589        u32 reg = mei_txe_br_reg_read(hw, HICR_SEC_IPC_READINESS_REG);
 590
 591        return !!(reg & HICR_SEC_IPC_READINESS_HOST_RDY);
 592}
 593
 594/**
 595 * mei_txe_readiness_wait - wait till readiness settles
 596 *
 597 * @dev: the device structure
 598 *
 599 * Return: 0 on success and -ETIME on timeout
 600 */
 601static int mei_txe_readiness_wait(struct mei_device *dev)
 602{
 603        if (mei_txe_hw_is_ready(dev))
 604                return 0;
 605
 606        mutex_unlock(&dev->device_lock);
 607        wait_event_timeout(dev->wait_hw_ready, dev->recvd_hw_ready,
 608                        msecs_to_jiffies(SEC_RESET_WAIT_TIMEOUT));
 609        mutex_lock(&dev->device_lock);
 610        if (!dev->recvd_hw_ready) {
 611                dev_err(dev->dev, "wait for readiness failed\n");
 612                return -ETIME;
 613        }
 614
 615        dev->recvd_hw_ready = false;
 616        return 0;
 617}
 618
 619static const struct mei_fw_status mei_txe_fw_sts = {
 620        .count = 2,
 621        .status[0] = PCI_CFG_TXE_FW_STS0,
 622        .status[1] = PCI_CFG_TXE_FW_STS1
 623};
 624
 625/**
 626 * mei_txe_fw_status - read fw status register from pci config space
 627 *
 628 * @dev: mei device
 629 * @fw_status: fw status register values
 630 *
 631 * Return: 0 on success, error otherwise
 632 */
 633static int mei_txe_fw_status(struct mei_device *dev,
 634                             struct mei_fw_status *fw_status)
 635{
 636        const struct mei_fw_status *fw_src = &mei_txe_fw_sts;
 637        struct pci_dev *pdev = to_pci_dev(dev->dev);
 638        int ret;
 639        int i;
 640
 641        if (!fw_status)
 642                return -EINVAL;
 643
 644        fw_status->count = fw_src->count;
 645        for (i = 0; i < fw_src->count && i < MEI_FW_STATUS_MAX; i++) {
 646                ret = pci_read_config_dword(pdev, fw_src->status[i],
 647                                            &fw_status->status[i]);
 648                trace_mei_pci_cfg_read(dev->dev, "PCI_CFG_HSF_X",
 649                                       fw_src->status[i],
 650                                       fw_status->status[i]);
 651                if (ret)
 652                        return ret;
 653        }
 654
 655        return 0;
 656}
 657
 658/**
 659 *  mei_txe_hw_config - configure hardware at the start of the devices
 660 *
 661 * @dev: the device structure
 662 *
 663 * Configure hardware at the start of the device should be done only
 664 *   once at the device probe time
 665 */
 666static void mei_txe_hw_config(struct mei_device *dev)
 667{
 668
 669        struct mei_txe_hw *hw = to_txe_hw(dev);
 670
 671        /* Doesn't change in runtime */
 672        dev->hbuf_depth = PAYLOAD_SIZE / 4;
 673
 674        hw->aliveness = mei_txe_aliveness_get(dev);
 675        hw->readiness = mei_txe_readiness_get(dev);
 676
 677        dev_dbg(dev->dev, "aliveness_resp = 0x%08x, readiness = 0x%08x.\n",
 678                hw->aliveness, hw->readiness);
 679}
 680
 681
 682/**
 683 * mei_txe_write - writes a message to device.
 684 *
 685 * @dev: the device structure
 686 * @header: header of message
 687 * @buf: message buffer will be written
 688 *
 689 * Return: 0 if success, <0 - otherwise.
 690 */
 691
 692static int mei_txe_write(struct mei_device *dev,
 693                struct mei_msg_hdr *header, unsigned char *buf)
 694{
 695        struct mei_txe_hw *hw = to_txe_hw(dev);
 696        unsigned long rem;
 697        unsigned long length;
 698        int slots = dev->hbuf_depth;
 699        u32 *reg_buf = (u32 *)buf;
 700        u32 dw_cnt;
 701        int i;
 702
 703        if (WARN_ON(!header || !buf))
 704                return -EINVAL;
 705
 706        length = header->length;
 707
 708        dev_dbg(dev->dev, MEI_HDR_FMT, MEI_HDR_PRM(header));
 709
 710        dw_cnt = mei_data2slots(length);
 711        if (dw_cnt > slots)
 712                return -EMSGSIZE;
 713
 714        if (WARN(!hw->aliveness, "txe write: aliveness not asserted\n"))
 715                return -EAGAIN;
 716
 717        /* Enable Input Ready Interrupt. */
 718        mei_txe_input_ready_interrupt_enable(dev);
 719
 720        if (!mei_txe_is_input_ready(dev)) {
 721                char fw_sts_str[MEI_FW_STATUS_STR_SZ];
 722
 723                mei_fw_status_str(dev, fw_sts_str, MEI_FW_STATUS_STR_SZ);
 724                dev_err(dev->dev, "Input is not ready %s\n", fw_sts_str);
 725                return -EAGAIN;
 726        }
 727
 728        mei_txe_input_payload_write(dev, 0, *((u32 *)header));
 729
 730        for (i = 0; i < length / 4; i++)
 731                mei_txe_input_payload_write(dev, i + 1, reg_buf[i]);
 732
 733        rem = length & 0x3;
 734        if (rem > 0) {
 735                u32 reg = 0;
 736
 737                memcpy(&reg, &buf[length - rem], rem);
 738                mei_txe_input_payload_write(dev, i + 1, reg);
 739        }
 740
 741        /* after each write the whole buffer is consumed */
 742        hw->slots = 0;
 743
 744        /* Set Input-Doorbell */
 745        mei_txe_input_doorbell_set(hw);
 746
 747        return 0;
 748}
 749
 750/**
 751 * mei_txe_hbuf_max_len - mimics the me hbuf circular buffer
 752 *
 753 * @dev: the device structure
 754 *
 755 * Return: the PAYLOAD_SIZE - 4
 756 */
 757static size_t mei_txe_hbuf_max_len(const struct mei_device *dev)
 758{
 759        return PAYLOAD_SIZE - sizeof(struct mei_msg_hdr);
 760}
 761
 762/**
 763 * mei_txe_hbuf_empty_slots - mimics the me hbuf circular buffer
 764 *
 765 * @dev: the device structure
 766 *
 767 * Return: always hbuf_depth
 768 */
 769static int mei_txe_hbuf_empty_slots(struct mei_device *dev)
 770{
 771        struct mei_txe_hw *hw = to_txe_hw(dev);
 772
 773        return hw->slots;
 774}
 775
 776/**
 777 * mei_txe_count_full_read_slots - mimics the me device circular buffer
 778 *
 779 * @dev: the device structure
 780 *
 781 * Return: always buffer size in dwords count
 782 */
 783static int mei_txe_count_full_read_slots(struct mei_device *dev)
 784{
 785        /* read buffers has static size */
 786        return  PAYLOAD_SIZE / 4;
 787}
 788
 789/**
 790 * mei_txe_read_hdr - read message header which is always in 4 first bytes
 791 *
 792 * @dev: the device structure
 793 *
 794 * Return: mei message header
 795 */
 796
 797static u32 mei_txe_read_hdr(const struct mei_device *dev)
 798{
 799        return mei_txe_out_data_read(dev, 0);
 800}
 801/**
 802 * mei_txe_read - reads a message from the txe device.
 803 *
 804 * @dev: the device structure
 805 * @buf: message buffer will be written
 806 * @len: message size will be read
 807 *
 808 * Return: -EINVAL on error wrong argument and 0 on success
 809 */
 810static int mei_txe_read(struct mei_device *dev,
 811                unsigned char *buf, unsigned long len)
 812{
 813
 814        struct mei_txe_hw *hw = to_txe_hw(dev);
 815        u32 *reg_buf, reg;
 816        u32 rem;
 817        u32 i;
 818
 819        if (WARN_ON(!buf || !len))
 820                return -EINVAL;
 821
 822        reg_buf = (u32 *)buf;
 823        rem = len & 0x3;
 824
 825        dev_dbg(dev->dev, "buffer-length = %lu buf[0]0x%08X\n",
 826                len, mei_txe_out_data_read(dev, 0));
 827
 828        for (i = 0; i < len / 4; i++) {
 829                /* skip header: index starts from 1 */
 830                reg = mei_txe_out_data_read(dev, i + 1);
 831                dev_dbg(dev->dev, "buf[%d] = 0x%08X\n", i, reg);
 832                *reg_buf++ = reg;
 833        }
 834
 835        if (rem) {
 836                reg = mei_txe_out_data_read(dev, i + 1);
 837                memcpy(reg_buf, &reg, rem);
 838        }
 839
 840        mei_txe_output_ready_set(hw);
 841        return 0;
 842}
 843
 844/**
 845 * mei_txe_hw_reset - resets host and fw.
 846 *
 847 * @dev: the device structure
 848 * @intr_enable: if interrupt should be enabled after reset.
 849 *
 850 * Return: 0 on success and < 0 in case of error
 851 */
 852static int mei_txe_hw_reset(struct mei_device *dev, bool intr_enable)
 853{
 854        struct mei_txe_hw *hw = to_txe_hw(dev);
 855
 856        u32 aliveness_req;
 857        /*
 858         * read input doorbell to ensure consistency between  Bridge and SeC
 859         * return value might be garbage return
 860         */
 861        (void)mei_txe_sec_reg_read_silent(hw, SEC_IPC_INPUT_DOORBELL_REG);
 862
 863        aliveness_req = mei_txe_aliveness_req_get(dev);
 864        hw->aliveness = mei_txe_aliveness_get(dev);
 865
 866        /* Disable interrupts in this stage we will poll */
 867        mei_txe_intr_disable(dev);
 868
 869        /*
 870         * If Aliveness Request and Aliveness Response are not equal then
 871         * wait for them to be equal
 872         * Since we might have interrupts disabled - poll for it
 873         */
 874        if (aliveness_req != hw->aliveness)
 875                if (mei_txe_aliveness_poll(dev, aliveness_req) < 0) {
 876                        dev_err(dev->dev, "wait for aliveness settle failed ... bailing out\n");
 877                        return -EIO;
 878                }
 879
 880        /*
 881         * If Aliveness Request and Aliveness Response are set then clear them
 882         */
 883        if (aliveness_req) {
 884                mei_txe_aliveness_set(dev, 0);
 885                if (mei_txe_aliveness_poll(dev, 0) < 0) {
 886                        dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 887                        return -EIO;
 888                }
 889        }
 890
 891        /*
 892         * Set readiness RDY_CLR bit
 893         */
 894        mei_txe_readiness_clear(dev);
 895
 896        return 0;
 897}
 898
 899/**
 900 * mei_txe_hw_start - start the hardware after reset
 901 *
 902 * @dev: the device structure
 903 *
 904 * Return: 0 on success an error code otherwise
 905 */
 906static int mei_txe_hw_start(struct mei_device *dev)
 907{
 908        struct mei_txe_hw *hw = to_txe_hw(dev);
 909        int ret;
 910
 911        u32 hisr;
 912
 913        /* bring back interrupts */
 914        mei_txe_intr_enable(dev);
 915
 916        ret = mei_txe_readiness_wait(dev);
 917        if (ret < 0) {
 918                dev_err(dev->dev, "waiting for readiness failed\n");
 919                return ret;
 920        }
 921
 922        /*
 923         * If HISR.INT2_STS interrupt status bit is set then clear it.
 924         */
 925        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 926        if (hisr & HISR_INT_2_STS)
 927                mei_txe_br_reg_write(hw, HISR_REG, HISR_INT_2_STS);
 928
 929        /* Clear the interrupt cause of OutputDoorbell */
 930        clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause);
 931
 932        ret = mei_txe_aliveness_set_sync(dev, 1);
 933        if (ret < 0) {
 934                dev_err(dev->dev, "wait for aliveness failed ... bailing out\n");
 935                return ret;
 936        }
 937
 938        /* enable input ready interrupts:
 939         * SEC_IPC_HOST_INT_MASK.IPC_INPUT_READY_INT_MASK
 940         */
 941        mei_txe_input_ready_interrupt_enable(dev);
 942
 943
 944        /*  Set the SICR_SEC_IPC_OUTPUT_STATUS.IPC_OUTPUT_READY bit */
 945        mei_txe_output_ready_set(hw);
 946
 947        /* Set bit SICR_HOST_IPC_READINESS.HOST_RDY
 948         */
 949        mei_txe_readiness_set_host_rdy(dev);
 950
 951        return 0;
 952}
 953
 954/**
 955 * mei_txe_check_and_ack_intrs - translate multi BAR interrupt into
 956 *  single bit mask and acknowledge the interrupts
 957 *
 958 * @dev: the device structure
 959 * @do_ack: acknowledge interrupts
 960 *
 961 * Return: true if found interrupts to process.
 962 */
 963static bool mei_txe_check_and_ack_intrs(struct mei_device *dev, bool do_ack)
 964{
 965        struct mei_txe_hw *hw = to_txe_hw(dev);
 966        u32 hisr;
 967        u32 hhisr;
 968        u32 ipc_isr;
 969        u32 aliveness;
 970        bool generated;
 971
 972        /* read interrupt registers */
 973        hhisr = mei_txe_br_reg_read(hw, HHISR_REG);
 974        generated = (hhisr & IPC_HHIER_MSK);
 975        if (!generated)
 976                goto out;
 977
 978        hisr = mei_txe_br_reg_read(hw, HISR_REG);
 979
 980        aliveness = mei_txe_aliveness_get(dev);
 981        if (hhisr & IPC_HHIER_SEC && aliveness)
 982                ipc_isr = mei_txe_sec_reg_read_silent(hw,
 983                                SEC_IPC_HOST_INT_STATUS_REG);
 984        else
 985                ipc_isr = 0;
 986
 987        generated = generated ||
 988                (hisr & HISR_INT_STS_MSK) ||
 989                (ipc_isr & SEC_IPC_HOST_INT_STATUS_PENDING);
 990
 991        if (generated && do_ack) {
 992                /* Save the interrupt causes */
 993                hw->intr_cause |= hisr & HISR_INT_STS_MSK;
 994                if (ipc_isr & SEC_IPC_HOST_INT_STATUS_IN_RDY)
 995                        hw->intr_cause |= TXE_INTR_IN_READY;
 996
 997
 998                mei_txe_intr_disable(dev);
 999                /* Clear the interrupts in hierarchy:
1000                 * IPC and Bridge, than the High Level */
1001                mei_txe_sec_reg_write_silent(hw,
1002                        SEC_IPC_HOST_INT_STATUS_REG, ipc_isr);
1003                mei_txe_br_reg_write(hw, HISR_REG, hisr);
1004                mei_txe_br_reg_write(hw, HHISR_REG, hhisr);
1005        }
1006
1007out:
1008        return generated;
1009}
1010
1011/**
1012 * mei_txe_irq_quick_handler - The ISR of the MEI device
1013 *
1014 * @irq: The irq number
1015 * @dev_id: pointer to the device structure
1016 *
1017 * Return: IRQ_WAKE_THREAD if interrupt is designed for the device
1018 *         IRQ_NONE otherwise
1019 */
1020irqreturn_t mei_txe_irq_quick_handler(int irq, void *dev_id)
1021{
1022        struct mei_device *dev = dev_id;
1023
1024        if (mei_txe_check_and_ack_intrs(dev, true))
1025                return IRQ_WAKE_THREAD;
1026        return IRQ_NONE;
1027}
1028
1029
1030/**
1031 * mei_txe_irq_thread_handler - txe interrupt thread
1032 *
1033 * @irq: The irq number
1034 * @dev_id: pointer to the device structure
1035 *
1036 * Return: IRQ_HANDLED
1037 */
1038irqreturn_t mei_txe_irq_thread_handler(int irq, void *dev_id)
1039{
1040        struct mei_device *dev = (struct mei_device *) dev_id;
1041        struct mei_txe_hw *hw = to_txe_hw(dev);
1042        struct mei_cl_cb complete_list;
1043        s32 slots;
1044        int rets = 0;
1045
1046        dev_dbg(dev->dev, "irq thread: Interrupt Registers HHISR|HISR|SEC=%02X|%04X|%02X\n",
1047                mei_txe_br_reg_read(hw, HHISR_REG),
1048                mei_txe_br_reg_read(hw, HISR_REG),
1049                mei_txe_sec_reg_read_silent(hw, SEC_IPC_HOST_INT_STATUS_REG));
1050
1051
1052        /* initialize our complete list */
1053        mutex_lock(&dev->device_lock);
1054        mei_io_list_init(&complete_list);
1055
1056        if (pci_dev_msi_enabled(to_pci_dev(dev->dev)))
1057                mei_txe_check_and_ack_intrs(dev, true);
1058
1059        /* show irq events */
1060        mei_txe_pending_interrupts(dev);
1061
1062        hw->aliveness = mei_txe_aliveness_get(dev);
1063        hw->readiness = mei_txe_readiness_get(dev);
1064
1065        /* Readiness:
1066         * Detection of TXE driver going through reset
1067         * or TXE driver resetting the HECI interface.
1068         */
1069        if (test_and_clear_bit(TXE_INTR_READINESS_BIT, &hw->intr_cause)) {
1070                dev_dbg(dev->dev, "Readiness Interrupt was received...\n");
1071
1072                /* Check if SeC is going through reset */
1073                if (mei_txe_readiness_is_sec_rdy(hw->readiness)) {
1074                        dev_dbg(dev->dev, "we need to start the dev.\n");
1075                        dev->recvd_hw_ready = true;
1076                } else {
1077                        dev->recvd_hw_ready = false;
1078                        if (dev->dev_state != MEI_DEV_RESETTING) {
1079
1080                                dev_warn(dev->dev, "FW not ready: resetting.\n");
1081                                schedule_work(&dev->reset_work);
1082                                goto end;
1083
1084                        }
1085                }
1086                wake_up(&dev->wait_hw_ready);
1087        }
1088
1089        /************************************************************/
1090        /* Check interrupt cause:
1091         * Aliveness: Detection of SeC acknowledge of host request that
1092         * it remain alive or host cancellation of that request.
1093         */
1094
1095        if (test_and_clear_bit(TXE_INTR_ALIVENESS_BIT, &hw->intr_cause)) {
1096                /* Clear the interrupt cause */
1097                dev_dbg(dev->dev,
1098                        "Aliveness Interrupt: Status: %d\n", hw->aliveness);
1099                dev->pg_event = MEI_PG_EVENT_RECEIVED;
1100                if (waitqueue_active(&hw->wait_aliveness_resp))
1101                        wake_up(&hw->wait_aliveness_resp);
1102        }
1103
1104
1105        /* Output Doorbell:
1106         * Detection of SeC having sent output to host
1107         */
1108        slots = mei_count_full_read_slots(dev);
1109        if (test_and_clear_bit(TXE_INTR_OUT_DB_BIT, &hw->intr_cause)) {
1110                /* Read from TXE */
1111                rets = mei_irq_read_handler(dev, &complete_list, &slots);
1112                if (rets && dev->dev_state != MEI_DEV_RESETTING) {
1113                        dev_err(dev->dev,
1114                                "mei_irq_read_handler ret = %d.\n", rets);
1115
1116                        schedule_work(&dev->reset_work);
1117                        goto end;
1118                }
1119        }
1120        /* Input Ready: Detection if host can write to SeC */
1121        if (test_and_clear_bit(TXE_INTR_IN_READY_BIT, &hw->intr_cause)) {
1122                dev->hbuf_is_ready = true;
1123                hw->slots = dev->hbuf_depth;
1124        }
1125
1126        if (hw->aliveness && dev->hbuf_is_ready) {
1127                /* get the real register value */
1128                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1129                rets = mei_irq_write_handler(dev, &complete_list);
1130                if (rets && rets != -EMSGSIZE)
1131                        dev_err(dev->dev, "mei_irq_write_handler ret = %d.\n",
1132                                rets);
1133                dev->hbuf_is_ready = mei_hbuf_is_ready(dev);
1134        }
1135
1136        mei_irq_compl_handler(dev, &complete_list);
1137
1138end:
1139        dev_dbg(dev->dev, "interrupt thread end ret = %d\n", rets);
1140
1141        mutex_unlock(&dev->device_lock);
1142
1143        mei_enable_interrupts(dev);
1144        return IRQ_HANDLED;
1145}
1146
1147static const struct mei_hw_ops mei_txe_hw_ops = {
1148
1149        .host_is_ready = mei_txe_host_is_ready,
1150
1151        .fw_status = mei_txe_fw_status,
1152        .pg_state = mei_txe_pg_state,
1153
1154        .hw_is_ready = mei_txe_hw_is_ready,
1155        .hw_reset = mei_txe_hw_reset,
1156        .hw_config = mei_txe_hw_config,
1157        .hw_start = mei_txe_hw_start,
1158
1159        .pg_in_transition = mei_txe_pg_in_transition,
1160        .pg_is_enabled = mei_txe_pg_is_enabled,
1161
1162        .intr_clear = mei_txe_intr_clear,
1163        .intr_enable = mei_txe_intr_enable,
1164        .intr_disable = mei_txe_intr_disable,
1165
1166        .hbuf_free_slots = mei_txe_hbuf_empty_slots,
1167        .hbuf_is_ready = mei_txe_is_input_ready,
1168        .hbuf_max_len = mei_txe_hbuf_max_len,
1169
1170        .write = mei_txe_write,
1171
1172        .rdbuf_full_slots = mei_txe_count_full_read_slots,
1173        .read_hdr = mei_txe_read_hdr,
1174
1175        .read = mei_txe_read,
1176
1177};
1178
1179/**
1180 * mei_txe_dev_init - allocates and initializes txe hardware specific structure
1181 *
1182 * @pdev: pci device
1183 *
1184 * Return: struct mei_device * on success or NULL
1185 */
1186struct mei_device *mei_txe_dev_init(struct pci_dev *pdev)
1187{
1188        struct mei_device *dev;
1189        struct mei_txe_hw *hw;
1190
1191        dev = kzalloc(sizeof(struct mei_device) +
1192                         sizeof(struct mei_txe_hw), GFP_KERNEL);
1193        if (!dev)
1194                return NULL;
1195
1196        mei_device_init(dev, &pdev->dev, &mei_txe_hw_ops);
1197
1198        hw = to_txe_hw(dev);
1199
1200        init_waitqueue_head(&hw->wait_aliveness_resp);
1201
1202        return dev;
1203}
1204
1205/**
1206 * mei_txe_setup_satt2 - SATT2 configuration for DMA support.
1207 *
1208 * @dev:   the device structure
1209 * @addr:  physical address start of the range
1210 * @range: physical range size
1211 *
1212 * Return: 0 on success an error code otherwise
1213 */
1214int mei_txe_setup_satt2(struct mei_device *dev, phys_addr_t addr, u32 range)
1215{
1216        struct mei_txe_hw *hw = to_txe_hw(dev);
1217
1218        u32 lo32 = lower_32_bits(addr);
1219        u32 hi32 = upper_32_bits(addr);
1220        u32 ctrl;
1221
1222        /* SATT is limited to 36 Bits */
1223        if (hi32 & ~0xF)
1224                return -EINVAL;
1225
1226        /* SATT has to be 16Byte aligned */
1227        if (lo32 & 0xF)
1228                return -EINVAL;
1229
1230        /* SATT range has to be 4Bytes aligned */
1231        if (range & 0x4)
1232                return -EINVAL;
1233
1234        /* SATT is limited to 32 MB range*/
1235        if (range > SATT_RANGE_MAX)
1236                return -EINVAL;
1237
1238        ctrl = SATT2_CTRL_VALID_MSK;
1239        ctrl |= hi32  << SATT2_CTRL_BR_BASE_ADDR_REG_SHIFT;
1240
1241        mei_txe_br_reg_write(hw, SATT2_SAP_SIZE_REG, range);
1242        mei_txe_br_reg_write(hw, SATT2_BRG_BA_LSB_REG, lo32);
1243        mei_txe_br_reg_write(hw, SATT2_CTRL_REG, ctrl);
1244        dev_dbg(dev->dev, "SATT2: SAP_SIZE_OFFSET=0x%08X, BRG_BA_LSB_OFFSET=0x%08X, CTRL_OFFSET=0x%08X\n",
1245                range, lo32, ctrl);
1246
1247        return 0;
1248}
1249