linux/drivers/mtd/nand/fsmc_nand.c
<<
>>
Prefs
   1/*
   2 * drivers/mtd/nand/fsmc_nand.c
   3 *
   4 * ST Microelectronics
   5 * Flexible Static Memory Controller (FSMC)
   6 * Driver for NAND portions
   7 *
   8 * Copyright © 2010 ST Microelectronics
   9 * Vipin Kumar <vipin.kumar@st.com>
  10 * Ashish Priyadarshi
  11 *
  12 * Based on drivers/mtd/nand/nomadik_nand.c
  13 *
  14 * This file is licensed under the terms of the GNU General Public
  15 * License version 2. This program is licensed "as is" without any
  16 * warranty of any kind, whether express or implied.
  17 */
  18
  19#include <linux/clk.h>
  20#include <linux/completion.h>
  21#include <linux/dmaengine.h>
  22#include <linux/dma-direction.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/err.h>
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/resource.h>
  28#include <linux/sched.h>
  29#include <linux/types.h>
  30#include <linux/mtd/mtd.h>
  31#include <linux/mtd/nand.h>
  32#include <linux/mtd/nand_ecc.h>
  33#include <linux/platform_device.h>
  34#include <linux/of.h>
  35#include <linux/mtd/partitions.h>
  36#include <linux/io.h>
  37#include <linux/slab.h>
  38#include <linux/mtd/fsmc.h>
  39#include <linux/amba/bus.h>
  40#include <mtd/mtd-abi.h>
  41
  42static int fsmc_ecc1_ooblayout_ecc(struct mtd_info *mtd, int section,
  43                                   struct mtd_oob_region *oobregion)
  44{
  45        struct nand_chip *chip = mtd_to_nand(mtd);
  46
  47        if (section >= chip->ecc.steps)
  48                return -ERANGE;
  49
  50        oobregion->offset = (section * 16) + 2;
  51        oobregion->length = 3;
  52
  53        return 0;
  54}
  55
  56static int fsmc_ecc1_ooblayout_free(struct mtd_info *mtd, int section,
  57                                    struct mtd_oob_region *oobregion)
  58{
  59        struct nand_chip *chip = mtd_to_nand(mtd);
  60
  61        if (section >= chip->ecc.steps)
  62                return -ERANGE;
  63
  64        oobregion->offset = (section * 16) + 8;
  65
  66        if (section < chip->ecc.steps - 1)
  67                oobregion->length = 8;
  68        else
  69                oobregion->length = mtd->oobsize - oobregion->offset;
  70
  71        return 0;
  72}
  73
  74static const struct mtd_ooblayout_ops fsmc_ecc1_ooblayout_ops = {
  75        .ecc = fsmc_ecc1_ooblayout_ecc,
  76        .free = fsmc_ecc1_ooblayout_free,
  77};
  78
  79/*
  80 * ECC placement definitions in oobfree type format.
  81 * There are 13 bytes of ecc for every 512 byte block and it has to be read
  82 * consecutively and immediately after the 512 byte data block for hardware to
  83 * generate the error bit offsets in 512 byte data.
  84 */
  85static int fsmc_ecc4_ooblayout_ecc(struct mtd_info *mtd, int section,
  86                                   struct mtd_oob_region *oobregion)
  87{
  88        struct nand_chip *chip = mtd_to_nand(mtd);
  89
  90        if (section >= chip->ecc.steps)
  91                return -ERANGE;
  92
  93        oobregion->length = chip->ecc.bytes;
  94
  95        if (!section && mtd->writesize <= 512)
  96                oobregion->offset = 0;
  97        else
  98                oobregion->offset = (section * 16) + 2;
  99
 100        return 0;
 101}
 102
 103static int fsmc_ecc4_ooblayout_free(struct mtd_info *mtd, int section,
 104                                    struct mtd_oob_region *oobregion)
 105{
 106        struct nand_chip *chip = mtd_to_nand(mtd);
 107
 108        if (section >= chip->ecc.steps)
 109                return -ERANGE;
 110
 111        oobregion->offset = (section * 16) + 15;
 112
 113        if (section < chip->ecc.steps - 1)
 114                oobregion->length = 3;
 115        else
 116                oobregion->length = mtd->oobsize - oobregion->offset;
 117
 118        return 0;
 119}
 120
 121static const struct mtd_ooblayout_ops fsmc_ecc4_ooblayout_ops = {
 122        .ecc = fsmc_ecc4_ooblayout_ecc,
 123        .free = fsmc_ecc4_ooblayout_free,
 124};
 125
 126/**
 127 * struct fsmc_nand_data - structure for FSMC NAND device state
 128 *
 129 * @pid:                Part ID on the AMBA PrimeCell format
 130 * @mtd:                MTD info for a NAND flash.
 131 * @nand:               Chip related info for a NAND flash.
 132 * @partitions:         Partition info for a NAND Flash.
 133 * @nr_partitions:      Total number of partition of a NAND flash.
 134 *
 135 * @bank:               Bank number for probed device.
 136 * @clk:                Clock structure for FSMC.
 137 *
 138 * @read_dma_chan:      DMA channel for read access
 139 * @write_dma_chan:     DMA channel for write access to NAND
 140 * @dma_access_complete: Completion structure
 141 *
 142 * @data_pa:            NAND Physical port for Data.
 143 * @data_va:            NAND port for Data.
 144 * @cmd_va:             NAND port for Command.
 145 * @addr_va:            NAND port for Address.
 146 * @regs_va:            FSMC regs base address.
 147 */
 148struct fsmc_nand_data {
 149        u32                     pid;
 150        struct nand_chip        nand;
 151        struct mtd_partition    *partitions;
 152        unsigned int            nr_partitions;
 153
 154        unsigned int            bank;
 155        struct device           *dev;
 156        enum access_mode        mode;
 157        struct clk              *clk;
 158
 159        /* DMA related objects */
 160        struct dma_chan         *read_dma_chan;
 161        struct dma_chan         *write_dma_chan;
 162        struct completion       dma_access_complete;
 163
 164        struct fsmc_nand_timings *dev_timings;
 165
 166        dma_addr_t              data_pa;
 167        void __iomem            *data_va;
 168        void __iomem            *cmd_va;
 169        void __iomem            *addr_va;
 170        void __iomem            *regs_va;
 171
 172        void                    (*select_chip)(uint32_t bank, uint32_t busw);
 173};
 174
 175static inline struct fsmc_nand_data *mtd_to_fsmc(struct mtd_info *mtd)
 176{
 177        return container_of(mtd_to_nand(mtd), struct fsmc_nand_data, nand);
 178}
 179
 180/* Assert CS signal based on chipnr */
 181static void fsmc_select_chip(struct mtd_info *mtd, int chipnr)
 182{
 183        struct nand_chip *chip = mtd_to_nand(mtd);
 184        struct fsmc_nand_data *host;
 185
 186        host = mtd_to_fsmc(mtd);
 187
 188        switch (chipnr) {
 189        case -1:
 190                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 191                break;
 192        case 0:
 193        case 1:
 194        case 2:
 195        case 3:
 196                if (host->select_chip)
 197                        host->select_chip(chipnr,
 198                                        chip->options & NAND_BUSWIDTH_16);
 199                break;
 200
 201        default:
 202                dev_err(host->dev, "unsupported chip-select %d\n", chipnr);
 203        }
 204}
 205
 206/*
 207 * fsmc_cmd_ctrl - For facilitaing Hardware access
 208 * This routine allows hardware specific access to control-lines(ALE,CLE)
 209 */
 210static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 211{
 212        struct nand_chip *this = mtd_to_nand(mtd);
 213        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 214        void __iomem *regs = host->regs_va;
 215        unsigned int bank = host->bank;
 216
 217        if (ctrl & NAND_CTRL_CHANGE) {
 218                u32 pc;
 219
 220                if (ctrl & NAND_CLE) {
 221                        this->IO_ADDR_R = host->cmd_va;
 222                        this->IO_ADDR_W = host->cmd_va;
 223                } else if (ctrl & NAND_ALE) {
 224                        this->IO_ADDR_R = host->addr_va;
 225                        this->IO_ADDR_W = host->addr_va;
 226                } else {
 227                        this->IO_ADDR_R = host->data_va;
 228                        this->IO_ADDR_W = host->data_va;
 229                }
 230
 231                pc = readl(FSMC_NAND_REG(regs, bank, PC));
 232                if (ctrl & NAND_NCE)
 233                        pc |= FSMC_ENABLE;
 234                else
 235                        pc &= ~FSMC_ENABLE;
 236                writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC));
 237        }
 238
 239        mb();
 240
 241        if (cmd != NAND_CMD_NONE)
 242                writeb_relaxed(cmd, this->IO_ADDR_W);
 243}
 244
 245/*
 246 * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine
 247 *
 248 * This routine initializes timing parameters related to NAND memory access in
 249 * FSMC registers
 250 */
 251static void fsmc_nand_setup(void __iomem *regs, uint32_t bank,
 252                           uint32_t busw, struct fsmc_nand_timings *timings)
 253{
 254        uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON;
 255        uint32_t tclr, tar, thiz, thold, twait, tset;
 256        struct fsmc_nand_timings *tims;
 257        struct fsmc_nand_timings default_timings = {
 258                .tclr   = FSMC_TCLR_1,
 259                .tar    = FSMC_TAR_1,
 260                .thiz   = FSMC_THIZ_1,
 261                .thold  = FSMC_THOLD_4,
 262                .twait  = FSMC_TWAIT_6,
 263                .tset   = FSMC_TSET_0,
 264        };
 265
 266        if (timings)
 267                tims = timings;
 268        else
 269                tims = &default_timings;
 270
 271        tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT;
 272        tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT;
 273        thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT;
 274        thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT;
 275        twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT;
 276        tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT;
 277
 278        if (busw)
 279                writel_relaxed(value | FSMC_DEVWID_16,
 280                                FSMC_NAND_REG(regs, bank, PC));
 281        else
 282                writel_relaxed(value | FSMC_DEVWID_8,
 283                                FSMC_NAND_REG(regs, bank, PC));
 284
 285        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar,
 286                        FSMC_NAND_REG(regs, bank, PC));
 287        writel_relaxed(thiz | thold | twait | tset,
 288                        FSMC_NAND_REG(regs, bank, COMM));
 289        writel_relaxed(thiz | thold | twait | tset,
 290                        FSMC_NAND_REG(regs, bank, ATTRIB));
 291}
 292
 293/*
 294 * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers
 295 */
 296static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode)
 297{
 298        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 299        void __iomem *regs = host->regs_va;
 300        uint32_t bank = host->bank;
 301
 302        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256,
 303                        FSMC_NAND_REG(regs, bank, PC));
 304        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN,
 305                        FSMC_NAND_REG(regs, bank, PC));
 306        writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN,
 307                        FSMC_NAND_REG(regs, bank, PC));
 308}
 309
 310/*
 311 * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by
 312 * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to
 313 * max of 8-bits)
 314 */
 315static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data,
 316                                uint8_t *ecc)
 317{
 318        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 319        void __iomem *regs = host->regs_va;
 320        uint32_t bank = host->bank;
 321        uint32_t ecc_tmp;
 322        unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT;
 323
 324        do {
 325                if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY)
 326                        break;
 327                else
 328                        cond_resched();
 329        } while (!time_after_eq(jiffies, deadline));
 330
 331        if (time_after_eq(jiffies, deadline)) {
 332                dev_err(host->dev, "calculate ecc timed out\n");
 333                return -ETIMEDOUT;
 334        }
 335
 336        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 337        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 338        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 339        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 340        ecc[3] = (uint8_t) (ecc_tmp >> 24);
 341
 342        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 343        ecc[4] = (uint8_t) (ecc_tmp >> 0);
 344        ecc[5] = (uint8_t) (ecc_tmp >> 8);
 345        ecc[6] = (uint8_t) (ecc_tmp >> 16);
 346        ecc[7] = (uint8_t) (ecc_tmp >> 24);
 347
 348        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 349        ecc[8] = (uint8_t) (ecc_tmp >> 0);
 350        ecc[9] = (uint8_t) (ecc_tmp >> 8);
 351        ecc[10] = (uint8_t) (ecc_tmp >> 16);
 352        ecc[11] = (uint8_t) (ecc_tmp >> 24);
 353
 354        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 355        ecc[12] = (uint8_t) (ecc_tmp >> 16);
 356
 357        return 0;
 358}
 359
 360/*
 361 * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by
 362 * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to
 363 * max of 1-bit)
 364 */
 365static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data,
 366                                uint8_t *ecc)
 367{
 368        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 369        void __iomem *regs = host->regs_va;
 370        uint32_t bank = host->bank;
 371        uint32_t ecc_tmp;
 372
 373        ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 374        ecc[0] = (uint8_t) (ecc_tmp >> 0);
 375        ecc[1] = (uint8_t) (ecc_tmp >> 8);
 376        ecc[2] = (uint8_t) (ecc_tmp >> 16);
 377
 378        return 0;
 379}
 380
 381/* Count the number of 0's in buff upto a max of max_bits */
 382static int count_written_bits(uint8_t *buff, int size, int max_bits)
 383{
 384        int k, written_bits = 0;
 385
 386        for (k = 0; k < size; k++) {
 387                written_bits += hweight8(~buff[k]);
 388                if (written_bits > max_bits)
 389                        break;
 390        }
 391
 392        return written_bits;
 393}
 394
 395static void dma_complete(void *param)
 396{
 397        struct fsmc_nand_data *host = param;
 398
 399        complete(&host->dma_access_complete);
 400}
 401
 402static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len,
 403                enum dma_data_direction direction)
 404{
 405        struct dma_chan *chan;
 406        struct dma_device *dma_dev;
 407        struct dma_async_tx_descriptor *tx;
 408        dma_addr_t dma_dst, dma_src, dma_addr;
 409        dma_cookie_t cookie;
 410        unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
 411        int ret;
 412        unsigned long time_left;
 413
 414        if (direction == DMA_TO_DEVICE)
 415                chan = host->write_dma_chan;
 416        else if (direction == DMA_FROM_DEVICE)
 417                chan = host->read_dma_chan;
 418        else
 419                return -EINVAL;
 420
 421        dma_dev = chan->device;
 422        dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction);
 423
 424        if (direction == DMA_TO_DEVICE) {
 425                dma_src = dma_addr;
 426                dma_dst = host->data_pa;
 427        } else {
 428                dma_src = host->data_pa;
 429                dma_dst = dma_addr;
 430        }
 431
 432        tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src,
 433                        len, flags);
 434        if (!tx) {
 435                dev_err(host->dev, "device_prep_dma_memcpy error\n");
 436                ret = -EIO;
 437                goto unmap_dma;
 438        }
 439
 440        tx->callback = dma_complete;
 441        tx->callback_param = host;
 442        cookie = tx->tx_submit(tx);
 443
 444        ret = dma_submit_error(cookie);
 445        if (ret) {
 446                dev_err(host->dev, "dma_submit_error %d\n", cookie);
 447                goto unmap_dma;
 448        }
 449
 450        dma_async_issue_pending(chan);
 451
 452        time_left =
 453        wait_for_completion_timeout(&host->dma_access_complete,
 454                                msecs_to_jiffies(3000));
 455        if (time_left == 0) {
 456                dmaengine_terminate_all(chan);
 457                dev_err(host->dev, "wait_for_completion_timeout\n");
 458                ret = -ETIMEDOUT;
 459                goto unmap_dma;
 460        }
 461
 462        ret = 0;
 463
 464unmap_dma:
 465        dma_unmap_single(dma_dev->dev, dma_addr, len, direction);
 466
 467        return ret;
 468}
 469
 470/*
 471 * fsmc_write_buf - write buffer to chip
 472 * @mtd:        MTD device structure
 473 * @buf:        data buffer
 474 * @len:        number of bytes to write
 475 */
 476static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 477{
 478        int i;
 479        struct nand_chip *chip = mtd_to_nand(mtd);
 480
 481        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 482                        IS_ALIGNED(len, sizeof(uint32_t))) {
 483                uint32_t *p = (uint32_t *)buf;
 484                len = len >> 2;
 485                for (i = 0; i < len; i++)
 486                        writel_relaxed(p[i], chip->IO_ADDR_W);
 487        } else {
 488                for (i = 0; i < len; i++)
 489                        writeb_relaxed(buf[i], chip->IO_ADDR_W);
 490        }
 491}
 492
 493/*
 494 * fsmc_read_buf - read chip data into buffer
 495 * @mtd:        MTD device structure
 496 * @buf:        buffer to store date
 497 * @len:        number of bytes to read
 498 */
 499static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 500{
 501        int i;
 502        struct nand_chip *chip = mtd_to_nand(mtd);
 503
 504        if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) &&
 505                        IS_ALIGNED(len, sizeof(uint32_t))) {
 506                uint32_t *p = (uint32_t *)buf;
 507                len = len >> 2;
 508                for (i = 0; i < len; i++)
 509                        p[i] = readl_relaxed(chip->IO_ADDR_R);
 510        } else {
 511                for (i = 0; i < len; i++)
 512                        buf[i] = readb_relaxed(chip->IO_ADDR_R);
 513        }
 514}
 515
 516/*
 517 * fsmc_read_buf_dma - read chip data into buffer
 518 * @mtd:        MTD device structure
 519 * @buf:        buffer to store date
 520 * @len:        number of bytes to read
 521 */
 522static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len)
 523{
 524        struct fsmc_nand_data *host  = mtd_to_fsmc(mtd);
 525
 526        dma_xfer(host, buf, len, DMA_FROM_DEVICE);
 527}
 528
 529/*
 530 * fsmc_write_buf_dma - write buffer to chip
 531 * @mtd:        MTD device structure
 532 * @buf:        data buffer
 533 * @len:        number of bytes to write
 534 */
 535static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf,
 536                int len)
 537{
 538        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 539
 540        dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE);
 541}
 542
 543/*
 544 * fsmc_read_page_hwecc
 545 * @mtd:        mtd info structure
 546 * @chip:       nand chip info structure
 547 * @buf:        buffer to store read data
 548 * @oob_required:       caller expects OOB data read to chip->oob_poi
 549 * @page:       page number to read
 550 *
 551 * This routine is needed for fsmc version 8 as reading from NAND chip has to be
 552 * performed in a strict sequence as follows:
 553 * data(512 byte) -> ecc(13 byte)
 554 * After this read, fsmc hardware generates and reports error data bits(up to a
 555 * max of 8 bits)
 556 */
 557static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
 558                                 uint8_t *buf, int oob_required, int page)
 559{
 560        int i, j, s, stat, eccsize = chip->ecc.size;
 561        int eccbytes = chip->ecc.bytes;
 562        int eccsteps = chip->ecc.steps;
 563        uint8_t *p = buf;
 564        uint8_t *ecc_calc = chip->buffers->ecccalc;
 565        uint8_t *ecc_code = chip->buffers->ecccode;
 566        int off, len, group = 0;
 567        /*
 568         * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we
 569         * end up reading 14 bytes (7 words) from oob. The local array is
 570         * to maintain word alignment
 571         */
 572        uint16_t ecc_oob[7];
 573        uint8_t *oob = (uint8_t *)&ecc_oob[0];
 574        unsigned int max_bitflips = 0;
 575
 576        for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) {
 577                chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page);
 578                chip->ecc.hwctl(mtd, NAND_ECC_READ);
 579                chip->read_buf(mtd, p, eccsize);
 580
 581                for (j = 0; j < eccbytes;) {
 582                        struct mtd_oob_region oobregion;
 583                        int ret;
 584
 585                        ret = mtd_ooblayout_ecc(mtd, group++, &oobregion);
 586                        if (ret)
 587                                return ret;
 588
 589                        off = oobregion.offset;
 590                        len = oobregion.length;
 591
 592                        /*
 593                         * length is intentionally kept a higher multiple of 2
 594                         * to read at least 13 bytes even in case of 16 bit NAND
 595                         * devices
 596                         */
 597                        if (chip->options & NAND_BUSWIDTH_16)
 598                                len = roundup(len, 2);
 599
 600                        chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page);
 601                        chip->read_buf(mtd, oob + j, len);
 602                        j += len;
 603                }
 604
 605                memcpy(&ecc_code[i], oob, chip->ecc.bytes);
 606                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
 607
 608                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
 609                if (stat < 0) {
 610                        mtd->ecc_stats.failed++;
 611                } else {
 612                        mtd->ecc_stats.corrected += stat;
 613                        max_bitflips = max_t(unsigned int, max_bitflips, stat);
 614                }
 615        }
 616
 617        return max_bitflips;
 618}
 619
 620/*
 621 * fsmc_bch8_correct_data
 622 * @mtd:        mtd info structure
 623 * @dat:        buffer of read data
 624 * @read_ecc:   ecc read from device spare area
 625 * @calc_ecc:   ecc calculated from read data
 626 *
 627 * calc_ecc is a 104 bit information containing maximum of 8 error
 628 * offset informations of 13 bits each in 512 bytes of read data.
 629 */
 630static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat,
 631                             uint8_t *read_ecc, uint8_t *calc_ecc)
 632{
 633        struct nand_chip *chip = mtd_to_nand(mtd);
 634        struct fsmc_nand_data *host = mtd_to_fsmc(mtd);
 635        void __iomem *regs = host->regs_va;
 636        unsigned int bank = host->bank;
 637        uint32_t err_idx[8];
 638        uint32_t num_err, i;
 639        uint32_t ecc1, ecc2, ecc3, ecc4;
 640
 641        num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF;
 642
 643        /* no bit flipping */
 644        if (likely(num_err == 0))
 645                return 0;
 646
 647        /* too many errors */
 648        if (unlikely(num_err > 8)) {
 649                /*
 650                 * This is a temporary erase check. A newly erased page read
 651                 * would result in an ecc error because the oob data is also
 652                 * erased to FF and the calculated ecc for an FF data is not
 653                 * FF..FF.
 654                 * This is a workaround to skip performing correction in case
 655                 * data is FF..FF
 656                 *
 657                 * Logic:
 658                 * For every page, each bit written as 0 is counted until these
 659                 * number of bits are greater than 8 (the maximum correction
 660                 * capability of FSMC for each 512 + 13 bytes)
 661                 */
 662
 663                int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8);
 664                int bits_data = count_written_bits(dat, chip->ecc.size, 8);
 665
 666                if ((bits_ecc + bits_data) <= 8) {
 667                        if (bits_data)
 668                                memset(dat, 0xff, chip->ecc.size);
 669                        return bits_data;
 670                }
 671
 672                return -EBADMSG;
 673        }
 674
 675        /*
 676         * ------------------- calc_ecc[] bit wise -----------|--13 bits--|
 677         * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--|
 678         *
 679         * calc_ecc is a 104 bit information containing maximum of 8 error
 680         * offset informations of 13 bits each. calc_ecc is copied into a
 681         * uint64_t array and error offset indexes are populated in err_idx
 682         * array
 683         */
 684        ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1));
 685        ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2));
 686        ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3));
 687        ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS));
 688
 689        err_idx[0] = (ecc1 >> 0) & 0x1FFF;
 690        err_idx[1] = (ecc1 >> 13) & 0x1FFF;
 691        err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F);
 692        err_idx[3] = (ecc2 >> 7) & 0x1FFF;
 693        err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF);
 694        err_idx[5] = (ecc3 >> 1) & 0x1FFF;
 695        err_idx[6] = (ecc3 >> 14) & 0x1FFF;
 696        err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F);
 697
 698        i = 0;
 699        while (num_err--) {
 700                change_bit(0, (unsigned long *)&err_idx[i]);
 701                change_bit(1, (unsigned long *)&err_idx[i]);
 702
 703                if (err_idx[i] < chip->ecc.size * 8) {
 704                        change_bit(err_idx[i], (unsigned long *)dat);
 705                        i++;
 706                }
 707        }
 708        return i;
 709}
 710
 711static bool filter(struct dma_chan *chan, void *slave)
 712{
 713        chan->private = slave;
 714        return true;
 715}
 716
 717#ifdef CONFIG_OF
 718static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 719                                     struct device_node *np)
 720{
 721        struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 722        u32 val;
 723        int ret;
 724
 725        /* Set default NAND width to 8 bits */
 726        pdata->width = 8;
 727        if (!of_property_read_u32(np, "bank-width", &val)) {
 728                if (val == 2) {
 729                        pdata->width = 16;
 730                } else if (val != 1) {
 731                        dev_err(&pdev->dev, "invalid bank-width %u\n", val);
 732                        return -EINVAL;
 733                }
 734        }
 735        if (of_get_property(np, "nand-skip-bbtscan", NULL))
 736                pdata->options = NAND_SKIP_BBTSCAN;
 737
 738        pdata->nand_timings = devm_kzalloc(&pdev->dev,
 739                                sizeof(*pdata->nand_timings), GFP_KERNEL);
 740        if (!pdata->nand_timings)
 741                return -ENOMEM;
 742        ret = of_property_read_u8_array(np, "timings", (u8 *)pdata->nand_timings,
 743                                                sizeof(*pdata->nand_timings));
 744        if (ret) {
 745                dev_info(&pdev->dev, "No timings in dts specified, using default timings!\n");
 746                pdata->nand_timings = NULL;
 747        }
 748
 749        /* Set default NAND bank to 0 */
 750        pdata->bank = 0;
 751        if (!of_property_read_u32(np, "bank", &val)) {
 752                if (val > 3) {
 753                        dev_err(&pdev->dev, "invalid bank %u\n", val);
 754                        return -EINVAL;
 755                }
 756                pdata->bank = val;
 757        }
 758        return 0;
 759}
 760#else
 761static int fsmc_nand_probe_config_dt(struct platform_device *pdev,
 762                                     struct device_node *np)
 763{
 764        return -ENOSYS;
 765}
 766#endif
 767
 768/*
 769 * fsmc_nand_probe - Probe function
 770 * @pdev:       platform device structure
 771 */
 772static int __init fsmc_nand_probe(struct platform_device *pdev)
 773{
 774        struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev);
 775        struct device_node __maybe_unused *np = pdev->dev.of_node;
 776        struct fsmc_nand_data *host;
 777        struct mtd_info *mtd;
 778        struct nand_chip *nand;
 779        struct resource *res;
 780        dma_cap_mask_t mask;
 781        int ret = 0;
 782        u32 pid;
 783        int i;
 784
 785        if (np) {
 786                pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 787                pdev->dev.platform_data = pdata;
 788                ret = fsmc_nand_probe_config_dt(pdev, np);
 789                if (ret) {
 790                        dev_err(&pdev->dev, "no platform data\n");
 791                        return -ENODEV;
 792                }
 793        }
 794
 795        if (!pdata) {
 796                dev_err(&pdev->dev, "platform data is NULL\n");
 797                return -EINVAL;
 798        }
 799
 800        /* Allocate memory for the device structure (and zero it) */
 801        host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL);
 802        if (!host)
 803                return -ENOMEM;
 804
 805        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data");
 806        host->data_va = devm_ioremap_resource(&pdev->dev, res);
 807        if (IS_ERR(host->data_va))
 808                return PTR_ERR(host->data_va);
 809
 810        host->data_pa = (dma_addr_t)res->start;
 811
 812        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr");
 813        host->addr_va = devm_ioremap_resource(&pdev->dev, res);
 814        if (IS_ERR(host->addr_va))
 815                return PTR_ERR(host->addr_va);
 816
 817        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd");
 818        host->cmd_va = devm_ioremap_resource(&pdev->dev, res);
 819        if (IS_ERR(host->cmd_va))
 820                return PTR_ERR(host->cmd_va);
 821
 822        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs");
 823        host->regs_va = devm_ioremap_resource(&pdev->dev, res);
 824        if (IS_ERR(host->regs_va))
 825                return PTR_ERR(host->regs_va);
 826
 827        host->clk = clk_get(&pdev->dev, NULL);
 828        if (IS_ERR(host->clk)) {
 829                dev_err(&pdev->dev, "failed to fetch block clock\n");
 830                return PTR_ERR(host->clk);
 831        }
 832
 833        ret = clk_prepare_enable(host->clk);
 834        if (ret)
 835                goto err_clk_prepare_enable;
 836
 837        /*
 838         * This device ID is actually a common AMBA ID as used on the
 839         * AMBA PrimeCell bus. However it is not a PrimeCell.
 840         */
 841        for (pid = 0, i = 0; i < 4; i++)
 842                pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8);
 843        host->pid = pid;
 844        dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, "
 845                 "revision %02x, config %02x\n",
 846                 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid),
 847                 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid));
 848
 849        host->bank = pdata->bank;
 850        host->select_chip = pdata->select_bank;
 851        host->partitions = pdata->partitions;
 852        host->nr_partitions = pdata->nr_partitions;
 853        host->dev = &pdev->dev;
 854        host->dev_timings = pdata->nand_timings;
 855        host->mode = pdata->mode;
 856
 857        if (host->mode == USE_DMA_ACCESS)
 858                init_completion(&host->dma_access_complete);
 859
 860        /* Link all private pointers */
 861        mtd = nand_to_mtd(&host->nand);
 862        nand = &host->nand;
 863        nand_set_controller_data(nand, host);
 864        nand_set_flash_node(nand, np);
 865
 866        mtd->dev.parent = &pdev->dev;
 867        nand->IO_ADDR_R = host->data_va;
 868        nand->IO_ADDR_W = host->data_va;
 869        nand->cmd_ctrl = fsmc_cmd_ctrl;
 870        nand->chip_delay = 30;
 871
 872        /*
 873         * Setup default ECC mode. nand_dt_init() called from nand_scan_ident()
 874         * can overwrite this value if the DT provides a different value.
 875         */
 876        nand->ecc.mode = NAND_ECC_HW;
 877        nand->ecc.hwctl = fsmc_enable_hwecc;
 878        nand->ecc.size = 512;
 879        nand->options = pdata->options;
 880        nand->select_chip = fsmc_select_chip;
 881        nand->badblockbits = 7;
 882        nand_set_flash_node(nand, np);
 883
 884        if (pdata->width == FSMC_NAND_BW16)
 885                nand->options |= NAND_BUSWIDTH_16;
 886
 887        switch (host->mode) {
 888        case USE_DMA_ACCESS:
 889                dma_cap_zero(mask);
 890                dma_cap_set(DMA_MEMCPY, mask);
 891                host->read_dma_chan = dma_request_channel(mask, filter,
 892                                pdata->read_dma_priv);
 893                if (!host->read_dma_chan) {
 894                        dev_err(&pdev->dev, "Unable to get read dma channel\n");
 895                        goto err_req_read_chnl;
 896                }
 897                host->write_dma_chan = dma_request_channel(mask, filter,
 898                                pdata->write_dma_priv);
 899                if (!host->write_dma_chan) {
 900                        dev_err(&pdev->dev, "Unable to get write dma channel\n");
 901                        goto err_req_write_chnl;
 902                }
 903                nand->read_buf = fsmc_read_buf_dma;
 904                nand->write_buf = fsmc_write_buf_dma;
 905                break;
 906
 907        default:
 908        case USE_WORD_ACCESS:
 909                nand->read_buf = fsmc_read_buf;
 910                nand->write_buf = fsmc_write_buf;
 911                break;
 912        }
 913
 914        fsmc_nand_setup(host->regs_va, host->bank,
 915                        nand->options & NAND_BUSWIDTH_16,
 916                        host->dev_timings);
 917
 918        if (AMBA_REV_BITS(host->pid) >= 8) {
 919                nand->ecc.read_page = fsmc_read_page_hwecc;
 920                nand->ecc.calculate = fsmc_read_hwecc_ecc4;
 921                nand->ecc.correct = fsmc_bch8_correct_data;
 922                nand->ecc.bytes = 13;
 923                nand->ecc.strength = 8;
 924        }
 925
 926        /*
 927         * Scan to find existence of the device
 928         */
 929        if (nand_scan_ident(mtd, 1, NULL)) {
 930                ret = -ENXIO;
 931                dev_err(&pdev->dev, "No NAND Device found!\n");
 932                goto err_scan_ident;
 933        }
 934
 935        if (AMBA_REV_BITS(host->pid) >= 8) {
 936                switch (mtd->oobsize) {
 937                case 16:
 938                case 64:
 939                case 128:
 940                case 224:
 941                case 256:
 942                        break;
 943                default:
 944                        dev_warn(&pdev->dev, "No oob scheme defined for oobsize %d\n",
 945                                 mtd->oobsize);
 946                        ret = -EINVAL;
 947                        goto err_probe;
 948                }
 949
 950                mtd_set_ooblayout(mtd, &fsmc_ecc4_ooblayout_ops);
 951        } else {
 952                switch (nand->ecc.mode) {
 953                case NAND_ECC_HW:
 954                        dev_info(&pdev->dev, "Using 1-bit HW ECC scheme\n");
 955                        nand->ecc.calculate = fsmc_read_hwecc_ecc1;
 956                        nand->ecc.correct = nand_correct_data;
 957                        nand->ecc.bytes = 3;
 958                        nand->ecc.strength = 1;
 959                        break;
 960
 961                case NAND_ECC_SOFT:
 962                        if (nand->ecc.algo == NAND_ECC_BCH) {
 963                                dev_info(&pdev->dev, "Using 4-bit SW BCH ECC scheme\n");
 964                                break;
 965                        }
 966
 967                default:
 968                        dev_err(&pdev->dev, "Unsupported ECC mode!\n");
 969                        goto err_probe;
 970                }
 971
 972                /*
 973                 * Don't set layout for BCH4 SW ECC. This will be
 974                 * generated later in nand_bch_init() later.
 975                 */
 976                if (nand->ecc.mode == NAND_ECC_HW) {
 977                        switch (mtd->oobsize) {
 978                        case 16:
 979                        case 64:
 980                        case 128:
 981                                mtd_set_ooblayout(mtd,
 982                                                  &fsmc_ecc1_ooblayout_ops);
 983                                break;
 984                        default:
 985                                dev_warn(&pdev->dev,
 986                                         "No oob scheme defined for oobsize %d\n",
 987                                         mtd->oobsize);
 988                                ret = -EINVAL;
 989                                goto err_probe;
 990                        }
 991                }
 992        }
 993
 994        /* Second stage of scan to fill MTD data-structures */
 995        if (nand_scan_tail(mtd)) {
 996                ret = -ENXIO;
 997                goto err_probe;
 998        }
 999
1000        /*
1001         * The partition information can is accessed by (in the same precedence)
1002         *
1003         * command line through Bootloader,
1004         * platform data,
1005         * default partition information present in driver.
1006         */
1007        /*
1008         * Check for partition info passed
1009         */
1010        mtd->name = "nand";
1011        ret = mtd_device_register(mtd, host->partitions, host->nr_partitions);
1012        if (ret)
1013                goto err_probe;
1014
1015        platform_set_drvdata(pdev, host);
1016        dev_info(&pdev->dev, "FSMC NAND driver registration successful\n");
1017        return 0;
1018
1019err_probe:
1020err_scan_ident:
1021        if (host->mode == USE_DMA_ACCESS)
1022                dma_release_channel(host->write_dma_chan);
1023err_req_write_chnl:
1024        if (host->mode == USE_DMA_ACCESS)
1025                dma_release_channel(host->read_dma_chan);
1026err_req_read_chnl:
1027        clk_disable_unprepare(host->clk);
1028err_clk_prepare_enable:
1029        clk_put(host->clk);
1030        return ret;
1031}
1032
1033/*
1034 * Clean up routine
1035 */
1036static int fsmc_nand_remove(struct platform_device *pdev)
1037{
1038        struct fsmc_nand_data *host = platform_get_drvdata(pdev);
1039
1040        if (host) {
1041                nand_release(nand_to_mtd(&host->nand));
1042
1043                if (host->mode == USE_DMA_ACCESS) {
1044                        dma_release_channel(host->write_dma_chan);
1045                        dma_release_channel(host->read_dma_chan);
1046                }
1047                clk_disable_unprepare(host->clk);
1048                clk_put(host->clk);
1049        }
1050
1051        return 0;
1052}
1053
1054#ifdef CONFIG_PM_SLEEP
1055static int fsmc_nand_suspend(struct device *dev)
1056{
1057        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1058        if (host)
1059                clk_disable_unprepare(host->clk);
1060        return 0;
1061}
1062
1063static int fsmc_nand_resume(struct device *dev)
1064{
1065        struct fsmc_nand_data *host = dev_get_drvdata(dev);
1066        if (host) {
1067                clk_prepare_enable(host->clk);
1068                fsmc_nand_setup(host->regs_va, host->bank,
1069                                host->nand.options & NAND_BUSWIDTH_16,
1070                                host->dev_timings);
1071        }
1072        return 0;
1073}
1074#endif
1075
1076static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume);
1077
1078#ifdef CONFIG_OF
1079static const struct of_device_id fsmc_nand_id_table[] = {
1080        { .compatible = "st,spear600-fsmc-nand" },
1081        { .compatible = "stericsson,fsmc-nand" },
1082        {}
1083};
1084MODULE_DEVICE_TABLE(of, fsmc_nand_id_table);
1085#endif
1086
1087static struct platform_driver fsmc_nand_driver = {
1088        .remove = fsmc_nand_remove,
1089        .driver = {
1090                .name = "fsmc-nand",
1091                .of_match_table = of_match_ptr(fsmc_nand_id_table),
1092                .pm = &fsmc_nand_pm_ops,
1093        },
1094};
1095
1096module_platform_driver_probe(fsmc_nand_driver, fsmc_nand_probe);
1097
1098MODULE_LICENSE("GPL");
1099MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi");
1100MODULE_DESCRIPTION("NAND driver for SPEAr Platforms");
1101