linux/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120                       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122        struct ubi_ainf_peb *aeb;
 123
 124        if (list == &ai->free) {
 125                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126        } else if (list == &ai->erase) {
 127                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128        } else if (list == &ai->alien) {
 129                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130                ai->alien_peb_count += 1;
 131        } else
 132                BUG();
 133
 134        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135        if (!aeb)
 136                return -ENOMEM;
 137
 138        aeb->pnum = pnum;
 139        aeb->vol_id = vol_id;
 140        aeb->lnum = lnum;
 141        aeb->ec = ec;
 142        if (to_head)
 143                list_add(&aeb->u.list, list);
 144        else
 145                list_add_tail(&aeb->u.list, list);
 146        return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162        struct ubi_ainf_peb *aeb;
 163
 164        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167        if (!aeb)
 168                return -ENOMEM;
 169
 170        ai->corr_peb_count += 1;
 171        aeb->pnum = pnum;
 172        aeb->ec = ec;
 173        list_add(&aeb->u.list, &ai->corr);
 174        return 0;
 175}
 176
 177/**
 178 * add_fastmap - add a Fastmap related physical eraseblock.
 179 * @ai: attaching information
 180 * @pnum: physical eraseblock number the VID header came from
 181 * @vid_hdr: the volume identifier header
 182 * @ec: erase counter of the physical eraseblock
 183 *
 184 * This function allocates a 'struct ubi_ainf_peb' object for a Fastamp
 185 * physical eraseblock @pnum and adds it to the 'fastmap' list.
 186 * Such blocks can be Fastmap super and data blocks from both the most
 187 * recent Fastmap we're attaching from or from old Fastmaps which will
 188 * be erased.
 189 */
 190static int add_fastmap(struct ubi_attach_info *ai, int pnum,
 191                       struct ubi_vid_hdr *vid_hdr, int ec)
 192{
 193        struct ubi_ainf_peb *aeb;
 194
 195        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 196        if (!aeb)
 197                return -ENOMEM;
 198
 199        aeb->pnum = pnum;
 200        aeb->vol_id = be32_to_cpu(vidh->vol_id);
 201        aeb->sqnum = be64_to_cpu(vidh->sqnum);
 202        aeb->ec = ec;
 203        list_add(&aeb->u.list, &ai->fastmap);
 204
 205        dbg_bld("add to fastmap list: PEB %d, vol_id %d, sqnum: %llu", pnum,
 206                aeb->vol_id, aeb->sqnum);
 207
 208        return 0;
 209}
 210
 211/**
 212 * validate_vid_hdr - check volume identifier header.
 213 * @ubi: UBI device description object
 214 * @vid_hdr: the volume identifier header to check
 215 * @av: information about the volume this logical eraseblock belongs to
 216 * @pnum: physical eraseblock number the VID header came from
 217 *
 218 * This function checks that data stored in @vid_hdr is consistent. Returns
 219 * non-zero if an inconsistency was found and zero if not.
 220 *
 221 * Note, UBI does sanity check of everything it reads from the flash media.
 222 * Most of the checks are done in the I/O sub-system. Here we check that the
 223 * information in the VID header is consistent to the information in other VID
 224 * headers of the same volume.
 225 */
 226static int validate_vid_hdr(const struct ubi_device *ubi,
 227                            const struct ubi_vid_hdr *vid_hdr,
 228                            const struct ubi_ainf_volume *av, int pnum)
 229{
 230        int vol_type = vid_hdr->vol_type;
 231        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 232        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 233        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 234
 235        if (av->leb_count != 0) {
 236                int av_vol_type;
 237
 238                /*
 239                 * This is not the first logical eraseblock belonging to this
 240                 * volume. Ensure that the data in its VID header is consistent
 241                 * to the data in previous logical eraseblock headers.
 242                 */
 243
 244                if (vol_id != av->vol_id) {
 245                        ubi_err(ubi, "inconsistent vol_id");
 246                        goto bad;
 247                }
 248
 249                if (av->vol_type == UBI_STATIC_VOLUME)
 250                        av_vol_type = UBI_VID_STATIC;
 251                else
 252                        av_vol_type = UBI_VID_DYNAMIC;
 253
 254                if (vol_type != av_vol_type) {
 255                        ubi_err(ubi, "inconsistent vol_type");
 256                        goto bad;
 257                }
 258
 259                if (used_ebs != av->used_ebs) {
 260                        ubi_err(ubi, "inconsistent used_ebs");
 261                        goto bad;
 262                }
 263
 264                if (data_pad != av->data_pad) {
 265                        ubi_err(ubi, "inconsistent data_pad");
 266                        goto bad;
 267                }
 268        }
 269
 270        return 0;
 271
 272bad:
 273        ubi_err(ubi, "inconsistent VID header at PEB %d", pnum);
 274        ubi_dump_vid_hdr(vid_hdr);
 275        ubi_dump_av(av);
 276        return -EINVAL;
 277}
 278
 279/**
 280 * add_volume - add volume to the attaching information.
 281 * @ai: attaching information
 282 * @vol_id: ID of the volume to add
 283 * @pnum: physical eraseblock number
 284 * @vid_hdr: volume identifier header
 285 *
 286 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 287 * present in the attaching information, this function does nothing. Otherwise
 288 * it adds corresponding volume to the attaching information. Returns a pointer
 289 * to the allocated "av" object in case of success and a negative error code in
 290 * case of failure.
 291 */
 292static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 293                                          int vol_id, int pnum,
 294                                          const struct ubi_vid_hdr *vid_hdr)
 295{
 296        struct ubi_ainf_volume *av;
 297        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 298
 299        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 300
 301        /* Walk the volume RB-tree to look if this volume is already present */
 302        while (*p) {
 303                parent = *p;
 304                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 305
 306                if (vol_id == av->vol_id)
 307                        return av;
 308
 309                if (vol_id > av->vol_id)
 310                        p = &(*p)->rb_left;
 311                else
 312                        p = &(*p)->rb_right;
 313        }
 314
 315        /* The volume is absent - add it */
 316        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 317        if (!av)
 318                return ERR_PTR(-ENOMEM);
 319
 320        av->highest_lnum = av->leb_count = 0;
 321        av->vol_id = vol_id;
 322        av->root = RB_ROOT;
 323        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 324        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 325        av->compat = vid_hdr->compat;
 326        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 327                                                            : UBI_STATIC_VOLUME;
 328        if (vol_id > ai->highest_vol_id)
 329                ai->highest_vol_id = vol_id;
 330
 331        rb_link_node(&av->rb, parent, p);
 332        rb_insert_color(&av->rb, &ai->volumes);
 333        ai->vols_found += 1;
 334        dbg_bld("added volume %d", vol_id);
 335        return av;
 336}
 337
 338/**
 339 * ubi_compare_lebs - find out which logical eraseblock is newer.
 340 * @ubi: UBI device description object
 341 * @aeb: first logical eraseblock to compare
 342 * @pnum: physical eraseblock number of the second logical eraseblock to
 343 * compare
 344 * @vid_hdr: volume identifier header of the second logical eraseblock
 345 *
 346 * This function compares 2 copies of a LEB and informs which one is newer. In
 347 * case of success this function returns a positive value, in case of failure, a
 348 * negative error code is returned. The success return codes use the following
 349 * bits:
 350 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 351 *       second PEB (described by @pnum and @vid_hdr);
 352 *     o bit 0 is set: the second PEB is newer;
 353 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 354 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 355 *     o bit 2 is cleared: the older LEB is not corrupted;
 356 *     o bit 2 is set: the older LEB is corrupted.
 357 */
 358int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 359                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 360{
 361        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 362        uint32_t data_crc, crc;
 363        struct ubi_vid_hdr *vh = NULL;
 364        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 365
 366        if (sqnum2 == aeb->sqnum) {
 367                /*
 368                 * This must be a really ancient UBI image which has been
 369                 * created before sequence numbers support has been added. At
 370                 * that times we used 32-bit LEB versions stored in logical
 371                 * eraseblocks. That was before UBI got into mainline. We do not
 372                 * support these images anymore. Well, those images still work,
 373                 * but only if no unclean reboots happened.
 374                 */
 375                ubi_err(ubi, "unsupported on-flash UBI format");
 376                return -EINVAL;
 377        }
 378
 379        /* Obviously the LEB with lower sequence counter is older */
 380        second_is_newer = (sqnum2 > aeb->sqnum);
 381
 382        /*
 383         * Now we know which copy is newer. If the copy flag of the PEB with
 384         * newer version is not set, then we just return, otherwise we have to
 385         * check data CRC. For the second PEB we already have the VID header,
 386         * for the first one - we'll need to re-read it from flash.
 387         *
 388         * Note: this may be optimized so that we wouldn't read twice.
 389         */
 390
 391        if (second_is_newer) {
 392                if (!vid_hdr->copy_flag) {
 393                        /* It is not a copy, so it is newer */
 394                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 395                                pnum);
 396                        return 1;
 397                }
 398        } else {
 399                if (!aeb->copy_flag) {
 400                        /* It is not a copy, so it is newer */
 401                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 402                                pnum);
 403                        return bitflips << 1;
 404                }
 405
 406                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 407                if (!vh)
 408                        return -ENOMEM;
 409
 410                pnum = aeb->pnum;
 411                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 412                if (err) {
 413                        if (err == UBI_IO_BITFLIPS)
 414                                bitflips = 1;
 415                        else {
 416                                ubi_err(ubi, "VID of PEB %d header is bad, but it was OK earlier, err %d",
 417                                        pnum, err);
 418                                if (err > 0)
 419                                        err = -EIO;
 420
 421                                goto out_free_vidh;
 422                        }
 423                }
 424
 425                vid_hdr = vh;
 426        }
 427
 428        /* Read the data of the copy and check the CRC */
 429
 430        len = be32_to_cpu(vid_hdr->data_size);
 431
 432        mutex_lock(&ubi->buf_mutex);
 433        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 434        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 435                goto out_unlock;
 436
 437        data_crc = be32_to_cpu(vid_hdr->data_crc);
 438        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 439        if (crc != data_crc) {
 440                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 441                        pnum, crc, data_crc);
 442                corrupted = 1;
 443                bitflips = 0;
 444                second_is_newer = !second_is_newer;
 445        } else {
 446                dbg_bld("PEB %d CRC is OK", pnum);
 447                bitflips |= !!err;
 448        }
 449        mutex_unlock(&ubi->buf_mutex);
 450
 451        ubi_free_vid_hdr(ubi, vh);
 452
 453        if (second_is_newer)
 454                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 455        else
 456                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 457
 458        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 459
 460out_unlock:
 461        mutex_unlock(&ubi->buf_mutex);
 462out_free_vidh:
 463        ubi_free_vid_hdr(ubi, vh);
 464        return err;
 465}
 466
 467/**
 468 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 469 * @ubi: UBI device description object
 470 * @ai: attaching information
 471 * @pnum: the physical eraseblock number
 472 * @ec: erase counter
 473 * @vid_hdr: the volume identifier header
 474 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 475 *
 476 * This function adds information about a used physical eraseblock to the
 477 * 'used' tree of the corresponding volume. The function is rather complex
 478 * because it has to handle cases when this is not the first physical
 479 * eraseblock belonging to the same logical eraseblock, and the newer one has
 480 * to be picked, while the older one has to be dropped. This function returns
 481 * zero in case of success and a negative error code in case of failure.
 482 */
 483int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 484                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 485{
 486        int err, vol_id, lnum;
 487        unsigned long long sqnum;
 488        struct ubi_ainf_volume *av;
 489        struct ubi_ainf_peb *aeb;
 490        struct rb_node **p, *parent = NULL;
 491
 492        vol_id = be32_to_cpu(vid_hdr->vol_id);
 493        lnum = be32_to_cpu(vid_hdr->lnum);
 494        sqnum = be64_to_cpu(vid_hdr->sqnum);
 495
 496        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 497                pnum, vol_id, lnum, ec, sqnum, bitflips);
 498
 499        av = add_volume(ai, vol_id, pnum, vid_hdr);
 500        if (IS_ERR(av))
 501                return PTR_ERR(av);
 502
 503        if (ai->max_sqnum < sqnum)
 504                ai->max_sqnum = sqnum;
 505
 506        /*
 507         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 508         * if this is the first instance of this logical eraseblock or not.
 509         */
 510        p = &av->root.rb_node;
 511        while (*p) {
 512                int cmp_res;
 513
 514                parent = *p;
 515                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 516                if (lnum != aeb->lnum) {
 517                        if (lnum < aeb->lnum)
 518                                p = &(*p)->rb_left;
 519                        else
 520                                p = &(*p)->rb_right;
 521                        continue;
 522                }
 523
 524                /*
 525                 * There is already a physical eraseblock describing the same
 526                 * logical eraseblock present.
 527                 */
 528
 529                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 530                        aeb->pnum, aeb->sqnum, aeb->ec);
 531
 532                /*
 533                 * Make sure that the logical eraseblocks have different
 534                 * sequence numbers. Otherwise the image is bad.
 535                 *
 536                 * However, if the sequence number is zero, we assume it must
 537                 * be an ancient UBI image from the era when UBI did not have
 538                 * sequence numbers. We still can attach these images, unless
 539                 * there is a need to distinguish between old and new
 540                 * eraseblocks, in which case we'll refuse the image in
 541                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 542                 * images, but refuse attaching old images with duplicated
 543                 * logical eraseblocks because there was an unclean reboot.
 544                 */
 545                if (aeb->sqnum == sqnum && sqnum != 0) {
 546                        ubi_err(ubi, "two LEBs with same sequence number %llu",
 547                                sqnum);
 548                        ubi_dump_aeb(aeb, 0);
 549                        ubi_dump_vid_hdr(vid_hdr);
 550                        return -EINVAL;
 551                }
 552
 553                /*
 554                 * Now we have to drop the older one and preserve the newer
 555                 * one.
 556                 */
 557                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 558                if (cmp_res < 0)
 559                        return cmp_res;
 560
 561                if (cmp_res & 1) {
 562                        /*
 563                         * This logical eraseblock is newer than the one
 564                         * found earlier.
 565                         */
 566                        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 567                        if (err)
 568                                return err;
 569
 570                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 571                                          aeb->lnum, aeb->ec, cmp_res & 4,
 572                                          &ai->erase);
 573                        if (err)
 574                                return err;
 575
 576                        aeb->ec = ec;
 577                        aeb->pnum = pnum;
 578                        aeb->vol_id = vol_id;
 579                        aeb->lnum = lnum;
 580                        aeb->scrub = ((cmp_res & 2) || bitflips);
 581                        aeb->copy_flag = vid_hdr->copy_flag;
 582                        aeb->sqnum = sqnum;
 583
 584                        if (av->highest_lnum == lnum)
 585                                av->last_data_size =
 586                                        be32_to_cpu(vid_hdr->data_size);
 587
 588                        return 0;
 589                } else {
 590                        /*
 591                         * This logical eraseblock is older than the one found
 592                         * previously.
 593                         */
 594                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 595                                           cmp_res & 4, &ai->erase);
 596                }
 597        }
 598
 599        /*
 600         * We've met this logical eraseblock for the first time, add it to the
 601         * attaching information.
 602         */
 603
 604        err = validate_vid_hdr(ubi, vid_hdr, av, pnum);
 605        if (err)
 606                return err;
 607
 608        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 609        if (!aeb)
 610                return -ENOMEM;
 611
 612        aeb->ec = ec;
 613        aeb->pnum = pnum;
 614        aeb->vol_id = vol_id;
 615        aeb->lnum = lnum;
 616        aeb->scrub = bitflips;
 617        aeb->copy_flag = vid_hdr->copy_flag;
 618        aeb->sqnum = sqnum;
 619
 620        if (av->highest_lnum <= lnum) {
 621                av->highest_lnum = lnum;
 622                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 623        }
 624
 625        av->leb_count += 1;
 626        rb_link_node(&aeb->u.rb, parent, p);
 627        rb_insert_color(&aeb->u.rb, &av->root);
 628        return 0;
 629}
 630
 631/**
 632 * ubi_find_av - find volume in the attaching information.
 633 * @ai: attaching information
 634 * @vol_id: the requested volume ID
 635 *
 636 * This function returns a pointer to the volume description or %NULL if there
 637 * are no data about this volume in the attaching information.
 638 */
 639struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 640                                    int vol_id)
 641{
 642        struct ubi_ainf_volume *av;
 643        struct rb_node *p = ai->volumes.rb_node;
 644
 645        while (p) {
 646                av = rb_entry(p, struct ubi_ainf_volume, rb);
 647
 648                if (vol_id == av->vol_id)
 649                        return av;
 650
 651                if (vol_id > av->vol_id)
 652                        p = p->rb_left;
 653                else
 654                        p = p->rb_right;
 655        }
 656
 657        return NULL;
 658}
 659
 660/**
 661 * ubi_remove_av - delete attaching information about a volume.
 662 * @ai: attaching information
 663 * @av: the volume attaching information to delete
 664 */
 665void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 666{
 667        struct rb_node *rb;
 668        struct ubi_ainf_peb *aeb;
 669
 670        dbg_bld("remove attaching information about volume %d", av->vol_id);
 671
 672        while ((rb = rb_first(&av->root))) {
 673                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 674                rb_erase(&aeb->u.rb, &av->root);
 675                list_add_tail(&aeb->u.list, &ai->erase);
 676        }
 677
 678        rb_erase(&av->rb, &ai->volumes);
 679        kfree(av);
 680        ai->vols_found -= 1;
 681}
 682
 683/**
 684 * early_erase_peb - erase a physical eraseblock.
 685 * @ubi: UBI device description object
 686 * @ai: attaching information
 687 * @pnum: physical eraseblock number to erase;
 688 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 689 *
 690 * This function erases physical eraseblock 'pnum', and writes the erase
 691 * counter header to it. This function should only be used on UBI device
 692 * initialization stages, when the EBA sub-system had not been yet initialized.
 693 * This function returns zero in case of success and a negative error code in
 694 * case of failure.
 695 */
 696static int early_erase_peb(struct ubi_device *ubi,
 697                           const struct ubi_attach_info *ai, int pnum, int ec)
 698{
 699        int err;
 700        struct ubi_ec_hdr *ec_hdr;
 701
 702        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 703                /*
 704                 * Erase counter overflow. Upgrade UBI and use 64-bit
 705                 * erase counters internally.
 706                 */
 707                ubi_err(ubi, "erase counter overflow at PEB %d, EC %d",
 708                        pnum, ec);
 709                return -EINVAL;
 710        }
 711
 712        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 713        if (!ec_hdr)
 714                return -ENOMEM;
 715
 716        ec_hdr->ec = cpu_to_be64(ec);
 717
 718        err = ubi_io_sync_erase(ubi, pnum, 0);
 719        if (err < 0)
 720                goto out_free;
 721
 722        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 723
 724out_free:
 725        kfree(ec_hdr);
 726        return err;
 727}
 728
 729/**
 730 * ubi_early_get_peb - get a free physical eraseblock.
 731 * @ubi: UBI device description object
 732 * @ai: attaching information
 733 *
 734 * This function returns a free physical eraseblock. It is supposed to be
 735 * called on the UBI initialization stages when the wear-leveling sub-system is
 736 * not initialized yet. This function picks a physical eraseblocks from one of
 737 * the lists, writes the EC header if it is needed, and removes it from the
 738 * list.
 739 *
 740 * This function returns a pointer to the "aeb" of the found free PEB in case
 741 * of success and an error code in case of failure.
 742 */
 743struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 744                                       struct ubi_attach_info *ai)
 745{
 746        int err = 0;
 747        struct ubi_ainf_peb *aeb, *tmp_aeb;
 748
 749        if (!list_empty(&ai->free)) {
 750                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 751                list_del(&aeb->u.list);
 752                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 753                return aeb;
 754        }
 755
 756        /*
 757         * We try to erase the first physical eraseblock from the erase list
 758         * and pick it if we succeed, or try to erase the next one if not. And
 759         * so forth. We don't want to take care about bad eraseblocks here -
 760         * they'll be handled later.
 761         */
 762        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 763                if (aeb->ec == UBI_UNKNOWN)
 764                        aeb->ec = ai->mean_ec;
 765
 766                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 767                if (err)
 768                        continue;
 769
 770                aeb->ec += 1;
 771                list_del(&aeb->u.list);
 772                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 773                return aeb;
 774        }
 775
 776        ubi_err(ubi, "no free eraseblocks");
 777        return ERR_PTR(-ENOSPC);
 778}
 779
 780/**
 781 * check_corruption - check the data area of PEB.
 782 * @ubi: UBI device description object
 783 * @vid_hdr: the (corrupted) VID header of this PEB
 784 * @pnum: the physical eraseblock number to check
 785 *
 786 * This is a helper function which is used to distinguish between VID header
 787 * corruptions caused by power cuts and other reasons. If the PEB contains only
 788 * 0xFF bytes in the data area, the VID header is most probably corrupted
 789 * because of a power cut (%0 is returned in this case). Otherwise, it was
 790 * probably corrupted for some other reasons (%1 is returned in this case). A
 791 * negative error code is returned if a read error occurred.
 792 *
 793 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 794 * Otherwise, it should preserve it to avoid possibly destroying important
 795 * information.
 796 */
 797static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 798                            int pnum)
 799{
 800        int err;
 801
 802        mutex_lock(&ubi->buf_mutex);
 803        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 804
 805        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 806                          ubi->leb_size);
 807        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 808                /*
 809                 * Bit-flips or integrity errors while reading the data area.
 810                 * It is difficult to say for sure what type of corruption is
 811                 * this, but presumably a power cut happened while this PEB was
 812                 * erased, so it became unstable and corrupted, and should be
 813                 * erased.
 814                 */
 815                err = 0;
 816                goto out_unlock;
 817        }
 818
 819        if (err)
 820                goto out_unlock;
 821
 822        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 823                goto out_unlock;
 824
 825        ubi_err(ubi, "PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 826                pnum);
 827        ubi_err(ubi, "this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 828        ubi_dump_vid_hdr(vid_hdr);
 829        pr_err("hexdump of PEB %d offset %d, length %d",
 830               pnum, ubi->leb_start, ubi->leb_size);
 831        ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 832                               ubi->peb_buf, ubi->leb_size, 1);
 833        err = 1;
 834
 835out_unlock:
 836        mutex_unlock(&ubi->buf_mutex);
 837        return err;
 838}
 839
 840static bool vol_ignored(int vol_id)
 841{
 842        switch (vol_id) {
 843                case UBI_LAYOUT_VOLUME_ID:
 844                return true;
 845        }
 846
 847#ifdef CONFIG_MTD_UBI_FASTMAP
 848        return ubi_is_fm_vol(vol_id);
 849#else
 850        return false;
 851#endif
 852}
 853
 854/**
 855 * scan_peb - scan and process UBI headers of a PEB.
 856 * @ubi: UBI device description object
 857 * @ai: attaching information
 858 * @pnum: the physical eraseblock number
 859 * @fast: true if we're scanning for a Fastmap
 860 *
 861 * This function reads UBI headers of PEB @pnum, checks them, and adds
 862 * information about this PEB to the corresponding list or RB-tree in the
 863 * "attaching info" structure. Returns zero if the physical eraseblock was
 864 * successfully handled and a negative error code in case of failure.
 865 */
 866static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 867                    int pnum, bool fast)
 868{
 869        long long ec;
 870        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 871
 872        dbg_bld("scan PEB %d", pnum);
 873
 874        /* Skip bad physical eraseblocks */
 875        err = ubi_io_is_bad(ubi, pnum);
 876        if (err < 0)
 877                return err;
 878        else if (err) {
 879                ai->bad_peb_count += 1;
 880                return 0;
 881        }
 882
 883        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 884        if (err < 0)
 885                return err;
 886        switch (err) {
 887        case 0:
 888                break;
 889        case UBI_IO_BITFLIPS:
 890                bitflips = 1;
 891                break;
 892        case UBI_IO_FF:
 893                ai->empty_peb_count += 1;
 894                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 895                                   UBI_UNKNOWN, 0, &ai->erase);
 896        case UBI_IO_FF_BITFLIPS:
 897                ai->empty_peb_count += 1;
 898                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 899                                   UBI_UNKNOWN, 1, &ai->erase);
 900        case UBI_IO_BAD_HDR_EBADMSG:
 901        case UBI_IO_BAD_HDR:
 902                /*
 903                 * We have to also look at the VID header, possibly it is not
 904                 * corrupted. Set %bitflips flag in order to make this PEB be
 905                 * moved and EC be re-created.
 906                 */
 907                ec_err = err;
 908                ec = UBI_UNKNOWN;
 909                bitflips = 1;
 910                break;
 911        default:
 912                ubi_err(ubi, "'ubi_io_read_ec_hdr()' returned unknown code %d",
 913                        err);
 914                return -EINVAL;
 915        }
 916
 917        if (!ec_err) {
 918                int image_seq;
 919
 920                /* Make sure UBI version is OK */
 921                if (ech->version != UBI_VERSION) {
 922                        ubi_err(ubi, "this UBI version is %d, image version is %d",
 923                                UBI_VERSION, (int)ech->version);
 924                        return -EINVAL;
 925                }
 926
 927                ec = be64_to_cpu(ech->ec);
 928                if (ec > UBI_MAX_ERASECOUNTER) {
 929                        /*
 930                         * Erase counter overflow. The EC headers have 64 bits
 931                         * reserved, but we anyway make use of only 31 bit
 932                         * values, as this seems to be enough for any existing
 933                         * flash. Upgrade UBI and use 64-bit erase counters
 934                         * internally.
 935                         */
 936                        ubi_err(ubi, "erase counter overflow, max is %d",
 937                                UBI_MAX_ERASECOUNTER);
 938                        ubi_dump_ec_hdr(ech);
 939                        return -EINVAL;
 940                }
 941
 942                /*
 943                 * Make sure that all PEBs have the same image sequence number.
 944                 * This allows us to detect situations when users flash UBI
 945                 * images incorrectly, so that the flash has the new UBI image
 946                 * and leftovers from the old one. This feature was added
 947                 * relatively recently, and the sequence number was always
 948                 * zero, because old UBI implementations always set it to zero.
 949                 * For this reasons, we do not panic if some PEBs have zero
 950                 * sequence number, while other PEBs have non-zero sequence
 951                 * number.
 952                 */
 953                image_seq = be32_to_cpu(ech->image_seq);
 954                if (!ubi->image_seq)
 955                        ubi->image_seq = image_seq;
 956                if (image_seq && ubi->image_seq != image_seq) {
 957                        ubi_err(ubi, "bad image sequence number %d in PEB %d, expected %d",
 958                                image_seq, pnum, ubi->image_seq);
 959                        ubi_dump_ec_hdr(ech);
 960                        return -EINVAL;
 961                }
 962        }
 963
 964        /* OK, we've done with the EC header, let's look at the VID header */
 965
 966        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 967        if (err < 0)
 968                return err;
 969        switch (err) {
 970        case 0:
 971                break;
 972        case UBI_IO_BITFLIPS:
 973                bitflips = 1;
 974                break;
 975        case UBI_IO_BAD_HDR_EBADMSG:
 976                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 977                        /*
 978                         * Both EC and VID headers are corrupted and were read
 979                         * with data integrity error, probably this is a bad
 980                         * PEB, bit it is not marked as bad yet. This may also
 981                         * be a result of power cut during erasure.
 982                         */
 983                        ai->maybe_bad_peb_count += 1;
 984        case UBI_IO_BAD_HDR:
 985                        /*
 986                         * If we're facing a bad VID header we have to drop *all*
 987                         * Fastmap data structures we find. The most recent Fastmap
 988                         * could be bad and therefore there is a chance that we attach
 989                         * from an old one. On a fine MTD stack a PEB must not render
 990                         * bad all of a sudden, but the reality is different.
 991                         * So, let's be paranoid and help finding the root cause by
 992                         * falling back to scanning mode instead of attaching with a
 993                         * bad EBA table and cause data corruption which is hard to
 994                         * analyze.
 995                         */
 996                        if (fast)
 997                                ai->force_full_scan = 1;
 998
 999                if (ec_err)
1000                        /*
1001                         * Both headers are corrupted. There is a possibility
1002                         * that this a valid UBI PEB which has corresponding
1003                         * LEB, but the headers are corrupted. However, it is
1004                         * impossible to distinguish it from a PEB which just
1005                         * contains garbage because of a power cut during erase
1006                         * operation. So we just schedule this PEB for erasure.
1007                         *
1008                         * Besides, in case of NOR flash, we deliberately
1009                         * corrupt both headers because NOR flash erasure is
1010                         * slow and can start from the end.
1011                         */
1012                        err = 0;
1013                else
1014                        /*
1015                         * The EC was OK, but the VID header is corrupted. We
1016                         * have to check what is in the data area.
1017                         */
1018                        err = check_corruption(ubi, vidh, pnum);
1019
1020                if (err < 0)
1021                        return err;
1022                else if (!err)
1023                        /* This corruption is caused by a power cut */
1024                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
1025                                          UBI_UNKNOWN, ec, 1, &ai->erase);
1026                else
1027                        /* This is an unexpected corruption */
1028                        err = add_corrupted(ai, pnum, ec);
1029                if (err)
1030                        return err;
1031                goto adjust_mean_ec;
1032        case UBI_IO_FF_BITFLIPS:
1033                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
1034                                  ec, 1, &ai->erase);
1035                if (err)
1036                        return err;
1037                goto adjust_mean_ec;
1038        case UBI_IO_FF:
1039                if (ec_err || bitflips)
1040                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
1041                                          UBI_UNKNOWN, ec, 1, &ai->erase);
1042                else
1043                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
1044                                          UBI_UNKNOWN, ec, 0, &ai->free);
1045                if (err)
1046                        return err;
1047                goto adjust_mean_ec;
1048        default:
1049                ubi_err(ubi, "'ubi_io_read_vid_hdr()' returned unknown code %d",
1050                        err);
1051                return -EINVAL;
1052        }
1053
1054        vol_id = be32_to_cpu(vidh->vol_id);
1055        if (vol_id > UBI_MAX_VOLUMES && !vol_ignored(vol_id)) {
1056                int lnum = be32_to_cpu(vidh->lnum);
1057
1058                /* Unsupported internal volume */
1059                switch (vidh->compat) {
1060                case UBI_COMPAT_DELETE:
1061                        ubi_msg(ubi, "\"delete\" compatible internal volume %d:%d found, will remove it",
1062                                vol_id, lnum);
1063
1064                        err = add_to_list(ai, pnum, vol_id, lnum,
1065                                          ec, 1, &ai->erase);
1066                        if (err)
1067                                return err;
1068                        return 0;
1069
1070                case UBI_COMPAT_RO:
1071                        ubi_msg(ubi, "read-only compatible internal volume %d:%d found, switch to read-only mode",
1072                                vol_id, lnum);
1073                        ubi->ro_mode = 1;
1074                        break;
1075
1076                case UBI_COMPAT_PRESERVE:
1077                        ubi_msg(ubi, "\"preserve\" compatible internal volume %d:%d found",
1078                                vol_id, lnum);
1079                        err = add_to_list(ai, pnum, vol_id, lnum,
1080                                          ec, 0, &ai->alien);
1081                        if (err)
1082                                return err;
1083                        return 0;
1084
1085                case UBI_COMPAT_REJECT:
1086                        ubi_err(ubi, "incompatible internal volume %d:%d found",
1087                                vol_id, lnum);
1088                        return -EINVAL;
1089                }
1090        }
1091
1092        if (ec_err)
1093                ubi_warn(ubi, "valid VID header but corrupted EC header at PEB %d",
1094                         pnum);
1095
1096        if (ubi_is_fm_vol(vol_id))
1097                err = add_fastmap(ai, pnum, vidh, ec);
1098        else
1099                err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1100
1101        if (err)
1102                return err;
1103
1104adjust_mean_ec:
1105        if (!ec_err) {
1106                ai->ec_sum += ec;
1107                ai->ec_count += 1;
1108                if (ec > ai->max_ec)
1109                        ai->max_ec = ec;
1110                if (ec < ai->min_ec)
1111                        ai->min_ec = ec;
1112        }
1113
1114        return 0;
1115}
1116
1117/**
1118 * late_analysis - analyze the overall situation with PEB.
1119 * @ubi: UBI device description object
1120 * @ai: attaching information
1121 *
1122 * This is a helper function which takes a look what PEBs we have after we
1123 * gather information about all of them ("ai" is compete). It decides whether
1124 * the flash is empty and should be formatted of whether there are too many
1125 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1126 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1127 */
1128static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1129{
1130        struct ubi_ainf_peb *aeb;
1131        int max_corr, peb_count;
1132
1133        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1134        max_corr = peb_count / 20 ?: 8;
1135
1136        /*
1137         * Few corrupted PEBs is not a problem and may be just a result of
1138         * unclean reboots. However, many of them may indicate some problems
1139         * with the flash HW or driver.
1140         */
1141        if (ai->corr_peb_count) {
1142                ubi_err(ubi, "%d PEBs are corrupted and preserved",
1143                        ai->corr_peb_count);
1144                pr_err("Corrupted PEBs are:");
1145                list_for_each_entry(aeb, &ai->corr, u.list)
1146                        pr_cont(" %d", aeb->pnum);
1147                pr_cont("\n");
1148
1149                /*
1150                 * If too many PEBs are corrupted, we refuse attaching,
1151                 * otherwise, only print a warning.
1152                 */
1153                if (ai->corr_peb_count >= max_corr) {
1154                        ubi_err(ubi, "too many corrupted PEBs, refusing");
1155                        return -EINVAL;
1156                }
1157        }
1158
1159        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1160                /*
1161                 * All PEBs are empty, or almost all - a couple PEBs look like
1162                 * they may be bad PEBs which were not marked as bad yet.
1163                 *
1164                 * This piece of code basically tries to distinguish between
1165                 * the following situations:
1166                 *
1167                 * 1. Flash is empty, but there are few bad PEBs, which are not
1168                 *    marked as bad so far, and which were read with error. We
1169                 *    want to go ahead and format this flash. While formatting,
1170                 *    the faulty PEBs will probably be marked as bad.
1171                 *
1172                 * 2. Flash contains non-UBI data and we do not want to format
1173                 *    it and destroy possibly important information.
1174                 */
1175                if (ai->maybe_bad_peb_count <= 2) {
1176                        ai->is_empty = 1;
1177                        ubi_msg(ubi, "empty MTD device detected");
1178                        get_random_bytes(&ubi->image_seq,
1179                                         sizeof(ubi->image_seq));
1180                } else {
1181                        ubi_err(ubi, "MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1182                        return -EINVAL;
1183                }
1184
1185        }
1186
1187        return 0;
1188}
1189
1190/**
1191 * destroy_av - free volume attaching information.
1192 * @av: volume attaching information
1193 * @ai: attaching information
1194 *
1195 * This function destroys the volume attaching information.
1196 */
1197static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1198{
1199        struct ubi_ainf_peb *aeb;
1200        struct rb_node *this = av->root.rb_node;
1201
1202        while (this) {
1203                if (this->rb_left)
1204                        this = this->rb_left;
1205                else if (this->rb_right)
1206                        this = this->rb_right;
1207                else {
1208                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1209                        this = rb_parent(this);
1210                        if (this) {
1211                                if (this->rb_left == &aeb->u.rb)
1212                                        this->rb_left = NULL;
1213                                else
1214                                        this->rb_right = NULL;
1215                        }
1216
1217                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1218                }
1219        }
1220        kfree(av);
1221}
1222
1223/**
1224 * destroy_ai - destroy attaching information.
1225 * @ai: attaching information
1226 */
1227static void destroy_ai(struct ubi_attach_info *ai)
1228{
1229        struct ubi_ainf_peb *aeb, *aeb_tmp;
1230        struct ubi_ainf_volume *av;
1231        struct rb_node *rb;
1232
1233        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1234                list_del(&aeb->u.list);
1235                kmem_cache_free(ai->aeb_slab_cache, aeb);
1236        }
1237        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1238                list_del(&aeb->u.list);
1239                kmem_cache_free(ai->aeb_slab_cache, aeb);
1240        }
1241        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1242                list_del(&aeb->u.list);
1243                kmem_cache_free(ai->aeb_slab_cache, aeb);
1244        }
1245        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1246                list_del(&aeb->u.list);
1247                kmem_cache_free(ai->aeb_slab_cache, aeb);
1248        }
1249        list_for_each_entry_safe(aeb, aeb_tmp, &ai->fastmap, u.list) {
1250                list_del(&aeb->u.list);
1251                kmem_cache_free(ai->aeb_slab_cache, aeb);
1252        }
1253
1254        /* Destroy the volume RB-tree */
1255        rb = ai->volumes.rb_node;
1256        while (rb) {
1257                if (rb->rb_left)
1258                        rb = rb->rb_left;
1259                else if (rb->rb_right)
1260                        rb = rb->rb_right;
1261                else {
1262                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1263
1264                        rb = rb_parent(rb);
1265                        if (rb) {
1266                                if (rb->rb_left == &av->rb)
1267                                        rb->rb_left = NULL;
1268                                else
1269                                        rb->rb_right = NULL;
1270                        }
1271
1272                        destroy_av(ai, av);
1273                }
1274        }
1275
1276        kmem_cache_destroy(ai->aeb_slab_cache);
1277        kfree(ai);
1278}
1279
1280/**
1281 * scan_all - scan entire MTD device.
1282 * @ubi: UBI device description object
1283 * @ai: attach info object
1284 * @start: start scanning at this PEB
1285 *
1286 * This function does full scanning of an MTD device and returns complete
1287 * information about it in form of a "struct ubi_attach_info" object. In case
1288 * of failure, an error code is returned.
1289 */
1290static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1291                    int start)
1292{
1293        int err, pnum;
1294        struct rb_node *rb1, *rb2;
1295        struct ubi_ainf_volume *av;
1296        struct ubi_ainf_peb *aeb;
1297
1298        err = -ENOMEM;
1299
1300        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1301        if (!ech)
1302                return err;
1303
1304        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1305        if (!vidh)
1306                goto out_ech;
1307
1308        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1309                cond_resched();
1310
1311                dbg_gen("process PEB %d", pnum);
1312                err = scan_peb(ubi, ai, pnum, false);
1313                if (err < 0)
1314                        goto out_vidh;
1315        }
1316
1317        ubi_msg(ubi, "scanning is finished");
1318
1319        /* Calculate mean erase counter */
1320        if (ai->ec_count)
1321                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1322
1323        err = late_analysis(ubi, ai);
1324        if (err)
1325                goto out_vidh;
1326
1327        /*
1328         * In case of unknown erase counter we use the mean erase counter
1329         * value.
1330         */
1331        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1332                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1333                        if (aeb->ec == UBI_UNKNOWN)
1334                                aeb->ec = ai->mean_ec;
1335        }
1336
1337        list_for_each_entry(aeb, &ai->free, u.list) {
1338                if (aeb->ec == UBI_UNKNOWN)
1339                        aeb->ec = ai->mean_ec;
1340        }
1341
1342        list_for_each_entry(aeb, &ai->corr, u.list)
1343                if (aeb->ec == UBI_UNKNOWN)
1344                        aeb->ec = ai->mean_ec;
1345
1346        list_for_each_entry(aeb, &ai->erase, u.list)
1347                if (aeb->ec == UBI_UNKNOWN)
1348                        aeb->ec = ai->mean_ec;
1349
1350        err = self_check_ai(ubi, ai);
1351        if (err)
1352                goto out_vidh;
1353
1354        ubi_free_vid_hdr(ubi, vidh);
1355        kfree(ech);
1356
1357        return 0;
1358
1359out_vidh:
1360        ubi_free_vid_hdr(ubi, vidh);
1361out_ech:
1362        kfree(ech);
1363        return err;
1364}
1365
1366static struct ubi_attach_info *alloc_ai(void)
1367{
1368        struct ubi_attach_info *ai;
1369
1370        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1371        if (!ai)
1372                return ai;
1373
1374        INIT_LIST_HEAD(&ai->corr);
1375        INIT_LIST_HEAD(&ai->free);
1376        INIT_LIST_HEAD(&ai->erase);
1377        INIT_LIST_HEAD(&ai->alien);
1378        INIT_LIST_HEAD(&ai->fastmap);
1379        ai->volumes = RB_ROOT;
1380        ai->aeb_slab_cache = kmem_cache_create("ubi_aeb_slab_cache",
1381                                               sizeof(struct ubi_ainf_peb),
1382                                               0, 0, NULL);
1383        if (!ai->aeb_slab_cache) {
1384                kfree(ai);
1385                ai = NULL;
1386        }
1387
1388        return ai;
1389}
1390
1391#ifdef CONFIG_MTD_UBI_FASTMAP
1392
1393/**
1394 * scan_fast - try to find a fastmap and attach from it.
1395 * @ubi: UBI device description object
1396 * @ai: attach info object
1397 *
1398 * Returns 0 on success, negative return values indicate an internal
1399 * error.
1400 * UBI_NO_FASTMAP denotes that no fastmap was found.
1401 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1402 */
1403static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info **ai)
1404{
1405        int err, pnum;
1406        struct ubi_attach_info *scan_ai;
1407
1408        err = -ENOMEM;
1409
1410        scan_ai = alloc_ai();
1411        if (!scan_ai)
1412                goto out;
1413
1414        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1415        if (!ech)
1416                goto out_ai;
1417
1418        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1419        if (!vidh)
1420                goto out_ech;
1421
1422        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1423                cond_resched();
1424
1425                dbg_gen("process PEB %d", pnum);
1426                err = scan_peb(ubi, scan_ai, pnum, true);
1427                if (err < 0)
1428                        goto out_vidh;
1429        }
1430
1431        ubi_free_vid_hdr(ubi, vidh);
1432        kfree(ech);
1433
1434        if (scan_ai->force_full_scan)
1435                err = UBI_NO_FASTMAP;
1436        else
1437                err = ubi_scan_fastmap(ubi, *ai, scan_ai);
1438
1439        if (err) {
1440                /*
1441                 * Didn't attach via fastmap, do a full scan but reuse what
1442                 * we've aready scanned.
1443                 */
1444                destroy_ai(*ai);
1445                *ai = scan_ai;
1446        } else
1447                destroy_ai(scan_ai);
1448
1449        return err;
1450
1451out_vidh:
1452        ubi_free_vid_hdr(ubi, vidh);
1453out_ech:
1454        kfree(ech);
1455out_ai:
1456        destroy_ai(scan_ai);
1457out:
1458        return err;
1459}
1460
1461#endif
1462
1463/**
1464 * ubi_attach - attach an MTD device.
1465 * @ubi: UBI device descriptor
1466 * @force_scan: if set to non-zero attach by scanning
1467 *
1468 * This function returns zero in case of success and a negative error code in
1469 * case of failure.
1470 */
1471int ubi_attach(struct ubi_device *ubi, int force_scan)
1472{
1473        int err;
1474        struct ubi_attach_info *ai;
1475
1476        ai = alloc_ai();
1477        if (!ai)
1478                return -ENOMEM;
1479
1480#ifdef CONFIG_MTD_UBI_FASTMAP
1481        /* On small flash devices we disable fastmap in any case. */
1482        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1483                ubi->fm_disabled = 1;
1484                force_scan = 1;
1485        }
1486
1487        if (force_scan)
1488                err = scan_all(ubi, ai, 0);
1489        else {
1490                err = scan_fast(ubi, &ai);
1491                if (err > 0 || mtd_is_eccerr(err)) {
1492                        if (err != UBI_NO_FASTMAP) {
1493                                destroy_ai(ai);
1494                                ai = alloc_ai();
1495                                if (!ai)
1496                                        return -ENOMEM;
1497
1498                                err = scan_all(ubi, ai, 0);
1499                        } else {
1500                                err = scan_all(ubi, ai, UBI_FM_MAX_START);
1501                        }
1502                }
1503        }
1504#else
1505        err = scan_all(ubi, ai, 0);
1506#endif
1507        if (err)
1508                goto out_ai;
1509
1510        ubi->bad_peb_count = ai->bad_peb_count;
1511        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1512        ubi->corr_peb_count = ai->corr_peb_count;
1513        ubi->max_ec = ai->max_ec;
1514        ubi->mean_ec = ai->mean_ec;
1515        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1516
1517        err = ubi_read_volume_table(ubi, ai);
1518        if (err)
1519                goto out_ai;
1520
1521        err = ubi_wl_init(ubi, ai);
1522        if (err)
1523                goto out_vtbl;
1524
1525        err = ubi_eba_init(ubi, ai);
1526        if (err)
1527                goto out_wl;
1528
1529#ifdef CONFIG_MTD_UBI_FASTMAP
1530        if (ubi->fm && ubi_dbg_chk_fastmap(ubi)) {
1531                struct ubi_attach_info *scan_ai;
1532
1533                scan_ai = alloc_ai();
1534                if (!scan_ai) {
1535                        err = -ENOMEM;
1536                        goto out_wl;
1537                }
1538
1539                err = scan_all(ubi, scan_ai, 0);
1540                if (err) {
1541                        destroy_ai(scan_ai);
1542                        goto out_wl;
1543                }
1544
1545                err = self_check_eba(ubi, ai, scan_ai);
1546                destroy_ai(scan_ai);
1547
1548                if (err)
1549                        goto out_wl;
1550        }
1551#endif
1552
1553        destroy_ai(ai);
1554        return 0;
1555
1556out_wl:
1557        ubi_wl_close(ubi);
1558out_vtbl:
1559        ubi_free_internal_volumes(ubi);
1560        vfree(ubi->vtbl);
1561out_ai:
1562        destroy_ai(ai);
1563        return err;
1564}
1565
1566/**
1567 * self_check_ai - check the attaching information.
1568 * @ubi: UBI device description object
1569 * @ai: attaching information
1570 *
1571 * This function returns zero if the attaching information is all right, and a
1572 * negative error code if not or if an error occurred.
1573 */
1574static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1575{
1576        int pnum, err, vols_found = 0;
1577        struct rb_node *rb1, *rb2;
1578        struct ubi_ainf_volume *av;
1579        struct ubi_ainf_peb *aeb, *last_aeb;
1580        uint8_t *buf;
1581
1582        if (!ubi_dbg_chk_gen(ubi))
1583                return 0;
1584
1585        /*
1586         * At first, check that attaching information is OK.
1587         */
1588        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1589                int leb_count = 0;
1590
1591                cond_resched();
1592
1593                vols_found += 1;
1594
1595                if (ai->is_empty) {
1596                        ubi_err(ubi, "bad is_empty flag");
1597                        goto bad_av;
1598                }
1599
1600                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1601                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1602                    av->data_pad < 0 || av->last_data_size < 0) {
1603                        ubi_err(ubi, "negative values");
1604                        goto bad_av;
1605                }
1606
1607                if (av->vol_id >= UBI_MAX_VOLUMES &&
1608                    av->vol_id < UBI_INTERNAL_VOL_START) {
1609                        ubi_err(ubi, "bad vol_id");
1610                        goto bad_av;
1611                }
1612
1613                if (av->vol_id > ai->highest_vol_id) {
1614                        ubi_err(ubi, "highest_vol_id is %d, but vol_id %d is there",
1615                                ai->highest_vol_id, av->vol_id);
1616                        goto out;
1617                }
1618
1619                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1620                    av->vol_type != UBI_STATIC_VOLUME) {
1621                        ubi_err(ubi, "bad vol_type");
1622                        goto bad_av;
1623                }
1624
1625                if (av->data_pad > ubi->leb_size / 2) {
1626                        ubi_err(ubi, "bad data_pad");
1627                        goto bad_av;
1628                }
1629
1630                last_aeb = NULL;
1631                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1632                        cond_resched();
1633
1634                        last_aeb = aeb;
1635                        leb_count += 1;
1636
1637                        if (aeb->pnum < 0 || aeb->ec < 0) {
1638                                ubi_err(ubi, "negative values");
1639                                goto bad_aeb;
1640                        }
1641
1642                        if (aeb->ec < ai->min_ec) {
1643                                ubi_err(ubi, "bad ai->min_ec (%d), %d found",
1644                                        ai->min_ec, aeb->ec);
1645                                goto bad_aeb;
1646                        }
1647
1648                        if (aeb->ec > ai->max_ec) {
1649                                ubi_err(ubi, "bad ai->max_ec (%d), %d found",
1650                                        ai->max_ec, aeb->ec);
1651                                goto bad_aeb;
1652                        }
1653
1654                        if (aeb->pnum >= ubi->peb_count) {
1655                                ubi_err(ubi, "too high PEB number %d, total PEBs %d",
1656                                        aeb->pnum, ubi->peb_count);
1657                                goto bad_aeb;
1658                        }
1659
1660                        if (av->vol_type == UBI_STATIC_VOLUME) {
1661                                if (aeb->lnum >= av->used_ebs) {
1662                                        ubi_err(ubi, "bad lnum or used_ebs");
1663                                        goto bad_aeb;
1664                                }
1665                        } else {
1666                                if (av->used_ebs != 0) {
1667                                        ubi_err(ubi, "non-zero used_ebs");
1668                                        goto bad_aeb;
1669                                }
1670                        }
1671
1672                        if (aeb->lnum > av->highest_lnum) {
1673                                ubi_err(ubi, "incorrect highest_lnum or lnum");
1674                                goto bad_aeb;
1675                        }
1676                }
1677
1678                if (av->leb_count != leb_count) {
1679                        ubi_err(ubi, "bad leb_count, %d objects in the tree",
1680                                leb_count);
1681                        goto bad_av;
1682                }
1683
1684                if (!last_aeb)
1685                        continue;
1686
1687                aeb = last_aeb;
1688
1689                if (aeb->lnum != av->highest_lnum) {
1690                        ubi_err(ubi, "bad highest_lnum");
1691                        goto bad_aeb;
1692                }
1693        }
1694
1695        if (vols_found != ai->vols_found) {
1696                ubi_err(ubi, "bad ai->vols_found %d, should be %d",
1697                        ai->vols_found, vols_found);
1698                goto out;
1699        }
1700
1701        /* Check that attaching information is correct */
1702        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1703                last_aeb = NULL;
1704                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1705                        int vol_type;
1706
1707                        cond_resched();
1708
1709                        last_aeb = aeb;
1710
1711                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1712                        if (err && err != UBI_IO_BITFLIPS) {
1713                                ubi_err(ubi, "VID header is not OK (%d)",
1714                                        err);
1715                                if (err > 0)
1716                                        err = -EIO;
1717                                return err;
1718                        }
1719
1720                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1721                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1722                        if (av->vol_type != vol_type) {
1723                                ubi_err(ubi, "bad vol_type");
1724                                goto bad_vid_hdr;
1725                        }
1726
1727                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1728                                ubi_err(ubi, "bad sqnum %llu", aeb->sqnum);
1729                                goto bad_vid_hdr;
1730                        }
1731
1732                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1733                                ubi_err(ubi, "bad vol_id %d", av->vol_id);
1734                                goto bad_vid_hdr;
1735                        }
1736
1737                        if (av->compat != vidh->compat) {
1738                                ubi_err(ubi, "bad compat %d", vidh->compat);
1739                                goto bad_vid_hdr;
1740                        }
1741
1742                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1743                                ubi_err(ubi, "bad lnum %d", aeb->lnum);
1744                                goto bad_vid_hdr;
1745                        }
1746
1747                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1748                                ubi_err(ubi, "bad used_ebs %d", av->used_ebs);
1749                                goto bad_vid_hdr;
1750                        }
1751
1752                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1753                                ubi_err(ubi, "bad data_pad %d", av->data_pad);
1754                                goto bad_vid_hdr;
1755                        }
1756                }
1757
1758                if (!last_aeb)
1759                        continue;
1760
1761                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1762                        ubi_err(ubi, "bad highest_lnum %d", av->highest_lnum);
1763                        goto bad_vid_hdr;
1764                }
1765
1766                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1767                        ubi_err(ubi, "bad last_data_size %d",
1768                                av->last_data_size);
1769                        goto bad_vid_hdr;
1770                }
1771        }
1772
1773        /*
1774         * Make sure that all the physical eraseblocks are in one of the lists
1775         * or trees.
1776         */
1777        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1778        if (!buf)
1779                return -ENOMEM;
1780
1781        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1782                err = ubi_io_is_bad(ubi, pnum);
1783                if (err < 0) {
1784                        kfree(buf);
1785                        return err;
1786                } else if (err)
1787                        buf[pnum] = 1;
1788        }
1789
1790        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1791                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1792                        buf[aeb->pnum] = 1;
1793
1794        list_for_each_entry(aeb, &ai->free, u.list)
1795                buf[aeb->pnum] = 1;
1796
1797        list_for_each_entry(aeb, &ai->corr, u.list)
1798                buf[aeb->pnum] = 1;
1799
1800        list_for_each_entry(aeb, &ai->erase, u.list)
1801                buf[aeb->pnum] = 1;
1802
1803        list_for_each_entry(aeb, &ai->alien, u.list)
1804                buf[aeb->pnum] = 1;
1805
1806        err = 0;
1807        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1808                if (!buf[pnum]) {
1809                        ubi_err(ubi, "PEB %d is not referred", pnum);
1810                        err = 1;
1811                }
1812
1813        kfree(buf);
1814        if (err)
1815                goto out;
1816        return 0;
1817
1818bad_aeb:
1819        ubi_err(ubi, "bad attaching information about LEB %d", aeb->lnum);
1820        ubi_dump_aeb(aeb, 0);
1821        ubi_dump_av(av);
1822        goto out;
1823
1824bad_av:
1825        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1826        ubi_dump_av(av);
1827        goto out;
1828
1829bad_vid_hdr:
1830        ubi_err(ubi, "bad attaching information about volume %d", av->vol_id);
1831        ubi_dump_av(av);
1832        ubi_dump_vid_hdr(vidh);
1833
1834out:
1835        dump_stack();
1836        return -EINVAL;
1837}
1838