linux/drivers/net/ethernet/3com/3c59x.c
<<
>>
Prefs
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3        Written 1996-1999 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms
   6        of the GNU General Public License, incorporated herein by reference.
   7
   8        This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9        Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10        and the EtherLink XL 3c900 and 3c905 cards.
  11
  12        Problem reports and questions should be directed to
  13        vortex@scyld.com
  14
  15        The author may be reached as becker@scyld.com, or C/O
  16        Scyld Computing Corporation
  17        410 Severn Ave., Suite 210
  18        Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME        "3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE    16
  39#define RX_RING_SIZE    32
  40#define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>                    /* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106        DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132                                Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211        PCI_USES_MASTER=4,
 212};
 213
 214enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215        EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216        HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217        INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218        EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219        EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222        CH_3C590 = 0,
 223        CH_3C592,
 224        CH_3C597,
 225        CH_3C595_1,
 226        CH_3C595_2,
 227
 228        CH_3C595_3,
 229        CH_3C900_1,
 230        CH_3C900_2,
 231        CH_3C900_3,
 232        CH_3C900_4,
 233
 234        CH_3C900_5,
 235        CH_3C900B_FL,
 236        CH_3C905_1,
 237        CH_3C905_2,
 238        CH_3C905B_TX,
 239        CH_3C905B_1,
 240
 241        CH_3C905B_2,
 242        CH_3C905B_FX,
 243        CH_3C905C,
 244        CH_3C9202,
 245        CH_3C980,
 246        CH_3C9805,
 247
 248        CH_3CSOHO100_TX,
 249        CH_3C555,
 250        CH_3C556,
 251        CH_3C556B,
 252        CH_3C575,
 253
 254        CH_3C575_1,
 255        CH_3CCFE575,
 256        CH_3CCFE575CT,
 257        CH_3CCFE656,
 258        CH_3CCFEM656,
 259
 260        CH_3CCFEM656_1,
 261        CH_3C450,
 262        CH_3C920,
 263        CH_3C982A,
 264        CH_3C982B,
 265
 266        CH_905BT4,
 267        CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276        const char *name;
 277        int flags;
 278        int drv_flags;
 279        int io_size;
 280} vortex_info_tbl[] = {
 281        {"3c590 Vortex 10Mbps",
 282         PCI_USES_MASTER, IS_VORTEX, 32, },
 283        {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284         PCI_USES_MASTER, IS_VORTEX, 32, },
 285        {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286         PCI_USES_MASTER, IS_VORTEX, 32, },
 287        {"3c595 Vortex 100baseTx",
 288         PCI_USES_MASTER, IS_VORTEX, 32, },
 289        {"3c595 Vortex 100baseT4",
 290         PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292        {"3c595 Vortex 100base-MII",
 293         PCI_USES_MASTER, IS_VORTEX, 32, },
 294        {"3c900 Boomerang 10baseT",
 295         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296        {"3c900 Boomerang 10Mbps Combo",
 297         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298        {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300        {"3c900 Cyclone 10Mbps Combo",
 301         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303        {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305        {"3c900B-FL Cyclone 10base-FL",
 306         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307        {"3c905 Boomerang 100baseTx",
 308         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309        {"3c905 Boomerang 100baseT4",
 310         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311        {"3C905B-TX Fast Etherlink XL PCI",
 312         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313        {"3c905B Cyclone 100baseTx",
 314         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316        {"3c905B Cyclone 10/100/BNC",
 317         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318        {"3c905B-FX Cyclone 100baseFx",
 319         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320        {"3c905C Tornado",
 321        PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322        {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323         PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324        {"3c980 Cyclone",
 325         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327        {"3c980C Python-T",
 328         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329        {"3cSOHO100-TX Hurricane",
 330         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331        {"3c555 Laptop Hurricane",
 332         PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333        {"3c556 Laptop Tornado",
 334         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                        HAS_HWCKSM, 128, },
 336        {"3c556B Laptop Hurricane",
 337         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                        WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340        {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341        PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342        {"3c575 Boomerang CardBus",
 343         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344        {"3CCFE575BT Cyclone CardBus",
 345         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347        {"3CCFE575CT Tornado CardBus",
 348         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350        {"3CCFE656 Cyclone CardBus",
 351         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354        {"3CCFEM656B Cyclone+Winmodem CardBus",
 355         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357        {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360        {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362        {"3c920 Tornado",
 363         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364        {"3c982 Hydra Dual Port A",
 365         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367        {"3c982 Hydra Dual Port B",
 368         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369        {"3c905B-T4",
 370         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371        {"3c920B-EMB-WNM Tornado",
 372         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374        {NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static const struct pci_device_id vortex_pci_tbl[] = {
 379        { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380        { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381        { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382        { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383        { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385        { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386        { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387        { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388        { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389        { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391        { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392        { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393        { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394        { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395        { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396        { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398        { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399        { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400        { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401        { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402        { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403        { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405        { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406        { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407        { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408        { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409        { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411        { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412        { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413        { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414        { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415        { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417        { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418        { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419        { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420        { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421        { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423        { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424        { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426        {0,}                                            /* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448        TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449        RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450        UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451        DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452        RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453        FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454        SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455        SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456        StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457        StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461        RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465        IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466        TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467        IntReq = 0x0040, StatsFull = 0x0080,
 468        DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469        DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470        CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476        TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477        RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478        TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481        Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482        Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483        IntrStatus=0x0E,                /* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486        EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487        EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488        EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492        PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493        EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494        NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495        DriverTune=13, Checksum=15};
 496
 497enum Window2 {                  /* Window 2. */
 498        Wn2_ResetOptions=12,
 499};
 500enum Window3 {                  /* Window 3: MAC/config bits. */
 501        Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)                                       \
 508        (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509        (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516#define XCVR(v)                 BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518
 519enum Window4 {          /* Window 4: Xcvr/media bits. */
 520        Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523        Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524        Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525        Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526        Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {                                  /* Window 7: Bus Master control. */
 529        Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530        Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534        PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535        TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543struct boom_rx_desc {
 544        __le32 next;                                    /* Last entry points to 0.   */
 545        __le32 status;
 546        __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547        __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551        RxDComplete=0x00008000, RxDError=0x4000,
 552        /* See boomerang_rx() for actual error bits */
 553        IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554        IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564        __le32 next;                                    /* Last entry points to 0.   */
 565        __le32 status;                                  /* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567        struct {
 568                __le32 addr;
 569                __le32 length;
 570        } frag[1+MAX_SKB_FRAGS];
 571#else
 572                __le32 addr;
 573                __le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579        CRCDisable=0x2000, TxDComplete=0x8000,
 580        AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581        TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588        unsigned long tx_deferred;
 589        unsigned long tx_max_collisions;
 590        unsigned long tx_multiple_collisions;
 591        unsigned long tx_single_collisions;
 592        unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596        /* The Rx and Tx rings should be quad-word-aligned. */
 597        struct boom_rx_desc* rx_ring;
 598        struct boom_tx_desc* tx_ring;
 599        dma_addr_t rx_ring_dma;
 600        dma_addr_t tx_ring_dma;
 601        /* The addresses of transmit- and receive-in-place skbuffs. */
 602        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604        unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605        unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
 606        struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607        struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608        dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609
 610        /* PCI configuration space information. */
 611        struct device *gendev;
 612        void __iomem *ioaddr;                   /* IO address space */
 613        void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614
 615        /* Some values here only for performance evaluation and path-coverage */
 616        int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617        int card_idx;
 618
 619        /* The remainder are related to chip state, mostly media selection. */
 620        struct timer_list timer;                        /* Media selection timer. */
 621        struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
 622        int options;                                            /* User-settable misc. driver options. */
 623        unsigned int media_override:4,          /* Passed-in media type. */
 624                default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 625                full_duplex:1, autoselect:1,
 626                bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 627                full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628                flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 629                partner_flow_ctrl:1,                    /* Partner supports flow control */
 630                has_nway:1,
 631                enable_wol:1,                                   /* Wake-on-LAN is enabled */
 632                pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 633                open:1,
 634                medialock:1,
 635                large_frames:1,                 /* accept large frames */
 636                handling_irq:1;                 /* private in_irq indicator */
 637        /* {get|set}_wol operations are already serialized by rtnl.
 638         * no additional locking is required for the enable_wol and acpi_set_WOL()
 639         */
 640        int drv_flags;
 641        u16 status_enable;
 642        u16 intr_enable;
 643        u16 available_media;                            /* From Wn3_Options. */
 644        u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 645        u16 advertising;                                        /* NWay media advertisement */
 646        unsigned char phys[2];                          /* MII device addresses. */
 647        u16 deferred;                                           /* Resend these interrupts when we
 648                                                                                 * bale from the ISR */
 649        u16 io_size;                                            /* Size of PCI region (for release_region) */
 650
 651        /* Serialises access to hardware other than MII and variables below.
 652         * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653        spinlock_t lock;
 654
 655        spinlock_t mii_lock;            /* Serialises access to MII */
 656        struct mii_if_info mii;         /* MII lib hooks/info */
 657        spinlock_t window_lock;         /* Serialises access to windowed regs */
 658        int window;                     /* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663        if (window != vp->window) {
 664                iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665                vp->window = window;
 666        }
 667}
 668
 669#define DEFINE_WINDOW_IO(size)                                          \
 670static u ## size                                                        \
 671window_read ## size(struct vortex_private *vp, int window, int addr)    \
 672{                                                                       \
 673        unsigned long flags;                                            \
 674        u ## size ret;                                                  \
 675        spin_lock_irqsave(&vp->window_lock, flags);                     \
 676        window_set(vp, window);                                         \
 677        ret = ioread ## size(vp->ioaddr + addr);                        \
 678        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 679        return ret;                                                     \
 680}                                                                       \
 681static void                                                             \
 682window_write ## size(struct vortex_private *vp, u ## size value,        \
 683                     int window, int addr)                              \
 684{                                                                       \
 685        unsigned long flags;                                            \
 686        spin_lock_irqsave(&vp->window_lock, flags);                     \
 687        window_set(vp, window);                                         \
 688        iowrite ## size(value, vp->ioaddr + addr);                      \
 689        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)                                                  \
 702        ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)                                                 \
 711        ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717        XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718        XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722        char *name;
 723        unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 724                mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 725                next:8;                                         /* The media type to try next. */
 726        int wait;                                               /* Time before we check media status. */
 727} media_tbl[] = {
 728  {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 734  { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742        const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744        { "tx_deferred" },
 745        { "tx_max_collisions" },
 746        { "tx_multiple_collisions" },
 747        { "tx_single_collisions" },
 748        { "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755                                   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765                                     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767                                        struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param(compaq_ioaddr, int, 0);
 817module_param(compaq_irq, int, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843        struct vortex_private *vp = netdev_priv(dev);
 844        unsigned long flags;
 845        local_irq_save(flags);
 846        (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847        local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855        struct pci_dev *pdev = to_pci_dev(dev);
 856        struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858        if (!ndev || !netif_running(ndev))
 859                return 0;
 860
 861        netif_device_detach(ndev);
 862        vortex_down(ndev, 1);
 863
 864        return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869        struct pci_dev *pdev = to_pci_dev(dev);
 870        struct net_device *ndev = pci_get_drvdata(pdev);
 871        int err;
 872
 873        if (!ndev || !netif_running(ndev))
 874                return 0;
 875
 876        err = vortex_up(ndev);
 877        if (err)
 878                return err;
 879
 880        netif_device_attach(ndev);
 881
 882        return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886        .suspend = vortex_suspend,
 887        .resume = vortex_resume,
 888        .freeze = vortex_suspend,
 889        .thaw = vortex_resume,
 890        .poweroff = vortex_suspend,
 891        .restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static struct eisa_device_id vortex_eisa_ids[] = {
 904        { "TCM5920", CH_3C592 },
 905        { "TCM5970", CH_3C597 },
 906        { "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int vortex_eisa_probe(struct device *device)
 911{
 912        void __iomem *ioaddr;
 913        struct eisa_device *edev;
 914
 915        edev = to_eisa_device(device);
 916
 917        if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918                return -EBUSY;
 919
 920        ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922        if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923                                          edev->id.driver_data, vortex_cards_found)) {
 924                release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925                return -ENODEV;
 926        }
 927
 928        vortex_cards_found++;
 929
 930        return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935        struct eisa_device *edev;
 936        struct net_device *dev;
 937        struct vortex_private *vp;
 938        void __iomem *ioaddr;
 939
 940        edev = to_eisa_device(device);
 941        dev = eisa_get_drvdata(edev);
 942
 943        if (!dev) {
 944                pr_err("vortex_eisa_remove called for Compaq device!\n");
 945                BUG();
 946        }
 947
 948        vp = netdev_priv(dev);
 949        ioaddr = vp->ioaddr;
 950
 951        unregister_netdev(dev);
 952        iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953        release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955        free_netdev(dev);
 956        return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960        .id_table = vortex_eisa_ids,
 961        .driver   = {
 962                .name    = "3c59x",
 963                .probe   = vortex_eisa_probe,
 964                .remove  = vortex_eisa_remove
 965        }
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973        int eisa_found = 0;
 974        int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977        int err;
 978
 979        err = eisa_driver_register (&vortex_eisa_driver);
 980        if (!err) {
 981                /*
 982                 * Because of the way EISA bus is probed, we cannot assume
 983                 * any device have been found when we exit from
 984                 * eisa_driver_register (the bus root driver may not be
 985                 * initialized yet). So we blindly assume something was
 986                 * found, and let the sysfs magic happened...
 987                 */
 988                eisa_found = 1;
 989        }
 990#endif
 991
 992        /* Special code to work-around the Compaq PCI BIOS32 problem. */
 993        if (compaq_ioaddr) {
 994                vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995                              compaq_irq, compaq_device_id, vortex_cards_found++);
 996        }
 997
 998        return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003                           const struct pci_device_id *ent)
1004{
1005        int rc, unit, pci_bar;
1006        struct vortex_chip_info *vci;
1007        void __iomem *ioaddr;
1008
1009        /* wake up and enable device */
1010        rc = pci_enable_device(pdev);
1011        if (rc < 0)
1012                goto out;
1013
1014        rc = pci_request_regions(pdev, DRV_NAME);
1015        if (rc < 0)
1016                goto out_disable;
1017
1018        unit = vortex_cards_found;
1019
1020        if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021                /* Determine the default if the user didn't override us */
1022                vci = &vortex_info_tbl[ent->driver_data];
1023                pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024        } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025                pci_bar = use_mmio[unit] ? 1 : 0;
1026        else
1027                pci_bar = global_use_mmio ? 1 : 0;
1028
1029        ioaddr = pci_iomap(pdev, pci_bar, 0);
1030        if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031                ioaddr = pci_iomap(pdev, 0, 0);
1032        if (!ioaddr) {
1033                rc = -ENOMEM;
1034                goto out_release;
1035        }
1036
1037        rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038                           ent->driver_data, unit);
1039        if (rc < 0)
1040                goto out_iounmap;
1041
1042        vortex_cards_found++;
1043        goto out;
1044
1045out_iounmap:
1046        pci_iounmap(pdev, ioaddr);
1047out_release:
1048        pci_release_regions(pdev);
1049out_disable:
1050        pci_disable_device(pdev);
1051out:
1052        return rc;
1053}
1054
1055static const struct net_device_ops boomrang_netdev_ops = {
1056        .ndo_open               = vortex_open,
1057        .ndo_stop               = vortex_close,
1058        .ndo_start_xmit         = boomerang_start_xmit,
1059        .ndo_tx_timeout         = vortex_tx_timeout,
1060        .ndo_get_stats          = vortex_get_stats,
1061#ifdef CONFIG_PCI
1062        .ndo_do_ioctl           = vortex_ioctl,
1063#endif
1064        .ndo_set_rx_mode        = set_rx_mode,
1065        .ndo_change_mtu         = eth_change_mtu,
1066        .ndo_set_mac_address    = eth_mac_addr,
1067        .ndo_validate_addr      = eth_validate_addr,
1068#ifdef CONFIG_NET_POLL_CONTROLLER
1069        .ndo_poll_controller    = poll_vortex,
1070#endif
1071};
1072
1073static const struct net_device_ops vortex_netdev_ops = {
1074        .ndo_open               = vortex_open,
1075        .ndo_stop               = vortex_close,
1076        .ndo_start_xmit         = vortex_start_xmit,
1077        .ndo_tx_timeout         = vortex_tx_timeout,
1078        .ndo_get_stats          = vortex_get_stats,
1079#ifdef CONFIG_PCI
1080        .ndo_do_ioctl           = vortex_ioctl,
1081#endif
1082        .ndo_set_rx_mode        = set_rx_mode,
1083        .ndo_change_mtu         = eth_change_mtu,
1084        .ndo_set_mac_address    = eth_mac_addr,
1085        .ndo_validate_addr      = eth_validate_addr,
1086#ifdef CONFIG_NET_POLL_CONTROLLER
1087        .ndo_poll_controller    = poll_vortex,
1088#endif
1089};
1090
1091/*
1092 * Start up the PCI/EISA device which is described by *gendev.
1093 * Return 0 on success.
1094 *
1095 * NOTE: pdev can be NULL, for the case of a Compaq device
1096 */
1097static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098                         int chip_idx, int card_idx)
1099{
1100        struct vortex_private *vp;
1101        int option;
1102        unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1103        int i, step;
1104        struct net_device *dev;
1105        static int printed_version;
1106        int retval, print_info;
1107        struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108        const char *print_name = "3c59x";
1109        struct pci_dev *pdev = NULL;
1110        struct eisa_device *edev = NULL;
1111
1112        if (!printed_version) {
1113                pr_info("%s", version);
1114                printed_version = 1;
1115        }
1116
1117        if (gendev) {
1118                if ((pdev = DEVICE_PCI(gendev))) {
1119                        print_name = pci_name(pdev);
1120                }
1121
1122                if ((edev = DEVICE_EISA(gendev))) {
1123                        print_name = dev_name(&edev->dev);
1124                }
1125        }
1126
1127        dev = alloc_etherdev(sizeof(*vp));
1128        retval = -ENOMEM;
1129        if (!dev)
1130                goto out;
1131
1132        SET_NETDEV_DEV(dev, gendev);
1133        vp = netdev_priv(dev);
1134
1135        option = global_options;
1136
1137        /* The lower four bits are the media type. */
1138        if (dev->mem_start) {
1139                /*
1140                 * The 'options' param is passed in as the third arg to the
1141                 * LILO 'ether=' argument for non-modular use
1142                 */
1143                option = dev->mem_start;
1144        }
1145        else if (card_idx < MAX_UNITS) {
1146                if (options[card_idx] >= 0)
1147                        option = options[card_idx];
1148        }
1149
1150        if (option > 0) {
1151                if (option & 0x8000)
1152                        vortex_debug = 7;
1153                if (option & 0x4000)
1154                        vortex_debug = 2;
1155                if (option & 0x0400)
1156                        vp->enable_wol = 1;
1157        }
1158
1159        print_info = (vortex_debug > 1);
1160        if (print_info)
1161                pr_info("See Documentation/networking/vortex.txt\n");
1162
1163        pr_info("%s: 3Com %s %s at %p.\n",
1164               print_name,
1165               pdev ? "PCI" : "EISA",
1166               vci->name,
1167               ioaddr);
1168
1169        dev->base_addr = (unsigned long)ioaddr;
1170        dev->irq = irq;
1171        dev->mtu = mtu;
1172        vp->ioaddr = ioaddr;
1173        vp->large_frames = mtu > 1500;
1174        vp->drv_flags = vci->drv_flags;
1175        vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176        vp->io_size = vci->io_size;
1177        vp->card_idx = card_idx;
1178        vp->window = -1;
1179
1180        /* module list only for Compaq device */
1181        if (gendev == NULL) {
1182                compaq_net_device = dev;
1183        }
1184
1185        /* PCI-only startup logic */
1186        if (pdev) {
1187                /* enable bus-mastering if necessary */
1188                if (vci->flags & PCI_USES_MASTER)
1189                        pci_set_master(pdev);
1190
1191                if (vci->drv_flags & IS_VORTEX) {
1192                        u8 pci_latency;
1193                        u8 new_latency = 248;
1194
1195                        /* Check the PCI latency value.  On the 3c590 series the latency timer
1196                           must be set to the maximum value to avoid data corruption that occurs
1197                           when the timer expires during a transfer.  This bug exists the Vortex
1198                           chip only. */
1199                        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200                        if (pci_latency < new_latency) {
1201                                pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202                                        print_name, pci_latency, new_latency);
1203                                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204                        }
1205                }
1206        }
1207
1208        spin_lock_init(&vp->lock);
1209        spin_lock_init(&vp->mii_lock);
1210        spin_lock_init(&vp->window_lock);
1211        vp->gendev = gendev;
1212        vp->mii.dev = dev;
1213        vp->mii.mdio_read = mdio_read;
1214        vp->mii.mdio_write = mdio_write;
1215        vp->mii.phy_id_mask = 0x1f;
1216        vp->mii.reg_num_mask = 0x1f;
1217
1218        /* Makes sure rings are at least 16 byte aligned. */
1219        vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220                                           + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221                                           &vp->rx_ring_dma);
1222        retval = -ENOMEM;
1223        if (!vp->rx_ring)
1224                goto free_device;
1225
1226        vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227        vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228
1229        /* if we are a PCI driver, we store info in pdev->driver_data
1230         * instead of a module list */
1231        if (pdev)
1232                pci_set_drvdata(pdev, dev);
1233        if (edev)
1234                eisa_set_drvdata(edev, dev);
1235
1236        vp->media_override = 7;
1237        if (option >= 0) {
1238                vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239                if (vp->media_override != 7)
1240                        vp->medialock = 1;
1241                vp->full_duplex = (option & 0x200) ? 1 : 0;
1242                vp->bus_master = (option & 16) ? 1 : 0;
1243        }
1244
1245        if (global_full_duplex > 0)
1246                vp->full_duplex = 1;
1247        if (global_enable_wol > 0)
1248                vp->enable_wol = 1;
1249
1250        if (card_idx < MAX_UNITS) {
1251                if (full_duplex[card_idx] > 0)
1252                        vp->full_duplex = 1;
1253                if (flow_ctrl[card_idx] > 0)
1254                        vp->flow_ctrl = 1;
1255                if (enable_wol[card_idx] > 0)
1256                        vp->enable_wol = 1;
1257        }
1258
1259        vp->mii.force_media = vp->full_duplex;
1260        vp->options = option;
1261        /* Read the station address from the EEPROM. */
1262        {
1263                int base;
1264
1265                if (vci->drv_flags & EEPROM_8BIT)
1266                        base = 0x230;
1267                else if (vci->drv_flags & EEPROM_OFFSET)
1268                        base = EEPROM_Read + 0x30;
1269                else
1270                        base = EEPROM_Read;
1271
1272                for (i = 0; i < 0x40; i++) {
1273                        int timer;
1274                        window_write16(vp, base + i, 0, Wn0EepromCmd);
1275                        /* Pause for at least 162 us. for the read to take place. */
1276                        for (timer = 10; timer >= 0; timer--) {
1277                                udelay(162);
1278                                if ((window_read16(vp, 0, Wn0EepromCmd) &
1279                                     0x8000) == 0)
1280                                        break;
1281                        }
1282                        eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283                }
1284        }
1285        for (i = 0; i < 0x18; i++)
1286                checksum ^= eeprom[i];
1287        checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288        if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1289                while (i < 0x21)
1290                        checksum ^= eeprom[i++];
1291                checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292        }
1293        if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294                pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295        for (i = 0; i < 3; i++)
1296                ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297        if (print_info)
1298                pr_cont(" %pM", dev->dev_addr);
1299        /* Unfortunately an all zero eeprom passes the checksum and this
1300           gets found in the wild in failure cases. Crypto is hard 8) */
1301        if (!is_valid_ether_addr(dev->dev_addr)) {
1302                retval = -EINVAL;
1303                pr_err("*** EEPROM MAC address is invalid.\n");
1304                goto free_ring; /* With every pack */
1305        }
1306        for (i = 0; i < 6; i++)
1307                window_write8(vp, dev->dev_addr[i], 2, i);
1308
1309        if (print_info)
1310                pr_cont(", IRQ %d\n", dev->irq);
1311        /* Tell them about an invalid IRQ. */
1312        if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313                pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314                        dev->irq);
1315
1316        step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317        if (print_info) {
1318                pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319                        eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320                        step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321        }
1322
1323
1324        if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325                unsigned short n;
1326
1327                vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328                if (!vp->cb_fn_base) {
1329                        retval = -ENOMEM;
1330                        goto free_ring;
1331                }
1332
1333                if (print_info) {
1334                        pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335                                print_name,
1336                                (unsigned long long)pci_resource_start(pdev, 2),
1337                                vp->cb_fn_base);
1338                }
1339
1340                n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341                if (vp->drv_flags & INVERT_LED_PWR)
1342                        n |= 0x10;
1343                if (vp->drv_flags & INVERT_MII_PWR)
1344                        n |= 0x4000;
1345                window_write16(vp, n, 2, Wn2_ResetOptions);
1346                if (vp->drv_flags & WNO_XCVR_PWR) {
1347                        window_write16(vp, 0x0800, 0, 0);
1348                }
1349        }
1350
1351        /* Extract our information from the EEPROM data. */
1352        vp->info1 = eeprom[13];
1353        vp->info2 = eeprom[15];
1354        vp->capabilities = eeprom[16];
1355
1356        if (vp->info1 & 0x8000) {
1357                vp->full_duplex = 1;
1358                if (print_info)
1359                        pr_info("Full duplex capable\n");
1360        }
1361
1362        {
1363                static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364                unsigned int config;
1365                vp->available_media = window_read16(vp, 3, Wn3_Options);
1366                if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1367                        vp->available_media = 0x40;
1368                config = window_read32(vp, 3, Wn3_Config);
1369                if (print_info) {
1370                        pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371                                config, window_read16(vp, 3, Wn3_Options));
1372                        pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373                                   8 << RAM_SIZE(config),
1374                                   RAM_WIDTH(config) ? "word" : "byte",
1375                                   ram_split[RAM_SPLIT(config)],
1376                                   AUTOSELECT(config) ? "autoselect/" : "",
1377                                   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378                                   media_tbl[XCVR(config)].name);
1379                }
1380                vp->default_media = XCVR(config);
1381                if (vp->default_media == XCVR_NWAY)
1382                        vp->has_nway = 1;
1383                vp->autoselect = AUTOSELECT(config);
1384        }
1385
1386        if (vp->media_override != 7) {
1387                pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388                                print_name, vp->media_override,
1389                                media_tbl[vp->media_override].name);
1390                dev->if_port = vp->media_override;
1391        } else
1392                dev->if_port = vp->default_media;
1393
1394        if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395                dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396                int phy, phy_idx = 0;
1397                mii_preamble_required++;
1398                if (vp->drv_flags & EXTRA_PREAMBLE)
1399                        mii_preamble_required++;
1400                mdio_sync(vp, 32);
1401                mdio_read(dev, 24, MII_BMSR);
1402                for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403                        int mii_status, phyx;
1404
1405                        /*
1406                         * For the 3c905CX we look at index 24 first, because it bogusly
1407                         * reports an external PHY at all indices
1408                         */
1409                        if (phy == 0)
1410                                phyx = 24;
1411                        else if (phy <= 24)
1412                                phyx = phy - 1;
1413                        else
1414                                phyx = phy;
1415                        mii_status = mdio_read(dev, phyx, MII_BMSR);
1416                        if (mii_status  &&  mii_status != 0xffff) {
1417                                vp->phys[phy_idx++] = phyx;
1418                                if (print_info) {
1419                                        pr_info("  MII transceiver found at address %d, status %4x.\n",
1420                                                phyx, mii_status);
1421                                }
1422                                if ((mii_status & 0x0040) == 0)
1423                                        mii_preamble_required++;
1424                        }
1425                }
1426                mii_preamble_required--;
1427                if (phy_idx == 0) {
1428                        pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429                        vp->phys[0] = 24;
1430                } else {
1431                        vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432                        if (vp->full_duplex) {
1433                                /* Only advertise the FD media types. */
1434                                vp->advertising &= ~0x02A0;
1435                                mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436                        }
1437                }
1438                vp->mii.phy_id = vp->phys[0];
1439        }
1440
1441        if (vp->capabilities & CapBusMaster) {
1442                vp->full_bus_master_tx = 1;
1443                if (print_info) {
1444                        pr_info("  Enabling bus-master transmits and %s receives.\n",
1445                        (vp->info2 & 1) ? "early" : "whole-frame" );
1446                }
1447                vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448                vp->bus_master = 0;             /* AKPM: vortex only */
1449        }
1450
1451        /* The 3c59x-specific entries in the device structure. */
1452        if (vp->full_bus_master_tx) {
1453                dev->netdev_ops = &boomrang_netdev_ops;
1454                /* Actually, it still should work with iommu. */
1455                if (card_idx < MAX_UNITS &&
1456                    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457                                hw_checksums[card_idx] == 1)) {
1458                        dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459                }
1460        } else
1461                dev->netdev_ops =  &vortex_netdev_ops;
1462
1463        if (print_info) {
1464                pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465                                print_name,
1466                                (dev->features & NETIF_F_SG) ? "en":"dis",
1467                                (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468        }
1469
1470        dev->ethtool_ops = &vortex_ethtool_ops;
1471        dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472
1473        if (pdev) {
1474                vp->pm_state_valid = 1;
1475                pci_save_state(pdev);
1476                acpi_set_WOL(dev);
1477        }
1478        retval = register_netdev(dev);
1479        if (retval == 0)
1480                return 0;
1481
1482free_ring:
1483        pci_free_consistent(pdev,
1484                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486                                                vp->rx_ring,
1487                                                vp->rx_ring_dma);
1488free_device:
1489        free_netdev(dev);
1490        pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491out:
1492        return retval;
1493}
1494
1495static void
1496issue_and_wait(struct net_device *dev, int cmd)
1497{
1498        struct vortex_private *vp = netdev_priv(dev);
1499        void __iomem *ioaddr = vp->ioaddr;
1500        int i;
1501
1502        iowrite16(cmd, ioaddr + EL3_CMD);
1503        for (i = 0; i < 2000; i++) {
1504                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505                        return;
1506        }
1507
1508        /* OK, that didn't work.  Do it the slow way.  One second */
1509        for (i = 0; i < 100000; i++) {
1510                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511                        if (vortex_debug > 1)
1512                                pr_info("%s: command 0x%04x took %d usecs\n",
1513                                           dev->name, cmd, i * 10);
1514                        return;
1515                }
1516                udelay(10);
1517        }
1518        pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519                           dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520}
1521
1522static void
1523vortex_set_duplex(struct net_device *dev)
1524{
1525        struct vortex_private *vp = netdev_priv(dev);
1526
1527        pr_info("%s:  setting %s-duplex.\n",
1528                dev->name, (vp->full_duplex) ? "full" : "half");
1529
1530        /* Set the full-duplex bit. */
1531        window_write16(vp,
1532                       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533                       (vp->large_frames ? 0x40 : 0) |
1534                       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535                        0x100 : 0),
1536                       3, Wn3_MAC_Ctrl);
1537}
1538
1539static void vortex_check_media(struct net_device *dev, unsigned int init)
1540{
1541        struct vortex_private *vp = netdev_priv(dev);
1542        unsigned int ok_to_print = 0;
1543
1544        if (vortex_debug > 3)
1545                ok_to_print = 1;
1546
1547        if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548                vp->full_duplex = vp->mii.full_duplex;
1549                vortex_set_duplex(dev);
1550        } else if (init) {
1551                vortex_set_duplex(dev);
1552        }
1553}
1554
1555static int
1556vortex_up(struct net_device *dev)
1557{
1558        struct vortex_private *vp = netdev_priv(dev);
1559        void __iomem *ioaddr = vp->ioaddr;
1560        unsigned int config;
1561        int i, mii_reg1, mii_reg5, err = 0;
1562
1563        if (VORTEX_PCI(vp)) {
1564                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1565                if (vp->pm_state_valid)
1566                        pci_restore_state(VORTEX_PCI(vp));
1567                err = pci_enable_device(VORTEX_PCI(vp));
1568                if (err) {
1569                        pr_warn("%s: Could not enable device\n", dev->name);
1570                        goto err_out;
1571                }
1572        }
1573
1574        /* Before initializing select the active media port. */
1575        config = window_read32(vp, 3, Wn3_Config);
1576
1577        if (vp->media_override != 7) {
1578                pr_info("%s: Media override to transceiver %d (%s).\n",
1579                           dev->name, vp->media_override,
1580                           media_tbl[vp->media_override].name);
1581                dev->if_port = vp->media_override;
1582        } else if (vp->autoselect) {
1583                if (vp->has_nway) {
1584                        if (vortex_debug > 1)
1585                                pr_info("%s: using NWAY device table, not %d\n",
1586                                                                dev->name, dev->if_port);
1587                        dev->if_port = XCVR_NWAY;
1588                } else {
1589                        /* Find first available media type, starting with 100baseTx. */
1590                        dev->if_port = XCVR_100baseTx;
1591                        while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592                                dev->if_port = media_tbl[dev->if_port].next;
1593                        if (vortex_debug > 1)
1594                                pr_info("%s: first available media type: %s\n",
1595                                        dev->name, media_tbl[dev->if_port].name);
1596                }
1597        } else {
1598                dev->if_port = vp->default_media;
1599                if (vortex_debug > 1)
1600                        pr_info("%s: using default media %s\n",
1601                                dev->name, media_tbl[dev->if_port].name);
1602        }
1603
1604        setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1605        mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1606        setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1607
1608        if (vortex_debug > 1)
1609                pr_debug("%s: Initial media type %s.\n",
1610                           dev->name, media_tbl[dev->if_port].name);
1611
1612        vp->full_duplex = vp->mii.force_media;
1613        config = BFINS(config, dev->if_port, 20, 4);
1614        if (vortex_debug > 6)
1615                pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1616        window_write32(vp, config, 3, Wn3_Config);
1617
1618        if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1619                mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1620                mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1621                vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1622                vp->mii.full_duplex = vp->full_duplex;
1623
1624                vortex_check_media(dev, 1);
1625        }
1626        else
1627                vortex_set_duplex(dev);
1628
1629        issue_and_wait(dev, TxReset);
1630        /*
1631         * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1632         */
1633        issue_and_wait(dev, RxReset|0x04);
1634
1635
1636        iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1637
1638        if (vortex_debug > 1) {
1639                pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1640                           dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1641        }
1642
1643        /* Set the station address and mask in window 2 each time opened. */
1644        for (i = 0; i < 6; i++)
1645                window_write8(vp, dev->dev_addr[i], 2, i);
1646        for (; i < 12; i+=2)
1647                window_write16(vp, 0, 2, i);
1648
1649        if (vp->cb_fn_base) {
1650                unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1651                if (vp->drv_flags & INVERT_LED_PWR)
1652                        n |= 0x10;
1653                if (vp->drv_flags & INVERT_MII_PWR)
1654                        n |= 0x4000;
1655                window_write16(vp, n, 2, Wn2_ResetOptions);
1656        }
1657
1658        if (dev->if_port == XCVR_10base2)
1659                /* Start the thinnet transceiver. We should really wait 50ms...*/
1660                iowrite16(StartCoax, ioaddr + EL3_CMD);
1661        if (dev->if_port != XCVR_NWAY) {
1662                window_write16(vp,
1663                               (window_read16(vp, 4, Wn4_Media) &
1664                                ~(Media_10TP|Media_SQE)) |
1665                               media_tbl[dev->if_port].media_bits,
1666                               4, Wn4_Media);
1667        }
1668
1669        /* Switch to the stats window, and clear all stats by reading. */
1670        iowrite16(StatsDisable, ioaddr + EL3_CMD);
1671        for (i = 0; i < 10; i++)
1672                window_read8(vp, 6, i);
1673        window_read16(vp, 6, 10);
1674        window_read16(vp, 6, 12);
1675        /* New: On the Vortex we must also clear the BadSSD counter. */
1676        window_read8(vp, 4, 12);
1677        /* ..and on the Boomerang we enable the extra statistics bits. */
1678        window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1679
1680        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1681                vp->cur_rx = vp->dirty_rx = 0;
1682                /* Initialize the RxEarly register as recommended. */
1683                iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1684                iowrite32(0x0020, ioaddr + PktStatus);
1685                iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1686        }
1687        if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1688                vp->cur_tx = vp->dirty_tx = 0;
1689                if (vp->drv_flags & IS_BOOMERANG)
1690                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1691                /* Clear the Rx, Tx rings. */
1692                for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1693                        vp->rx_ring[i].status = 0;
1694                for (i = 0; i < TX_RING_SIZE; i++)
1695                        vp->tx_skbuff[i] = NULL;
1696                iowrite32(0, ioaddr + DownListPtr);
1697        }
1698        /* Set receiver mode: presumably accept b-case and phys addr only. */
1699        set_rx_mode(dev);
1700        /* enable 802.1q tagged frames */
1701        set_8021q_mode(dev, 1);
1702        iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1703
1704        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1705        iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1706        /* Allow status bits to be seen. */
1707        vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1708                (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1709                (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1710                (vp->bus_master ? DMADone : 0);
1711        vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1712                (vp->full_bus_master_rx ? 0 : RxComplete) |
1713                StatsFull | HostError | TxComplete | IntReq
1714                | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1715        iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1716        /* Ack all pending events, and set active indicator mask. */
1717        iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1718                 ioaddr + EL3_CMD);
1719        iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1720        if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1721                iowrite32(0x8000, vp->cb_fn_base + 4);
1722        netif_start_queue (dev);
1723        netdev_reset_queue(dev);
1724err_out:
1725        return err;
1726}
1727
1728static int
1729vortex_open(struct net_device *dev)
1730{
1731        struct vortex_private *vp = netdev_priv(dev);
1732        int i;
1733        int retval;
1734
1735        /* Use the now-standard shared IRQ implementation. */
1736        if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1737                                boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1738                pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1739                goto err;
1740        }
1741
1742        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1743                if (vortex_debug > 2)
1744                        pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1745                for (i = 0; i < RX_RING_SIZE; i++) {
1746                        struct sk_buff *skb;
1747                        vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1748                        vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1749                        vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1750
1751                        skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1752                                                 GFP_KERNEL);
1753                        vp->rx_skbuff[i] = skb;
1754                        if (skb == NULL)
1755                                break;                  /* Bad news!  */
1756
1757                        skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1758                        vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1759                }
1760                if (i != RX_RING_SIZE) {
1761                        pr_emerg("%s: no memory for rx ring\n", dev->name);
1762                        retval = -ENOMEM;
1763                        goto err_free_skb;
1764                }
1765                /* Wrap the ring. */
1766                vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1767        }
1768
1769        retval = vortex_up(dev);
1770        if (!retval)
1771                goto out;
1772
1773err_free_skb:
1774        for (i = 0; i < RX_RING_SIZE; i++) {
1775                if (vp->rx_skbuff[i]) {
1776                        dev_kfree_skb(vp->rx_skbuff[i]);
1777                        vp->rx_skbuff[i] = NULL;
1778                }
1779        }
1780        free_irq(dev->irq, dev);
1781err:
1782        if (vortex_debug > 1)
1783                pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1784out:
1785        return retval;
1786}
1787
1788static void
1789vortex_timer(unsigned long data)
1790{
1791        struct net_device *dev = (struct net_device *)data;
1792        struct vortex_private *vp = netdev_priv(dev);
1793        void __iomem *ioaddr = vp->ioaddr;
1794        int next_tick = 60*HZ;
1795        int ok = 0;
1796        int media_status;
1797
1798        if (vortex_debug > 2) {
1799                pr_debug("%s: Media selection timer tick happened, %s.\n",
1800                           dev->name, media_tbl[dev->if_port].name);
1801                pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1802        }
1803
1804        media_status = window_read16(vp, 4, Wn4_Media);
1805        switch (dev->if_port) {
1806        case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1807                if (media_status & Media_LnkBeat) {
1808                        netif_carrier_on(dev);
1809                        ok = 1;
1810                        if (vortex_debug > 1)
1811                                pr_debug("%s: Media %s has link beat, %x.\n",
1812                                           dev->name, media_tbl[dev->if_port].name, media_status);
1813                } else {
1814                        netif_carrier_off(dev);
1815                        if (vortex_debug > 1) {
1816                                pr_debug("%s: Media %s has no link beat, %x.\n",
1817                                           dev->name, media_tbl[dev->if_port].name, media_status);
1818                        }
1819                }
1820                break;
1821        case XCVR_MII: case XCVR_NWAY:
1822                {
1823                        ok = 1;
1824                        vortex_check_media(dev, 0);
1825                }
1826                break;
1827          default:                                      /* Other media types handled by Tx timeouts. */
1828                if (vortex_debug > 1)
1829                  pr_debug("%s: Media %s has no indication, %x.\n",
1830                                 dev->name, media_tbl[dev->if_port].name, media_status);
1831                ok = 1;
1832        }
1833
1834        if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1835                next_tick = 5*HZ;
1836
1837        if (vp->medialock)
1838                goto leave_media_alone;
1839
1840        if (!ok) {
1841                unsigned int config;
1842
1843                spin_lock_irq(&vp->lock);
1844
1845                do {
1846                        dev->if_port = media_tbl[dev->if_port].next;
1847                } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1848                if (dev->if_port == XCVR_Default) { /* Go back to default. */
1849                  dev->if_port = vp->default_media;
1850                  if (vortex_debug > 1)
1851                        pr_debug("%s: Media selection failing, using default %s port.\n",
1852                                   dev->name, media_tbl[dev->if_port].name);
1853                } else {
1854                        if (vortex_debug > 1)
1855                                pr_debug("%s: Media selection failed, now trying %s port.\n",
1856                                           dev->name, media_tbl[dev->if_port].name);
1857                        next_tick = media_tbl[dev->if_port].wait;
1858                }
1859                window_write16(vp,
1860                               (media_status & ~(Media_10TP|Media_SQE)) |
1861                               media_tbl[dev->if_port].media_bits,
1862                               4, Wn4_Media);
1863
1864                config = window_read32(vp, 3, Wn3_Config);
1865                config = BFINS(config, dev->if_port, 20, 4);
1866                window_write32(vp, config, 3, Wn3_Config);
1867
1868                iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1869                         ioaddr + EL3_CMD);
1870                if (vortex_debug > 1)
1871                        pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1872                /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1873
1874                spin_unlock_irq(&vp->lock);
1875        }
1876
1877leave_media_alone:
1878        if (vortex_debug > 2)
1879          pr_debug("%s: Media selection timer finished, %s.\n",
1880                         dev->name, media_tbl[dev->if_port].name);
1881
1882        mod_timer(&vp->timer, RUN_AT(next_tick));
1883        if (vp->deferred)
1884                iowrite16(FakeIntr, ioaddr + EL3_CMD);
1885}
1886
1887static void vortex_tx_timeout(struct net_device *dev)
1888{
1889        struct vortex_private *vp = netdev_priv(dev);
1890        void __iomem *ioaddr = vp->ioaddr;
1891
1892        pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1893                   dev->name, ioread8(ioaddr + TxStatus),
1894                   ioread16(ioaddr + EL3_STATUS));
1895        pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1896                        window_read16(vp, 4, Wn4_NetDiag),
1897                        window_read16(vp, 4, Wn4_Media),
1898                        ioread32(ioaddr + PktStatus),
1899                        window_read16(vp, 4, Wn4_FIFODiag));
1900        /* Slight code bloat to be user friendly. */
1901        if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1902                pr_err("%s: Transmitter encountered 16 collisions --"
1903                           " network cable problem?\n", dev->name);
1904        if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1905                pr_err("%s: Interrupt posted but not delivered --"
1906                           " IRQ blocked by another device?\n", dev->name);
1907                /* Bad idea here.. but we might as well handle a few events. */
1908                {
1909                        /*
1910                         * Block interrupts because vortex_interrupt does a bare spin_lock()
1911                         */
1912                        unsigned long flags;
1913                        local_irq_save(flags);
1914                        if (vp->full_bus_master_tx)
1915                                boomerang_interrupt(dev->irq, dev);
1916                        else
1917                                vortex_interrupt(dev->irq, dev);
1918                        local_irq_restore(flags);
1919                }
1920        }
1921
1922        if (vortex_debug > 0)
1923                dump_tx_ring(dev);
1924
1925        issue_and_wait(dev, TxReset);
1926
1927        dev->stats.tx_errors++;
1928        if (vp->full_bus_master_tx) {
1929                pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1930                if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1931                        iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1932                                 ioaddr + DownListPtr);
1933                if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1934                        netif_wake_queue (dev);
1935                        netdev_reset_queue (dev);
1936                }
1937                if (vp->drv_flags & IS_BOOMERANG)
1938                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1939                iowrite16(DownUnstall, ioaddr + EL3_CMD);
1940        } else {
1941                dev->stats.tx_dropped++;
1942                netif_wake_queue(dev);
1943                netdev_reset_queue(dev);
1944        }
1945        /* Issue Tx Enable */
1946        iowrite16(TxEnable, ioaddr + EL3_CMD);
1947        netif_trans_update(dev); /* prevent tx timeout */
1948}
1949
1950/*
1951 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1952 * the cache impact.
1953 */
1954static void
1955vortex_error(struct net_device *dev, int status)
1956{
1957        struct vortex_private *vp = netdev_priv(dev);
1958        void __iomem *ioaddr = vp->ioaddr;
1959        int do_tx_reset = 0, reset_mask = 0;
1960        unsigned char tx_status = 0;
1961
1962        if (vortex_debug > 2) {
1963                pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1964        }
1965
1966        if (status & TxComplete) {                      /* Really "TxError" for us. */
1967                tx_status = ioread8(ioaddr + TxStatus);
1968                /* Presumably a tx-timeout. We must merely re-enable. */
1969                if (vortex_debug > 2 ||
1970                    (tx_status != 0x88 && vortex_debug > 0)) {
1971                        pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1972                                   dev->name, tx_status);
1973                        if (tx_status == 0x82) {
1974                                pr_err("Probably a duplex mismatch.  See "
1975                                                "Documentation/networking/vortex.txt\n");
1976                        }
1977                        dump_tx_ring(dev);
1978                }
1979                if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1980                if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1981                if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1982                iowrite8(0, ioaddr + TxStatus);
1983                if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1984                        do_tx_reset = 1;
1985                } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1986                        do_tx_reset = 1;
1987                        reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1988                } else {                                /* Merely re-enable the transmitter. */
1989                        iowrite16(TxEnable, ioaddr + EL3_CMD);
1990                }
1991        }
1992
1993        if (status & RxEarly)                           /* Rx early is unused. */
1994                iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1995
1996        if (status & StatsFull) {                       /* Empty statistics. */
1997                static int DoneDidThat;
1998                if (vortex_debug > 4)
1999                        pr_debug("%s: Updating stats.\n", dev->name);
2000                update_stats(ioaddr, dev);
2001                /* HACK: Disable statistics as an interrupt source. */
2002                /* This occurs when we have the wrong media type! */
2003                if (DoneDidThat == 0  &&
2004                        ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2005                        pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2006                                dev->name);
2007                        iowrite16(SetIntrEnb |
2008                                  (window_read16(vp, 5, 10) & ~StatsFull),
2009                                  ioaddr + EL3_CMD);
2010                        vp->intr_enable &= ~StatsFull;
2011                        DoneDidThat++;
2012                }
2013        }
2014        if (status & IntReq) {          /* Restore all interrupt sources.  */
2015                iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2016                iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2017        }
2018        if (status & HostError) {
2019                u16 fifo_diag;
2020                fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2021                pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2022                           dev->name, fifo_diag);
2023                /* Adapter failure requires Tx/Rx reset and reinit. */
2024                if (vp->full_bus_master_tx) {
2025                        int bus_status = ioread32(ioaddr + PktStatus);
2026                        /* 0x80000000 PCI master abort. */
2027                        /* 0x40000000 PCI target abort. */
2028                        if (vortex_debug)
2029                                pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2030
2031                        /* In this case, blow the card away */
2032                        /* Must not enter D3 or we can't legally issue the reset! */
2033                        vortex_down(dev, 0);
2034                        issue_and_wait(dev, TotalReset | 0xff);
2035                        vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2036                } else if (fifo_diag & 0x0400)
2037                        do_tx_reset = 1;
2038                if (fifo_diag & 0x3000) {
2039                        /* Reset Rx fifo and upload logic */
2040                        issue_and_wait(dev, RxReset|0x07);
2041                        /* Set the Rx filter to the current state. */
2042                        set_rx_mode(dev);
2043                        /* enable 802.1q VLAN tagged frames */
2044                        set_8021q_mode(dev, 1);
2045                        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2046                        iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2047                }
2048        }
2049
2050        if (do_tx_reset) {
2051                issue_and_wait(dev, TxReset|reset_mask);
2052                iowrite16(TxEnable, ioaddr + EL3_CMD);
2053                if (!vp->full_bus_master_tx)
2054                        netif_wake_queue(dev);
2055        }
2056}
2057
2058static netdev_tx_t
2059vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2060{
2061        struct vortex_private *vp = netdev_priv(dev);
2062        void __iomem *ioaddr = vp->ioaddr;
2063        int skblen = skb->len;
2064
2065        /* Put out the doubleword header... */
2066        iowrite32(skb->len, ioaddr + TX_FIFO);
2067        if (vp->bus_master) {
2068                /* Set the bus-master controller to transfer the packet. */
2069                int len = (skb->len + 3) & ~3;
2070                vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2071                                                PCI_DMA_TODEVICE);
2072                spin_lock_irq(&vp->window_lock);
2073                window_set(vp, 7);
2074                iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2075                iowrite16(len, ioaddr + Wn7_MasterLen);
2076                spin_unlock_irq(&vp->window_lock);
2077                vp->tx_skb = skb;
2078                skb_tx_timestamp(skb);
2079                iowrite16(StartDMADown, ioaddr + EL3_CMD);
2080                /* netif_wake_queue() will be called at the DMADone interrupt. */
2081        } else {
2082                /* ... and the packet rounded to a doubleword. */
2083                skb_tx_timestamp(skb);
2084                iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2085                dev_consume_skb_any (skb);
2086                if (ioread16(ioaddr + TxFree) > 1536) {
2087                        netif_start_queue (dev);        /* AKPM: redundant? */
2088                } else {
2089                        /* Interrupt us when the FIFO has room for max-sized packet. */
2090                        netif_stop_queue(dev);
2091                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2092                }
2093        }
2094
2095        netdev_sent_queue(dev, skblen);
2096
2097        /* Clear the Tx status stack. */
2098        {
2099                int tx_status;
2100                int i = 32;
2101
2102                while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2103                        if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2104                                if (vortex_debug > 2)
2105                                  pr_debug("%s: Tx error, status %2.2x.\n",
2106                                                 dev->name, tx_status);
2107                                if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2108                                if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2109                                if (tx_status & 0x30) {
2110                                        issue_and_wait(dev, TxReset);
2111                                }
2112                                iowrite16(TxEnable, ioaddr + EL3_CMD);
2113                        }
2114                        iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2115                }
2116        }
2117        return NETDEV_TX_OK;
2118}
2119
2120static netdev_tx_t
2121boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2122{
2123        struct vortex_private *vp = netdev_priv(dev);
2124        void __iomem *ioaddr = vp->ioaddr;
2125        /* Calculate the next Tx descriptor entry. */
2126        int entry = vp->cur_tx % TX_RING_SIZE;
2127        int skblen = skb->len;
2128        struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2129        unsigned long flags;
2130        dma_addr_t dma_addr;
2131
2132        if (vortex_debug > 6) {
2133                pr_debug("boomerang_start_xmit()\n");
2134                pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135                           dev->name, vp->cur_tx);
2136        }
2137
2138        /*
2139         * We can't allow a recursion from our interrupt handler back into the
2140         * tx routine, as they take the same spin lock, and that causes
2141         * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142         * a bit
2143         */
2144        if (vp->handling_irq)
2145                return NETDEV_TX_BUSY;
2146
2147        if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148                if (vortex_debug > 0)
2149                        pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2150                                dev->name);
2151                netif_stop_queue(dev);
2152                return NETDEV_TX_BUSY;
2153        }
2154
2155        vp->tx_skbuff[entry] = skb;
2156
2157        vp->tx_ring[entry].next = 0;
2158#if DO_ZEROCOPY
2159        if (skb->ip_summed != CHECKSUM_PARTIAL)
2160                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161        else
2162                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163
2164        if (!skb_shinfo(skb)->nr_frags) {
2165                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2166                                          PCI_DMA_TODEVICE);
2167                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2168                        goto out_dma_err;
2169
2170                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2172        } else {
2173                int i;
2174
2175                dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2176                                          skb_headlen(skb), PCI_DMA_TODEVICE);
2177                if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2178                        goto out_dma_err;
2179
2180                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2181                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2182
2183                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2184                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2185
2186                        dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2187                                                    0,
2188                                                    frag->size,
2189                                                    DMA_TO_DEVICE);
2190                        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2191                                for(i = i-1; i >= 0; i--)
2192                                        dma_unmap_page(&VORTEX_PCI(vp)->dev,
2193                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2194                                                       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2195                                                       DMA_TO_DEVICE);
2196
2197                                pci_unmap_single(VORTEX_PCI(vp),
2198                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2199                                                 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2200                                                 PCI_DMA_TODEVICE);
2201
2202                                goto out_dma_err;
2203                        }
2204
2205                        vp->tx_ring[entry].frag[i+1].addr =
2206                                                cpu_to_le32(dma_addr);
2207
2208                        if (i == skb_shinfo(skb)->nr_frags-1)
2209                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2210                        else
2211                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2212                }
2213        }
2214#else
2215        dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2216        if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2217                goto out_dma_err;
2218        vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2219        vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2220        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2221#endif
2222
2223        spin_lock_irqsave(&vp->lock, flags);
2224        /* Wait for the stall to complete. */
2225        issue_and_wait(dev, DownStall);
2226        prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2227        if (ioread32(ioaddr + DownListPtr) == 0) {
2228                iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2229                vp->queued_packet++;
2230        }
2231
2232        vp->cur_tx++;
2233        netdev_sent_queue(dev, skblen);
2234
2235        if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2236                netif_stop_queue (dev);
2237        } else {                                        /* Clear previous interrupt enable. */
2238#if defined(tx_interrupt_mitigation)
2239                /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2240                 * were selected, this would corrupt DN_COMPLETE. No?
2241                 */
2242                prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2243#endif
2244        }
2245        skb_tx_timestamp(skb);
2246        iowrite16(DownUnstall, ioaddr + EL3_CMD);
2247        spin_unlock_irqrestore(&vp->lock, flags);
2248out:
2249        return NETDEV_TX_OK;
2250out_dma_err:
2251        dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2252        goto out;
2253}
2254
2255/* The interrupt handler does all of the Rx thread work and cleans up
2256   after the Tx thread. */
2257
2258/*
2259 * This is the ISR for the vortex series chips.
2260 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2261 */
2262
2263static irqreturn_t
2264vortex_interrupt(int irq, void *dev_id)
2265{
2266        struct net_device *dev = dev_id;
2267        struct vortex_private *vp = netdev_priv(dev);
2268        void __iomem *ioaddr;
2269        int status;
2270        int work_done = max_interrupt_work;
2271        int handled = 0;
2272        unsigned int bytes_compl = 0, pkts_compl = 0;
2273
2274        ioaddr = vp->ioaddr;
2275        spin_lock(&vp->lock);
2276
2277        status = ioread16(ioaddr + EL3_STATUS);
2278
2279        if (vortex_debug > 6)
2280                pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2281
2282        if ((status & IntLatch) == 0)
2283                goto handler_exit;              /* No interrupt: shared IRQs cause this */
2284        handled = 1;
2285
2286        if (status & IntReq) {
2287                status |= vp->deferred;
2288                vp->deferred = 0;
2289        }
2290
2291        if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2292                goto handler_exit;
2293
2294        if (vortex_debug > 4)
2295                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2296                           dev->name, status, ioread8(ioaddr + Timer));
2297
2298        spin_lock(&vp->window_lock);
2299        window_set(vp, 7);
2300
2301        do {
2302                if (vortex_debug > 5)
2303                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2304                                           dev->name, status);
2305                if (status & RxComplete)
2306                        vortex_rx(dev);
2307
2308                if (status & TxAvailable) {
2309                        if (vortex_debug > 5)
2310                                pr_debug("      TX room bit was handled.\n");
2311                        /* There's room in the FIFO for a full-sized packet. */
2312                        iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2313                        netif_wake_queue (dev);
2314                }
2315
2316                if (status & DMADone) {
2317                        if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2318                                iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2319                                pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2320                                pkts_compl++;
2321                                bytes_compl += vp->tx_skb->len;
2322                                dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2323                                if (ioread16(ioaddr + TxFree) > 1536) {
2324                                        /*
2325                                         * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2326                                         * insufficient FIFO room, the TxAvailable test will succeed and call
2327                                         * netif_wake_queue()
2328                                         */
2329                                        netif_wake_queue(dev);
2330                                } else { /* Interrupt when FIFO has room for max-sized packet. */
2331                                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2332                                        netif_stop_queue(dev);
2333                                }
2334                        }
2335                }
2336                /* Check for all uncommon interrupts at once. */
2337                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2338                        if (status == 0xffff)
2339                                break;
2340                        if (status & RxEarly)
2341                                vortex_rx(dev);
2342                        spin_unlock(&vp->window_lock);
2343                        vortex_error(dev, status);
2344                        spin_lock(&vp->window_lock);
2345                        window_set(vp, 7);
2346                }
2347
2348                if (--work_done < 0) {
2349                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2350                                dev->name, status);
2351                        /* Disable all pending interrupts. */
2352                        do {
2353                                vp->deferred |= status;
2354                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2355                                         ioaddr + EL3_CMD);
2356                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2357                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2358                        /* The timer will reenable interrupts. */
2359                        mod_timer(&vp->timer, jiffies + 1*HZ);
2360                        break;
2361                }
2362                /* Acknowledge the IRQ. */
2363                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2364        } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2365
2366        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2367        spin_unlock(&vp->window_lock);
2368
2369        if (vortex_debug > 4)
2370                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2371                           dev->name, status);
2372handler_exit:
2373        spin_unlock(&vp->lock);
2374        return IRQ_RETVAL(handled);
2375}
2376
2377/*
2378 * This is the ISR for the boomerang series chips.
2379 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2380 */
2381
2382static irqreturn_t
2383boomerang_interrupt(int irq, void *dev_id)
2384{
2385        struct net_device *dev = dev_id;
2386        struct vortex_private *vp = netdev_priv(dev);
2387        void __iomem *ioaddr;
2388        int status;
2389        int work_done = max_interrupt_work;
2390        int handled = 0;
2391        unsigned int bytes_compl = 0, pkts_compl = 0;
2392
2393        ioaddr = vp->ioaddr;
2394
2395
2396        /*
2397         * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2398         * and boomerang_start_xmit
2399         */
2400        spin_lock(&vp->lock);
2401        vp->handling_irq = 1;
2402
2403        status = ioread16(ioaddr + EL3_STATUS);
2404
2405        if (vortex_debug > 6)
2406                pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2407
2408        if ((status & IntLatch) == 0)
2409                goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2410        handled = 1;
2411
2412        if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2413                if (vortex_debug > 1)
2414                        pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2415                goto handler_exit;
2416        }
2417
2418        if (status & IntReq) {
2419                status |= vp->deferred;
2420                vp->deferred = 0;
2421        }
2422
2423        if (vortex_debug > 4)
2424                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2425                           dev->name, status, ioread8(ioaddr + Timer));
2426        do {
2427                if (vortex_debug > 5)
2428                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2429                                           dev->name, status);
2430                if (status & UpComplete) {
2431                        iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2432                        if (vortex_debug > 5)
2433                                pr_debug("boomerang_interrupt->boomerang_rx\n");
2434                        boomerang_rx(dev);
2435                }
2436
2437                if (status & DownComplete) {
2438                        unsigned int dirty_tx = vp->dirty_tx;
2439
2440                        iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2441                        while (vp->cur_tx - dirty_tx > 0) {
2442                                int entry = dirty_tx % TX_RING_SIZE;
2443#if 1   /* AKPM: the latter is faster, but cyclone-only */
2444                                if (ioread32(ioaddr + DownListPtr) ==
2445                                        vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2446                                        break;                  /* It still hasn't been processed. */
2447#else
2448                                if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2449                                        break;                  /* It still hasn't been processed. */
2450#endif
2451
2452                                if (vp->tx_skbuff[entry]) {
2453                                        struct sk_buff *skb = vp->tx_skbuff[entry];
2454#if DO_ZEROCOPY
2455                                        int i;
2456                                        pci_unmap_single(VORTEX_PCI(vp),
2457                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2458                                                        le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2459                                                        PCI_DMA_TODEVICE);
2460
2461                                        for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2462                                                        pci_unmap_page(VORTEX_PCI(vp),
2463                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2464                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2465                                                                                         PCI_DMA_TODEVICE);
2466#else
2467                                        pci_unmap_single(VORTEX_PCI(vp),
2468                                                le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2469#endif
2470                                        pkts_compl++;
2471                                        bytes_compl += skb->len;
2472                                        dev_kfree_skb_irq(skb);
2473                                        vp->tx_skbuff[entry] = NULL;
2474                                } else {
2475                                        pr_debug("boomerang_interrupt: no skb!\n");
2476                                }
2477                                /* dev->stats.tx_packets++;  Counted below. */
2478                                dirty_tx++;
2479                        }
2480                        vp->dirty_tx = dirty_tx;
2481                        if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2482                                if (vortex_debug > 6)
2483                                        pr_debug("boomerang_interrupt: wake queue\n");
2484                                netif_wake_queue (dev);
2485                        }
2486                }
2487
2488                /* Check for all uncommon interrupts at once. */
2489                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2490                        vortex_error(dev, status);
2491
2492                if (--work_done < 0) {
2493                        pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2494                                dev->name, status);
2495                        /* Disable all pending interrupts. */
2496                        do {
2497                                vp->deferred |= status;
2498                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2499                                         ioaddr + EL3_CMD);
2500                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2501                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2502                        /* The timer will reenable interrupts. */
2503                        mod_timer(&vp->timer, jiffies + 1*HZ);
2504                        break;
2505                }
2506                /* Acknowledge the IRQ. */
2507                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2508                if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2509                        iowrite32(0x8000, vp->cb_fn_base + 4);
2510
2511        } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2512        netdev_completed_queue(dev, pkts_compl, bytes_compl);
2513
2514        if (vortex_debug > 4)
2515                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2516                           dev->name, status);
2517handler_exit:
2518        vp->handling_irq = 0;
2519        spin_unlock(&vp->lock);
2520        return IRQ_RETVAL(handled);
2521}
2522
2523static int vortex_rx(struct net_device *dev)
2524{
2525        struct vortex_private *vp = netdev_priv(dev);
2526        void __iomem *ioaddr = vp->ioaddr;
2527        int i;
2528        short rx_status;
2529
2530        if (vortex_debug > 5)
2531                pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2532                           ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2533        while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2534                if (rx_status & 0x4000) { /* Error, update stats. */
2535                        unsigned char rx_error = ioread8(ioaddr + RxErrors);
2536                        if (vortex_debug > 2)
2537                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2538                        dev->stats.rx_errors++;
2539                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2540                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2541                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2542                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2543                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2544                } else {
2545                        /* The packet length: up to 4.5K!. */
2546                        int pkt_len = rx_status & 0x1fff;
2547                        struct sk_buff *skb;
2548
2549                        skb = netdev_alloc_skb(dev, pkt_len + 5);
2550                        if (vortex_debug > 4)
2551                                pr_debug("Receiving packet size %d status %4.4x.\n",
2552                                           pkt_len, rx_status);
2553                        if (skb != NULL) {
2554                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2555                                /* 'skb_put()' points to the start of sk_buff data area. */
2556                                if (vp->bus_master &&
2557                                        ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2558                                        dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2559                                                                           pkt_len, PCI_DMA_FROMDEVICE);
2560                                        iowrite32(dma, ioaddr + Wn7_MasterAddr);
2561                                        iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2562                                        iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2563                                        while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2564                                                ;
2565                                        pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2566                                } else {
2567                                        ioread32_rep(ioaddr + RX_FIFO,
2568                                                     skb_put(skb, pkt_len),
2569                                                     (pkt_len + 3) >> 2);
2570                                }
2571                                iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2572                                skb->protocol = eth_type_trans(skb, dev);
2573                                netif_rx(skb);
2574                                dev->stats.rx_packets++;
2575                                /* Wait a limited time to go to next packet. */
2576                                for (i = 200; i >= 0; i--)
2577                                        if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2578                                                break;
2579                                continue;
2580                        } else if (vortex_debug > 0)
2581                                pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2582                                        dev->name, pkt_len);
2583                        dev->stats.rx_dropped++;
2584                }
2585                issue_and_wait(dev, RxDiscard);
2586        }
2587
2588        return 0;
2589}
2590
2591static int
2592boomerang_rx(struct net_device *dev)
2593{
2594        struct vortex_private *vp = netdev_priv(dev);
2595        int entry = vp->cur_rx % RX_RING_SIZE;
2596        void __iomem *ioaddr = vp->ioaddr;
2597        int rx_status;
2598        int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2599
2600        if (vortex_debug > 5)
2601                pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2602
2603        while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2604                if (--rx_work_limit < 0)
2605                        break;
2606                if (rx_status & RxDError) { /* Error, update stats. */
2607                        unsigned char rx_error = rx_status >> 16;
2608                        if (vortex_debug > 2)
2609                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2610                        dev->stats.rx_errors++;
2611                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2612                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2613                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2614                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2615                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2616                } else {
2617                        /* The packet length: up to 4.5K!. */
2618                        int pkt_len = rx_status & 0x1fff;
2619                        struct sk_buff *skb;
2620                        dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621
2622                        if (vortex_debug > 4)
2623                                pr_debug("Receiving packet size %d status %4.4x.\n",
2624                                           pkt_len, rx_status);
2625
2626                        /* Check if the packet is long enough to just accept without
2627                           copying to a properly sized skbuff. */
2628                        if (pkt_len < rx_copybreak &&
2629                            (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2631                                pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2632                                /* 'skb_put()' points to the start of sk_buff data area. */
2633                                memcpy(skb_put(skb, pkt_len),
2634                                           vp->rx_skbuff[entry]->data,
2635                                           pkt_len);
2636                                pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2637                                vp->rx_copy++;
2638                        } else {
2639                                /* Pass up the skbuff already on the Rx ring. */
2640                                skb = vp->rx_skbuff[entry];
2641                                vp->rx_skbuff[entry] = NULL;
2642                                skb_put(skb, pkt_len);
2643                                pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2644                                vp->rx_nocopy++;
2645                        }
2646                        skb->protocol = eth_type_trans(skb, dev);
2647                        {                                       /* Use hardware checksum info. */
2648                                int csum_bits = rx_status & 0xee000000;
2649                                if (csum_bits &&
2650                                        (csum_bits == (IPChksumValid | TCPChksumValid) ||
2651                                         csum_bits == (IPChksumValid | UDPChksumValid))) {
2652                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2653                                        vp->rx_csumhits++;
2654                                }
2655                        }
2656                        netif_rx(skb);
2657                        dev->stats.rx_packets++;
2658                }
2659                entry = (++vp->cur_rx) % RX_RING_SIZE;
2660        }
2661        /* Refill the Rx ring buffers. */
2662        for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2663                struct sk_buff *skb;
2664                entry = vp->dirty_rx % RX_RING_SIZE;
2665                if (vp->rx_skbuff[entry] == NULL) {
2666                        skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2667                        if (skb == NULL) {
2668                                static unsigned long last_jif;
2669                                if (time_after(jiffies, last_jif + 10 * HZ)) {
2670                                        pr_warn("%s: memory shortage\n",
2671                                                dev->name);
2672                                        last_jif = jiffies;
2673                                }
2674                                if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2675                                        mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2676                                break;                  /* Bad news!  */
2677                        }
2678
2679                        vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2680                        vp->rx_skbuff[entry] = skb;
2681                }
2682                vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2683                iowrite16(UpUnstall, ioaddr + EL3_CMD);
2684        }
2685        return 0;
2686}
2687
2688/*
2689 * If we've hit a total OOM refilling the Rx ring we poll once a second
2690 * for some memory.  Otherwise there is no way to restart the rx process.
2691 */
2692static void
2693rx_oom_timer(unsigned long arg)
2694{
2695        struct net_device *dev = (struct net_device *)arg;
2696        struct vortex_private *vp = netdev_priv(dev);
2697
2698        spin_lock_irq(&vp->lock);
2699        if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2700                boomerang_rx(dev);
2701        if (vortex_debug > 1) {
2702                pr_debug("%s: rx_oom_timer %s\n", dev->name,
2703                        ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2704        }
2705        spin_unlock_irq(&vp->lock);
2706}
2707
2708static void
2709vortex_down(struct net_device *dev, int final_down)
2710{
2711        struct vortex_private *vp = netdev_priv(dev);
2712        void __iomem *ioaddr = vp->ioaddr;
2713
2714        netdev_reset_queue(dev);
2715        netif_stop_queue(dev);
2716
2717        del_timer_sync(&vp->rx_oom_timer);
2718        del_timer_sync(&vp->timer);
2719
2720        /* Turn off statistics ASAP.  We update dev->stats below. */
2721        iowrite16(StatsDisable, ioaddr + EL3_CMD);
2722
2723        /* Disable the receiver and transmitter. */
2724        iowrite16(RxDisable, ioaddr + EL3_CMD);
2725        iowrite16(TxDisable, ioaddr + EL3_CMD);
2726
2727        /* Disable receiving 802.1q tagged frames */
2728        set_8021q_mode(dev, 0);
2729
2730        if (dev->if_port == XCVR_10base2)
2731                /* Turn off thinnet power.  Green! */
2732                iowrite16(StopCoax, ioaddr + EL3_CMD);
2733
2734        iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2735
2736        update_stats(ioaddr, dev);
2737        if (vp->full_bus_master_rx)
2738                iowrite32(0, ioaddr + UpListPtr);
2739        if (vp->full_bus_master_tx)
2740                iowrite32(0, ioaddr + DownListPtr);
2741
2742        if (final_down && VORTEX_PCI(vp)) {
2743                vp->pm_state_valid = 1;
2744                pci_save_state(VORTEX_PCI(vp));
2745                acpi_set_WOL(dev);
2746        }
2747}
2748
2749static int
2750vortex_close(struct net_device *dev)
2751{
2752        struct vortex_private *vp = netdev_priv(dev);
2753        void __iomem *ioaddr = vp->ioaddr;
2754        int i;
2755
2756        if (netif_device_present(dev))
2757                vortex_down(dev, 1);
2758
2759        if (vortex_debug > 1) {
2760                pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2761                           dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2762                pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2763                           " tx_queued %d Rx pre-checksummed %d.\n",
2764                           dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2765        }
2766
2767#if DO_ZEROCOPY
2768        if (vp->rx_csumhits &&
2769            (vp->drv_flags & HAS_HWCKSM) == 0 &&
2770            (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2771                pr_warn("%s supports hardware checksums, and we're not using them!\n",
2772                        dev->name);
2773        }
2774#endif
2775
2776        free_irq(dev->irq, dev);
2777
2778        if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2779                for (i = 0; i < RX_RING_SIZE; i++)
2780                        if (vp->rx_skbuff[i]) {
2781                                pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2782                                                                        PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2783                                dev_kfree_skb(vp->rx_skbuff[i]);
2784                                vp->rx_skbuff[i] = NULL;
2785                        }
2786        }
2787        if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2788                for (i = 0; i < TX_RING_SIZE; i++) {
2789                        if (vp->tx_skbuff[i]) {
2790                                struct sk_buff *skb = vp->tx_skbuff[i];
2791#if DO_ZEROCOPY
2792                                int k;
2793
2794                                for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2795                                                pci_unmap_single(VORTEX_PCI(vp),
2796                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2797                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2798                                                                                 PCI_DMA_TODEVICE);
2799#else
2800                                pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2801#endif
2802                                dev_kfree_skb(skb);
2803                                vp->tx_skbuff[i] = NULL;
2804                        }
2805                }
2806        }
2807
2808        return 0;
2809}
2810
2811static void
2812dump_tx_ring(struct net_device *dev)
2813{
2814        if (vortex_debug > 0) {
2815        struct vortex_private *vp = netdev_priv(dev);
2816                void __iomem *ioaddr = vp->ioaddr;
2817
2818                if (vp->full_bus_master_tx) {
2819                        int i;
2820                        int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2821
2822                        pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2823                                        vp->full_bus_master_tx,
2824                                        vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2825                                        vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2826                        pr_err("  Transmit list %8.8x vs. %p.\n",
2827                                   ioread32(ioaddr + DownListPtr),
2828                                   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2829                        issue_and_wait(dev, DownStall);
2830                        for (i = 0; i < TX_RING_SIZE; i++) {
2831                                unsigned int length;
2832
2833#if DO_ZEROCOPY
2834                                length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2835#else
2836                                length = le32_to_cpu(vp->tx_ring[i].length);
2837#endif
2838                                pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2839                                           i, &vp->tx_ring[i], length,
2840                                           le32_to_cpu(vp->tx_ring[i].status));
2841                        }
2842                        if (!stalled)
2843                                iowrite16(DownUnstall, ioaddr + EL3_CMD);
2844                }
2845        }
2846}
2847
2848static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2849{
2850        struct vortex_private *vp = netdev_priv(dev);
2851        void __iomem *ioaddr = vp->ioaddr;
2852        unsigned long flags;
2853
2854        if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2855                spin_lock_irqsave (&vp->lock, flags);
2856                update_stats(ioaddr, dev);
2857                spin_unlock_irqrestore (&vp->lock, flags);
2858        }
2859        return &dev->stats;
2860}
2861
2862/*  Update statistics.
2863        Unlike with the EL3 we need not worry about interrupts changing
2864        the window setting from underneath us, but we must still guard
2865        against a race condition with a StatsUpdate interrupt updating the
2866        table.  This is done by checking that the ASM (!) code generated uses
2867        atomic updates with '+='.
2868        */
2869static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2870{
2871        struct vortex_private *vp = netdev_priv(dev);
2872
2873        /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2874        /* Switch to the stats window, and read everything. */
2875        dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2876        dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2877        dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2878        dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2879        dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2880        dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2881                                                    0x30) << 4;
2882        /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2883        /* Don't bother with register 9, an extension of registers 6&7.
2884           If we do use the 6&7 values the atomic update assumption above
2885           is invalid. */
2886        dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2887        dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2888        /* Extra stats for get_ethtool_stats() */
2889        vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2890        vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2891        vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2892        vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2893
2894        dev->stats.collisions = vp->xstats.tx_multiple_collisions
2895                + vp->xstats.tx_single_collisions
2896                + vp->xstats.tx_max_collisions;
2897
2898        {
2899                u8 up = window_read8(vp, 4, 13);
2900                dev->stats.rx_bytes += (up & 0x0f) << 16;
2901                dev->stats.tx_bytes += (up & 0xf0) << 12;
2902        }
2903}
2904
2905static int vortex_nway_reset(struct net_device *dev)
2906{
2907        struct vortex_private *vp = netdev_priv(dev);
2908
2909        return mii_nway_restart(&vp->mii);
2910}
2911
2912static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2913{
2914        struct vortex_private *vp = netdev_priv(dev);
2915
2916        return mii_ethtool_gset(&vp->mii, cmd);
2917}
2918
2919static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2920{
2921        struct vortex_private *vp = netdev_priv(dev);
2922
2923        return mii_ethtool_sset(&vp->mii, cmd);
2924}
2925
2926static u32 vortex_get_msglevel(struct net_device *dev)
2927{
2928        return vortex_debug;
2929}
2930
2931static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2932{
2933        vortex_debug = dbg;
2934}
2935
2936static int vortex_get_sset_count(struct net_device *dev, int sset)
2937{
2938        switch (sset) {
2939        case ETH_SS_STATS:
2940                return VORTEX_NUM_STATS;
2941        default:
2942                return -EOPNOTSUPP;
2943        }
2944}
2945
2946static void vortex_get_ethtool_stats(struct net_device *dev,
2947        struct ethtool_stats *stats, u64 *data)
2948{
2949        struct vortex_private *vp = netdev_priv(dev);
2950        void __iomem *ioaddr = vp->ioaddr;
2951        unsigned long flags;
2952
2953        spin_lock_irqsave(&vp->lock, flags);
2954        update_stats(ioaddr, dev);
2955        spin_unlock_irqrestore(&vp->lock, flags);
2956
2957        data[0] = vp->xstats.tx_deferred;
2958        data[1] = vp->xstats.tx_max_collisions;
2959        data[2] = vp->xstats.tx_multiple_collisions;
2960        data[3] = vp->xstats.tx_single_collisions;
2961        data[4] = vp->xstats.rx_bad_ssd;
2962}
2963
2964
2965static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2966{
2967        switch (stringset) {
2968        case ETH_SS_STATS:
2969                memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2970                break;
2971        default:
2972                WARN_ON(1);
2973                break;
2974        }
2975}
2976
2977static void vortex_get_drvinfo(struct net_device *dev,
2978                                        struct ethtool_drvinfo *info)
2979{
2980        struct vortex_private *vp = netdev_priv(dev);
2981
2982        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2983        if (VORTEX_PCI(vp)) {
2984                strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2985                        sizeof(info->bus_info));
2986        } else {
2987                if (VORTEX_EISA(vp))
2988                        strlcpy(info->bus_info, dev_name(vp->gendev),
2989                                sizeof(info->bus_info));
2990                else
2991                        snprintf(info->bus_info, sizeof(info->bus_info),
2992                                "EISA 0x%lx %d", dev->base_addr, dev->irq);
2993        }
2994}
2995
2996static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997{
2998        struct vortex_private *vp = netdev_priv(dev);
2999
3000        if (!VORTEX_PCI(vp))
3001                return;
3002
3003        wol->supported = WAKE_MAGIC;
3004
3005        wol->wolopts = 0;
3006        if (vp->enable_wol)
3007                wol->wolopts |= WAKE_MAGIC;
3008}
3009
3010static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3011{
3012        struct vortex_private *vp = netdev_priv(dev);
3013
3014        if (!VORTEX_PCI(vp))
3015                return -EOPNOTSUPP;
3016
3017        if (wol->wolopts & ~WAKE_MAGIC)
3018                return -EINVAL;
3019
3020        if (wol->wolopts & WAKE_MAGIC)
3021                vp->enable_wol = 1;
3022        else
3023                vp->enable_wol = 0;
3024        acpi_set_WOL(dev);
3025
3026        return 0;
3027}
3028
3029static const struct ethtool_ops vortex_ethtool_ops = {
3030        .get_drvinfo            = vortex_get_drvinfo,
3031        .get_strings            = vortex_get_strings,
3032        .get_msglevel           = vortex_get_msglevel,
3033        .set_msglevel           = vortex_set_msglevel,
3034        .get_ethtool_stats      = vortex_get_ethtool_stats,
3035        .get_sset_count         = vortex_get_sset_count,
3036        .get_settings           = vortex_get_settings,
3037        .set_settings           = vortex_set_settings,
3038        .get_link               = ethtool_op_get_link,
3039        .nway_reset             = vortex_nway_reset,
3040        .get_wol                = vortex_get_wol,
3041        .set_wol                = vortex_set_wol,
3042        .get_ts_info            = ethtool_op_get_ts_info,
3043};
3044
3045#ifdef CONFIG_PCI
3046/*
3047 *      Must power the device up to do MDIO operations
3048 */
3049static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050{
3051        int err;
3052        struct vortex_private *vp = netdev_priv(dev);
3053        pci_power_t state = 0;
3054
3055        if(VORTEX_PCI(vp))
3056                state = VORTEX_PCI(vp)->current_state;
3057
3058        /* The kernel core really should have pci_get_power_state() */
3059
3060        if(state != 0)
3061                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3062        err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3063        if(state != 0)
3064                pci_set_power_state(VORTEX_PCI(vp), state);
3065
3066        return err;
3067}
3068#endif
3069
3070
3071/* Pre-Cyclone chips have no documented multicast filter, so the only
3072   multicast setting is to receive all multicast frames.  At least
3073   the chip has a very clean way to set the mode, unlike many others. */
3074static void set_rx_mode(struct net_device *dev)
3075{
3076        struct vortex_private *vp = netdev_priv(dev);
3077        void __iomem *ioaddr = vp->ioaddr;
3078        int new_mode;
3079
3080        if (dev->flags & IFF_PROMISC) {
3081                if (vortex_debug > 3)
3082                        pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3083                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3084        } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3085                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3086        } else
3087                new_mode = SetRxFilter | RxStation | RxBroadcast;
3088
3089        iowrite16(new_mode, ioaddr + EL3_CMD);
3090}
3091
3092#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3093/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3094   Note that this must be done after each RxReset due to some backwards
3095   compatibility logic in the Cyclone and Tornado ASICs */
3096
3097/* The Ethernet Type used for 802.1q tagged frames */
3098#define VLAN_ETHER_TYPE 0x8100
3099
3100static void set_8021q_mode(struct net_device *dev, int enable)
3101{
3102        struct vortex_private *vp = netdev_priv(dev);
3103        int mac_ctrl;
3104
3105        if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3106                /* cyclone and tornado chipsets can recognize 802.1q
3107                 * tagged frames and treat them correctly */
3108
3109                int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3110                if (enable)
3111                        max_pkt_size += 4;      /* 802.1Q VLAN tag */
3112
3113                window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3114
3115                /* set VlanEtherType to let the hardware checksumming
3116                   treat tagged frames correctly */
3117                window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3118        } else {
3119                /* on older cards we have to enable large frames */
3120
3121                vp->large_frames = dev->mtu > 1500 || enable;
3122
3123                mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3124                if (vp->large_frames)
3125                        mac_ctrl |= 0x40;
3126                else
3127                        mac_ctrl &= ~0x40;
3128                window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3129        }
3130}
3131#else
3132
3133static void set_8021q_mode(struct net_device *dev, int enable)
3134{
3135}
3136
3137
3138#endif
3139
3140/* MII transceiver control section.
3141   Read and write the MII registers using software-generated serial
3142   MDIO protocol.  See the MII specifications or DP83840A data sheet
3143   for details. */
3144
3145/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3146   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147   "overclocking" issues. */
3148static void mdio_delay(struct vortex_private *vp)
3149{
3150        window_read32(vp, 4, Wn4_PhysicalMgmt);
3151}
3152
3153#define MDIO_SHIFT_CLK  0x01
3154#define MDIO_DIR_WRITE  0x04
3155#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3156#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3157#define MDIO_DATA_READ  0x02
3158#define MDIO_ENB_IN             0x00
3159
3160/* Generate the preamble required for initial synchronization and
3161   a few older transceivers. */
3162static void mdio_sync(struct vortex_private *vp, int bits)
3163{
3164        /* Establish sync by sending at least 32 logic ones. */
3165        while (-- bits >= 0) {
3166                window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3167                mdio_delay(vp);
3168                window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3169                               4, Wn4_PhysicalMgmt);
3170                mdio_delay(vp);
3171        }
3172}
3173
3174static int mdio_read(struct net_device *dev, int phy_id, int location)
3175{
3176        int i;
3177        struct vortex_private *vp = netdev_priv(dev);
3178        int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179        unsigned int retval = 0;
3180
3181        spin_lock_bh(&vp->mii_lock);
3182
3183        if (mii_preamble_required)
3184                mdio_sync(vp, 32);
3185
3186        /* Shift the read command bits out. */
3187        for (i = 14; i >= 0; i--) {
3188                int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3189                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3190                mdio_delay(vp);
3191                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3192                               4, Wn4_PhysicalMgmt);
3193                mdio_delay(vp);
3194        }
3195        /* Read the two transition, 16 data, and wire-idle bits. */
3196        for (i = 19; i > 0; i--) {
3197                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3198                mdio_delay(vp);
3199                retval = (retval << 1) |
3200                        ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3201                          MDIO_DATA_READ) ? 1 : 0);
3202                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3203                               4, Wn4_PhysicalMgmt);
3204                mdio_delay(vp);
3205        }
3206
3207        spin_unlock_bh(&vp->mii_lock);
3208
3209        return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3210}
3211
3212static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3213{
3214        struct vortex_private *vp = netdev_priv(dev);
3215        int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3216        int i;
3217
3218        spin_lock_bh(&vp->mii_lock);
3219
3220        if (mii_preamble_required)
3221                mdio_sync(vp, 32);
3222
3223        /* Shift the command bits out. */
3224        for (i = 31; i >= 0; i--) {
3225                int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3226                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3227                mdio_delay(vp);
3228                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3229                               4, Wn4_PhysicalMgmt);
3230                mdio_delay(vp);
3231        }
3232        /* Leave the interface idle. */
3233        for (i = 1; i >= 0; i--) {
3234                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3235                mdio_delay(vp);
3236                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3237                               4, Wn4_PhysicalMgmt);
3238                mdio_delay(vp);
3239        }
3240
3241        spin_unlock_bh(&vp->mii_lock);
3242}
3243
3244/* ACPI: Advanced Configuration and Power Interface. */
3245/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3246static void acpi_set_WOL(struct net_device *dev)
3247{
3248        struct vortex_private *vp = netdev_priv(dev);
3249        void __iomem *ioaddr = vp->ioaddr;
3250
3251        device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3252
3253        if (vp->enable_wol) {
3254                /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3255                window_write16(vp, 2, 7, 0x0c);
3256                /* The RxFilter must accept the WOL frames. */
3257                iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3258                iowrite16(RxEnable, ioaddr + EL3_CMD);
3259
3260                if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3261                        pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3262
3263                        vp->enable_wol = 0;
3264                        return;
3265                }
3266
3267                if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3268                        return;
3269
3270                /* Change the power state to D3; RxEnable doesn't take effect. */
3271                pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3272        }
3273}
3274
3275
3276static void vortex_remove_one(struct pci_dev *pdev)
3277{
3278        struct net_device *dev = pci_get_drvdata(pdev);
3279        struct vortex_private *vp;
3280
3281        if (!dev) {
3282                pr_err("vortex_remove_one called for Compaq device!\n");
3283                BUG();
3284        }
3285
3286        vp = netdev_priv(dev);
3287
3288        if (vp->cb_fn_base)
3289                pci_iounmap(pdev, vp->cb_fn_base);
3290
3291        unregister_netdev(dev);
3292
3293        pci_set_power_state(pdev, PCI_D0);      /* Go active */
3294        if (vp->pm_state_valid)
3295                pci_restore_state(pdev);
3296        pci_disable_device(pdev);
3297
3298        /* Should really use issue_and_wait() here */
3299        iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3300             vp->ioaddr + EL3_CMD);
3301
3302        pci_iounmap(pdev, vp->ioaddr);
3303
3304        pci_free_consistent(pdev,
3305                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
3306                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3307                                                vp->rx_ring,
3308                                                vp->rx_ring_dma);
3309
3310        pci_release_regions(pdev);
3311
3312        free_netdev(dev);
3313}
3314
3315
3316static struct pci_driver vortex_driver = {
3317        .name           = "3c59x",
3318        .probe          = vortex_init_one,
3319        .remove         = vortex_remove_one,
3320        .id_table       = vortex_pci_tbl,
3321        .driver.pm      = VORTEX_PM_OPS,
3322};
3323
3324
3325static int vortex_have_pci;
3326static int vortex_have_eisa;
3327
3328
3329static int __init vortex_init(void)
3330{
3331        int pci_rc, eisa_rc;
3332
3333        pci_rc = pci_register_driver(&vortex_driver);
3334        eisa_rc = vortex_eisa_init();
3335
3336        if (pci_rc == 0)
3337                vortex_have_pci = 1;
3338        if (eisa_rc > 0)
3339                vortex_have_eisa = 1;
3340
3341        return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3342}
3343
3344
3345static void __exit vortex_eisa_cleanup(void)
3346{
3347        void __iomem *ioaddr;
3348
3349#ifdef CONFIG_EISA
3350        /* Take care of the EISA devices */
3351        eisa_driver_unregister(&vortex_eisa_driver);
3352#endif
3353
3354        if (compaq_net_device) {
3355                ioaddr = ioport_map(compaq_net_device->base_addr,
3356                                    VORTEX_TOTAL_SIZE);
3357
3358                unregister_netdev(compaq_net_device);
3359                iowrite16(TotalReset, ioaddr + EL3_CMD);
3360                release_region(compaq_net_device->base_addr,
3361                               VORTEX_TOTAL_SIZE);
3362
3363                free_netdev(compaq_net_device);
3364        }
3365}
3366
3367
3368static void __exit vortex_cleanup(void)
3369{
3370        if (vortex_have_pci)
3371                pci_unregister_driver(&vortex_driver);
3372        if (vortex_have_eisa)
3373                vortex_eisa_cleanup();
3374}
3375
3376
3377module_init(vortex_init);
3378module_exit(vortex_cleanup);
3379