linux/drivers/net/ethernet/chelsio/cxgb4/cxgb4_main.c
<<
>>
Prefs
   1/*
   2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
   3 *
   4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
   5 *
   6 * This software is available to you under a choice of one of two
   7 * licenses.  You may choose to be licensed under the terms of the GNU
   8 * General Public License (GPL) Version 2, available from the file
   9 * COPYING in the main directory of this source tree, or the
  10 * OpenIB.org BSD license below:
  11 *
  12 *     Redistribution and use in source and binary forms, with or
  13 *     without modification, are permitted provided that the following
  14 *     conditions are met:
  15 *
  16 *      - Redistributions of source code must retain the above
  17 *        copyright notice, this list of conditions and the following
  18 *        disclaimer.
  19 *
  20 *      - Redistributions in binary form must reproduce the above
  21 *        copyright notice, this list of conditions and the following
  22 *        disclaimer in the documentation and/or other materials
  23 *        provided with the distribution.
  24 *
  25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  32 * SOFTWARE.
  33 */
  34
  35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  36
  37#include <linux/bitmap.h>
  38#include <linux/crc32.h>
  39#include <linux/ctype.h>
  40#include <linux/debugfs.h>
  41#include <linux/err.h>
  42#include <linux/etherdevice.h>
  43#include <linux/firmware.h>
  44#include <linux/if.h>
  45#include <linux/if_vlan.h>
  46#include <linux/init.h>
  47#include <linux/log2.h>
  48#include <linux/mdio.h>
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/mutex.h>
  52#include <linux/netdevice.h>
  53#include <linux/pci.h>
  54#include <linux/aer.h>
  55#include <linux/rtnetlink.h>
  56#include <linux/sched.h>
  57#include <linux/seq_file.h>
  58#include <linux/sockios.h>
  59#include <linux/vmalloc.h>
  60#include <linux/workqueue.h>
  61#include <net/neighbour.h>
  62#include <net/netevent.h>
  63#include <net/addrconf.h>
  64#include <net/bonding.h>
  65#include <net/addrconf.h>
  66#include <asm/uaccess.h>
  67#include <linux/crash_dump.h>
  68
  69#include "cxgb4.h"
  70#include "t4_regs.h"
  71#include "t4_values.h"
  72#include "t4_msg.h"
  73#include "t4fw_api.h"
  74#include "t4fw_version.h"
  75#include "cxgb4_dcb.h"
  76#include "cxgb4_debugfs.h"
  77#include "clip_tbl.h"
  78#include "l2t.h"
  79
  80char cxgb4_driver_name[] = KBUILD_MODNAME;
  81
  82#ifdef DRV_VERSION
  83#undef DRV_VERSION
  84#endif
  85#define DRV_VERSION "2.0.0-ko"
  86const char cxgb4_driver_version[] = DRV_VERSION;
  87#define DRV_DESC "Chelsio T4/T5/T6 Network Driver"
  88
  89/* Host shadow copy of ingress filter entry.  This is in host native format
  90 * and doesn't match the ordering or bit order, etc. of the hardware of the
  91 * firmware command.  The use of bit-field structure elements is purely to
  92 * remind ourselves of the field size limitations and save memory in the case
  93 * where the filter table is large.
  94 */
  95struct filter_entry {
  96        /* Administrative fields for filter.
  97         */
  98        u32 valid:1;            /* filter allocated and valid */
  99        u32 locked:1;           /* filter is administratively locked */
 100
 101        u32 pending:1;          /* filter action is pending firmware reply */
 102        u32 smtidx:8;           /* Source MAC Table index for smac */
 103        struct l2t_entry *l2t;  /* Layer Two Table entry for dmac */
 104
 105        /* The filter itself.  Most of this is a straight copy of information
 106         * provided by the extended ioctl().  Some fields are translated to
 107         * internal forms -- for instance the Ingress Queue ID passed in from
 108         * the ioctl() is translated into the Absolute Ingress Queue ID.
 109         */
 110        struct ch_filter_specification fs;
 111};
 112
 113#define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
 114                         NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
 115                         NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
 116
 117/* Macros needed to support the PCI Device ID Table ...
 118 */
 119#define CH_PCI_DEVICE_ID_TABLE_DEFINE_BEGIN \
 120        static const struct pci_device_id cxgb4_pci_tbl[] = {
 121#define CH_PCI_DEVICE_ID_FUNCTION 0x4
 122
 123/* Include PCI Device IDs for both PF4 and PF0-3 so our PCI probe() routine is
 124 * called for both.
 125 */
 126#define CH_PCI_DEVICE_ID_FUNCTION2 0x0
 127
 128#define CH_PCI_ID_TABLE_ENTRY(devid) \
 129                {PCI_VDEVICE(CHELSIO, (devid)), 4}
 130
 131#define CH_PCI_DEVICE_ID_TABLE_DEFINE_END \
 132                { 0, } \
 133        }
 134
 135#include "t4_pci_id_tbl.h"
 136
 137#define FW4_FNAME "cxgb4/t4fw.bin"
 138#define FW5_FNAME "cxgb4/t5fw.bin"
 139#define FW6_FNAME "cxgb4/t6fw.bin"
 140#define FW4_CFNAME "cxgb4/t4-config.txt"
 141#define FW5_CFNAME "cxgb4/t5-config.txt"
 142#define FW6_CFNAME "cxgb4/t6-config.txt"
 143#define PHY_AQ1202_FIRMWARE "cxgb4/aq1202_fw.cld"
 144#define PHY_BCM84834_FIRMWARE "cxgb4/bcm8483.bin"
 145#define PHY_AQ1202_DEVICEID 0x4409
 146#define PHY_BCM84834_DEVICEID 0x4486
 147
 148MODULE_DESCRIPTION(DRV_DESC);
 149MODULE_AUTHOR("Chelsio Communications");
 150MODULE_LICENSE("Dual BSD/GPL");
 151MODULE_VERSION(DRV_VERSION);
 152MODULE_DEVICE_TABLE(pci, cxgb4_pci_tbl);
 153MODULE_FIRMWARE(FW4_FNAME);
 154MODULE_FIRMWARE(FW5_FNAME);
 155MODULE_FIRMWARE(FW6_FNAME);
 156
 157/*
 158 * Normally we're willing to become the firmware's Master PF but will be happy
 159 * if another PF has already become the Master and initialized the adapter.
 160 * Setting "force_init" will cause this driver to forcibly establish itself as
 161 * the Master PF and initialize the adapter.
 162 */
 163static uint force_init;
 164
 165module_param(force_init, uint, 0644);
 166MODULE_PARM_DESC(force_init, "Forcibly become Master PF and initialize adapter,"
 167                 "deprecated parameter");
 168
 169static int dflt_msg_enable = DFLT_MSG_ENABLE;
 170
 171module_param(dflt_msg_enable, int, 0644);
 172MODULE_PARM_DESC(dflt_msg_enable, "Chelsio T4 default message enable bitmap, "
 173                 "deprecated parameter");
 174
 175/*
 176 * The driver uses the best interrupt scheme available on a platform in the
 177 * order MSI-X, MSI, legacy INTx interrupts.  This parameter determines which
 178 * of these schemes the driver may consider as follows:
 179 *
 180 * msi = 2: choose from among all three options
 181 * msi = 1: only consider MSI and INTx interrupts
 182 * msi = 0: force INTx interrupts
 183 */
 184static int msi = 2;
 185
 186module_param(msi, int, 0644);
 187MODULE_PARM_DESC(msi, "whether to use INTx (0), MSI (1) or MSI-X (2)");
 188
 189/*
 190 * Normally we tell the chip to deliver Ingress Packets into our DMA buffers
 191 * offset by 2 bytes in order to have the IP headers line up on 4-byte
 192 * boundaries.  This is a requirement for many architectures which will throw
 193 * a machine check fault if an attempt is made to access one of the 4-byte IP
 194 * header fields on a non-4-byte boundary.  And it's a major performance issue
 195 * even on some architectures which allow it like some implementations of the
 196 * x86 ISA.  However, some architectures don't mind this and for some very
 197 * edge-case performance sensitive applications (like forwarding large volumes
 198 * of small packets), setting this DMA offset to 0 will decrease the number of
 199 * PCI-E Bus transfers enough to measurably affect performance.
 200 */
 201static int rx_dma_offset = 2;
 202
 203#ifdef CONFIG_PCI_IOV
 204/* Configure the number of PCI-E Virtual Function which are to be instantiated
 205 * on SR-IOV Capable Physical Functions.
 206 */
 207static unsigned int num_vf[NUM_OF_PF_WITH_SRIOV];
 208
 209module_param_array(num_vf, uint, NULL, 0644);
 210MODULE_PARM_DESC(num_vf, "number of VFs for each of PFs 0-3, deprecated parameter - please use the pci sysfs interface.");
 211#endif
 212
 213/* TX Queue select used to determine what algorithm to use for selecting TX
 214 * queue. Select between the kernel provided function (select_queue=0) or user
 215 * cxgb_select_queue function (select_queue=1)
 216 *
 217 * Default: select_queue=0
 218 */
 219static int select_queue;
 220module_param(select_queue, int, 0644);
 221MODULE_PARM_DESC(select_queue,
 222                 "Select between kernel provided method of selecting or driver method of selecting TX queue. Default is kernel method.");
 223
 224static struct dentry *cxgb4_debugfs_root;
 225
 226static LIST_HEAD(adapter_list);
 227static DEFINE_MUTEX(uld_mutex);
 228/* Adapter list to be accessed from atomic context */
 229static LIST_HEAD(adap_rcu_list);
 230static DEFINE_SPINLOCK(adap_rcu_lock);
 231static struct cxgb4_uld_info ulds[CXGB4_ULD_MAX];
 232static const char *const uld_str[] = { "RDMA", "iSCSI", "iSCSIT" };
 233
 234static void link_report(struct net_device *dev)
 235{
 236        if (!netif_carrier_ok(dev))
 237                netdev_info(dev, "link down\n");
 238        else {
 239                static const char *fc[] = { "no", "Rx", "Tx", "Tx/Rx" };
 240
 241                const char *s;
 242                const struct port_info *p = netdev_priv(dev);
 243
 244                switch (p->link_cfg.speed) {
 245                case 10000:
 246                        s = "10Gbps";
 247                        break;
 248                case 1000:
 249                        s = "1000Mbps";
 250                        break;
 251                case 100:
 252                        s = "100Mbps";
 253                        break;
 254                case 40000:
 255                        s = "40Gbps";
 256                        break;
 257                default:
 258                        pr_info("%s: unsupported speed: %d\n",
 259                                dev->name, p->link_cfg.speed);
 260                        return;
 261                }
 262
 263                netdev_info(dev, "link up, %s, full-duplex, %s PAUSE\n", s,
 264                            fc[p->link_cfg.fc]);
 265        }
 266}
 267
 268#ifdef CONFIG_CHELSIO_T4_DCB
 269/* Set up/tear down Data Center Bridging Priority mapping for a net device. */
 270static void dcb_tx_queue_prio_enable(struct net_device *dev, int enable)
 271{
 272        struct port_info *pi = netdev_priv(dev);
 273        struct adapter *adap = pi->adapter;
 274        struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset];
 275        int i;
 276
 277        /* We use a simple mapping of Port TX Queue Index to DCB
 278         * Priority when we're enabling DCB.
 279         */
 280        for (i = 0; i < pi->nqsets; i++, txq++) {
 281                u32 name, value;
 282                int err;
 283
 284                name = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
 285                        FW_PARAMS_PARAM_X_V(
 286                                FW_PARAMS_PARAM_DMAQ_EQ_DCBPRIO_ETH) |
 287                        FW_PARAMS_PARAM_YZ_V(txq->q.cntxt_id));
 288                value = enable ? i : 0xffffffff;
 289
 290                /* Since we can be called while atomic (from "interrupt
 291                 * level") we need to issue the Set Parameters Commannd
 292                 * without sleeping (timeout < 0).
 293                 */
 294                err = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
 295                                            &name, &value,
 296                                            -FW_CMD_MAX_TIMEOUT);
 297
 298                if (err)
 299                        dev_err(adap->pdev_dev,
 300                                "Can't %s DCB Priority on port %d, TX Queue %d: err=%d\n",
 301                                enable ? "set" : "unset", pi->port_id, i, -err);
 302                else
 303                        txq->dcb_prio = value;
 304        }
 305}
 306#endif /* CONFIG_CHELSIO_T4_DCB */
 307
 308int cxgb4_dcb_enabled(const struct net_device *dev)
 309{
 310#ifdef CONFIG_CHELSIO_T4_DCB
 311        struct port_info *pi = netdev_priv(dev);
 312
 313        if (!pi->dcb.enabled)
 314                return 0;
 315
 316        return ((pi->dcb.state == CXGB4_DCB_STATE_FW_ALLSYNCED) ||
 317                (pi->dcb.state == CXGB4_DCB_STATE_HOST));
 318#else
 319        return 0;
 320#endif
 321}
 322EXPORT_SYMBOL(cxgb4_dcb_enabled);
 323
 324void t4_os_link_changed(struct adapter *adapter, int port_id, int link_stat)
 325{
 326        struct net_device *dev = adapter->port[port_id];
 327
 328        /* Skip changes from disabled ports. */
 329        if (netif_running(dev) && link_stat != netif_carrier_ok(dev)) {
 330                if (link_stat)
 331                        netif_carrier_on(dev);
 332                else {
 333#ifdef CONFIG_CHELSIO_T4_DCB
 334                        if (cxgb4_dcb_enabled(dev)) {
 335                                cxgb4_dcb_state_init(dev);
 336                                dcb_tx_queue_prio_enable(dev, false);
 337                        }
 338#endif /* CONFIG_CHELSIO_T4_DCB */
 339                        netif_carrier_off(dev);
 340                }
 341
 342                link_report(dev);
 343        }
 344}
 345
 346void t4_os_portmod_changed(const struct adapter *adap, int port_id)
 347{
 348        static const char *mod_str[] = {
 349                NULL, "LR", "SR", "ER", "passive DA", "active DA", "LRM"
 350        };
 351
 352        const struct net_device *dev = adap->port[port_id];
 353        const struct port_info *pi = netdev_priv(dev);
 354
 355        if (pi->mod_type == FW_PORT_MOD_TYPE_NONE)
 356                netdev_info(dev, "port module unplugged\n");
 357        else if (pi->mod_type < ARRAY_SIZE(mod_str))
 358                netdev_info(dev, "%s module inserted\n", mod_str[pi->mod_type]);
 359        else if (pi->mod_type == FW_PORT_MOD_TYPE_NOTSUPPORTED)
 360                netdev_info(dev, "%s: unsupported port module inserted\n",
 361                            dev->name);
 362        else if (pi->mod_type == FW_PORT_MOD_TYPE_UNKNOWN)
 363                netdev_info(dev, "%s: unknown port module inserted\n",
 364                            dev->name);
 365        else if (pi->mod_type == FW_PORT_MOD_TYPE_ERROR)
 366                netdev_info(dev, "%s: transceiver module error\n", dev->name);
 367        else
 368                netdev_info(dev, "%s: unknown module type %d inserted\n",
 369                            dev->name, pi->mod_type);
 370}
 371
 372int dbfifo_int_thresh = 10; /* 10 == 640 entry threshold */
 373module_param(dbfifo_int_thresh, int, 0644);
 374MODULE_PARM_DESC(dbfifo_int_thresh, "doorbell fifo interrupt threshold");
 375
 376/*
 377 * usecs to sleep while draining the dbfifo
 378 */
 379static int dbfifo_drain_delay = 1000;
 380module_param(dbfifo_drain_delay, int, 0644);
 381MODULE_PARM_DESC(dbfifo_drain_delay,
 382                 "usecs to sleep while draining the dbfifo");
 383
 384static inline int cxgb4_set_addr_hash(struct port_info *pi)
 385{
 386        struct adapter *adap = pi->adapter;
 387        u64 vec = 0;
 388        bool ucast = false;
 389        struct hash_mac_addr *entry;
 390
 391        /* Calculate the hash vector for the updated list and program it */
 392        list_for_each_entry(entry, &adap->mac_hlist, list) {
 393                ucast |= is_unicast_ether_addr(entry->addr);
 394                vec |= (1ULL << hash_mac_addr(entry->addr));
 395        }
 396        return t4_set_addr_hash(adap, adap->mbox, pi->viid, ucast,
 397                                vec, false);
 398}
 399
 400static int cxgb4_mac_sync(struct net_device *netdev, const u8 *mac_addr)
 401{
 402        struct port_info *pi = netdev_priv(netdev);
 403        struct adapter *adap = pi->adapter;
 404        int ret;
 405        u64 mhash = 0;
 406        u64 uhash = 0;
 407        bool free = false;
 408        bool ucast = is_unicast_ether_addr(mac_addr);
 409        const u8 *maclist[1] = {mac_addr};
 410        struct hash_mac_addr *new_entry;
 411
 412        ret = t4_alloc_mac_filt(adap, adap->mbox, pi->viid, free, 1, maclist,
 413                                NULL, ucast ? &uhash : &mhash, false);
 414        if (ret < 0)
 415                goto out;
 416        /* if hash != 0, then add the addr to hash addr list
 417         * so on the end we will calculate the hash for the
 418         * list and program it
 419         */
 420        if (uhash || mhash) {
 421                new_entry = kzalloc(sizeof(*new_entry), GFP_ATOMIC);
 422                if (!new_entry)
 423                        return -ENOMEM;
 424                ether_addr_copy(new_entry->addr, mac_addr);
 425                list_add_tail(&new_entry->list, &adap->mac_hlist);
 426                ret = cxgb4_set_addr_hash(pi);
 427        }
 428out:
 429        return ret < 0 ? ret : 0;
 430}
 431
 432static int cxgb4_mac_unsync(struct net_device *netdev, const u8 *mac_addr)
 433{
 434        struct port_info *pi = netdev_priv(netdev);
 435        struct adapter *adap = pi->adapter;
 436        int ret;
 437        const u8 *maclist[1] = {mac_addr};
 438        struct hash_mac_addr *entry, *tmp;
 439
 440        /* If the MAC address to be removed is in the hash addr
 441         * list, delete it from the list and update hash vector
 442         */
 443        list_for_each_entry_safe(entry, tmp, &adap->mac_hlist, list) {
 444                if (ether_addr_equal(entry->addr, mac_addr)) {
 445                        list_del(&entry->list);
 446                        kfree(entry);
 447                        return cxgb4_set_addr_hash(pi);
 448                }
 449        }
 450
 451        ret = t4_free_mac_filt(adap, adap->mbox, pi->viid, 1, maclist, false);
 452        return ret < 0 ? -EINVAL : 0;
 453}
 454
 455/*
 456 * Set Rx properties of a port, such as promiscruity, address filters, and MTU.
 457 * If @mtu is -1 it is left unchanged.
 458 */
 459static int set_rxmode(struct net_device *dev, int mtu, bool sleep_ok)
 460{
 461        struct port_info *pi = netdev_priv(dev);
 462        struct adapter *adapter = pi->adapter;
 463
 464        __dev_uc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 465        __dev_mc_sync(dev, cxgb4_mac_sync, cxgb4_mac_unsync);
 466
 467        return t4_set_rxmode(adapter, adapter->mbox, pi->viid, mtu,
 468                             (dev->flags & IFF_PROMISC) ? 1 : 0,
 469                             (dev->flags & IFF_ALLMULTI) ? 1 : 0, 1, -1,
 470                             sleep_ok);
 471}
 472
 473/**
 474 *      link_start - enable a port
 475 *      @dev: the port to enable
 476 *
 477 *      Performs the MAC and PHY actions needed to enable a port.
 478 */
 479static int link_start(struct net_device *dev)
 480{
 481        int ret;
 482        struct port_info *pi = netdev_priv(dev);
 483        unsigned int mb = pi->adapter->pf;
 484
 485        /*
 486         * We do not set address filters and promiscuity here, the stack does
 487         * that step explicitly.
 488         */
 489        ret = t4_set_rxmode(pi->adapter, mb, pi->viid, dev->mtu, -1, -1, -1,
 490                            !!(dev->features & NETIF_F_HW_VLAN_CTAG_RX), true);
 491        if (ret == 0) {
 492                ret = t4_change_mac(pi->adapter, mb, pi->viid,
 493                                    pi->xact_addr_filt, dev->dev_addr, true,
 494                                    true);
 495                if (ret >= 0) {
 496                        pi->xact_addr_filt = ret;
 497                        ret = 0;
 498                }
 499        }
 500        if (ret == 0)
 501                ret = t4_link_l1cfg(pi->adapter, mb, pi->tx_chan,
 502                                    &pi->link_cfg);
 503        if (ret == 0) {
 504                local_bh_disable();
 505                ret = t4_enable_vi_params(pi->adapter, mb, pi->viid, true,
 506                                          true, CXGB4_DCB_ENABLED);
 507                local_bh_enable();
 508        }
 509
 510        return ret;
 511}
 512
 513#ifdef CONFIG_CHELSIO_T4_DCB
 514/* Handle a Data Center Bridging update message from the firmware. */
 515static void dcb_rpl(struct adapter *adap, const struct fw_port_cmd *pcmd)
 516{
 517        int port = FW_PORT_CMD_PORTID_G(ntohl(pcmd->op_to_portid));
 518        struct net_device *dev = adap->port[adap->chan_map[port]];
 519        int old_dcb_enabled = cxgb4_dcb_enabled(dev);
 520        int new_dcb_enabled;
 521
 522        cxgb4_dcb_handle_fw_update(adap, pcmd);
 523        new_dcb_enabled = cxgb4_dcb_enabled(dev);
 524
 525        /* If the DCB has become enabled or disabled on the port then we're
 526         * going to need to set up/tear down DCB Priority parameters for the
 527         * TX Queues associated with the port.
 528         */
 529        if (new_dcb_enabled != old_dcb_enabled)
 530                dcb_tx_queue_prio_enable(dev, new_dcb_enabled);
 531}
 532#endif /* CONFIG_CHELSIO_T4_DCB */
 533
 534/* Clear a filter and release any of its resources that we own.  This also
 535 * clears the filter's "pending" status.
 536 */
 537static void clear_filter(struct adapter *adap, struct filter_entry *f)
 538{
 539        /* If the new or old filter have loopback rewriteing rules then we'll
 540         * need to free any existing Layer Two Table (L2T) entries of the old
 541         * filter rule.  The firmware will handle freeing up any Source MAC
 542         * Table (SMT) entries used for rewriting Source MAC Addresses in
 543         * loopback rules.
 544         */
 545        if (f->l2t)
 546                cxgb4_l2t_release(f->l2t);
 547
 548        /* The zeroing of the filter rule below clears the filter valid,
 549         * pending, locked flags, l2t pointer, etc. so it's all we need for
 550         * this operation.
 551         */
 552        memset(f, 0, sizeof(*f));
 553}
 554
 555/* Handle a filter write/deletion reply.
 556 */
 557static void filter_rpl(struct adapter *adap, const struct cpl_set_tcb_rpl *rpl)
 558{
 559        unsigned int idx = GET_TID(rpl);
 560        unsigned int nidx = idx - adap->tids.ftid_base;
 561        unsigned int ret;
 562        struct filter_entry *f;
 563
 564        if (idx >= adap->tids.ftid_base && nidx <
 565           (adap->tids.nftids + adap->tids.nsftids)) {
 566                idx = nidx;
 567                ret = TCB_COOKIE_G(rpl->cookie);
 568                f = &adap->tids.ftid_tab[idx];
 569
 570                if (ret == FW_FILTER_WR_FLT_DELETED) {
 571                        /* Clear the filter when we get confirmation from the
 572                         * hardware that the filter has been deleted.
 573                         */
 574                        clear_filter(adap, f);
 575                } else if (ret == FW_FILTER_WR_SMT_TBL_FULL) {
 576                        dev_err(adap->pdev_dev, "filter %u setup failed due to full SMT\n",
 577                                idx);
 578                        clear_filter(adap, f);
 579                } else if (ret == FW_FILTER_WR_FLT_ADDED) {
 580                        f->smtidx = (be64_to_cpu(rpl->oldval) >> 24) & 0xff;
 581                        f->pending = 0;  /* asynchronous setup completed */
 582                        f->valid = 1;
 583                } else {
 584                        /* Something went wrong.  Issue a warning about the
 585                         * problem and clear everything out.
 586                         */
 587                        dev_err(adap->pdev_dev, "filter %u setup failed with error %u\n",
 588                                idx, ret);
 589                        clear_filter(adap, f);
 590                }
 591        }
 592}
 593
 594/* Response queue handler for the FW event queue.
 595 */
 596static int fwevtq_handler(struct sge_rspq *q, const __be64 *rsp,
 597                          const struct pkt_gl *gl)
 598{
 599        u8 opcode = ((const struct rss_header *)rsp)->opcode;
 600
 601        rsp++;                                          /* skip RSS header */
 602
 603        /* FW can send EGR_UPDATEs encapsulated in a CPL_FW4_MSG.
 604         */
 605        if (unlikely(opcode == CPL_FW4_MSG &&
 606           ((const struct cpl_fw4_msg *)rsp)->type == FW_TYPE_RSSCPL)) {
 607                rsp++;
 608                opcode = ((const struct rss_header *)rsp)->opcode;
 609                rsp++;
 610                if (opcode != CPL_SGE_EGR_UPDATE) {
 611                        dev_err(q->adap->pdev_dev, "unexpected FW4/CPL %#x on FW event queue\n"
 612                                , opcode);
 613                        goto out;
 614                }
 615        }
 616
 617        if (likely(opcode == CPL_SGE_EGR_UPDATE)) {
 618                const struct cpl_sge_egr_update *p = (void *)rsp;
 619                unsigned int qid = EGR_QID_G(ntohl(p->opcode_qid));
 620                struct sge_txq *txq;
 621
 622                txq = q->adap->sge.egr_map[qid - q->adap->sge.egr_start];
 623                txq->restarts++;
 624                if ((u8 *)txq < (u8 *)q->adap->sge.ofldtxq) {
 625                        struct sge_eth_txq *eq;
 626
 627                        eq = container_of(txq, struct sge_eth_txq, q);
 628                        netif_tx_wake_queue(eq->txq);
 629                } else {
 630                        struct sge_ofld_txq *oq;
 631
 632                        oq = container_of(txq, struct sge_ofld_txq, q);
 633                        tasklet_schedule(&oq->qresume_tsk);
 634                }
 635        } else if (opcode == CPL_FW6_MSG || opcode == CPL_FW4_MSG) {
 636                const struct cpl_fw6_msg *p = (void *)rsp;
 637
 638#ifdef CONFIG_CHELSIO_T4_DCB
 639                const struct fw_port_cmd *pcmd = (const void *)p->data;
 640                unsigned int cmd = FW_CMD_OP_G(ntohl(pcmd->op_to_portid));
 641                unsigned int action =
 642                        FW_PORT_CMD_ACTION_G(ntohl(pcmd->action_to_len16));
 643
 644                if (cmd == FW_PORT_CMD &&
 645                    action == FW_PORT_ACTION_GET_PORT_INFO) {
 646                        int port = FW_PORT_CMD_PORTID_G(
 647                                        be32_to_cpu(pcmd->op_to_portid));
 648                        struct net_device *dev =
 649                                q->adap->port[q->adap->chan_map[port]];
 650                        int state_input = ((pcmd->u.info.dcbxdis_pkd &
 651                                            FW_PORT_CMD_DCBXDIS_F)
 652                                           ? CXGB4_DCB_INPUT_FW_DISABLED
 653                                           : CXGB4_DCB_INPUT_FW_ENABLED);
 654
 655                        cxgb4_dcb_state_fsm(dev, state_input);
 656                }
 657
 658                if (cmd == FW_PORT_CMD &&
 659                    action == FW_PORT_ACTION_L2_DCB_CFG)
 660                        dcb_rpl(q->adap, pcmd);
 661                else
 662#endif
 663                        if (p->type == 0)
 664                                t4_handle_fw_rpl(q->adap, p->data);
 665        } else if (opcode == CPL_L2T_WRITE_RPL) {
 666                const struct cpl_l2t_write_rpl *p = (void *)rsp;
 667
 668                do_l2t_write_rpl(q->adap, p);
 669        } else if (opcode == CPL_SET_TCB_RPL) {
 670                const struct cpl_set_tcb_rpl *p = (void *)rsp;
 671
 672                filter_rpl(q->adap, p);
 673        } else
 674                dev_err(q->adap->pdev_dev,
 675                        "unexpected CPL %#x on FW event queue\n", opcode);
 676out:
 677        return 0;
 678}
 679
 680/* Flush the aggregated lro sessions */
 681static void uldrx_flush_handler(struct sge_rspq *q)
 682{
 683        if (ulds[q->uld].lro_flush)
 684                ulds[q->uld].lro_flush(&q->lro_mgr);
 685}
 686
 687/**
 688 *      uldrx_handler - response queue handler for ULD queues
 689 *      @q: the response queue that received the packet
 690 *      @rsp: the response queue descriptor holding the offload message
 691 *      @gl: the gather list of packet fragments
 692 *
 693 *      Deliver an ingress offload packet to a ULD.  All processing is done by
 694 *      the ULD, we just maintain statistics.
 695 */
 696static int uldrx_handler(struct sge_rspq *q, const __be64 *rsp,
 697                         const struct pkt_gl *gl)
 698{
 699        struct sge_ofld_rxq *rxq = container_of(q, struct sge_ofld_rxq, rspq);
 700        int ret;
 701
 702        /* FW can send CPLs encapsulated in a CPL_FW4_MSG.
 703         */
 704        if (((const struct rss_header *)rsp)->opcode == CPL_FW4_MSG &&
 705            ((const struct cpl_fw4_msg *)(rsp + 1))->type == FW_TYPE_RSSCPL)
 706                rsp += 2;
 707
 708        if (q->flush_handler)
 709                ret = ulds[q->uld].lro_rx_handler(q->adap->uld_handle[q->uld],
 710                                                  rsp, gl, &q->lro_mgr,
 711                                                  &q->napi);
 712        else
 713                ret = ulds[q->uld].rx_handler(q->adap->uld_handle[q->uld],
 714                                              rsp, gl);
 715
 716        if (ret) {
 717                rxq->stats.nomem++;
 718                return -1;
 719        }
 720
 721        if (gl == NULL)
 722                rxq->stats.imm++;
 723        else if (gl == CXGB4_MSG_AN)
 724                rxq->stats.an++;
 725        else
 726                rxq->stats.pkts++;
 727        return 0;
 728}
 729
 730static void disable_msi(struct adapter *adapter)
 731{
 732        if (adapter->flags & USING_MSIX) {
 733                pci_disable_msix(adapter->pdev);
 734                adapter->flags &= ~USING_MSIX;
 735        } else if (adapter->flags & USING_MSI) {
 736                pci_disable_msi(adapter->pdev);
 737                adapter->flags &= ~USING_MSI;
 738        }
 739}
 740
 741/*
 742 * Interrupt handler for non-data events used with MSI-X.
 743 */
 744static irqreturn_t t4_nondata_intr(int irq, void *cookie)
 745{
 746        struct adapter *adap = cookie;
 747        u32 v = t4_read_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A));
 748
 749        if (v & PFSW_F) {
 750                adap->swintr = 1;
 751                t4_write_reg(adap, MYPF_REG(PL_PF_INT_CAUSE_A), v);
 752        }
 753        if (adap->flags & MASTER_PF)
 754                t4_slow_intr_handler(adap);
 755        return IRQ_HANDLED;
 756}
 757
 758/*
 759 * Name the MSI-X interrupts.
 760 */
 761static void name_msix_vecs(struct adapter *adap)
 762{
 763        int i, j, msi_idx = 2, n = sizeof(adap->msix_info[0].desc);
 764
 765        /* non-data interrupts */
 766        snprintf(adap->msix_info[0].desc, n, "%s", adap->port[0]->name);
 767
 768        /* FW events */
 769        snprintf(adap->msix_info[1].desc, n, "%s-FWeventq",
 770                 adap->port[0]->name);
 771
 772        /* Ethernet queues */
 773        for_each_port(adap, j) {
 774                struct net_device *d = adap->port[j];
 775                const struct port_info *pi = netdev_priv(d);
 776
 777                for (i = 0; i < pi->nqsets; i++, msi_idx++)
 778                        snprintf(adap->msix_info[msi_idx].desc, n, "%s-Rx%d",
 779                                 d->name, i);
 780        }
 781
 782        /* offload queues */
 783        for_each_iscsirxq(&adap->sge, i)
 784                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iscsi%d",
 785                         adap->port[0]->name, i);
 786
 787        for_each_iscsitrxq(&adap->sge, i)
 788                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-iSCSIT%d",
 789                         adap->port[0]->name, i);
 790
 791        for_each_rdmarxq(&adap->sge, i)
 792                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma%d",
 793                         adap->port[0]->name, i);
 794
 795        for_each_rdmaciq(&adap->sge, i)
 796                snprintf(adap->msix_info[msi_idx++].desc, n, "%s-rdma-ciq%d",
 797                         adap->port[0]->name, i);
 798}
 799
 800static int request_msix_queue_irqs(struct adapter *adap)
 801{
 802        struct sge *s = &adap->sge;
 803        int err, ethqidx, iscsiqidx = 0, rdmaqidx = 0, rdmaciqqidx = 0;
 804        int iscsitqidx = 0;
 805        int msi_index = 2;
 806
 807        err = request_irq(adap->msix_info[1].vec, t4_sge_intr_msix, 0,
 808                          adap->msix_info[1].desc, &s->fw_evtq);
 809        if (err)
 810                return err;
 811
 812        for_each_ethrxq(s, ethqidx) {
 813                err = request_irq(adap->msix_info[msi_index].vec,
 814                                  t4_sge_intr_msix, 0,
 815                                  adap->msix_info[msi_index].desc,
 816                                  &s->ethrxq[ethqidx].rspq);
 817                if (err)
 818                        goto unwind;
 819                msi_index++;
 820        }
 821        for_each_iscsirxq(s, iscsiqidx) {
 822                err = request_irq(adap->msix_info[msi_index].vec,
 823                                  t4_sge_intr_msix, 0,
 824                                  adap->msix_info[msi_index].desc,
 825                                  &s->iscsirxq[iscsiqidx].rspq);
 826                if (err)
 827                        goto unwind;
 828                msi_index++;
 829        }
 830        for_each_iscsitrxq(s, iscsitqidx) {
 831                err = request_irq(adap->msix_info[msi_index].vec,
 832                                  t4_sge_intr_msix, 0,
 833                                  adap->msix_info[msi_index].desc,
 834                                  &s->iscsitrxq[iscsitqidx].rspq);
 835                if (err)
 836                        goto unwind;
 837                msi_index++;
 838        }
 839        for_each_rdmarxq(s, rdmaqidx) {
 840                err = request_irq(adap->msix_info[msi_index].vec,
 841                                  t4_sge_intr_msix, 0,
 842                                  adap->msix_info[msi_index].desc,
 843                                  &s->rdmarxq[rdmaqidx].rspq);
 844                if (err)
 845                        goto unwind;
 846                msi_index++;
 847        }
 848        for_each_rdmaciq(s, rdmaciqqidx) {
 849                err = request_irq(adap->msix_info[msi_index].vec,
 850                                  t4_sge_intr_msix, 0,
 851                                  adap->msix_info[msi_index].desc,
 852                                  &s->rdmaciq[rdmaciqqidx].rspq);
 853                if (err)
 854                        goto unwind;
 855                msi_index++;
 856        }
 857        return 0;
 858
 859unwind:
 860        while (--rdmaciqqidx >= 0)
 861                free_irq(adap->msix_info[--msi_index].vec,
 862                         &s->rdmaciq[rdmaciqqidx].rspq);
 863        while (--rdmaqidx >= 0)
 864                free_irq(adap->msix_info[--msi_index].vec,
 865                         &s->rdmarxq[rdmaqidx].rspq);
 866        while (--iscsitqidx >= 0)
 867                free_irq(adap->msix_info[--msi_index].vec,
 868                         &s->iscsitrxq[iscsitqidx].rspq);
 869        while (--iscsiqidx >= 0)
 870                free_irq(adap->msix_info[--msi_index].vec,
 871                         &s->iscsirxq[iscsiqidx].rspq);
 872        while (--ethqidx >= 0)
 873                free_irq(adap->msix_info[--msi_index].vec,
 874                         &s->ethrxq[ethqidx].rspq);
 875        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 876        return err;
 877}
 878
 879static void free_msix_queue_irqs(struct adapter *adap)
 880{
 881        int i, msi_index = 2;
 882        struct sge *s = &adap->sge;
 883
 884        free_irq(adap->msix_info[1].vec, &s->fw_evtq);
 885        for_each_ethrxq(s, i)
 886                free_irq(adap->msix_info[msi_index++].vec, &s->ethrxq[i].rspq);
 887        for_each_iscsirxq(s, i)
 888                free_irq(adap->msix_info[msi_index++].vec,
 889                         &s->iscsirxq[i].rspq);
 890        for_each_iscsitrxq(s, i)
 891                free_irq(adap->msix_info[msi_index++].vec,
 892                         &s->iscsitrxq[i].rspq);
 893        for_each_rdmarxq(s, i)
 894                free_irq(adap->msix_info[msi_index++].vec, &s->rdmarxq[i].rspq);
 895        for_each_rdmaciq(s, i)
 896                free_irq(adap->msix_info[msi_index++].vec, &s->rdmaciq[i].rspq);
 897}
 898
 899/**
 900 *      cxgb4_write_rss - write the RSS table for a given port
 901 *      @pi: the port
 902 *      @queues: array of queue indices for RSS
 903 *
 904 *      Sets up the portion of the HW RSS table for the port's VI to distribute
 905 *      packets to the Rx queues in @queues.
 906 *      Should never be called before setting up sge eth rx queues
 907 */
 908int cxgb4_write_rss(const struct port_info *pi, const u16 *queues)
 909{
 910        u16 *rss;
 911        int i, err;
 912        struct adapter *adapter = pi->adapter;
 913        const struct sge_eth_rxq *rxq;
 914
 915        rxq = &adapter->sge.ethrxq[pi->first_qset];
 916        rss = kmalloc(pi->rss_size * sizeof(u16), GFP_KERNEL);
 917        if (!rss)
 918                return -ENOMEM;
 919
 920        /* map the queue indices to queue ids */
 921        for (i = 0; i < pi->rss_size; i++, queues++)
 922                rss[i] = rxq[*queues].rspq.abs_id;
 923
 924        err = t4_config_rss_range(adapter, adapter->pf, pi->viid, 0,
 925                                  pi->rss_size, rss, pi->rss_size);
 926        /* If Tunnel All Lookup isn't specified in the global RSS
 927         * Configuration, then we need to specify a default Ingress
 928         * Queue for any ingress packets which aren't hashed.  We'll
 929         * use our first ingress queue ...
 930         */
 931        if (!err)
 932                err = t4_config_vi_rss(adapter, adapter->mbox, pi->viid,
 933                                       FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F |
 934                                       FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F |
 935                                       FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F |
 936                                       FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F |
 937                                       FW_RSS_VI_CONFIG_CMD_UDPEN_F,
 938                                       rss[0]);
 939        kfree(rss);
 940        return err;
 941}
 942
 943/**
 944 *      setup_rss - configure RSS
 945 *      @adap: the adapter
 946 *
 947 *      Sets up RSS for each port.
 948 */
 949static int setup_rss(struct adapter *adap)
 950{
 951        int i, j, err;
 952
 953        for_each_port(adap, i) {
 954                const struct port_info *pi = adap2pinfo(adap, i);
 955
 956                /* Fill default values with equal distribution */
 957                for (j = 0; j < pi->rss_size; j++)
 958                        pi->rss[j] = j % pi->nqsets;
 959
 960                err = cxgb4_write_rss(pi, pi->rss);
 961                if (err)
 962                        return err;
 963        }
 964        return 0;
 965}
 966
 967/*
 968 * Return the channel of the ingress queue with the given qid.
 969 */
 970static unsigned int rxq_to_chan(const struct sge *p, unsigned int qid)
 971{
 972        qid -= p->ingr_start;
 973        return netdev2pinfo(p->ingr_map[qid]->netdev)->tx_chan;
 974}
 975
 976/*
 977 * Wait until all NAPI handlers are descheduled.
 978 */
 979static void quiesce_rx(struct adapter *adap)
 980{
 981        int i;
 982
 983        for (i = 0; i < adap->sge.ingr_sz; i++) {
 984                struct sge_rspq *q = adap->sge.ingr_map[i];
 985
 986                if (q && q->handler) {
 987                        napi_disable(&q->napi);
 988                        local_bh_disable();
 989                        while (!cxgb_poll_lock_napi(q))
 990                                mdelay(1);
 991                        local_bh_enable();
 992                }
 993
 994        }
 995}
 996
 997/* Disable interrupt and napi handler */
 998static void disable_interrupts(struct adapter *adap)
 999{
1000        if (adap->flags & FULL_INIT_DONE) {
1001                t4_intr_disable(adap);
1002                if (adap->flags & USING_MSIX) {
1003                        free_msix_queue_irqs(adap);
1004                        free_irq(adap->msix_info[0].vec, adap);
1005                } else {
1006                        free_irq(adap->pdev->irq, adap);
1007                }
1008                quiesce_rx(adap);
1009        }
1010}
1011
1012/*
1013 * Enable NAPI scheduling and interrupt generation for all Rx queues.
1014 */
1015static void enable_rx(struct adapter *adap)
1016{
1017        int i;
1018
1019        for (i = 0; i < adap->sge.ingr_sz; i++) {
1020                struct sge_rspq *q = adap->sge.ingr_map[i];
1021
1022                if (!q)
1023                        continue;
1024                if (q->handler) {
1025                        cxgb_busy_poll_init_lock(q);
1026                        napi_enable(&q->napi);
1027                }
1028                /* 0-increment GTS to start the timer and enable interrupts */
1029                t4_write_reg(adap, MYPF_REG(SGE_PF_GTS_A),
1030                             SEINTARM_V(q->intr_params) |
1031                             INGRESSQID_V(q->cntxt_id));
1032        }
1033}
1034
1035static int alloc_ofld_rxqs(struct adapter *adap, struct sge_ofld_rxq *q,
1036                           unsigned int nq, unsigned int per_chan, int msi_idx,
1037                           u16 *ids, bool lro)
1038{
1039        int i, err;
1040
1041        for (i = 0; i < nq; i++, q++) {
1042                if (msi_idx > 0)
1043                        msi_idx++;
1044                err = t4_sge_alloc_rxq(adap, &q->rspq, false,
1045                                       adap->port[i / per_chan],
1046                                       msi_idx, q->fl.size ? &q->fl : NULL,
1047                                       uldrx_handler,
1048                                       lro ? uldrx_flush_handler : NULL,
1049                                       0);
1050                if (err)
1051                        return err;
1052                memset(&q->stats, 0, sizeof(q->stats));
1053                if (ids)
1054                        ids[i] = q->rspq.abs_id;
1055        }
1056        return 0;
1057}
1058
1059/**
1060 *      setup_sge_queues - configure SGE Tx/Rx/response queues
1061 *      @adap: the adapter
1062 *
1063 *      Determines how many sets of SGE queues to use and initializes them.
1064 *      We support multiple queue sets per port if we have MSI-X, otherwise
1065 *      just one queue set per port.
1066 */
1067static int setup_sge_queues(struct adapter *adap)
1068{
1069        int err, msi_idx, i, j;
1070        struct sge *s = &adap->sge;
1071
1072        bitmap_zero(s->starving_fl, s->egr_sz);
1073        bitmap_zero(s->txq_maperr, s->egr_sz);
1074
1075        if (adap->flags & USING_MSIX)
1076                msi_idx = 1;         /* vector 0 is for non-queue interrupts */
1077        else {
1078                err = t4_sge_alloc_rxq(adap, &s->intrq, false, adap->port[0], 0,
1079                                       NULL, NULL, NULL, -1);
1080                if (err)
1081                        return err;
1082                msi_idx = -((int)s->intrq.abs_id + 1);
1083        }
1084
1085        /* NOTE: If you add/delete any Ingress/Egress Queue allocations in here,
1086         * don't forget to update the following which need to be
1087         * synchronized to and changes here.
1088         *
1089         * 1. The calculations of MAX_INGQ in cxgb4.h.
1090         *
1091         * 2. Update enable_msix/name_msix_vecs/request_msix_queue_irqs
1092         *    to accommodate any new/deleted Ingress Queues
1093         *    which need MSI-X Vectors.
1094         *
1095         * 3. Update sge_qinfo_show() to include information on the
1096         *    new/deleted queues.
1097         */
1098        err = t4_sge_alloc_rxq(adap, &s->fw_evtq, true, adap->port[0],
1099                               msi_idx, NULL, fwevtq_handler, NULL, -1);
1100        if (err) {
1101freeout:        t4_free_sge_resources(adap);
1102                return err;
1103        }
1104
1105        for_each_port(adap, i) {
1106                struct net_device *dev = adap->port[i];
1107                struct port_info *pi = netdev_priv(dev);
1108                struct sge_eth_rxq *q = &s->ethrxq[pi->first_qset];
1109                struct sge_eth_txq *t = &s->ethtxq[pi->first_qset];
1110
1111                for (j = 0; j < pi->nqsets; j++, q++) {
1112                        if (msi_idx > 0)
1113                                msi_idx++;
1114                        err = t4_sge_alloc_rxq(adap, &q->rspq, false, dev,
1115                                               msi_idx, &q->fl,
1116                                               t4_ethrx_handler,
1117                                               NULL,
1118                                               t4_get_mps_bg_map(adap,
1119                                                                 pi->tx_chan));
1120                        if (err)
1121                                goto freeout;
1122                        q->rspq.idx = j;
1123                        memset(&q->stats, 0, sizeof(q->stats));
1124                }
1125                for (j = 0; j < pi->nqsets; j++, t++) {
1126                        err = t4_sge_alloc_eth_txq(adap, t, dev,
1127                                        netdev_get_tx_queue(dev, j),
1128                                        s->fw_evtq.cntxt_id);
1129                        if (err)
1130                                goto freeout;
1131                }
1132        }
1133
1134        j = s->iscsiqsets / adap->params.nports; /* iscsi queues per channel */
1135        for_each_iscsirxq(s, i) {
1136                err = t4_sge_alloc_ofld_txq(adap, &s->ofldtxq[i],
1137                                            adap->port[i / j],
1138                                            s->fw_evtq.cntxt_id);
1139                if (err)
1140                        goto freeout;
1141        }
1142
1143#define ALLOC_OFLD_RXQS(firstq, nq, per_chan, ids, lro) do { \
1144        err = alloc_ofld_rxqs(adap, firstq, nq, per_chan, msi_idx, ids, lro); \
1145        if (err) \
1146                goto freeout; \
1147        if (msi_idx > 0) \
1148                msi_idx += nq; \
1149} while (0)
1150
1151        ALLOC_OFLD_RXQS(s->iscsirxq, s->iscsiqsets, j, s->iscsi_rxq, false);
1152        ALLOC_OFLD_RXQS(s->iscsitrxq, s->niscsitq, j, s->iscsit_rxq, true);
1153        ALLOC_OFLD_RXQS(s->rdmarxq, s->rdmaqs, 1, s->rdma_rxq, false);
1154        j = s->rdmaciqs / adap->params.nports; /* rdmaq queues per channel */
1155        ALLOC_OFLD_RXQS(s->rdmaciq, s->rdmaciqs, j, s->rdma_ciq, false);
1156
1157#undef ALLOC_OFLD_RXQS
1158
1159        for_each_port(adap, i) {
1160                /*
1161                 * Note that ->rdmarxq[i].rspq.cntxt_id below is 0 if we don't
1162                 * have RDMA queues, and that's the right value.
1163                 */
1164                err = t4_sge_alloc_ctrl_txq(adap, &s->ctrlq[i], adap->port[i],
1165                                            s->fw_evtq.cntxt_id,
1166                                            s->rdmarxq[i].rspq.cntxt_id);
1167                if (err)
1168                        goto freeout;
1169        }
1170
1171        t4_write_reg(adap, is_t4(adap->params.chip) ?
1172                                MPS_TRC_RSS_CONTROL_A :
1173                                MPS_T5_TRC_RSS_CONTROL_A,
1174                     RSSCONTROL_V(netdev2pinfo(adap->port[0])->tx_chan) |
1175                     QUEUENUMBER_V(s->ethrxq[0].rspq.abs_id));
1176        return 0;
1177}
1178
1179/*
1180 * Allocate a chunk of memory using kmalloc or, if that fails, vmalloc.
1181 * The allocated memory is cleared.
1182 */
1183void *t4_alloc_mem(size_t size)
1184{
1185        void *p = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
1186
1187        if (!p)
1188                p = vzalloc(size);
1189        return p;
1190}
1191
1192/*
1193 * Free memory allocated through alloc_mem().
1194 */
1195void t4_free_mem(void *addr)
1196{
1197        kvfree(addr);
1198}
1199
1200/* Send a Work Request to write the filter at a specified index.  We construct
1201 * a Firmware Filter Work Request to have the work done and put the indicated
1202 * filter into "pending" mode which will prevent any further actions against
1203 * it till we get a reply from the firmware on the completion status of the
1204 * request.
1205 */
1206static int set_filter_wr(struct adapter *adapter, int fidx)
1207{
1208        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1209        struct sk_buff *skb;
1210        struct fw_filter_wr *fwr;
1211        unsigned int ftid;
1212
1213        skb = alloc_skb(sizeof(*fwr), GFP_KERNEL);
1214        if (!skb)
1215                return -ENOMEM;
1216
1217        /* If the new filter requires loopback Destination MAC and/or VLAN
1218         * rewriting then we need to allocate a Layer 2 Table (L2T) entry for
1219         * the filter.
1220         */
1221        if (f->fs.newdmac || f->fs.newvlan) {
1222                /* allocate L2T entry for new filter */
1223                f->l2t = t4_l2t_alloc_switching(adapter, f->fs.vlan,
1224                                                f->fs.eport, f->fs.dmac);
1225                if (f->l2t == NULL) {
1226                        kfree_skb(skb);
1227                        return -ENOMEM;
1228                }
1229        }
1230
1231        ftid = adapter->tids.ftid_base + fidx;
1232
1233        fwr = (struct fw_filter_wr *)__skb_put(skb, sizeof(*fwr));
1234        memset(fwr, 0, sizeof(*fwr));
1235
1236        /* It would be nice to put most of the following in t4_hw.c but most
1237         * of the work is translating the cxgbtool ch_filter_specification
1238         * into the Work Request and the definition of that structure is
1239         * currently in cxgbtool.h which isn't appropriate to pull into the
1240         * common code.  We may eventually try to come up with a more neutral
1241         * filter specification structure but for now it's easiest to simply
1242         * put this fairly direct code in line ...
1243         */
1244        fwr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR));
1245        fwr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*fwr)/16));
1246        fwr->tid_to_iq =
1247                htonl(FW_FILTER_WR_TID_V(ftid) |
1248                      FW_FILTER_WR_RQTYPE_V(f->fs.type) |
1249                      FW_FILTER_WR_NOREPLY_V(0) |
1250                      FW_FILTER_WR_IQ_V(f->fs.iq));
1251        fwr->del_filter_to_l2tix =
1252                htonl(FW_FILTER_WR_RPTTID_V(f->fs.rpttid) |
1253                      FW_FILTER_WR_DROP_V(f->fs.action == FILTER_DROP) |
1254                      FW_FILTER_WR_DIRSTEER_V(f->fs.dirsteer) |
1255                      FW_FILTER_WR_MASKHASH_V(f->fs.maskhash) |
1256                      FW_FILTER_WR_DIRSTEERHASH_V(f->fs.dirsteerhash) |
1257                      FW_FILTER_WR_LPBK_V(f->fs.action == FILTER_SWITCH) |
1258                      FW_FILTER_WR_DMAC_V(f->fs.newdmac) |
1259                      FW_FILTER_WR_SMAC_V(f->fs.newsmac) |
1260                      FW_FILTER_WR_INSVLAN_V(f->fs.newvlan == VLAN_INSERT ||
1261                                             f->fs.newvlan == VLAN_REWRITE) |
1262                      FW_FILTER_WR_RMVLAN_V(f->fs.newvlan == VLAN_REMOVE ||
1263                                            f->fs.newvlan == VLAN_REWRITE) |
1264                      FW_FILTER_WR_HITCNTS_V(f->fs.hitcnts) |
1265                      FW_FILTER_WR_TXCHAN_V(f->fs.eport) |
1266                      FW_FILTER_WR_PRIO_V(f->fs.prio) |
1267                      FW_FILTER_WR_L2TIX_V(f->l2t ? f->l2t->idx : 0));
1268        fwr->ethtype = htons(f->fs.val.ethtype);
1269        fwr->ethtypem = htons(f->fs.mask.ethtype);
1270        fwr->frag_to_ovlan_vldm =
1271                (FW_FILTER_WR_FRAG_V(f->fs.val.frag) |
1272                 FW_FILTER_WR_FRAGM_V(f->fs.mask.frag) |
1273                 FW_FILTER_WR_IVLAN_VLD_V(f->fs.val.ivlan_vld) |
1274                 FW_FILTER_WR_OVLAN_VLD_V(f->fs.val.ovlan_vld) |
1275                 FW_FILTER_WR_IVLAN_VLDM_V(f->fs.mask.ivlan_vld) |
1276                 FW_FILTER_WR_OVLAN_VLDM_V(f->fs.mask.ovlan_vld));
1277        fwr->smac_sel = 0;
1278        fwr->rx_chan_rx_rpl_iq =
1279                htons(FW_FILTER_WR_RX_CHAN_V(0) |
1280                      FW_FILTER_WR_RX_RPL_IQ_V(adapter->sge.fw_evtq.abs_id));
1281        fwr->maci_to_matchtypem =
1282                htonl(FW_FILTER_WR_MACI_V(f->fs.val.macidx) |
1283                      FW_FILTER_WR_MACIM_V(f->fs.mask.macidx) |
1284                      FW_FILTER_WR_FCOE_V(f->fs.val.fcoe) |
1285                      FW_FILTER_WR_FCOEM_V(f->fs.mask.fcoe) |
1286                      FW_FILTER_WR_PORT_V(f->fs.val.iport) |
1287                      FW_FILTER_WR_PORTM_V(f->fs.mask.iport) |
1288                      FW_FILTER_WR_MATCHTYPE_V(f->fs.val.matchtype) |
1289                      FW_FILTER_WR_MATCHTYPEM_V(f->fs.mask.matchtype));
1290        fwr->ptcl = f->fs.val.proto;
1291        fwr->ptclm = f->fs.mask.proto;
1292        fwr->ttyp = f->fs.val.tos;
1293        fwr->ttypm = f->fs.mask.tos;
1294        fwr->ivlan = htons(f->fs.val.ivlan);
1295        fwr->ivlanm = htons(f->fs.mask.ivlan);
1296        fwr->ovlan = htons(f->fs.val.ovlan);
1297        fwr->ovlanm = htons(f->fs.mask.ovlan);
1298        memcpy(fwr->lip, f->fs.val.lip, sizeof(fwr->lip));
1299        memcpy(fwr->lipm, f->fs.mask.lip, sizeof(fwr->lipm));
1300        memcpy(fwr->fip, f->fs.val.fip, sizeof(fwr->fip));
1301        memcpy(fwr->fipm, f->fs.mask.fip, sizeof(fwr->fipm));
1302        fwr->lp = htons(f->fs.val.lport);
1303        fwr->lpm = htons(f->fs.mask.lport);
1304        fwr->fp = htons(f->fs.val.fport);
1305        fwr->fpm = htons(f->fs.mask.fport);
1306        if (f->fs.newsmac)
1307                memcpy(fwr->sma, f->fs.smac, sizeof(fwr->sma));
1308
1309        /* Mark the filter as "pending" and ship off the Filter Work Request.
1310         * When we get the Work Request Reply we'll clear the pending status.
1311         */
1312        f->pending = 1;
1313        set_wr_txq(skb, CPL_PRIORITY_CONTROL, f->fs.val.iport & 0x3);
1314        t4_ofld_send(adapter, skb);
1315        return 0;
1316}
1317
1318/* Delete the filter at a specified index.
1319 */
1320static int del_filter_wr(struct adapter *adapter, int fidx)
1321{
1322        struct filter_entry *f = &adapter->tids.ftid_tab[fidx];
1323        struct sk_buff *skb;
1324        struct fw_filter_wr *fwr;
1325        unsigned int len, ftid;
1326
1327        len = sizeof(*fwr);
1328        ftid = adapter->tids.ftid_base + fidx;
1329
1330        skb = alloc_skb(len, GFP_KERNEL);
1331        if (!skb)
1332                return -ENOMEM;
1333
1334        fwr = (struct fw_filter_wr *)__skb_put(skb, len);
1335        t4_mk_filtdelwr(ftid, fwr, adapter->sge.fw_evtq.abs_id);
1336
1337        /* Mark the filter as "pending" and ship off the Filter Work Request.
1338         * When we get the Work Request Reply we'll clear the pending status.
1339         */
1340        f->pending = 1;
1341        t4_mgmt_tx(adapter, skb);
1342        return 0;
1343}
1344
1345static u16 cxgb_select_queue(struct net_device *dev, struct sk_buff *skb,
1346                             void *accel_priv, select_queue_fallback_t fallback)
1347{
1348        int txq;
1349
1350#ifdef CONFIG_CHELSIO_T4_DCB
1351        /* If a Data Center Bridging has been successfully negotiated on this
1352         * link then we'll use the skb's priority to map it to a TX Queue.
1353         * The skb's priority is determined via the VLAN Tag Priority Code
1354         * Point field.
1355         */
1356        if (cxgb4_dcb_enabled(dev)) {
1357                u16 vlan_tci;
1358                int err;
1359
1360                err = vlan_get_tag(skb, &vlan_tci);
1361                if (unlikely(err)) {
1362                        if (net_ratelimit())
1363                                netdev_warn(dev,
1364                                            "TX Packet without VLAN Tag on DCB Link\n");
1365                        txq = 0;
1366                } else {
1367                        txq = (vlan_tci & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
1368#ifdef CONFIG_CHELSIO_T4_FCOE
1369                        if (skb->protocol == htons(ETH_P_FCOE))
1370                                txq = skb->priority & 0x7;
1371#endif /* CONFIG_CHELSIO_T4_FCOE */
1372                }
1373                return txq;
1374        }
1375#endif /* CONFIG_CHELSIO_T4_DCB */
1376
1377        if (select_queue) {
1378                txq = (skb_rx_queue_recorded(skb)
1379                        ? skb_get_rx_queue(skb)
1380                        : smp_processor_id());
1381
1382                while (unlikely(txq >= dev->real_num_tx_queues))
1383                        txq -= dev->real_num_tx_queues;
1384
1385                return txq;
1386        }
1387
1388        return fallback(dev, skb) % dev->real_num_tx_queues;
1389}
1390
1391static int closest_timer(const struct sge *s, int time)
1392{
1393        int i, delta, match = 0, min_delta = INT_MAX;
1394
1395        for (i = 0; i < ARRAY_SIZE(s->timer_val); i++) {
1396                delta = time - s->timer_val[i];
1397                if (delta < 0)
1398                        delta = -delta;
1399                if (delta < min_delta) {
1400                        min_delta = delta;
1401                        match = i;
1402                }
1403        }
1404        return match;
1405}
1406
1407static int closest_thres(const struct sge *s, int thres)
1408{
1409        int i, delta, match = 0, min_delta = INT_MAX;
1410
1411        for (i = 0; i < ARRAY_SIZE(s->counter_val); i++) {
1412                delta = thres - s->counter_val[i];
1413                if (delta < 0)
1414                        delta = -delta;
1415                if (delta < min_delta) {
1416                        min_delta = delta;
1417                        match = i;
1418                }
1419        }
1420        return match;
1421}
1422
1423/**
1424 *      cxgb4_set_rspq_intr_params - set a queue's interrupt holdoff parameters
1425 *      @q: the Rx queue
1426 *      @us: the hold-off time in us, or 0 to disable timer
1427 *      @cnt: the hold-off packet count, or 0 to disable counter
1428 *
1429 *      Sets an Rx queue's interrupt hold-off time and packet count.  At least
1430 *      one of the two needs to be enabled for the queue to generate interrupts.
1431 */
1432int cxgb4_set_rspq_intr_params(struct sge_rspq *q,
1433                               unsigned int us, unsigned int cnt)
1434{
1435        struct adapter *adap = q->adap;
1436
1437        if ((us | cnt) == 0)
1438                cnt = 1;
1439
1440        if (cnt) {
1441                int err;
1442                u32 v, new_idx;
1443
1444                new_idx = closest_thres(&adap->sge, cnt);
1445                if (q->desc && q->pktcnt_idx != new_idx) {
1446                        /* the queue has already been created, update it */
1447                        v = FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DMAQ) |
1448                            FW_PARAMS_PARAM_X_V(
1449                                        FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH) |
1450                            FW_PARAMS_PARAM_YZ_V(q->cntxt_id);
1451                        err = t4_set_params(adap, adap->mbox, adap->pf, 0, 1,
1452                                            &v, &new_idx);
1453                        if (err)
1454                                return err;
1455                }
1456                q->pktcnt_idx = new_idx;
1457        }
1458
1459        us = us == 0 ? 6 : closest_timer(&adap->sge, us);
1460        q->intr_params = QINTR_TIMER_IDX_V(us) | QINTR_CNT_EN_V(cnt > 0);
1461        return 0;
1462}
1463
1464static int cxgb_set_features(struct net_device *dev, netdev_features_t features)
1465{
1466        const struct port_info *pi = netdev_priv(dev);
1467        netdev_features_t changed = dev->features ^ features;
1468        int err;
1469
1470        if (!(changed & NETIF_F_HW_VLAN_CTAG_RX))
1471                return 0;
1472
1473        err = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, -1,
1474                            -1, -1, -1,
1475                            !!(features & NETIF_F_HW_VLAN_CTAG_RX), true);
1476        if (unlikely(err))
1477                dev->features = features ^ NETIF_F_HW_VLAN_CTAG_RX;
1478        return err;
1479}
1480
1481static int setup_debugfs(struct adapter *adap)
1482{
1483        if (IS_ERR_OR_NULL(adap->debugfs_root))
1484                return -1;
1485
1486#ifdef CONFIG_DEBUG_FS
1487        t4_setup_debugfs(adap);
1488#endif
1489        return 0;
1490}
1491
1492/*
1493 * upper-layer driver support
1494 */
1495
1496/*
1497 * Allocate an active-open TID and set it to the supplied value.
1498 */
1499int cxgb4_alloc_atid(struct tid_info *t, void *data)
1500{
1501        int atid = -1;
1502
1503        spin_lock_bh(&t->atid_lock);
1504        if (t->afree) {
1505                union aopen_entry *p = t->afree;
1506
1507                atid = (p - t->atid_tab) + t->atid_base;
1508                t->afree = p->next;
1509                p->data = data;
1510                t->atids_in_use++;
1511        }
1512        spin_unlock_bh(&t->atid_lock);
1513        return atid;
1514}
1515EXPORT_SYMBOL(cxgb4_alloc_atid);
1516
1517/*
1518 * Release an active-open TID.
1519 */
1520void cxgb4_free_atid(struct tid_info *t, unsigned int atid)
1521{
1522        union aopen_entry *p = &t->atid_tab[atid - t->atid_base];
1523
1524        spin_lock_bh(&t->atid_lock);
1525        p->next = t->afree;
1526        t->afree = p;
1527        t->atids_in_use--;
1528        spin_unlock_bh(&t->atid_lock);
1529}
1530EXPORT_SYMBOL(cxgb4_free_atid);
1531
1532/*
1533 * Allocate a server TID and set it to the supplied value.
1534 */
1535int cxgb4_alloc_stid(struct tid_info *t, int family, void *data)
1536{
1537        int stid;
1538
1539        spin_lock_bh(&t->stid_lock);
1540        if (family == PF_INET) {
1541                stid = find_first_zero_bit(t->stid_bmap, t->nstids);
1542                if (stid < t->nstids)
1543                        __set_bit(stid, t->stid_bmap);
1544                else
1545                        stid = -1;
1546        } else {
1547                stid = bitmap_find_free_region(t->stid_bmap, t->nstids, 1);
1548                if (stid < 0)
1549                        stid = -1;
1550        }
1551        if (stid >= 0) {
1552                t->stid_tab[stid].data = data;
1553                stid += t->stid_base;
1554                /* IPv6 requires max of 520 bits or 16 cells in TCAM
1555                 * This is equivalent to 4 TIDs. With CLIP enabled it
1556                 * needs 2 TIDs.
1557                 */
1558                if (family == PF_INET)
1559                        t->stids_in_use++;
1560                else
1561                        t->stids_in_use += 2;
1562        }
1563        spin_unlock_bh(&t->stid_lock);
1564        return stid;
1565}
1566EXPORT_SYMBOL(cxgb4_alloc_stid);
1567
1568/* Allocate a server filter TID and set it to the supplied value.
1569 */
1570int cxgb4_alloc_sftid(struct tid_info *t, int family, void *data)
1571{
1572        int stid;
1573
1574        spin_lock_bh(&t->stid_lock);
1575        if (family == PF_INET) {
1576                stid = find_next_zero_bit(t->stid_bmap,
1577                                t->nstids + t->nsftids, t->nstids);
1578                if (stid < (t->nstids + t->nsftids))
1579                        __set_bit(stid, t->stid_bmap);
1580                else
1581                        stid = -1;
1582        } else {
1583                stid = -1;
1584        }
1585        if (stid >= 0) {
1586                t->stid_tab[stid].data = data;
1587                stid -= t->nstids;
1588                stid += t->sftid_base;
1589                t->sftids_in_use++;
1590        }
1591        spin_unlock_bh(&t->stid_lock);
1592        return stid;
1593}
1594EXPORT_SYMBOL(cxgb4_alloc_sftid);
1595
1596/* Release a server TID.
1597 */
1598void cxgb4_free_stid(struct tid_info *t, unsigned int stid, int family)
1599{
1600        /* Is it a server filter TID? */
1601        if (t->nsftids && (stid >= t->sftid_base)) {
1602                stid -= t->sftid_base;
1603                stid += t->nstids;
1604        } else {
1605                stid -= t->stid_base;
1606        }
1607
1608        spin_lock_bh(&t->stid_lock);
1609        if (family == PF_INET)
1610                __clear_bit(stid, t->stid_bmap);
1611        else
1612                bitmap_release_region(t->stid_bmap, stid, 1);
1613        t->stid_tab[stid].data = NULL;
1614        if (stid < t->nstids) {
1615                if (family == PF_INET)
1616                        t->stids_in_use--;
1617                else
1618                        t->stids_in_use -= 2;
1619        } else {
1620                t->sftids_in_use--;
1621        }
1622        spin_unlock_bh(&t->stid_lock);
1623}
1624EXPORT_SYMBOL(cxgb4_free_stid);
1625
1626/*
1627 * Populate a TID_RELEASE WR.  Caller must properly size the skb.
1628 */
1629static void mk_tid_release(struct sk_buff *skb, unsigned int chan,
1630                           unsigned int tid)
1631{
1632        struct cpl_tid_release *req;
1633
1634        set_wr_txq(skb, CPL_PRIORITY_SETUP, chan);
1635        req = (struct cpl_tid_release *)__skb_put(skb, sizeof(*req));
1636        INIT_TP_WR(req, tid);
1637        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, tid));
1638}
1639
1640/*
1641 * Queue a TID release request and if necessary schedule a work queue to
1642 * process it.
1643 */
1644static void cxgb4_queue_tid_release(struct tid_info *t, unsigned int chan,
1645                                    unsigned int tid)
1646{
1647        void **p = &t->tid_tab[tid];
1648        struct adapter *adap = container_of(t, struct adapter, tids);
1649
1650        spin_lock_bh(&adap->tid_release_lock);
1651        *p = adap->tid_release_head;
1652        /* Low 2 bits encode the Tx channel number */
1653        adap->tid_release_head = (void **)((uintptr_t)p | chan);
1654        if (!adap->tid_release_task_busy) {
1655                adap->tid_release_task_busy = true;
1656                queue_work(adap->workq, &adap->tid_release_task);
1657        }
1658        spin_unlock_bh(&adap->tid_release_lock);
1659}
1660
1661/*
1662 * Process the list of pending TID release requests.
1663 */
1664static void process_tid_release_list(struct work_struct *work)
1665{
1666        struct sk_buff *skb;
1667        struct adapter *adap;
1668
1669        adap = container_of(work, struct adapter, tid_release_task);
1670
1671        spin_lock_bh(&adap->tid_release_lock);
1672        while (adap->tid_release_head) {
1673                void **p = adap->tid_release_head;
1674                unsigned int chan = (uintptr_t)p & 3;
1675                p = (void *)p - chan;
1676
1677                adap->tid_release_head = *p;
1678                *p = NULL;
1679                spin_unlock_bh(&adap->tid_release_lock);
1680
1681                while (!(skb = alloc_skb(sizeof(struct cpl_tid_release),
1682                                         GFP_KERNEL)))
1683                        schedule_timeout_uninterruptible(1);
1684
1685                mk_tid_release(skb, chan, p - adap->tids.tid_tab);
1686                t4_ofld_send(adap, skb);
1687                spin_lock_bh(&adap->tid_release_lock);
1688        }
1689        adap->tid_release_task_busy = false;
1690        spin_unlock_bh(&adap->tid_release_lock);
1691}
1692
1693/*
1694 * Release a TID and inform HW.  If we are unable to allocate the release
1695 * message we defer to a work queue.
1696 */
1697void cxgb4_remove_tid(struct tid_info *t, unsigned int chan, unsigned int tid)
1698{
1699        struct sk_buff *skb;
1700        struct adapter *adap = container_of(t, struct adapter, tids);
1701
1702        WARN_ON(tid >= t->ntids);
1703
1704        if (t->tid_tab[tid]) {
1705                t->tid_tab[tid] = NULL;
1706                if (t->hash_base && (tid >= t->hash_base))
1707                        atomic_dec(&t->hash_tids_in_use);
1708                else
1709                        atomic_dec(&t->tids_in_use);
1710        }
1711
1712        skb = alloc_skb(sizeof(struct cpl_tid_release), GFP_ATOMIC);
1713        if (likely(skb)) {
1714                mk_tid_release(skb, chan, tid);
1715                t4_ofld_send(adap, skb);
1716        } else
1717                cxgb4_queue_tid_release(t, chan, tid);
1718}
1719EXPORT_SYMBOL(cxgb4_remove_tid);
1720
1721/*
1722 * Allocate and initialize the TID tables.  Returns 0 on success.
1723 */
1724static int tid_init(struct tid_info *t)
1725{
1726        size_t size;
1727        unsigned int stid_bmap_size;
1728        unsigned int natids = t->natids;
1729        struct adapter *adap = container_of(t, struct adapter, tids);
1730
1731        stid_bmap_size = BITS_TO_LONGS(t->nstids + t->nsftids);
1732        size = t->ntids * sizeof(*t->tid_tab) +
1733               natids * sizeof(*t->atid_tab) +
1734               t->nstids * sizeof(*t->stid_tab) +
1735               t->nsftids * sizeof(*t->stid_tab) +
1736               stid_bmap_size * sizeof(long) +
1737               t->nftids * sizeof(*t->ftid_tab) +
1738               t->nsftids * sizeof(*t->ftid_tab);
1739
1740        t->tid_tab = t4_alloc_mem(size);
1741        if (!t->tid_tab)
1742                return -ENOMEM;
1743
1744        t->atid_tab = (union aopen_entry *)&t->tid_tab[t->ntids];
1745        t->stid_tab = (struct serv_entry *)&t->atid_tab[natids];
1746        t->stid_bmap = (unsigned long *)&t->stid_tab[t->nstids + t->nsftids];
1747        t->ftid_tab = (struct filter_entry *)&t->stid_bmap[stid_bmap_size];
1748        spin_lock_init(&t->stid_lock);
1749        spin_lock_init(&t->atid_lock);
1750
1751        t->stids_in_use = 0;
1752        t->sftids_in_use = 0;
1753        t->afree = NULL;
1754        t->atids_in_use = 0;
1755        atomic_set(&t->tids_in_use, 0);
1756        atomic_set(&t->hash_tids_in_use, 0);
1757
1758        /* Setup the free list for atid_tab and clear the stid bitmap. */
1759        if (natids) {
1760                while (--natids)
1761                        t->atid_tab[natids - 1].next = &t->atid_tab[natids];
1762                t->afree = t->atid_tab;
1763        }
1764        bitmap_zero(t->stid_bmap, t->nstids + t->nsftids);
1765        /* Reserve stid 0 for T4/T5 adapters */
1766        if (!t->stid_base &&
1767            (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
1768                __set_bit(0, t->stid_bmap);
1769
1770        return 0;
1771}
1772
1773/**
1774 *      cxgb4_create_server - create an IP server
1775 *      @dev: the device
1776 *      @stid: the server TID
1777 *      @sip: local IP address to bind server to
1778 *      @sport: the server's TCP port
1779 *      @queue: queue to direct messages from this server to
1780 *
1781 *      Create an IP server for the given port and address.
1782 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1783 */
1784int cxgb4_create_server(const struct net_device *dev, unsigned int stid,
1785                        __be32 sip, __be16 sport, __be16 vlan,
1786                        unsigned int queue)
1787{
1788        unsigned int chan;
1789        struct sk_buff *skb;
1790        struct adapter *adap;
1791        struct cpl_pass_open_req *req;
1792        int ret;
1793
1794        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1795        if (!skb)
1796                return -ENOMEM;
1797
1798        adap = netdev2adap(dev);
1799        req = (struct cpl_pass_open_req *)__skb_put(skb, sizeof(*req));
1800        INIT_TP_WR(req, 0);
1801        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, stid));
1802        req->local_port = sport;
1803        req->peer_port = htons(0);
1804        req->local_ip = sip;
1805        req->peer_ip = htonl(0);
1806        chan = rxq_to_chan(&adap->sge, queue);
1807        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1808        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1809                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1810        ret = t4_mgmt_tx(adap, skb);
1811        return net_xmit_eval(ret);
1812}
1813EXPORT_SYMBOL(cxgb4_create_server);
1814
1815/*      cxgb4_create_server6 - create an IPv6 server
1816 *      @dev: the device
1817 *      @stid: the server TID
1818 *      @sip: local IPv6 address to bind server to
1819 *      @sport: the server's TCP port
1820 *      @queue: queue to direct messages from this server to
1821 *
1822 *      Create an IPv6 server for the given port and address.
1823 *      Returns <0 on error and one of the %NET_XMIT_* values on success.
1824 */
1825int cxgb4_create_server6(const struct net_device *dev, unsigned int stid,
1826                         const struct in6_addr *sip, __be16 sport,
1827                         unsigned int queue)
1828{
1829        unsigned int chan;
1830        struct sk_buff *skb;
1831        struct adapter *adap;
1832        struct cpl_pass_open_req6 *req;
1833        int ret;
1834
1835        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1836        if (!skb)
1837                return -ENOMEM;
1838
1839        adap = netdev2adap(dev);
1840        req = (struct cpl_pass_open_req6 *)__skb_put(skb, sizeof(*req));
1841        INIT_TP_WR(req, 0);
1842        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ6, stid));
1843        req->local_port = sport;
1844        req->peer_port = htons(0);
1845        req->local_ip_hi = *(__be64 *)(sip->s6_addr);
1846        req->local_ip_lo = *(__be64 *)(sip->s6_addr + 8);
1847        req->peer_ip_hi = cpu_to_be64(0);
1848        req->peer_ip_lo = cpu_to_be64(0);
1849        chan = rxq_to_chan(&adap->sge, queue);
1850        req->opt0 = cpu_to_be64(TX_CHAN_V(chan));
1851        req->opt1 = cpu_to_be64(CONN_POLICY_V(CPL_CONN_POLICY_ASK) |
1852                                SYN_RSS_ENABLE_F | SYN_RSS_QUEUE_V(queue));
1853        ret = t4_mgmt_tx(adap, skb);
1854        return net_xmit_eval(ret);
1855}
1856EXPORT_SYMBOL(cxgb4_create_server6);
1857
1858int cxgb4_remove_server(const struct net_device *dev, unsigned int stid,
1859                        unsigned int queue, bool ipv6)
1860{
1861        struct sk_buff *skb;
1862        struct adapter *adap;
1863        struct cpl_close_listsvr_req *req;
1864        int ret;
1865
1866        adap = netdev2adap(dev);
1867
1868        skb = alloc_skb(sizeof(*req), GFP_KERNEL);
1869        if (!skb)
1870                return -ENOMEM;
1871
1872        req = (struct cpl_close_listsvr_req *)__skb_put(skb, sizeof(*req));
1873        INIT_TP_WR(req, 0);
1874        OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, stid));
1875        req->reply_ctrl = htons(NO_REPLY_V(0) | (ipv6 ? LISTSVR_IPV6_V(1) :
1876                                LISTSVR_IPV6_V(0)) | QUEUENO_V(queue));
1877        ret = t4_mgmt_tx(adap, skb);
1878        return net_xmit_eval(ret);
1879}
1880EXPORT_SYMBOL(cxgb4_remove_server);
1881
1882/**
1883 *      cxgb4_best_mtu - find the entry in the MTU table closest to an MTU
1884 *      @mtus: the HW MTU table
1885 *      @mtu: the target MTU
1886 *      @idx: index of selected entry in the MTU table
1887 *
1888 *      Returns the index and the value in the HW MTU table that is closest to
1889 *      but does not exceed @mtu, unless @mtu is smaller than any value in the
1890 *      table, in which case that smallest available value is selected.
1891 */
1892unsigned int cxgb4_best_mtu(const unsigned short *mtus, unsigned short mtu,
1893                            unsigned int *idx)
1894{
1895        unsigned int i = 0;
1896
1897        while (i < NMTUS - 1 && mtus[i + 1] <= mtu)
1898                ++i;
1899        if (idx)
1900                *idx = i;
1901        return mtus[i];
1902}
1903EXPORT_SYMBOL(cxgb4_best_mtu);
1904
1905/**
1906 *     cxgb4_best_aligned_mtu - find best MTU, [hopefully] data size aligned
1907 *     @mtus: the HW MTU table
1908 *     @header_size: Header Size
1909 *     @data_size_max: maximum Data Segment Size
1910 *     @data_size_align: desired Data Segment Size Alignment (2^N)
1911 *     @mtu_idxp: HW MTU Table Index return value pointer (possibly NULL)
1912 *
1913 *     Similar to cxgb4_best_mtu() but instead of searching the Hardware
1914 *     MTU Table based solely on a Maximum MTU parameter, we break that
1915 *     parameter up into a Header Size and Maximum Data Segment Size, and
1916 *     provide a desired Data Segment Size Alignment.  If we find an MTU in
1917 *     the Hardware MTU Table which will result in a Data Segment Size with
1918 *     the requested alignment _and_ that MTU isn't "too far" from the
1919 *     closest MTU, then we'll return that rather than the closest MTU.
1920 */
1921unsigned int cxgb4_best_aligned_mtu(const unsigned short *mtus,
1922                                    unsigned short header_size,
1923                                    unsigned short data_size_max,
1924                                    unsigned short data_size_align,
1925                                    unsigned int *mtu_idxp)
1926{
1927        unsigned short max_mtu = header_size + data_size_max;
1928        unsigned short data_size_align_mask = data_size_align - 1;
1929        int mtu_idx, aligned_mtu_idx;
1930
1931        /* Scan the MTU Table till we find an MTU which is larger than our
1932         * Maximum MTU or we reach the end of the table.  Along the way,
1933         * record the last MTU found, if any, which will result in a Data
1934         * Segment Length matching the requested alignment.
1935         */
1936        for (mtu_idx = 0, aligned_mtu_idx = -1; mtu_idx < NMTUS; mtu_idx++) {
1937                unsigned short data_size = mtus[mtu_idx] - header_size;
1938
1939                /* If this MTU minus the Header Size would result in a
1940                 * Data Segment Size of the desired alignment, remember it.
1941                 */
1942                if ((data_size & data_size_align_mask) == 0)
1943                        aligned_mtu_idx = mtu_idx;
1944
1945                /* If we're not at the end of the Hardware MTU Table and the
1946                 * next element is larger than our Maximum MTU, drop out of
1947                 * the loop.
1948                 */
1949                if (mtu_idx+1 < NMTUS && mtus[mtu_idx+1] > max_mtu)
1950                        break;
1951        }
1952
1953        /* If we fell out of the loop because we ran to the end of the table,
1954         * then we just have to use the last [largest] entry.
1955         */
1956        if (mtu_idx == NMTUS)
1957                mtu_idx--;
1958
1959        /* If we found an MTU which resulted in the requested Data Segment
1960         * Length alignment and that's "not far" from the largest MTU which is
1961         * less than or equal to the maximum MTU, then use that.
1962         */
1963        if (aligned_mtu_idx >= 0 &&
1964            mtu_idx - aligned_mtu_idx <= 1)
1965                mtu_idx = aligned_mtu_idx;
1966
1967        /* If the caller has passed in an MTU Index pointer, pass the
1968         * MTU Index back.  Return the MTU value.
1969         */
1970        if (mtu_idxp)
1971                *mtu_idxp = mtu_idx;
1972        return mtus[mtu_idx];
1973}
1974EXPORT_SYMBOL(cxgb4_best_aligned_mtu);
1975
1976/**
1977 *      cxgb4_tp_smt_idx - Get the Source Mac Table index for this VI
1978 *      @chip: chip type
1979 *      @viid: VI id of the given port
1980 *
1981 *      Return the SMT index for this VI.
1982 */
1983unsigned int cxgb4_tp_smt_idx(enum chip_type chip, unsigned int viid)
1984{
1985        /* In T4/T5, SMT contains 256 SMAC entries organized in
1986         * 128 rows of 2 entries each.
1987         * In T6, SMT contains 256 SMAC entries in 256 rows.
1988         * TODO: The below code needs to be updated when we add support
1989         * for 256 VFs.
1990         */
1991        if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5)
1992                return ((viid & 0x7f) << 1);
1993        else
1994                return (viid & 0x7f);
1995}
1996EXPORT_SYMBOL(cxgb4_tp_smt_idx);
1997
1998/**
1999 *      cxgb4_port_chan - get the HW channel of a port
2000 *      @dev: the net device for the port
2001 *
2002 *      Return the HW Tx channel of the given port.
2003 */
2004unsigned int cxgb4_port_chan(const struct net_device *dev)
2005{
2006        return netdev2pinfo(dev)->tx_chan;
2007}
2008EXPORT_SYMBOL(cxgb4_port_chan);
2009
2010unsigned int cxgb4_dbfifo_count(const struct net_device *dev, int lpfifo)
2011{
2012        struct adapter *adap = netdev2adap(dev);
2013        u32 v1, v2, lp_count, hp_count;
2014
2015        v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2016        v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2017        if (is_t4(adap->params.chip)) {
2018                lp_count = LP_COUNT_G(v1);
2019                hp_count = HP_COUNT_G(v1);
2020        } else {
2021                lp_count = LP_COUNT_T5_G(v1);
2022                hp_count = HP_COUNT_T5_G(v2);
2023        }
2024        return lpfifo ? lp_count : hp_count;
2025}
2026EXPORT_SYMBOL(cxgb4_dbfifo_count);
2027
2028/**
2029 *      cxgb4_port_viid - get the VI id of a port
2030 *      @dev: the net device for the port
2031 *
2032 *      Return the VI id of the given port.
2033 */
2034unsigned int cxgb4_port_viid(const struct net_device *dev)
2035{
2036        return netdev2pinfo(dev)->viid;
2037}
2038EXPORT_SYMBOL(cxgb4_port_viid);
2039
2040/**
2041 *      cxgb4_port_idx - get the index of a port
2042 *      @dev: the net device for the port
2043 *
2044 *      Return the index of the given port.
2045 */
2046unsigned int cxgb4_port_idx(const struct net_device *dev)
2047{
2048        return netdev2pinfo(dev)->port_id;
2049}
2050EXPORT_SYMBOL(cxgb4_port_idx);
2051
2052void cxgb4_get_tcp_stats(struct pci_dev *pdev, struct tp_tcp_stats *v4,
2053                         struct tp_tcp_stats *v6)
2054{
2055        struct adapter *adap = pci_get_drvdata(pdev);
2056
2057        spin_lock(&adap->stats_lock);
2058        t4_tp_get_tcp_stats(adap, v4, v6);
2059        spin_unlock(&adap->stats_lock);
2060}
2061EXPORT_SYMBOL(cxgb4_get_tcp_stats);
2062
2063void cxgb4_iscsi_init(struct net_device *dev, unsigned int tag_mask,
2064                      const unsigned int *pgsz_order)
2065{
2066        struct adapter *adap = netdev2adap(dev);
2067
2068        t4_write_reg(adap, ULP_RX_ISCSI_TAGMASK_A, tag_mask);
2069        t4_write_reg(adap, ULP_RX_ISCSI_PSZ_A, HPZ0_V(pgsz_order[0]) |
2070                     HPZ1_V(pgsz_order[1]) | HPZ2_V(pgsz_order[2]) |
2071                     HPZ3_V(pgsz_order[3]));
2072}
2073EXPORT_SYMBOL(cxgb4_iscsi_init);
2074
2075int cxgb4_flush_eq_cache(struct net_device *dev)
2076{
2077        struct adapter *adap = netdev2adap(dev);
2078
2079        return t4_sge_ctxt_flush(adap, adap->mbox);
2080}
2081EXPORT_SYMBOL(cxgb4_flush_eq_cache);
2082
2083static int read_eq_indices(struct adapter *adap, u16 qid, u16 *pidx, u16 *cidx)
2084{
2085        u32 addr = t4_read_reg(adap, SGE_DBQ_CTXT_BADDR_A) + 24 * qid + 8;
2086        __be64 indices;
2087        int ret;
2088
2089        spin_lock(&adap->win0_lock);
2090        ret = t4_memory_rw(adap, 0, MEM_EDC0, addr,
2091                           sizeof(indices), (__be32 *)&indices,
2092                           T4_MEMORY_READ);
2093        spin_unlock(&adap->win0_lock);
2094        if (!ret) {
2095                *cidx = (be64_to_cpu(indices) >> 25) & 0xffff;
2096                *pidx = (be64_to_cpu(indices) >> 9) & 0xffff;
2097        }
2098        return ret;
2099}
2100
2101int cxgb4_sync_txq_pidx(struct net_device *dev, u16 qid, u16 pidx,
2102                        u16 size)
2103{
2104        struct adapter *adap = netdev2adap(dev);
2105        u16 hw_pidx, hw_cidx;
2106        int ret;
2107
2108        ret = read_eq_indices(adap, qid, &hw_pidx, &hw_cidx);
2109        if (ret)
2110                goto out;
2111
2112        if (pidx != hw_pidx) {
2113                u16 delta;
2114                u32 val;
2115
2116                if (pidx >= hw_pidx)
2117                        delta = pidx - hw_pidx;
2118                else
2119                        delta = size - hw_pidx + pidx;
2120
2121                if (is_t4(adap->params.chip))
2122                        val = PIDX_V(delta);
2123                else
2124                        val = PIDX_T5_V(delta);
2125                wmb();
2126                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2127                             QID_V(qid) | val);
2128        }
2129out:
2130        return ret;
2131}
2132EXPORT_SYMBOL(cxgb4_sync_txq_pidx);
2133
2134int cxgb4_read_tpte(struct net_device *dev, u32 stag, __be32 *tpte)
2135{
2136        struct adapter *adap;
2137        u32 offset, memtype, memaddr;
2138        u32 edc0_size, edc1_size, mc0_size, mc1_size, size;
2139        u32 edc0_end, edc1_end, mc0_end, mc1_end;
2140        int ret;
2141
2142        adap = netdev2adap(dev);
2143
2144        offset = ((stag >> 8) * 32) + adap->vres.stag.start;
2145
2146        /* Figure out where the offset lands in the Memory Type/Address scheme.
2147         * This code assumes that the memory is laid out starting at offset 0
2148         * with no breaks as: EDC0, EDC1, MC0, MC1. All cards have both EDC0
2149         * and EDC1.  Some cards will have neither MC0 nor MC1, most cards have
2150         * MC0, and some have both MC0 and MC1.
2151         */
2152        size = t4_read_reg(adap, MA_EDRAM0_BAR_A);
2153        edc0_size = EDRAM0_SIZE_G(size) << 20;
2154        size = t4_read_reg(adap, MA_EDRAM1_BAR_A);
2155        edc1_size = EDRAM1_SIZE_G(size) << 20;
2156        size = t4_read_reg(adap, MA_EXT_MEMORY0_BAR_A);
2157        mc0_size = EXT_MEM0_SIZE_G(size) << 20;
2158
2159        edc0_end = edc0_size;
2160        edc1_end = edc0_end + edc1_size;
2161        mc0_end = edc1_end + mc0_size;
2162
2163        if (offset < edc0_end) {
2164                memtype = MEM_EDC0;
2165                memaddr = offset;
2166        } else if (offset < edc1_end) {
2167                memtype = MEM_EDC1;
2168                memaddr = offset - edc0_end;
2169        } else {
2170                if (offset < mc0_end) {
2171                        memtype = MEM_MC0;
2172                        memaddr = offset - edc1_end;
2173                } else if (is_t5(adap->params.chip)) {
2174                        size = t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A);
2175                        mc1_size = EXT_MEM1_SIZE_G(size) << 20;
2176                        mc1_end = mc0_end + mc1_size;
2177                        if (offset < mc1_end) {
2178                                memtype = MEM_MC1;
2179                                memaddr = offset - mc0_end;
2180                        } else {
2181                                /* offset beyond the end of any memory */
2182                                goto err;
2183                        }
2184                } else {
2185                        /* T4/T6 only has a single memory channel */
2186                        goto err;
2187                }
2188        }
2189
2190        spin_lock(&adap->win0_lock);
2191        ret = t4_memory_rw(adap, 0, memtype, memaddr, 32, tpte, T4_MEMORY_READ);
2192        spin_unlock(&adap->win0_lock);
2193        return ret;
2194
2195err:
2196        dev_err(adap->pdev_dev, "stag %#x, offset %#x out of range\n",
2197                stag, offset);
2198        return -EINVAL;
2199}
2200EXPORT_SYMBOL(cxgb4_read_tpte);
2201
2202u64 cxgb4_read_sge_timestamp(struct net_device *dev)
2203{
2204        u32 hi, lo;
2205        struct adapter *adap;
2206
2207        adap = netdev2adap(dev);
2208        lo = t4_read_reg(adap, SGE_TIMESTAMP_LO_A);
2209        hi = TSVAL_G(t4_read_reg(adap, SGE_TIMESTAMP_HI_A));
2210
2211        return ((u64)hi << 32) | (u64)lo;
2212}
2213EXPORT_SYMBOL(cxgb4_read_sge_timestamp);
2214
2215int cxgb4_bar2_sge_qregs(struct net_device *dev,
2216                         unsigned int qid,
2217                         enum cxgb4_bar2_qtype qtype,
2218                         int user,
2219                         u64 *pbar2_qoffset,
2220                         unsigned int *pbar2_qid)
2221{
2222        return t4_bar2_sge_qregs(netdev2adap(dev),
2223                                 qid,
2224                                 (qtype == CXGB4_BAR2_QTYPE_EGRESS
2225                                  ? T4_BAR2_QTYPE_EGRESS
2226                                  : T4_BAR2_QTYPE_INGRESS),
2227                                 user,
2228                                 pbar2_qoffset,
2229                                 pbar2_qid);
2230}
2231EXPORT_SYMBOL(cxgb4_bar2_sge_qregs);
2232
2233static struct pci_driver cxgb4_driver;
2234
2235static void check_neigh_update(struct neighbour *neigh)
2236{
2237        const struct device *parent;
2238        const struct net_device *netdev = neigh->dev;
2239
2240        if (netdev->priv_flags & IFF_802_1Q_VLAN)
2241                netdev = vlan_dev_real_dev(netdev);
2242        parent = netdev->dev.parent;
2243        if (parent && parent->driver == &cxgb4_driver.driver)
2244                t4_l2t_update(dev_get_drvdata(parent), neigh);
2245}
2246
2247static int netevent_cb(struct notifier_block *nb, unsigned long event,
2248                       void *data)
2249{
2250        switch (event) {
2251        case NETEVENT_NEIGH_UPDATE:
2252                check_neigh_update(data);
2253                break;
2254        case NETEVENT_REDIRECT:
2255        default:
2256                break;
2257        }
2258        return 0;
2259}
2260
2261static bool netevent_registered;
2262static struct notifier_block cxgb4_netevent_nb = {
2263        .notifier_call = netevent_cb
2264};
2265
2266static void drain_db_fifo(struct adapter *adap, int usecs)
2267{
2268        u32 v1, v2, lp_count, hp_count;
2269
2270        do {
2271                v1 = t4_read_reg(adap, SGE_DBFIFO_STATUS_A);
2272                v2 = t4_read_reg(adap, SGE_DBFIFO_STATUS2_A);
2273                if (is_t4(adap->params.chip)) {
2274                        lp_count = LP_COUNT_G(v1);
2275                        hp_count = HP_COUNT_G(v1);
2276                } else {
2277                        lp_count = LP_COUNT_T5_G(v1);
2278                        hp_count = HP_COUNT_T5_G(v2);
2279                }
2280
2281                if (lp_count == 0 && hp_count == 0)
2282                        break;
2283                set_current_state(TASK_UNINTERRUPTIBLE);
2284                schedule_timeout(usecs_to_jiffies(usecs));
2285        } while (1);
2286}
2287
2288static void disable_txq_db(struct sge_txq *q)
2289{
2290        unsigned long flags;
2291
2292        spin_lock_irqsave(&q->db_lock, flags);
2293        q->db_disabled = 1;
2294        spin_unlock_irqrestore(&q->db_lock, flags);
2295}
2296
2297static void enable_txq_db(struct adapter *adap, struct sge_txq *q)
2298{
2299        spin_lock_irq(&q->db_lock);
2300        if (q->db_pidx_inc) {
2301                /* Make sure that all writes to the TX descriptors
2302                 * are committed before we tell HW about them.
2303                 */
2304                wmb();
2305                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2306                             QID_V(q->cntxt_id) | PIDX_V(q->db_pidx_inc));
2307                q->db_pidx_inc = 0;
2308        }
2309        q->db_disabled = 0;
2310        spin_unlock_irq(&q->db_lock);
2311}
2312
2313static void disable_dbs(struct adapter *adap)
2314{
2315        int i;
2316
2317        for_each_ethrxq(&adap->sge, i)
2318                disable_txq_db(&adap->sge.ethtxq[i].q);
2319        for_each_iscsirxq(&adap->sge, i)
2320                disable_txq_db(&adap->sge.ofldtxq[i].q);
2321        for_each_port(adap, i)
2322                disable_txq_db(&adap->sge.ctrlq[i].q);
2323}
2324
2325static void enable_dbs(struct adapter *adap)
2326{
2327        int i;
2328
2329        for_each_ethrxq(&adap->sge, i)
2330                enable_txq_db(adap, &adap->sge.ethtxq[i].q);
2331        for_each_iscsirxq(&adap->sge, i)
2332                enable_txq_db(adap, &adap->sge.ofldtxq[i].q);
2333        for_each_port(adap, i)
2334                enable_txq_db(adap, &adap->sge.ctrlq[i].q);
2335}
2336
2337static void notify_rdma_uld(struct adapter *adap, enum cxgb4_control cmd)
2338{
2339        if (adap->uld_handle[CXGB4_ULD_RDMA])
2340                ulds[CXGB4_ULD_RDMA].control(adap->uld_handle[CXGB4_ULD_RDMA],
2341                                cmd);
2342}
2343
2344static void process_db_full(struct work_struct *work)
2345{
2346        struct adapter *adap;
2347
2348        adap = container_of(work, struct adapter, db_full_task);
2349
2350        drain_db_fifo(adap, dbfifo_drain_delay);
2351        enable_dbs(adap);
2352        notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2353        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2354                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2355                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F,
2356                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F);
2357        else
2358                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2359                                 DBFIFO_LP_INT_F, DBFIFO_LP_INT_F);
2360}
2361
2362static void sync_txq_pidx(struct adapter *adap, struct sge_txq *q)
2363{
2364        u16 hw_pidx, hw_cidx;
2365        int ret;
2366
2367        spin_lock_irq(&q->db_lock);
2368        ret = read_eq_indices(adap, (u16)q->cntxt_id, &hw_pidx, &hw_cidx);
2369        if (ret)
2370                goto out;
2371        if (q->db_pidx != hw_pidx) {
2372                u16 delta;
2373                u32 val;
2374
2375                if (q->db_pidx >= hw_pidx)
2376                        delta = q->db_pidx - hw_pidx;
2377                else
2378                        delta = q->size - hw_pidx + q->db_pidx;
2379
2380                if (is_t4(adap->params.chip))
2381                        val = PIDX_V(delta);
2382                else
2383                        val = PIDX_T5_V(delta);
2384                wmb();
2385                t4_write_reg(adap, MYPF_REG(SGE_PF_KDOORBELL_A),
2386                             QID_V(q->cntxt_id) | val);
2387        }
2388out:
2389        q->db_disabled = 0;
2390        q->db_pidx_inc = 0;
2391        spin_unlock_irq(&q->db_lock);
2392        if (ret)
2393                CH_WARN(adap, "DB drop recovery failed.\n");
2394}
2395static void recover_all_queues(struct adapter *adap)
2396{
2397        int i;
2398
2399        for_each_ethrxq(&adap->sge, i)
2400                sync_txq_pidx(adap, &adap->sge.ethtxq[i].q);
2401        for_each_iscsirxq(&adap->sge, i)
2402                sync_txq_pidx(adap, &adap->sge.ofldtxq[i].q);
2403        for_each_port(adap, i)
2404                sync_txq_pidx(adap, &adap->sge.ctrlq[i].q);
2405}
2406
2407static void process_db_drop(struct work_struct *work)
2408{
2409        struct adapter *adap;
2410
2411        adap = container_of(work, struct adapter, db_drop_task);
2412
2413        if (is_t4(adap->params.chip)) {
2414                drain_db_fifo(adap, dbfifo_drain_delay);
2415                notify_rdma_uld(adap, CXGB4_CONTROL_DB_DROP);
2416                drain_db_fifo(adap, dbfifo_drain_delay);
2417                recover_all_queues(adap);
2418                drain_db_fifo(adap, dbfifo_drain_delay);
2419                enable_dbs(adap);
2420                notify_rdma_uld(adap, CXGB4_CONTROL_DB_EMPTY);
2421        } else if (is_t5(adap->params.chip)) {
2422                u32 dropped_db = t4_read_reg(adap, 0x010ac);
2423                u16 qid = (dropped_db >> 15) & 0x1ffff;
2424                u16 pidx_inc = dropped_db & 0x1fff;
2425                u64 bar2_qoffset;
2426                unsigned int bar2_qid;
2427                int ret;
2428
2429                ret = t4_bar2_sge_qregs(adap, qid, T4_BAR2_QTYPE_EGRESS,
2430                                        0, &bar2_qoffset, &bar2_qid);
2431                if (ret)
2432                        dev_err(adap->pdev_dev, "doorbell drop recovery: "
2433                                "qid=%d, pidx_inc=%d\n", qid, pidx_inc);
2434                else
2435                        writel(PIDX_T5_V(pidx_inc) | QID_V(bar2_qid),
2436                               adap->bar2 + bar2_qoffset + SGE_UDB_KDOORBELL);
2437
2438                /* Re-enable BAR2 WC */
2439                t4_set_reg_field(adap, 0x10b0, 1<<15, 1<<15);
2440        }
2441
2442        if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
2443                t4_set_reg_field(adap, SGE_DOORBELL_CONTROL_A, DROPPED_DB_F, 0);
2444}
2445
2446void t4_db_full(struct adapter *adap)
2447{
2448        if (is_t4(adap->params.chip)) {
2449                disable_dbs(adap);
2450                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2451                t4_set_reg_field(adap, SGE_INT_ENABLE3_A,
2452                                 DBFIFO_HP_INT_F | DBFIFO_LP_INT_F, 0);
2453                queue_work(adap->workq, &adap->db_full_task);
2454        }
2455}
2456
2457void t4_db_dropped(struct adapter *adap)
2458{
2459        if (is_t4(adap->params.chip)) {
2460                disable_dbs(adap);
2461                notify_rdma_uld(adap, CXGB4_CONTROL_DB_FULL);
2462        }
2463        queue_work(adap->workq, &adap->db_drop_task);
2464}
2465
2466static void uld_attach(struct adapter *adap, unsigned int uld)
2467{
2468        void *handle;
2469        struct cxgb4_lld_info lli;
2470        unsigned short i;
2471
2472        lli.pdev = adap->pdev;
2473        lli.pf = adap->pf;
2474        lli.l2t = adap->l2t;
2475        lli.tids = &adap->tids;
2476        lli.ports = adap->port;
2477        lli.vr = &adap->vres;
2478        lli.mtus = adap->params.mtus;
2479        if (uld == CXGB4_ULD_RDMA) {
2480                lli.rxq_ids = adap->sge.rdma_rxq;
2481                lli.ciq_ids = adap->sge.rdma_ciq;
2482                lli.nrxq = adap->sge.rdmaqs;
2483                lli.nciq = adap->sge.rdmaciqs;
2484        } else if (uld == CXGB4_ULD_ISCSI) {
2485                lli.rxq_ids = adap->sge.iscsi_rxq;
2486                lli.nrxq = adap->sge.iscsiqsets;
2487        } else if (uld == CXGB4_ULD_ISCSIT) {
2488                lli.rxq_ids = adap->sge.iscsit_rxq;
2489                lli.nrxq = adap->sge.niscsitq;
2490        }
2491        lli.ntxq = adap->sge.iscsiqsets;
2492        lli.nchan = adap->params.nports;
2493        lli.nports = adap->params.nports;
2494        lli.wr_cred = adap->params.ofldq_wr_cred;
2495        lli.adapter_type = adap->params.chip;
2496        lli.iscsi_iolen = MAXRXDATA_G(t4_read_reg(adap, TP_PARA_REG2_A));
2497        lli.iscsi_tagmask = t4_read_reg(adap, ULP_RX_ISCSI_TAGMASK_A);
2498        lli.iscsi_pgsz_order = t4_read_reg(adap, ULP_RX_ISCSI_PSZ_A);
2499        lli.iscsi_llimit = t4_read_reg(adap, ULP_RX_ISCSI_LLIMIT_A);
2500        lli.iscsi_ppm = &adap->iscsi_ppm;
2501        lli.cclk_ps = 1000000000 / adap->params.vpd.cclk;
2502        lli.udb_density = 1 << adap->params.sge.eq_qpp;
2503        lli.ucq_density = 1 << adap->params.sge.iq_qpp;
2504        lli.filt_mode = adap->params.tp.vlan_pri_map;
2505        /* MODQ_REQ_MAP sets queues 0-3 to chan 0-3 */
2506        for (i = 0; i < NCHAN; i++)
2507                lli.tx_modq[i] = i;
2508        lli.gts_reg = adap->regs + MYPF_REG(SGE_PF_GTS_A);
2509        lli.db_reg = adap->regs + MYPF_REG(SGE_PF_KDOORBELL_A);
2510        lli.fw_vers = adap->params.fw_vers;
2511        lli.dbfifo_int_thresh = dbfifo_int_thresh;
2512        lli.sge_ingpadboundary = adap->sge.fl_align;
2513        lli.sge_egrstatuspagesize = adap->sge.stat_len;
2514        lli.sge_pktshift = adap->sge.pktshift;
2515        lli.enable_fw_ofld_conn = adap->flags & FW_OFLD_CONN;
2516        lli.max_ordird_qp = adap->params.max_ordird_qp;
2517        lli.max_ird_adapter = adap->params.max_ird_adapter;
2518        lli.ulptx_memwrite_dsgl = adap->params.ulptx_memwrite_dsgl;
2519        lli.nodeid = dev_to_node(adap->pdev_dev);
2520
2521        handle = ulds[uld].add(&lli);
2522        if (IS_ERR(handle)) {
2523                dev_warn(adap->pdev_dev,
2524                         "could not attach to the %s driver, error %ld\n",
2525                         uld_str[uld], PTR_ERR(handle));
2526                return;
2527        }
2528
2529        adap->uld_handle[uld] = handle;
2530
2531        if (!netevent_registered) {
2532                register_netevent_notifier(&cxgb4_netevent_nb);
2533                netevent_registered = true;
2534        }
2535
2536        if (adap->flags & FULL_INIT_DONE)
2537                ulds[uld].state_change(handle, CXGB4_STATE_UP);
2538}
2539
2540static void attach_ulds(struct adapter *adap)
2541{
2542        unsigned int i;
2543
2544        spin_lock(&adap_rcu_lock);
2545        list_add_tail_rcu(&adap->rcu_node, &adap_rcu_list);
2546        spin_unlock(&adap_rcu_lock);
2547
2548        mutex_lock(&uld_mutex);
2549        list_add_tail(&adap->list_node, &adapter_list);
2550        for (i = 0; i < CXGB4_ULD_MAX; i++)
2551                if (ulds[i].add)
2552                        uld_attach(adap, i);
2553        mutex_unlock(&uld_mutex);
2554}
2555
2556static void detach_ulds(struct adapter *adap)
2557{
2558        unsigned int i;
2559
2560        mutex_lock(&uld_mutex);
2561        list_del(&adap->list_node);
2562        for (i = 0; i < CXGB4_ULD_MAX; i++)
2563                if (adap->uld_handle[i]) {
2564                        ulds[i].state_change(adap->uld_handle[i],
2565                                             CXGB4_STATE_DETACH);
2566                        adap->uld_handle[i] = NULL;
2567                }
2568        if (netevent_registered && list_empty(&adapter_list)) {
2569                unregister_netevent_notifier(&cxgb4_netevent_nb);
2570                netevent_registered = false;
2571        }
2572        mutex_unlock(&uld_mutex);
2573
2574        spin_lock(&adap_rcu_lock);
2575        list_del_rcu(&adap->rcu_node);
2576        spin_unlock(&adap_rcu_lock);
2577}
2578
2579static void notify_ulds(struct adapter *adap, enum cxgb4_state new_state)
2580{
2581        unsigned int i;
2582
2583        mutex_lock(&uld_mutex);
2584        for (i = 0; i < CXGB4_ULD_MAX; i++)
2585                if (adap->uld_handle[i])
2586                        ulds[i].state_change(adap->uld_handle[i], new_state);
2587        mutex_unlock(&uld_mutex);
2588}
2589
2590/**
2591 *      cxgb4_register_uld - register an upper-layer driver
2592 *      @type: the ULD type
2593 *      @p: the ULD methods
2594 *
2595 *      Registers an upper-layer driver with this driver and notifies the ULD
2596 *      about any presently available devices that support its type.  Returns
2597 *      %-EBUSY if a ULD of the same type is already registered.
2598 */
2599int cxgb4_register_uld(enum cxgb4_uld type, const struct cxgb4_uld_info *p)
2600{
2601        int ret = 0;
2602        struct adapter *adap;
2603
2604        if (type >= CXGB4_ULD_MAX)
2605                return -EINVAL;
2606        mutex_lock(&uld_mutex);
2607        if (ulds[type].add) {
2608                ret = -EBUSY;
2609                goto out;
2610        }
2611        ulds[type] = *p;
2612        list_for_each_entry(adap, &adapter_list, list_node)
2613                uld_attach(adap, type);
2614out:    mutex_unlock(&uld_mutex);
2615        return ret;
2616}
2617EXPORT_SYMBOL(cxgb4_register_uld);
2618
2619/**
2620 *      cxgb4_unregister_uld - unregister an upper-layer driver
2621 *      @type: the ULD type
2622 *
2623 *      Unregisters an existing upper-layer driver.
2624 */
2625int cxgb4_unregister_uld(enum cxgb4_uld type)
2626{
2627        struct adapter *adap;
2628
2629        if (type >= CXGB4_ULD_MAX)
2630                return -EINVAL;
2631        mutex_lock(&uld_mutex);
2632        list_for_each_entry(adap, &adapter_list, list_node)
2633                adap->uld_handle[type] = NULL;
2634        ulds[type].add = NULL;
2635        mutex_unlock(&uld_mutex);
2636        return 0;
2637}
2638EXPORT_SYMBOL(cxgb4_unregister_uld);
2639
2640#if IS_ENABLED(CONFIG_IPV6)
2641static int cxgb4_inet6addr_handler(struct notifier_block *this,
2642                                   unsigned long event, void *data)
2643{
2644        struct inet6_ifaddr *ifa = data;
2645        struct net_device *event_dev = ifa->idev->dev;
2646        const struct device *parent = NULL;
2647#if IS_ENABLED(CONFIG_BONDING)
2648        struct adapter *adap;
2649#endif
2650        if (event_dev->priv_flags & IFF_802_1Q_VLAN)
2651                event_dev = vlan_dev_real_dev(event_dev);
2652#if IS_ENABLED(CONFIG_BONDING)
2653        if (event_dev->flags & IFF_MASTER) {
2654                list_for_each_entry(adap, &adapter_list, list_node) {
2655                        switch (event) {
2656                        case NETDEV_UP:
2657                                cxgb4_clip_get(adap->port[0],
2658                                               (const u32 *)ifa, 1);
2659                                break;
2660                        case NETDEV_DOWN:
2661                                cxgb4_clip_release(adap->port[0],
2662                                                   (const u32 *)ifa, 1);
2663                                break;
2664                        default:
2665                                break;
2666                        }
2667                }
2668                return NOTIFY_OK;
2669        }
2670#endif
2671
2672        if (event_dev)
2673                parent = event_dev->dev.parent;
2674
2675        if (parent && parent->driver == &cxgb4_driver.driver) {
2676                switch (event) {
2677                case NETDEV_UP:
2678                        cxgb4_clip_get(event_dev, (const u32 *)ifa, 1);
2679                        break;
2680                case NETDEV_DOWN:
2681                        cxgb4_clip_release(event_dev, (const u32 *)ifa, 1);
2682                        break;
2683                default:
2684                        break;
2685                }
2686        }
2687        return NOTIFY_OK;
2688}
2689
2690static bool inet6addr_registered;
2691static struct notifier_block cxgb4_inet6addr_notifier = {
2692        .notifier_call = cxgb4_inet6addr_handler
2693};
2694
2695static void update_clip(const struct adapter *adap)
2696{
2697        int i;
2698        struct net_device *dev;
2699        int ret;
2700
2701        rcu_read_lock();
2702
2703        for (i = 0; i < MAX_NPORTS; i++) {
2704                dev = adap->port[i];
2705                ret = 0;
2706
2707                if (dev)
2708                        ret = cxgb4_update_root_dev_clip(dev);
2709
2710                if (ret < 0)
2711                        break;
2712        }
2713        rcu_read_unlock();
2714}
2715#endif /* IS_ENABLED(CONFIG_IPV6) */
2716
2717/**
2718 *      cxgb_up - enable the adapter
2719 *      @adap: adapter being enabled
2720 *
2721 *      Called when the first port is enabled, this function performs the
2722 *      actions necessary to make an adapter operational, such as completing
2723 *      the initialization of HW modules, and enabling interrupts.
2724 *
2725 *      Must be called with the rtnl lock held.
2726 */
2727static int cxgb_up(struct adapter *adap)
2728{
2729        int err;
2730
2731        err = setup_sge_queues(adap);
2732        if (err)
2733                goto out;
2734        err = setup_rss(adap);
2735        if (err)
2736                goto freeq;
2737
2738        if (adap->flags & USING_MSIX) {
2739                name_msix_vecs(adap);
2740                err = request_irq(adap->msix_info[0].vec, t4_nondata_intr, 0,
2741                                  adap->msix_info[0].desc, adap);
2742                if (err)
2743                        goto irq_err;
2744
2745                err = request_msix_queue_irqs(adap);
2746                if (err) {
2747                        free_irq(adap->msix_info[0].vec, adap);
2748                        goto irq_err;
2749                }
2750        } else {
2751                err = request_irq(adap->pdev->irq, t4_intr_handler(adap),
2752                                  (adap->flags & USING_MSI) ? 0 : IRQF_SHARED,
2753                                  adap->port[0]->name, adap);
2754                if (err)
2755                        goto irq_err;
2756        }
2757        enable_rx(adap);
2758        t4_sge_start(adap);
2759        t4_intr_enable(adap);
2760        adap->flags |= FULL_INIT_DONE;
2761        notify_ulds(adap, CXGB4_STATE_UP);
2762#if IS_ENABLED(CONFIG_IPV6)
2763        update_clip(adap);
2764#endif
2765        /* Initialize hash mac addr list*/
2766        INIT_LIST_HEAD(&adap->mac_hlist);
2767 out:
2768        return err;
2769 irq_err:
2770        dev_err(adap->pdev_dev, "request_irq failed, err %d\n", err);
2771 freeq:
2772        t4_free_sge_resources(adap);
2773        goto out;
2774}
2775
2776static void cxgb_down(struct adapter *adapter)
2777{
2778        cancel_work_sync(&adapter->tid_release_task);
2779        cancel_work_sync(&adapter->db_full_task);
2780        cancel_work_sync(&adapter->db_drop_task);
2781        adapter->tid_release_task_busy = false;
2782        adapter->tid_release_head = NULL;
2783
2784        t4_sge_stop(adapter);
2785        t4_free_sge_resources(adapter);
2786        adapter->flags &= ~FULL_INIT_DONE;
2787}
2788
2789/*
2790 * net_device operations
2791 */
2792static int cxgb_open(struct net_device *dev)
2793{
2794        int err;
2795        struct port_info *pi = netdev_priv(dev);
2796        struct adapter *adapter = pi->adapter;
2797
2798        netif_carrier_off(dev);
2799
2800        if (!(adapter->flags & FULL_INIT_DONE)) {
2801                err = cxgb_up(adapter);
2802                if (err < 0)
2803                        return err;
2804        }
2805
2806        err = link_start(dev);
2807        if (!err)
2808                netif_tx_start_all_queues(dev);
2809        return err;
2810}
2811
2812static int cxgb_close(struct net_device *dev)
2813{
2814        struct port_info *pi = netdev_priv(dev);
2815        struct adapter *adapter = pi->adapter;
2816
2817        netif_tx_stop_all_queues(dev);
2818        netif_carrier_off(dev);
2819        return t4_enable_vi(adapter, adapter->pf, pi->viid, false, false);
2820}
2821
2822/* Return an error number if the indicated filter isn't writable ...
2823 */
2824static int writable_filter(struct filter_entry *f)
2825{
2826        if (f->locked)
2827                return -EPERM;
2828        if (f->pending)
2829                return -EBUSY;
2830
2831        return 0;
2832}
2833
2834/* Delete the filter at the specified index (if valid).  The checks for all
2835 * the common problems with doing this like the filter being locked, currently
2836 * pending in another operation, etc.
2837 */
2838static int delete_filter(struct adapter *adapter, unsigned int fidx)
2839{
2840        struct filter_entry *f;
2841        int ret;
2842
2843        if (fidx >= adapter->tids.nftids + adapter->tids.nsftids)
2844                return -EINVAL;
2845
2846        f = &adapter->tids.ftid_tab[fidx];
2847        ret = writable_filter(f);
2848        if (ret)
2849                return ret;
2850        if (f->valid)
2851                return del_filter_wr(adapter, fidx);
2852
2853        return 0;
2854}
2855
2856int cxgb4_create_server_filter(const struct net_device *dev, unsigned int stid,
2857                __be32 sip, __be16 sport, __be16 vlan,
2858                unsigned int queue, unsigned char port, unsigned char mask)
2859{
2860        int ret;
2861        struct filter_entry *f;
2862        struct adapter *adap;
2863        int i;
2864        u8 *val;
2865
2866        adap = netdev2adap(dev);
2867
2868        /* Adjust stid to correct filter index */
2869        stid -= adap->tids.sftid_base;
2870        stid += adap->tids.nftids;
2871
2872        /* Check to make sure the filter requested is writable ...
2873         */
2874        f = &adap->tids.ftid_tab[stid];
2875        ret = writable_filter(f);
2876        if (ret)
2877                return ret;
2878
2879        /* Clear out any old resources being used by the filter before
2880         * we start constructing the new filter.
2881         */
2882        if (f->valid)
2883                clear_filter(adap, f);
2884
2885        /* Clear out filter specifications */
2886        memset(&f->fs, 0, sizeof(struct ch_filter_specification));
2887        f->fs.val.lport = cpu_to_be16(sport);
2888        f->fs.mask.lport  = ~0;
2889        val = (u8 *)&sip;
2890        if ((val[0] | val[1] | val[2] | val[3]) != 0) {
2891                for (i = 0; i < 4; i++) {
2892                        f->fs.val.lip[i] = val[i];
2893                        f->fs.mask.lip[i] = ~0;
2894                }
2895                if (adap->params.tp.vlan_pri_map & PORT_F) {
2896                        f->fs.val.iport = port;
2897                        f->fs.mask.iport = mask;
2898                }
2899        }
2900
2901        if (adap->params.tp.vlan_pri_map & PROTOCOL_F) {
2902                f->fs.val.proto = IPPROTO_TCP;
2903                f->fs.mask.proto = ~0;
2904        }
2905
2906        f->fs.dirsteer = 1;
2907        f->fs.iq = queue;
2908        /* Mark filter as locked */
2909        f->locked = 1;
2910        f->fs.rpttid = 1;
2911
2912        ret = set_filter_wr(adap, stid);
2913        if (ret) {
2914                clear_filter(adap, f);
2915                return ret;
2916        }
2917
2918        return 0;
2919}
2920EXPORT_SYMBOL(cxgb4_create_server_filter);
2921
2922int cxgb4_remove_server_filter(const struct net_device *dev, unsigned int stid,
2923                unsigned int queue, bool ipv6)
2924{
2925        int ret;
2926        struct filter_entry *f;
2927        struct adapter *adap;
2928
2929        adap = netdev2adap(dev);
2930
2931        /* Adjust stid to correct filter index */
2932        stid -= adap->tids.sftid_base;
2933        stid += adap->tids.nftids;
2934
2935        f = &adap->tids.ftid_tab[stid];
2936        /* Unlock the filter */
2937        f->locked = 0;
2938
2939        ret = delete_filter(adap, stid);
2940        if (ret)
2941                return ret;
2942
2943        return 0;
2944}
2945EXPORT_SYMBOL(cxgb4_remove_server_filter);
2946
2947static struct rtnl_link_stats64 *cxgb_get_stats(struct net_device *dev,
2948                                                struct rtnl_link_stats64 *ns)
2949{
2950        struct port_stats stats;
2951        struct port_info *p = netdev_priv(dev);
2952        struct adapter *adapter = p->adapter;
2953
2954        /* Block retrieving statistics during EEH error
2955         * recovery. Otherwise, the recovery might fail
2956         * and the PCI device will be removed permanently
2957         */
2958        spin_lock(&adapter->stats_lock);
2959        if (!netif_device_present(dev)) {
2960                spin_unlock(&adapter->stats_lock);
2961                return ns;
2962        }
2963        t4_get_port_stats_offset(adapter, p->tx_chan, &stats,
2964                                 &p->stats_base);
2965        spin_unlock(&adapter->stats_lock);
2966
2967        ns->tx_bytes   = stats.tx_octets;
2968        ns->tx_packets = stats.tx_frames;
2969        ns->rx_bytes   = stats.rx_octets;
2970        ns->rx_packets = stats.rx_frames;
2971        ns->multicast  = stats.rx_mcast_frames;
2972
2973        /* detailed rx_errors */
2974        ns->rx_length_errors = stats.rx_jabber + stats.rx_too_long +
2975                               stats.rx_runt;
2976        ns->rx_over_errors   = 0;
2977        ns->rx_crc_errors    = stats.rx_fcs_err;
2978        ns->rx_frame_errors  = stats.rx_symbol_err;
2979        ns->rx_fifo_errors   = stats.rx_ovflow0 + stats.rx_ovflow1 +
2980                               stats.rx_ovflow2 + stats.rx_ovflow3 +
2981                               stats.rx_trunc0 + stats.rx_trunc1 +
2982                               stats.rx_trunc2 + stats.rx_trunc3;
2983        ns->rx_missed_errors = 0;
2984
2985        /* detailed tx_errors */
2986        ns->tx_aborted_errors   = 0;
2987        ns->tx_carrier_errors   = 0;
2988        ns->tx_fifo_errors      = 0;
2989        ns->tx_heartbeat_errors = 0;
2990        ns->tx_window_errors    = 0;
2991
2992        ns->tx_errors = stats.tx_error_frames;
2993        ns->rx_errors = stats.rx_symbol_err + stats.rx_fcs_err +
2994                ns->rx_length_errors + stats.rx_len_err + ns->rx_fifo_errors;
2995        return ns;
2996}
2997
2998static int cxgb_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
2999{
3000        unsigned int mbox;
3001        int ret = 0, prtad, devad;
3002        struct port_info *pi = netdev_priv(dev);
3003        struct mii_ioctl_data *data = (struct mii_ioctl_data *)&req->ifr_data;
3004
3005        switch (cmd) {
3006        case SIOCGMIIPHY:
3007                if (pi->mdio_addr < 0)
3008                        return -EOPNOTSUPP;
3009                data->phy_id = pi->mdio_addr;
3010                break;
3011        case SIOCGMIIREG:
3012        case SIOCSMIIREG:
3013                if (mdio_phy_id_is_c45(data->phy_id)) {
3014                        prtad = mdio_phy_id_prtad(data->phy_id);
3015                        devad = mdio_phy_id_devad(data->phy_id);
3016                } else if (data->phy_id < 32) {
3017                        prtad = data->phy_id;
3018                        devad = 0;
3019                        data->reg_num &= 0x1f;
3020                } else
3021                        return -EINVAL;
3022
3023                mbox = pi->adapter->pf;
3024                if (cmd == SIOCGMIIREG)
3025                        ret = t4_mdio_rd(pi->adapter, mbox, prtad, devad,
3026                                         data->reg_num, &data->val_out);
3027                else
3028                        ret = t4_mdio_wr(pi->adapter, mbox, prtad, devad,
3029                                         data->reg_num, data->val_in);
3030                break;
3031        case SIOCGHWTSTAMP:
3032                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3033                                    sizeof(pi->tstamp_config)) ?
3034                        -EFAULT : 0;
3035        case SIOCSHWTSTAMP:
3036                if (copy_from_user(&pi->tstamp_config, req->ifr_data,
3037                                   sizeof(pi->tstamp_config)))
3038                        return -EFAULT;
3039
3040                switch (pi->tstamp_config.rx_filter) {
3041                case HWTSTAMP_FILTER_NONE:
3042                        pi->rxtstamp = false;
3043                        break;
3044                case HWTSTAMP_FILTER_ALL:
3045                        pi->rxtstamp = true;
3046                        break;
3047                default:
3048                        pi->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
3049                        return -ERANGE;
3050                }
3051
3052                return copy_to_user(req->ifr_data, &pi->tstamp_config,
3053                                    sizeof(pi->tstamp_config)) ?
3054                        -EFAULT : 0;
3055        default:
3056                return -EOPNOTSUPP;
3057        }
3058        return ret;
3059}
3060
3061static void cxgb_set_rxmode(struct net_device *dev)
3062{
3063        /* unfortunately we can't return errors to the stack */
3064        set_rxmode(dev, -1, false);
3065}
3066
3067static int cxgb_change_mtu(struct net_device *dev, int new_mtu)
3068{
3069        int ret;
3070        struct port_info *pi = netdev_priv(dev);
3071
3072        if (new_mtu < 81 || new_mtu > MAX_MTU)         /* accommodate SACK */
3073                return -EINVAL;
3074        ret = t4_set_rxmode(pi->adapter, pi->adapter->pf, pi->viid, new_mtu, -1,
3075                            -1, -1, -1, true);
3076        if (!ret)
3077                dev->mtu = new_mtu;
3078        return ret;
3079}
3080
3081static int cxgb_set_mac_addr(struct net_device *dev, void *p)
3082{
3083        int ret;
3084        struct sockaddr *addr = p;
3085        struct port_info *pi = netdev_priv(dev);
3086
3087        if (!is_valid_ether_addr(addr->sa_data))
3088                return -EADDRNOTAVAIL;
3089
3090        ret = t4_change_mac(pi->adapter, pi->adapter->pf, pi->viid,
3091                            pi->xact_addr_filt, addr->sa_data, true, true);
3092        if (ret < 0)
3093                return ret;
3094
3095        memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
3096        pi->xact_addr_filt = ret;
3097        return 0;
3098}
3099
3100#ifdef CONFIG_NET_POLL_CONTROLLER
3101static void cxgb_netpoll(struct net_device *dev)
3102{
3103        struct port_info *pi = netdev_priv(dev);
3104        struct adapter *adap = pi->adapter;
3105
3106        if (adap->flags & USING_MSIX) {
3107                int i;
3108                struct sge_eth_rxq *rx = &adap->sge.ethrxq[pi->first_qset];
3109
3110                for (i = pi->nqsets; i; i--, rx++)
3111                        t4_sge_intr_msix(0, &rx->rspq);
3112        } else
3113                t4_intr_handler(adap)(0, adap);
3114}
3115#endif
3116
3117static const struct net_device_ops cxgb4_netdev_ops = {
3118        .ndo_open             = cxgb_open,
3119        .ndo_stop             = cxgb_close,
3120        .ndo_start_xmit       = t4_eth_xmit,
3121        .ndo_select_queue     = cxgb_select_queue,
3122        .ndo_get_stats64      = cxgb_get_stats,
3123        .ndo_set_rx_mode      = cxgb_set_rxmode,
3124        .ndo_set_mac_address  = cxgb_set_mac_addr,
3125        .ndo_set_features     = cxgb_set_features,
3126        .ndo_validate_addr    = eth_validate_addr,
3127        .ndo_do_ioctl         = cxgb_ioctl,
3128        .ndo_change_mtu       = cxgb_change_mtu,
3129#ifdef CONFIG_NET_POLL_CONTROLLER
3130        .ndo_poll_controller  = cxgb_netpoll,
3131#endif
3132#ifdef CONFIG_CHELSIO_T4_FCOE
3133        .ndo_fcoe_enable      = cxgb_fcoe_enable,
3134        .ndo_fcoe_disable     = cxgb_fcoe_disable,
3135#endif /* CONFIG_CHELSIO_T4_FCOE */
3136#ifdef CONFIG_NET_RX_BUSY_POLL
3137        .ndo_busy_poll        = cxgb_busy_poll,
3138#endif
3139
3140};
3141
3142void t4_fatal_err(struct adapter *adap)
3143{
3144        t4_set_reg_field(adap, SGE_CONTROL_A, GLOBALENABLE_F, 0);
3145        t4_intr_disable(adap);
3146        dev_alert(adap->pdev_dev, "encountered fatal error, adapter stopped\n");
3147}
3148
3149static void setup_memwin(struct adapter *adap)
3150{
3151        u32 nic_win_base = t4_get_util_window(adap);
3152
3153        t4_setup_memwin(adap, nic_win_base, MEMWIN_NIC);
3154}
3155
3156static void setup_memwin_rdma(struct adapter *adap)
3157{
3158        if (adap->vres.ocq.size) {
3159                u32 start;
3160                unsigned int sz_kb;
3161
3162                start = t4_read_pcie_cfg4(adap, PCI_BASE_ADDRESS_2);
3163                start &= PCI_BASE_ADDRESS_MEM_MASK;
3164                start += OCQ_WIN_OFFSET(adap->pdev, &adap->vres);
3165                sz_kb = roundup_pow_of_two(adap->vres.ocq.size) >> 10;
3166                t4_write_reg(adap,
3167                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, 3),
3168                             start | BIR_V(1) | WINDOW_V(ilog2(sz_kb)));
3169                t4_write_reg(adap,
3170                             PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3),
3171                             adap->vres.ocq.start);
3172                t4_read_reg(adap,
3173                            PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, 3));
3174        }
3175}
3176
3177static int adap_init1(struct adapter *adap, struct fw_caps_config_cmd *c)
3178{
3179        u32 v;
3180        int ret;
3181
3182        /* get device capabilities */
3183        memset(c, 0, sizeof(*c));
3184        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3185                               FW_CMD_REQUEST_F | FW_CMD_READ_F);
3186        c->cfvalid_to_len16 = htonl(FW_LEN16(*c));
3187        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), c);
3188        if (ret < 0)
3189                return ret;
3190
3191        c->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3192                               FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
3193        ret = t4_wr_mbox(adap, adap->mbox, c, sizeof(*c), NULL);
3194        if (ret < 0)
3195                return ret;
3196
3197        ret = t4_config_glbl_rss(adap, adap->pf,
3198                                 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
3199                                 FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F |
3200                                 FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F);
3201        if (ret < 0)
3202                return ret;
3203
3204        ret = t4_cfg_pfvf(adap, adap->mbox, adap->pf, 0, adap->sge.egr_sz, 64,
3205                          MAX_INGQ, 0, 0, 4, 0xf, 0xf, 16, FW_CMD_CAP_PF,
3206                          FW_CMD_CAP_PF);
3207        if (ret < 0)
3208                return ret;
3209
3210        t4_sge_init(adap);
3211
3212        /* tweak some settings */
3213        t4_write_reg(adap, TP_SHIFT_CNT_A, 0x64f8849);
3214        t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(PAGE_SHIFT - 12));
3215        t4_write_reg(adap, TP_PIO_ADDR_A, TP_INGRESS_CONFIG_A);
3216        v = t4_read_reg(adap, TP_PIO_DATA_A);
3217        t4_write_reg(adap, TP_PIO_DATA_A, v & ~CSUM_HAS_PSEUDO_HDR_F);
3218
3219        /* first 4 Tx modulation queues point to consecutive Tx channels */
3220        adap->params.tp.tx_modq_map = 0xE4;
3221        t4_write_reg(adap, TP_TX_MOD_QUEUE_REQ_MAP_A,
3222                     TX_MOD_QUEUE_REQ_MAP_V(adap->params.tp.tx_modq_map));
3223
3224        /* associate each Tx modulation queue with consecutive Tx channels */
3225        v = 0x84218421;
3226        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3227                          &v, 1, TP_TX_SCHED_HDR_A);
3228        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3229                          &v, 1, TP_TX_SCHED_FIFO_A);
3230        t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
3231                          &v, 1, TP_TX_SCHED_PCMD_A);
3232
3233#define T4_TX_MODQ_10G_WEIGHT_DEFAULT 16 /* in KB units */
3234        if (is_offload(adap)) {
3235                t4_write_reg(adap, TP_TX_MOD_QUEUE_WEIGHT0_A,
3236                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3237                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3238                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3239                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3240                t4_write_reg(adap, TP_TX_MOD_CHANNEL_WEIGHT_A,
3241                             TX_MODQ_WEIGHT0_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3242                             TX_MODQ_WEIGHT1_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3243                             TX_MODQ_WEIGHT2_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT) |
3244                             TX_MODQ_WEIGHT3_V(T4_TX_MODQ_10G_WEIGHT_DEFAULT));
3245        }
3246
3247        /* get basic stuff going */
3248        return t4_early_init(adap, adap->pf);
3249}
3250
3251/*
3252 * Max # of ATIDs.  The absolute HW max is 16K but we keep it lower.
3253 */
3254#define MAX_ATIDS 8192U
3255
3256/*
3257 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3258 *
3259 * If the firmware we're dealing with has Configuration File support, then
3260 * we use that to perform all configuration
3261 */
3262
3263/*
3264 * Tweak configuration based on module parameters, etc.  Most of these have
3265 * defaults assigned to them by Firmware Configuration Files (if we're using
3266 * them) but need to be explicitly set if we're using hard-coded
3267 * initialization.  But even in the case of using Firmware Configuration
3268 * Files, we'd like to expose the ability to change these via module
3269 * parameters so these are essentially common tweaks/settings for
3270 * Configuration Files and hard-coded initialization ...
3271 */
3272static int adap_init0_tweaks(struct adapter *adapter)
3273{
3274        /*
3275         * Fix up various Host-Dependent Parameters like Page Size, Cache
3276         * Line Size, etc.  The firmware default is for a 4KB Page Size and
3277         * 64B Cache Line Size ...
3278         */
3279        t4_fixup_host_params(adapter, PAGE_SIZE, L1_CACHE_BYTES);
3280
3281        /*
3282         * Process module parameters which affect early initialization.
3283         */
3284        if (rx_dma_offset != 2 && rx_dma_offset != 0) {
3285                dev_err(&adapter->pdev->dev,
3286                        "Ignoring illegal rx_dma_offset=%d, using 2\n",
3287                        rx_dma_offset);
3288                rx_dma_offset = 2;
3289        }
3290        t4_set_reg_field(adapter, SGE_CONTROL_A,
3291                         PKTSHIFT_V(PKTSHIFT_M),
3292                         PKTSHIFT_V(rx_dma_offset));
3293
3294        /*
3295         * Don't include the "IP Pseudo Header" in CPL_RX_PKT checksums: Linux
3296         * adds the pseudo header itself.
3297         */
3298        t4_tp_wr_bits_indirect(adapter, TP_INGRESS_CONFIG_A,
3299                               CSUM_HAS_PSEUDO_HDR_F, 0);
3300
3301        return 0;
3302}
3303
3304/* 10Gb/s-BT PHY Support. chip-external 10Gb/s-BT PHYs are complex chips
3305 * unto themselves and they contain their own firmware to perform their
3306 * tasks ...
3307 */
3308static int phy_aq1202_version(const u8 *phy_fw_data,
3309                              size_t phy_fw_size)
3310{
3311        int offset;
3312
3313        /* At offset 0x8 you're looking for the primary image's
3314         * starting offset which is 3 Bytes wide
3315         *
3316         * At offset 0xa of the primary image, you look for the offset
3317         * of the DRAM segment which is 3 Bytes wide.
3318         *
3319         * The FW version is at offset 0x27e of the DRAM and is 2 Bytes
3320         * wide
3321         */
3322        #define be16(__p) (((__p)[0] << 8) | (__p)[1])
3323        #define le16(__p) ((__p)[0] | ((__p)[1] << 8))
3324        #define le24(__p) (le16(__p) | ((__p)[2] << 16))
3325
3326        offset = le24(phy_fw_data + 0x8) << 12;
3327        offset = le24(phy_fw_data + offset + 0xa);
3328        return be16(phy_fw_data + offset + 0x27e);
3329
3330        #undef be16
3331        #undef le16
3332        #undef le24
3333}
3334
3335static struct info_10gbt_phy_fw {
3336        unsigned int phy_fw_id;         /* PCI Device ID */
3337        char *phy_fw_file;              /* /lib/firmware/ PHY Firmware file */
3338        int (*phy_fw_version)(const u8 *phy_fw_data, size_t phy_fw_size);
3339        int phy_flash;                  /* Has FLASH for PHY Firmware */
3340} phy_info_array[] = {
3341        {
3342                PHY_AQ1202_DEVICEID,
3343                PHY_AQ1202_FIRMWARE,
3344                phy_aq1202_version,
3345                1,
3346        },
3347        {
3348                PHY_BCM84834_DEVICEID,
3349                PHY_BCM84834_FIRMWARE,
3350                NULL,
3351                0,
3352        },
3353        { 0, NULL, NULL },
3354};
3355
3356static struct info_10gbt_phy_fw *find_phy_info(int devid)
3357{
3358        int i;
3359
3360        for (i = 0; i < ARRAY_SIZE(phy_info_array); i++) {
3361                if (phy_info_array[i].phy_fw_id == devid)
3362                        return &phy_info_array[i];
3363        }
3364        return NULL;
3365}
3366
3367/* Handle updating of chip-external 10Gb/s-BT PHY firmware.  This needs to
3368 * happen after the FW_RESET_CMD but before the FW_INITIALIZE_CMD.  On error
3369 * we return a negative error number.  If we transfer new firmware we return 1
3370 * (from t4_load_phy_fw()).  If we don't do anything we return 0.
3371 */
3372static int adap_init0_phy(struct adapter *adap)
3373{
3374        const struct firmware *phyf;
3375        int ret;
3376        struct info_10gbt_phy_fw *phy_info;
3377
3378        /* Use the device ID to determine which PHY file to flash.
3379         */
3380        phy_info = find_phy_info(adap->pdev->device);
3381        if (!phy_info) {
3382                dev_warn(adap->pdev_dev,
3383                         "No PHY Firmware file found for this PHY\n");
3384                return -EOPNOTSUPP;
3385        }
3386
3387        /* If we have a T4 PHY firmware file under /lib/firmware/cxgb4/, then
3388         * use that. The adapter firmware provides us with a memory buffer
3389         * where we can load a PHY firmware file from the host if we want to
3390         * override the PHY firmware File in flash.
3391         */
3392        ret = request_firmware_direct(&phyf, phy_info->phy_fw_file,
3393                                      adap->pdev_dev);
3394        if (ret < 0) {
3395                /* For adapters without FLASH attached to PHY for their
3396                 * firmware, it's obviously a fatal error if we can't get the
3397                 * firmware to the adapter.  For adapters with PHY firmware
3398                 * FLASH storage, it's worth a warning if we can't find the
3399                 * PHY Firmware but we'll neuter the error ...
3400                 */
3401                dev_err(adap->pdev_dev, "unable to find PHY Firmware image "
3402                        "/lib/firmware/%s, error %d\n",
3403                        phy_info->phy_fw_file, -ret);
3404                if (phy_info->phy_flash) {
3405                        int cur_phy_fw_ver = 0;
3406
3407                        t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3408                        dev_warn(adap->pdev_dev, "continuing with, on-adapter "
3409                                 "FLASH copy, version %#x\n", cur_phy_fw_ver);
3410                        ret = 0;
3411                }
3412
3413                return ret;
3414        }
3415
3416        /* Load PHY Firmware onto adapter.
3417         */
3418        ret = t4_load_phy_fw(adap, MEMWIN_NIC, &adap->win0_lock,
3419                             phy_info->phy_fw_version,
3420                             (u8 *)phyf->data, phyf->size);
3421        if (ret < 0)
3422                dev_err(adap->pdev_dev, "PHY Firmware transfer error %d\n",
3423                        -ret);
3424        else if (ret > 0) {
3425                int new_phy_fw_ver = 0;
3426
3427                if (phy_info->phy_fw_version)
3428                        new_phy_fw_ver = phy_info->phy_fw_version(phyf->data,
3429                                                                  phyf->size);
3430                dev_info(adap->pdev_dev, "Successfully transferred PHY "
3431                         "Firmware /lib/firmware/%s, version %#x\n",
3432                         phy_info->phy_fw_file, new_phy_fw_ver);
3433        }
3434
3435        release_firmware(phyf);
3436
3437        return ret;
3438}
3439
3440/*
3441 * Attempt to initialize the adapter via a Firmware Configuration File.
3442 */
3443static int adap_init0_config(struct adapter *adapter, int reset)
3444{
3445        struct fw_caps_config_cmd caps_cmd;
3446        const struct firmware *cf;
3447        unsigned long mtype = 0, maddr = 0;
3448        u32 finiver, finicsum, cfcsum;
3449        int ret;
3450        int config_issued = 0;
3451        char *fw_config_file, fw_config_file_path[256];
3452        char *config_name = NULL;
3453
3454        /*
3455         * Reset device if necessary.
3456         */
3457        if (reset) {
3458                ret = t4_fw_reset(adapter, adapter->mbox,
3459                                  PIORSTMODE_F | PIORST_F);
3460                if (ret < 0)
3461                        goto bye;
3462        }
3463
3464        /* If this is a 10Gb/s-BT adapter make sure the chip-external
3465         * 10Gb/s-BT PHYs have up-to-date firmware.  Note that this step needs
3466         * to be performed after any global adapter RESET above since some
3467         * PHYs only have local RAM copies of the PHY firmware.
3468         */
3469        if (is_10gbt_device(adapter->pdev->device)) {
3470                ret = adap_init0_phy(adapter);
3471                if (ret < 0)
3472                        goto bye;
3473        }
3474        /*
3475         * If we have a T4 configuration file under /lib/firmware/cxgb4/,
3476         * then use that.  Otherwise, use the configuration file stored
3477         * in the adapter flash ...
3478         */
3479        switch (CHELSIO_CHIP_VERSION(adapter->params.chip)) {
3480        case CHELSIO_T4:
3481                fw_config_file = FW4_CFNAME;
3482                break;
3483        case CHELSIO_T5:
3484                fw_config_file = FW5_CFNAME;
3485                break;
3486        case CHELSIO_T6:
3487                fw_config_file = FW6_CFNAME;
3488                break;
3489        default:
3490                dev_err(adapter->pdev_dev, "Device %d is not supported\n",
3491                       adapter->pdev->device);
3492                ret = -EINVAL;
3493                goto bye;
3494        }
3495
3496        ret = request_firmware(&cf, fw_config_file, adapter->pdev_dev);
3497        if (ret < 0) {
3498                config_name = "On FLASH";
3499                mtype = FW_MEMTYPE_CF_FLASH;
3500                maddr = t4_flash_cfg_addr(adapter);
3501        } else {
3502                u32 params[7], val[7];
3503
3504                sprintf(fw_config_file_path,
3505                        "/lib/firmware/%s", fw_config_file);
3506                config_name = fw_config_file_path;
3507
3508                if (cf->size >= FLASH_CFG_MAX_SIZE)
3509                        ret = -ENOMEM;
3510                else {
3511                        params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3512                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3513                        ret = t4_query_params(adapter, adapter->mbox,
3514                                              adapter->pf, 0, 1, params, val);
3515                        if (ret == 0) {
3516                                /*
3517                                 * For t4_memory_rw() below addresses and
3518                                 * sizes have to be in terms of multiples of 4
3519                                 * bytes.  So, if the Configuration File isn't
3520                                 * a multiple of 4 bytes in length we'll have
3521                                 * to write that out separately since we can't
3522                                 * guarantee that the bytes following the
3523                                 * residual byte in the buffer returned by
3524                                 * request_firmware() are zeroed out ...
3525                                 */
3526                                size_t resid = cf->size & 0x3;
3527                                size_t size = cf->size & ~0x3;
3528                                __be32 *data = (__be32 *)cf->data;
3529
3530                                mtype = FW_PARAMS_PARAM_Y_G(val[0]);
3531                                maddr = FW_PARAMS_PARAM_Z_G(val[0]) << 16;
3532
3533                                spin_lock(&adapter->win0_lock);
3534                                ret = t4_memory_rw(adapter, 0, mtype, maddr,
3535                                                   size, data, T4_MEMORY_WRITE);
3536                                if (ret == 0 && resid != 0) {
3537                                        union {
3538                                                __be32 word;
3539                                                char buf[4];
3540                                        } last;
3541                                        int i;
3542
3543                                        last.word = data[size >> 2];
3544                                        for (i = resid; i < 4; i++)
3545                                                last.buf[i] = 0;
3546                                        ret = t4_memory_rw(adapter, 0, mtype,
3547                                                           maddr + size,
3548                                                           4, &last.word,
3549                                                           T4_MEMORY_WRITE);
3550                                }
3551                                spin_unlock(&adapter->win0_lock);
3552                        }
3553                }
3554
3555                release_firmware(cf);
3556                if (ret)
3557                        goto bye;
3558        }
3559
3560        /*
3561         * Issue a Capability Configuration command to the firmware to get it
3562         * to parse the Configuration File.  We don't use t4_fw_config_file()
3563         * because we want the ability to modify various features after we've
3564         * processed the configuration file ...
3565         */
3566        memset(&caps_cmd, 0, sizeof(caps_cmd));
3567        caps_cmd.op_to_write =
3568                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3569                      FW_CMD_REQUEST_F |
3570                      FW_CMD_READ_F);
3571        caps_cmd.cfvalid_to_len16 =
3572                htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
3573                      FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
3574                      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
3575                      FW_LEN16(caps_cmd));
3576        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3577                         &caps_cmd);
3578
3579        /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
3580         * Configuration File in FLASH), our last gasp effort is to use the
3581         * Firmware Configuration File which is embedded in the firmware.  A
3582         * very few early versions of the firmware didn't have one embedded
3583         * but we can ignore those.
3584         */
3585        if (ret == -ENOENT) {
3586                memset(&caps_cmd, 0, sizeof(caps_cmd));
3587                caps_cmd.op_to_write =
3588                        htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3589                                        FW_CMD_REQUEST_F |
3590                                        FW_CMD_READ_F);
3591                caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3592                ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd,
3593                                sizeof(caps_cmd), &caps_cmd);
3594                config_name = "Firmware Default";
3595        }
3596
3597        config_issued = 1;
3598        if (ret < 0)
3599                goto bye;
3600
3601        finiver = ntohl(caps_cmd.finiver);
3602        finicsum = ntohl(caps_cmd.finicsum);
3603        cfcsum = ntohl(caps_cmd.cfcsum);
3604        if (finicsum != cfcsum)
3605                dev_warn(adapter->pdev_dev, "Configuration File checksum "\
3606                         "mismatch: [fini] csum=%#x, computed csum=%#x\n",
3607                         finicsum, cfcsum);
3608
3609        /*
3610         * And now tell the firmware to use the configuration we just loaded.
3611         */
3612        caps_cmd.op_to_write =
3613                htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
3614                      FW_CMD_REQUEST_F |
3615                      FW_CMD_WRITE_F);
3616        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
3617        ret = t4_wr_mbox(adapter, adapter->mbox, &caps_cmd, sizeof(caps_cmd),
3618                         NULL);
3619        if (ret < 0)
3620                goto bye;
3621
3622        /*
3623         * Tweak configuration based on system architecture, module
3624         * parameters, etc.
3625         */
3626        ret = adap_init0_tweaks(adapter);
3627        if (ret < 0)
3628                goto bye;
3629
3630        /*
3631         * And finally tell the firmware to initialize itself using the
3632         * parameters from the Configuration File.
3633         */
3634        ret = t4_fw_initialize(adapter, adapter->mbox);
3635        if (ret < 0)
3636                goto bye;
3637
3638        /* Emit Firmware Configuration File information and return
3639         * successfully.
3640         */
3641        dev_info(adapter->pdev_dev, "Successfully configured using Firmware "\
3642                 "Configuration File \"%s\", version %#x, computed checksum %#x\n",
3643                 config_name, finiver, cfcsum);
3644        return 0;
3645
3646        /*
3647         * Something bad happened.  Return the error ...  (If the "error"
3648         * is that there's no Configuration File on the adapter we don't
3649         * want to issue a warning since this is fairly common.)
3650         */
3651bye:
3652        if (config_issued && ret != -ENOENT)
3653                dev_warn(adapter->pdev_dev, "\"%s\" configuration file error %d\n",
3654                         config_name, -ret);
3655        return ret;
3656}
3657
3658static struct fw_info fw_info_array[] = {
3659        {
3660                .chip = CHELSIO_T4,
3661                .fs_name = FW4_CFNAME,
3662                .fw_mod_name = FW4_FNAME,
3663                .fw_hdr = {
3664                        .chip = FW_HDR_CHIP_T4,
3665                        .fw_ver = __cpu_to_be32(FW_VERSION(T4)),
3666                        .intfver_nic = FW_INTFVER(T4, NIC),
3667                        .intfver_vnic = FW_INTFVER(T4, VNIC),
3668                        .intfver_ri = FW_INTFVER(T4, RI),
3669                        .intfver_iscsi = FW_INTFVER(T4, ISCSI),
3670                        .intfver_fcoe = FW_INTFVER(T4, FCOE),
3671                },
3672        }, {
3673                .chip = CHELSIO_T5,
3674                .fs_name = FW5_CFNAME,
3675                .fw_mod_name = FW5_FNAME,
3676                .fw_hdr = {
3677                        .chip = FW_HDR_CHIP_T5,
3678                        .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
3679                        .intfver_nic = FW_INTFVER(T5, NIC),
3680                        .intfver_vnic = FW_INTFVER(T5, VNIC),
3681                        .intfver_ri = FW_INTFVER(T5, RI),
3682                        .intfver_iscsi = FW_INTFVER(T5, ISCSI),
3683                        .intfver_fcoe = FW_INTFVER(T5, FCOE),
3684                },
3685        }, {
3686                .chip = CHELSIO_T6,
3687                .fs_name = FW6_CFNAME,
3688                .fw_mod_name = FW6_FNAME,
3689                .fw_hdr = {
3690                        .chip = FW_HDR_CHIP_T6,
3691                        .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
3692                        .intfver_nic = FW_INTFVER(T6, NIC),
3693                        .intfver_vnic = FW_INTFVER(T6, VNIC),
3694                        .intfver_ofld = FW_INTFVER(T6, OFLD),
3695                        .intfver_ri = FW_INTFVER(T6, RI),
3696                        .intfver_iscsipdu = FW_INTFVER(T6, ISCSIPDU),
3697                        .intfver_iscsi = FW_INTFVER(T6, ISCSI),
3698                        .intfver_fcoepdu = FW_INTFVER(T6, FCOEPDU),
3699                        .intfver_fcoe = FW_INTFVER(T6, FCOE),
3700                },
3701        }
3702
3703};
3704
3705static struct fw_info *find_fw_info(int chip)
3706{
3707        int i;
3708
3709        for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
3710                if (fw_info_array[i].chip == chip)
3711                        return &fw_info_array[i];
3712        }
3713        return NULL;
3714}
3715
3716/*
3717 * Phase 0 of initialization: contact FW, obtain config, perform basic init.
3718 */
3719static int adap_init0(struct adapter *adap)
3720{
3721        int ret;
3722        u32 v, port_vec;
3723        enum dev_state state;
3724        u32 params[7], val[7];
3725        struct fw_caps_config_cmd caps_cmd;
3726        int reset = 1;
3727
3728        /* Grab Firmware Device Log parameters as early as possible so we have
3729         * access to it for debugging, etc.
3730         */
3731        ret = t4_init_devlog_params(adap);
3732        if (ret < 0)
3733                return ret;
3734
3735        /* Contact FW, advertising Master capability */
3736        ret = t4_fw_hello(adap, adap->mbox, adap->mbox,
3737                          is_kdump_kernel() ? MASTER_MUST : MASTER_MAY, &state);
3738        if (ret < 0) {
3739                dev_err(adap->pdev_dev, "could not connect to FW, error %d\n",
3740                        ret);
3741                return ret;
3742        }
3743        if (ret == adap->mbox)
3744                adap->flags |= MASTER_PF;
3745
3746        /*
3747         * If we're the Master PF Driver and the device is uninitialized,
3748         * then let's consider upgrading the firmware ...  (We always want
3749         * to check the firmware version number in order to A. get it for
3750         * later reporting and B. to warn if the currently loaded firmware
3751         * is excessively mismatched relative to the driver.)
3752         */
3753        t4_get_fw_version(adap, &adap->params.fw_vers);
3754        t4_get_bs_version(adap, &adap->params.bs_vers);
3755        t4_get_tp_version(adap, &adap->params.tp_vers);
3756        t4_get_exprom_version(adap, &adap->params.er_vers);
3757
3758        ret = t4_check_fw_version(adap);
3759        /* If firmware is too old (not supported by driver) force an update. */
3760        if (ret)
3761                state = DEV_STATE_UNINIT;
3762        if ((adap->flags & MASTER_PF) && state != DEV_STATE_INIT) {
3763                struct fw_info *fw_info;
3764                struct fw_hdr *card_fw;
3765                const struct firmware *fw;
3766                const u8 *fw_data = NULL;
3767                unsigned int fw_size = 0;
3768
3769                /* This is the firmware whose headers the driver was compiled
3770                 * against
3771                 */
3772                fw_info = find_fw_info(CHELSIO_CHIP_VERSION(adap->params.chip));
3773                if (fw_info == NULL) {
3774                        dev_err(adap->pdev_dev,
3775                                "unable to get firmware info for chip %d.\n",
3776                                CHELSIO_CHIP_VERSION(adap->params.chip));
3777                        return -EINVAL;
3778                }
3779
3780                /* allocate memory to read the header of the firmware on the
3781                 * card
3782                 */
3783                card_fw = t4_alloc_mem(sizeof(*card_fw));
3784
3785                /* Get FW from from /lib/firmware/ */
3786                ret = request_firmware(&fw, fw_info->fw_mod_name,
3787                                       adap->pdev_dev);
3788                if (ret < 0) {
3789                        dev_err(adap->pdev_dev,
3790                                "unable to load firmware image %s, error %d\n",
3791                                fw_info->fw_mod_name, ret);
3792                } else {
3793                        fw_data = fw->data;
3794                        fw_size = fw->size;
3795                }
3796
3797                /* upgrade FW logic */
3798                ret = t4_prep_fw(adap, fw_info, fw_data, fw_size, card_fw,
3799                                 state, &reset);
3800
3801                /* Cleaning up */
3802                release_firmware(fw);
3803                t4_free_mem(card_fw);
3804
3805                if (ret < 0)
3806                        goto bye;
3807        }
3808
3809        /*
3810         * Grab VPD parameters.  This should be done after we establish a
3811         * connection to the firmware since some of the VPD parameters
3812         * (notably the Core Clock frequency) are retrieved via requests to
3813         * the firmware.  On the other hand, we need these fairly early on
3814         * so we do this right after getting ahold of the firmware.
3815         */
3816        ret = t4_get_vpd_params(adap, &adap->params.vpd);
3817        if (ret < 0)
3818                goto bye;
3819
3820        /*
3821         * Find out what ports are available to us.  Note that we need to do
3822         * this before calling adap_init0_no_config() since it needs nports
3823         * and portvec ...
3824         */
3825        v =
3826            FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3827            FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PORTVEC);
3828        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1, &v, &port_vec);
3829        if (ret < 0)
3830                goto bye;
3831
3832        adap->params.nports = hweight32(port_vec);
3833        adap->params.portvec = port_vec;
3834
3835        /* If the firmware is initialized already, emit a simply note to that
3836         * effect. Otherwise, it's time to try initializing the adapter.
3837         */
3838        if (state == DEV_STATE_INIT) {
3839                dev_info(adap->pdev_dev, "Coming up as %s: "\
3840                         "Adapter already initialized\n",
3841                         adap->flags & MASTER_PF ? "MASTER" : "SLAVE");
3842        } else {
3843                dev_info(adap->pdev_dev, "Coming up as MASTER: "\
3844                         "Initializing adapter\n");
3845
3846                /* Find out whether we're dealing with a version of the
3847                 * firmware which has configuration file support.
3848                 */
3849                params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3850                             FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
3851                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
3852                                      params, val);
3853
3854                /* If the firmware doesn't support Configuration Files,
3855                 * return an error.
3856                 */
3857                if (ret < 0) {
3858                        dev_err(adap->pdev_dev, "firmware doesn't support "
3859                                "Firmware Configuration Files\n");
3860                        goto bye;
3861                }
3862
3863                /* The firmware provides us with a memory buffer where we can
3864                 * load a Configuration File from the host if we want to
3865                 * override the Configuration File in flash.
3866                 */
3867                ret = adap_init0_config(adap, reset);
3868                if (ret == -ENOENT) {
3869                        dev_err(adap->pdev_dev, "no Configuration File "
3870                                "present on adapter.\n");
3871                        goto bye;
3872                }
3873                if (ret < 0) {
3874                        dev_err(adap->pdev_dev, "could not initialize "
3875                                "adapter, error %d\n", -ret);
3876                        goto bye;
3877                }
3878        }
3879
3880        /* Give the SGE code a chance to pull in anything that it needs ...
3881         * Note that this must be called after we retrieve our VPD parameters
3882         * in order to know how to convert core ticks to seconds, etc.
3883         */
3884        ret = t4_sge_init(adap);
3885        if (ret < 0)
3886                goto bye;
3887
3888        if (is_bypass_device(adap->pdev->device))
3889                adap->params.bypass = 1;
3890
3891        /*
3892         * Grab some of our basic fundamental operating parameters.
3893         */
3894#define FW_PARAM_DEV(param) \
3895        (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | \
3896        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_##param))
3897
3898#define FW_PARAM_PFVF(param) \
3899        FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | \
3900        FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_##param)|  \
3901        FW_PARAMS_PARAM_Y_V(0) | \
3902        FW_PARAMS_PARAM_Z_V(0)
3903
3904        params[0] = FW_PARAM_PFVF(EQ_START);
3905        params[1] = FW_PARAM_PFVF(L2T_START);
3906        params[2] = FW_PARAM_PFVF(L2T_END);
3907        params[3] = FW_PARAM_PFVF(FILTER_START);
3908        params[4] = FW_PARAM_PFVF(FILTER_END);
3909        params[5] = FW_PARAM_PFVF(IQFLINT_START);
3910        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params, val);
3911        if (ret < 0)
3912                goto bye;
3913        adap->sge.egr_start = val[0];
3914        adap->l2t_start = val[1];
3915        adap->l2t_end = val[2];
3916        adap->tids.ftid_base = val[3];
3917        adap->tids.nftids = val[4] - val[3] + 1;
3918        adap->sge.ingr_start = val[5];
3919
3920        /* qids (ingress/egress) returned from firmware can be anywhere
3921         * in the range from EQ(IQFLINT)_START to EQ(IQFLINT)_END.
3922         * Hence driver needs to allocate memory for this range to
3923         * store the queue info. Get the highest IQFLINT/EQ index returned
3924         * in FW_EQ_*_CMD.alloc command.
3925         */
3926        params[0] = FW_PARAM_PFVF(EQ_END);
3927        params[1] = FW_PARAM_PFVF(IQFLINT_END);
3928        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3929        if (ret < 0)
3930                goto bye;
3931        adap->sge.egr_sz = val[0] - adap->sge.egr_start + 1;
3932        adap->sge.ingr_sz = val[1] - adap->sge.ingr_start + 1;
3933
3934        adap->sge.egr_map = kcalloc(adap->sge.egr_sz,
3935                                    sizeof(*adap->sge.egr_map), GFP_KERNEL);
3936        if (!adap->sge.egr_map) {
3937                ret = -ENOMEM;
3938                goto bye;
3939        }
3940
3941        adap->sge.ingr_map = kcalloc(adap->sge.ingr_sz,
3942                                     sizeof(*adap->sge.ingr_map), GFP_KERNEL);
3943        if (!adap->sge.ingr_map) {
3944                ret = -ENOMEM;
3945                goto bye;
3946        }
3947
3948        /* Allocate the memory for the vaious egress queue bitmaps
3949         * ie starving_fl, txq_maperr and blocked_fl.
3950         */
3951        adap->sge.starving_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3952                                        sizeof(long), GFP_KERNEL);
3953        if (!adap->sge.starving_fl) {
3954                ret = -ENOMEM;
3955                goto bye;
3956        }
3957
3958        adap->sge.txq_maperr = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3959                                       sizeof(long), GFP_KERNEL);
3960        if (!adap->sge.txq_maperr) {
3961                ret = -ENOMEM;
3962                goto bye;
3963        }
3964
3965#ifdef CONFIG_DEBUG_FS
3966        adap->sge.blocked_fl = kcalloc(BITS_TO_LONGS(adap->sge.egr_sz),
3967                                       sizeof(long), GFP_KERNEL);
3968        if (!adap->sge.blocked_fl) {
3969                ret = -ENOMEM;
3970                goto bye;
3971        }
3972#endif
3973
3974        params[0] = FW_PARAM_PFVF(CLIP_START);
3975        params[1] = FW_PARAM_PFVF(CLIP_END);
3976        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3977        if (ret < 0)
3978                goto bye;
3979        adap->clipt_start = val[0];
3980        adap->clipt_end = val[1];
3981
3982        /* query params related to active filter region */
3983        params[0] = FW_PARAM_PFVF(ACTIVE_FILTER_START);
3984        params[1] = FW_PARAM_PFVF(ACTIVE_FILTER_END);
3985        ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params, val);
3986        /* If Active filter size is set we enable establishing
3987         * offload connection through firmware work request
3988         */
3989        if ((val[0] != val[1]) && (ret >= 0)) {
3990                adap->flags |= FW_OFLD_CONN;
3991                adap->tids.aftid_base = val[0];
3992                adap->tids.aftid_end = val[1];
3993        }
3994
3995        /* If we're running on newer firmware, let it know that we're
3996         * prepared to deal with encapsulated CPL messages.  Older
3997         * firmware won't understand this and we'll just get
3998         * unencapsulated messages ...
3999         */
4000        params[0] = FW_PARAM_PFVF(CPLFW4MSG_ENCAP);
4001        val[0] = 1;
4002        (void)t4_set_params(adap, adap->mbox, adap->pf, 0, 1, params, val);
4003
4004        /*
4005         * Find out whether we're allowed to use the T5+ ULPTX MEMWRITE DSGL
4006         * capability.  Earlier versions of the firmware didn't have the
4007         * ULPTX_MEMWRITE_DSGL so we'll interpret a query failure as no
4008         * permission to use ULPTX MEMWRITE DSGL.
4009         */
4010        if (is_t4(adap->params.chip)) {
4011                adap->params.ulptx_memwrite_dsgl = false;
4012        } else {
4013                params[0] = FW_PARAM_DEV(ULPTX_MEMWRITE_DSGL);
4014                ret = t4_query_params(adap, adap->mbox, adap->pf, 0,
4015                                      1, params, val);
4016                adap->params.ulptx_memwrite_dsgl = (ret == 0 && val[0] != 0);
4017        }
4018
4019        /*
4020         * Get device capabilities so we can determine what resources we need
4021         * to manage.
4022         */
4023        memset(&caps_cmd, 0, sizeof(caps_cmd));
4024        caps_cmd.op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
4025                                     FW_CMD_REQUEST_F | FW_CMD_READ_F);
4026        caps_cmd.cfvalid_to_len16 = htonl(FW_LEN16(caps_cmd));
4027        ret = t4_wr_mbox(adap, adap->mbox, &caps_cmd, sizeof(caps_cmd),
4028                         &caps_cmd);
4029        if (ret < 0)
4030                goto bye;
4031
4032        if (caps_cmd.ofldcaps) {
4033                /* query offload-related parameters */
4034                params[0] = FW_PARAM_DEV(NTID);
4035                params[1] = FW_PARAM_PFVF(SERVER_START);
4036                params[2] = FW_PARAM_PFVF(SERVER_END);
4037                params[3] = FW_PARAM_PFVF(TDDP_START);
4038                params[4] = FW_PARAM_PFVF(TDDP_END);
4039                params[5] = FW_PARAM_DEV(FLOWC_BUFFIFO_SZ);
4040                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4041                                      params, val);
4042                if (ret < 0)
4043                        goto bye;
4044                adap->tids.ntids = val[0];
4045                adap->tids.natids = min(adap->tids.ntids / 2, MAX_ATIDS);
4046                adap->tids.stid_base = val[1];
4047                adap->tids.nstids = val[2] - val[1] + 1;
4048                /*
4049                 * Setup server filter region. Divide the available filter
4050                 * region into two parts. Regular filters get 1/3rd and server
4051                 * filters get 2/3rd part. This is only enabled if workarond
4052                 * path is enabled.
4053                 * 1. For regular filters.
4054                 * 2. Server filter: This are special filters which are used
4055                 * to redirect SYN packets to offload queue.
4056                 */
4057                if (adap->flags & FW_OFLD_CONN && !is_bypass(adap)) {
4058                        adap->tids.sftid_base = adap->tids.ftid_base +
4059                                        DIV_ROUND_UP(adap->tids.nftids, 3);
4060                        adap->tids.nsftids = adap->tids.nftids -
4061                                         DIV_ROUND_UP(adap->tids.nftids, 3);
4062                        adap->tids.nftids = adap->tids.sftid_base -
4063                                                adap->tids.ftid_base;
4064                }
4065                adap->vres.ddp.start = val[3];
4066                adap->vres.ddp.size = val[4] - val[3] + 1;
4067                adap->params.ofldq_wr_cred = val[5];
4068
4069                adap->params.offload = 1;
4070        }
4071        if (caps_cmd.rdmacaps) {
4072                params[0] = FW_PARAM_PFVF(STAG_START);
4073                params[1] = FW_PARAM_PFVF(STAG_END);
4074                params[2] = FW_PARAM_PFVF(RQ_START);
4075                params[3] = FW_PARAM_PFVF(RQ_END);
4076                params[4] = FW_PARAM_PFVF(PBL_START);
4077                params[5] = FW_PARAM_PFVF(PBL_END);
4078                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6,
4079                                      params, val);
4080                if (ret < 0)
4081                        goto bye;
4082                adap->vres.stag.start = val[0];
4083                adap->vres.stag.size = val[1] - val[0] + 1;
4084                adap->vres.rq.start = val[2];
4085                adap->vres.rq.size = val[3] - val[2] + 1;
4086                adap->vres.pbl.start = val[4];
4087                adap->vres.pbl.size = val[5] - val[4] + 1;
4088
4089                params[0] = FW_PARAM_PFVF(SQRQ_START);
4090                params[1] = FW_PARAM_PFVF(SQRQ_END);
4091                params[2] = FW_PARAM_PFVF(CQ_START);
4092                params[3] = FW_PARAM_PFVF(CQ_END);
4093                params[4] = FW_PARAM_PFVF(OCQ_START);
4094                params[5] = FW_PARAM_PFVF(OCQ_END);
4095                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 6, params,
4096                                      val);
4097                if (ret < 0)
4098                        goto bye;
4099                adap->vres.qp.start = val[0];
4100                adap->vres.qp.size = val[1] - val[0] + 1;
4101                adap->vres.cq.start = val[2];
4102                adap->vres.cq.size = val[3] - val[2] + 1;
4103                adap->vres.ocq.start = val[4];
4104                adap->vres.ocq.size = val[5] - val[4] + 1;
4105
4106                params[0] = FW_PARAM_DEV(MAXORDIRD_QP);
4107                params[1] = FW_PARAM_DEV(MAXIRD_ADAPTER);
4108                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2, params,
4109                                      val);
4110                if (ret < 0) {
4111                        adap->params.max_ordird_qp = 8;
4112                        adap->params.max_ird_adapter = 32 * adap->tids.ntids;
4113                        ret = 0;
4114                } else {
4115                        adap->params.max_ordird_qp = val[0];
4116                        adap->params.max_ird_adapter = val[1];
4117                }
4118                dev_info(adap->pdev_dev,
4119                         "max_ordird_qp %d max_ird_adapter %d\n",
4120                         adap->params.max_ordird_qp,
4121                         adap->params.max_ird_adapter);
4122        }
4123        if (caps_cmd.iscsicaps) {
4124                params[0] = FW_PARAM_PFVF(ISCSI_START);
4125                params[1] = FW_PARAM_PFVF(ISCSI_END);
4126                ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 2,
4127                                      params, val);
4128                if (ret < 0)
4129                        goto bye;
4130                adap->vres.iscsi.start = val[0];
4131                adap->vres.iscsi.size = val[1] - val[0] + 1;
4132        }
4133#undef FW_PARAM_PFVF
4134#undef FW_PARAM_DEV
4135
4136        /* The MTU/MSS Table is initialized by now, so load their values.  If
4137         * we're initializing the adapter, then we'll make any modifications
4138         * we want to the MTU/MSS Table and also initialize the congestion
4139         * parameters.
4140         */
4141        t4_read_mtu_tbl(adap, adap->params.mtus, NULL);
4142        if (state != DEV_STATE_INIT) {
4143                int i;
4144
4145                /* The default MTU Table contains values 1492 and 1500.
4146                 * However, for TCP, it's better to have two values which are
4147                 * a multiple of 8 +/- 4 bytes apart near this popular MTU.
4148                 * This allows us to have a TCP Data Payload which is a
4149                 * multiple of 8 regardless of what combination of TCP Options
4150                 * are in use (always a multiple of 4 bytes) which is
4151                 * important for performance reasons.  For instance, if no
4152                 * options are in use, then we have a 20-byte IP header and a
4153                 * 20-byte TCP header.  In this case, a 1500-byte MSS would
4154                 * result in a TCP Data Payload of 1500 - 40 == 1460 bytes
4155                 * which is not a multiple of 8.  So using an MSS of 1488 in
4156                 * this case results in a TCP Data Payload of 1448 bytes which
4157                 * is a multiple of 8.  On the other hand, if 12-byte TCP Time
4158                 * Stamps have been negotiated, then an MTU of 1500 bytes
4159                 * results in a TCP Data Payload of 1448 bytes which, as
4160                 * above, is a multiple of 8 bytes ...
4161                 */
4162                for (i = 0; i < NMTUS; i++)
4163                        if (adap->params.mtus[i] == 1492) {
4164                                adap->params.mtus[i] = 1488;
4165                                break;
4166                        }
4167
4168                t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4169                             adap->params.b_wnd);
4170        }
4171        t4_init_sge_params(adap);
4172        adap->flags |= FW_OK;
4173        t4_init_tp_params(adap);
4174        return 0;
4175
4176        /*
4177         * Something bad happened.  If a command timed out or failed with EIO
4178         * FW does not operate within its spec or something catastrophic
4179         * happened to HW/FW, stop issuing commands.
4180         */
4181bye:
4182        kfree(adap->sge.egr_map);
4183        kfree(adap->sge.ingr_map);
4184        kfree(adap->sge.starving_fl);
4185        kfree(adap->sge.txq_maperr);
4186#ifdef CONFIG_DEBUG_FS
4187        kfree(adap->sge.blocked_fl);
4188#endif
4189        if (ret != -ETIMEDOUT && ret != -EIO)
4190                t4_fw_bye(adap, adap->mbox);
4191        return ret;
4192}
4193
4194/* EEH callbacks */
4195
4196static pci_ers_result_t eeh_err_detected(struct pci_dev *pdev,
4197                                         pci_channel_state_t state)
4198{
4199        int i;
4200        struct adapter *adap = pci_get_drvdata(pdev);
4201
4202        if (!adap)
4203                goto out;
4204
4205        rtnl_lock();
4206        adap->flags &= ~FW_OK;
4207        notify_ulds(adap, CXGB4_STATE_START_RECOVERY);
4208        spin_lock(&adap->stats_lock);
4209        for_each_port(adap, i) {
4210                struct net_device *dev = adap->port[i];
4211
4212                netif_device_detach(dev);
4213                netif_carrier_off(dev);
4214        }
4215        spin_unlock(&adap->stats_lock);
4216        disable_interrupts(adap);
4217        if (adap->flags & FULL_INIT_DONE)
4218                cxgb_down(adap);
4219        rtnl_unlock();
4220        if ((adap->flags & DEV_ENABLED)) {
4221                pci_disable_device(pdev);
4222                adap->flags &= ~DEV_ENABLED;
4223        }
4224out:    return state == pci_channel_io_perm_failure ?
4225                PCI_ERS_RESULT_DISCONNECT : PCI_ERS_RESULT_NEED_RESET;
4226}
4227
4228static pci_ers_result_t eeh_slot_reset(struct pci_dev *pdev)
4229{
4230        int i, ret;
4231        struct fw_caps_config_cmd c;
4232        struct adapter *adap = pci_get_drvdata(pdev);
4233
4234        if (!adap) {
4235                pci_restore_state(pdev);
4236                pci_save_state(pdev);
4237                return PCI_ERS_RESULT_RECOVERED;
4238        }
4239
4240        if (!(adap->flags & DEV_ENABLED)) {
4241                if (pci_enable_device(pdev)) {
4242                        dev_err(&pdev->dev, "Cannot reenable PCI "
4243                                            "device after reset\n");
4244                        return PCI_ERS_RESULT_DISCONNECT;
4245                }
4246                adap->flags |= DEV_ENABLED;
4247        }
4248
4249        pci_set_master(pdev);
4250        pci_restore_state(pdev);
4251        pci_save_state(pdev);
4252        pci_cleanup_aer_uncorrect_error_status(pdev);
4253
4254        if (t4_wait_dev_ready(adap->regs) < 0)
4255                return PCI_ERS_RESULT_DISCONNECT;
4256        if (t4_fw_hello(adap, adap->mbox, adap->pf, MASTER_MUST, NULL) < 0)
4257                return PCI_ERS_RESULT_DISCONNECT;
4258        adap->flags |= FW_OK;
4259        if (adap_init1(adap, &c))
4260                return PCI_ERS_RESULT_DISCONNECT;
4261
4262        for_each_port(adap, i) {
4263                struct port_info *p = adap2pinfo(adap, i);
4264
4265                ret = t4_alloc_vi(adap, adap->mbox, p->tx_chan, adap->pf, 0, 1,
4266                                  NULL, NULL);
4267                if (ret < 0)
4268                        return PCI_ERS_RESULT_DISCONNECT;
4269                p->viid = ret;
4270                p->xact_addr_filt = -1;
4271        }
4272
4273        t4_load_mtus(adap, adap->params.mtus, adap->params.a_wnd,
4274                     adap->params.b_wnd);
4275        setup_memwin(adap);
4276        if (cxgb_up(adap))
4277                return PCI_ERS_RESULT_DISCONNECT;
4278        return PCI_ERS_RESULT_RECOVERED;
4279}
4280
4281static void eeh_resume(struct pci_dev *pdev)
4282{
4283        int i;
4284        struct adapter *adap = pci_get_drvdata(pdev);
4285
4286        if (!adap)
4287                return;
4288
4289        rtnl_lock();
4290        for_each_port(adap, i) {
4291                struct net_device *dev = adap->port[i];
4292
4293                if (netif_running(dev)) {
4294                        link_start(dev);
4295                        cxgb_set_rxmode(dev);
4296                }
4297                netif_device_attach(dev);
4298        }
4299        rtnl_unlock();
4300}
4301
4302static const struct pci_error_handlers cxgb4_eeh = {
4303        .error_detected = eeh_err_detected,
4304        .slot_reset     = eeh_slot_reset,
4305        .resume         = eeh_resume,
4306};
4307
4308/* Return true if the Link Configuration supports "High Speeds" (those greater
4309 * than 1Gb/s).
4310 */
4311static inline bool is_x_10g_port(const struct link_config *lc)
4312{
4313        unsigned int speeds, high_speeds;
4314
4315        speeds = FW_PORT_CAP_SPEED_V(FW_PORT_CAP_SPEED_G(lc->supported));
4316        high_speeds = speeds & ~(FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G);
4317
4318        return high_speeds != 0;
4319}
4320
4321static inline void init_rspq(struct adapter *adap, struct sge_rspq *q,
4322                             unsigned int us, unsigned int cnt,
4323                             unsigned int size, unsigned int iqe_size)
4324{
4325        q->adap = adap;
4326        cxgb4_set_rspq_intr_params(q, us, cnt);
4327        q->iqe_len = iqe_size;
4328        q->size = size;
4329}
4330
4331/*
4332 * Perform default configuration of DMA queues depending on the number and type
4333 * of ports we found and the number of available CPUs.  Most settings can be
4334 * modified by the admin prior to actual use.
4335 */
4336static void cfg_queues(struct adapter *adap)
4337{
4338        struct sge *s = &adap->sge;
4339        int i, n10g = 0, qidx = 0;
4340#ifndef CONFIG_CHELSIO_T4_DCB
4341        int q10g = 0;
4342#endif
4343        int ciq_size;
4344
4345        /* Reduce memory usage in kdump environment, disable all offload.
4346         */
4347        if (is_kdump_kernel())
4348                adap->params.offload = 0;
4349
4350        for_each_port(adap, i)
4351                n10g += is_x_10g_port(&adap2pinfo(adap, i)->link_cfg);
4352#ifdef CONFIG_CHELSIO_T4_DCB
4353        /* For Data Center Bridging support we need to be able to support up
4354         * to 8 Traffic Priorities; each of which will be assigned to its
4355         * own TX Queue in order to prevent Head-Of-Line Blocking.
4356         */
4357        if (adap->params.nports * 8 > MAX_ETH_QSETS) {
4358                dev_err(adap->pdev_dev, "MAX_ETH_QSETS=%d < %d!\n",
4359                        MAX_ETH_QSETS, adap->params.nports * 8);
4360                BUG_ON(1);
4361        }
4362
4363        for_each_port(adap, i) {
4364                struct port_info *pi = adap2pinfo(adap, i);
4365
4366                pi->first_qset = qidx;
4367                pi->nqsets = 8;
4368                qidx += pi->nqsets;
4369        }
4370#else /* !CONFIG_CHELSIO_T4_DCB */
4371        /*
4372         * We default to 1 queue per non-10G port and up to # of cores queues
4373         * per 10G port.
4374         */
4375        if (n10g)
4376                q10g = (MAX_ETH_QSETS - (adap->params.nports - n10g)) / n10g;
4377        if (q10g > netif_get_num_default_rss_queues())
4378                q10g = netif_get_num_default_rss_queues();
4379
4380        for_each_port(adap, i) {
4381                struct port_info *pi = adap2pinfo(adap, i);
4382
4383                pi->first_qset = qidx;
4384                pi->nqsets = is_x_10g_port(&pi->link_cfg) ? q10g : 1;
4385                qidx += pi->nqsets;
4386        }
4387#endif /* !CONFIG_CHELSIO_T4_DCB */
4388
4389        s->ethqsets = qidx;
4390        s->max_ethqsets = qidx;   /* MSI-X may lower it later */
4391
4392        if (is_offload(adap)) {
4393                /*
4394                 * For offload we use 1 queue/channel if all ports are up to 1G,
4395                 * otherwise we divide all available queues amongst the channels
4396                 * capped by the number of available cores.
4397                 */
4398                if (n10g) {
4399                        i = min_t(int, ARRAY_SIZE(s->iscsirxq),
4400                                  num_online_cpus());
4401                        s->iscsiqsets = roundup(i, adap->params.nports);
4402                } else
4403                        s->iscsiqsets = adap->params.nports;
4404                /* For RDMA one Rx queue per channel suffices */
4405                s->rdmaqs = adap->params.nports;
4406                /* Try and allow at least 1 CIQ per cpu rounding down
4407                 * to the number of ports, with a minimum of 1 per port.
4408                 * A 2 port card in a 6 cpu system: 6 CIQs, 3 / port.
4409                 * A 4 port card in a 6 cpu system: 4 CIQs, 1 / port.
4410                 * A 4 port card in a 2 cpu system: 4 CIQs, 1 / port.
4411                 */
4412                s->rdmaciqs = min_t(int, MAX_RDMA_CIQS, num_online_cpus());
4413                s->rdmaciqs = (s->rdmaciqs / adap->params.nports) *
4414                                adap->params.nports;
4415                s->rdmaciqs = max_t(int, s->rdmaciqs, adap->params.nports);
4416
4417                if (!is_t4(adap->params.chip))
4418                        s->niscsitq = s->iscsiqsets;
4419        }
4420
4421        for (i = 0; i < ARRAY_SIZE(s->ethrxq); i++) {
4422                struct sge_eth_rxq *r = &s->ethrxq[i];
4423
4424                init_rspq(adap, &r->rspq, 5, 10, 1024, 64);
4425                r->fl.size = 72;
4426        }
4427
4428        for (i = 0; i < ARRAY_SIZE(s->ethtxq); i++)
4429                s->ethtxq[i].q.size = 1024;
4430
4431        for (i = 0; i < ARRAY_SIZE(s->ctrlq); i++)
4432                s->ctrlq[i].q.size = 512;
4433
4434        for (i = 0; i < ARRAY_SIZE(s->ofldtxq); i++)
4435                s->ofldtxq[i].q.size = 1024;
4436
4437        for (i = 0; i < ARRAY_SIZE(s->iscsirxq); i++) {
4438                struct sge_ofld_rxq *r = &s->iscsirxq[i];
4439
4440                init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4441                r->rspq.uld = CXGB4_ULD_ISCSI;
4442                r->fl.size = 72;
4443        }
4444
4445        if (!is_t4(adap->params.chip)) {
4446                for (i = 0; i < ARRAY_SIZE(s->iscsitrxq); i++) {
4447                        struct sge_ofld_rxq *r = &s->iscsitrxq[i];
4448
4449                        init_rspq(adap, &r->rspq, 5, 1, 1024, 64);
4450                        r->rspq.uld = CXGB4_ULD_ISCSIT;
4451                        r->fl.size = 72;
4452                }
4453        }
4454
4455        for (i = 0; i < ARRAY_SIZE(s->rdmarxq); i++) {
4456                struct sge_ofld_rxq *r = &s->rdmarxq[i];
4457
4458                init_rspq(adap, &r->rspq, 5, 1, 511, 64);
4459                r->rspq.uld = CXGB4_ULD_RDMA;
4460                r->fl.size = 72;
4461        }
4462
4463        ciq_size = 64 + adap->vres.cq.size + adap->tids.nftids;
4464        if (ciq_size > SGE_MAX_IQ_SIZE) {
4465                CH_WARN(adap, "CIQ size too small for available IQs\n");
4466                ciq_size = SGE_MAX_IQ_SIZE;
4467        }
4468
4469        for (i = 0; i < ARRAY_SIZE(s->rdmaciq); i++) {
4470                struct sge_ofld_rxq *r = &s->rdmaciq[i];
4471
4472                init_rspq(adap, &r->rspq, 5, 1, ciq_size, 64);
4473                r->rspq.uld = CXGB4_ULD_RDMA;
4474        }
4475
4476        init_rspq(adap, &s->fw_evtq, 0, 1, 1024, 64);
4477        init_rspq(adap, &s->intrq, 0, 1, 2 * MAX_INGQ, 64);
4478}
4479
4480/*
4481 * Reduce the number of Ethernet queues across all ports to at most n.
4482 * n provides at least one queue per port.
4483 */
4484static void reduce_ethqs(struct adapter *adap, int n)
4485{
4486        int i;
4487        struct port_info *pi;
4488
4489        while (n < adap->sge.ethqsets)
4490                for_each_port(adap, i) {
4491                        pi = adap2pinfo(adap, i);
4492                        if (pi->nqsets > 1) {
4493                                pi->nqsets--;
4494                                adap->sge.ethqsets--;
4495                                if (adap->sge.ethqsets <= n)
4496                                        break;
4497                        }
4498                }
4499
4500        n = 0;
4501        for_each_port(adap, i) {
4502                pi = adap2pinfo(adap, i);
4503                pi->first_qset = n;
4504                n += pi->nqsets;
4505        }
4506}
4507
4508/* 2 MSI-X vectors needed for the FW queue and non-data interrupts */
4509#define EXTRA_VECS 2
4510
4511static int enable_msix(struct adapter *adap)
4512{
4513        int ofld_need = 0;
4514        int i, want, need, allocated;
4515        struct sge *s = &adap->sge;
4516        unsigned int nchan = adap->params.nports;
4517        struct msix_entry *entries;
4518
4519        entries = kmalloc(sizeof(*entries) * (MAX_INGQ + 1),
4520                          GFP_KERNEL);
4521        if (!entries)
4522                return -ENOMEM;
4523
4524        for (i = 0; i < MAX_INGQ + 1; ++i)
4525                entries[i].entry = i;
4526
4527        want = s->max_ethqsets + EXTRA_VECS;
4528        if (is_offload(adap)) {
4529                want += s->rdmaqs + s->rdmaciqs + s->iscsiqsets +
4530                        s->niscsitq;
4531                /* need nchan for each possible ULD */
4532                if (is_t4(adap->params.chip))
4533                        ofld_need = 3 * nchan;
4534                else
4535                        ofld_need = 4 * nchan;
4536        }
4537#ifdef CONFIG_CHELSIO_T4_DCB
4538        /* For Data Center Bridging we need 8 Ethernet TX Priority Queues for
4539         * each port.
4540         */
4541        need = 8 * adap->params.nports + EXTRA_VECS + ofld_need;
4542#else
4543        need = adap->params.nports + EXTRA_VECS + ofld_need;
4544#endif
4545        allocated = pci_enable_msix_range(adap->pdev, entries, need, want);
4546        if (allocated < 0) {
4547                dev_info(adap->pdev_dev, "not enough MSI-X vectors left,"
4548                         " not using MSI-X\n");
4549                kfree(entries);
4550                return allocated;
4551        }
4552
4553        /* Distribute available vectors to the various queue groups.
4554         * Every group gets its minimum requirement and NIC gets top
4555         * priority for leftovers.
4556         */
4557        i = allocated - EXTRA_VECS - ofld_need;
4558        if (i < s->max_ethqsets) {
4559                s->max_ethqsets = i;
4560                if (i < s->ethqsets)
4561                        reduce_ethqs(adap, i);
4562        }
4563        if (is_offload(adap)) {
4564                if (allocated < want) {
4565                        s->rdmaqs = nchan;
4566                        s->rdmaciqs = nchan;
4567
4568                        if (!is_t4(adap->params.chip))
4569                                s->niscsitq = nchan;
4570                }
4571
4572                /* leftovers go to OFLD */
4573                i = allocated - EXTRA_VECS - s->max_ethqsets -
4574                    s->rdmaqs - s->rdmaciqs - s->niscsitq;
4575                s->iscsiqsets = (i / nchan) * nchan;  /* round down */
4576
4577        }
4578        for (i = 0; i < allocated; ++i)
4579                adap->msix_info[i].vec = entries[i].vector;
4580        dev_info(adap->pdev_dev, "%d MSI-X vectors allocated, "
4581                 "nic %d iscsi %d rdma cpl %d rdma ciq %d\n",
4582                 allocated, s->max_ethqsets, s->iscsiqsets, s->rdmaqs,
4583                 s->rdmaciqs);
4584
4585        kfree(entries);
4586        return 0;
4587}
4588
4589#undef EXTRA_VECS
4590
4591static int init_rss(struct adapter *adap)
4592{
4593        unsigned int i;
4594        int err;
4595
4596        err = t4_init_rss_mode(adap, adap->mbox);
4597        if (err)
4598                return err;
4599
4600        for_each_port(adap, i) {
4601                struct port_info *pi = adap2pinfo(adap, i);
4602
4603                pi->rss = kcalloc(pi->rss_size, sizeof(u16), GFP_KERNEL);
4604                if (!pi->rss)
4605                        return -ENOMEM;
4606        }
4607        return 0;
4608}
4609
4610static int cxgb4_get_pcie_dev_link_caps(struct adapter *adap,
4611                                        enum pci_bus_speed *speed,
4612                                        enum pcie_link_width *width)
4613{
4614        u32 lnkcap1, lnkcap2;
4615        int err1, err2;
4616
4617#define  PCIE_MLW_CAP_SHIFT 4   /* start of MLW mask in link capabilities */
4618
4619        *speed = PCI_SPEED_UNKNOWN;
4620        *width = PCIE_LNK_WIDTH_UNKNOWN;
4621
4622        err1 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP,
4623                                          &lnkcap1);
4624        err2 = pcie_capability_read_dword(adap->pdev, PCI_EXP_LNKCAP2,
4625                                          &lnkcap2);
4626        if (!err2 && lnkcap2) { /* PCIe r3.0-compliant */
4627                if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_8_0GB)
4628                        *speed = PCIE_SPEED_8_0GT;
4629                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_5_0GB)
4630                        *speed = PCIE_SPEED_5_0GT;
4631                else if (lnkcap2 & PCI_EXP_LNKCAP2_SLS_2_5GB)
4632                        *speed = PCIE_SPEED_2_5GT;
4633        }
4634        if (!err1) {
4635                *width = (lnkcap1 & PCI_EXP_LNKCAP_MLW) >> PCIE_MLW_CAP_SHIFT;
4636                if (!lnkcap2) { /* pre-r3.0 */
4637                        if (lnkcap1 & PCI_EXP_LNKCAP_SLS_5_0GB)
4638                                *speed = PCIE_SPEED_5_0GT;
4639                        else if (lnkcap1 & PCI_EXP_LNKCAP_SLS_2_5GB)
4640                                *speed = PCIE_SPEED_2_5GT;
4641                }
4642        }
4643
4644        if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
4645                return err1 ? err1 : err2 ? err2 : -EINVAL;
4646        return 0;
4647}
4648
4649static void cxgb4_check_pcie_caps(struct adapter *adap)
4650{
4651        enum pcie_link_width width, width_cap;
4652        enum pci_bus_speed speed, speed_cap;
4653
4654#define PCIE_SPEED_STR(speed) \
4655        (speed == PCIE_SPEED_8_0GT ? "8.0GT/s" : \
4656         speed == PCIE_SPEED_5_0GT ? "5.0GT/s" : \
4657         speed == PCIE_SPEED_2_5GT ? "2.5GT/s" : \
4658         "Unknown")
4659
4660        if (cxgb4_get_pcie_dev_link_caps(adap, &speed_cap, &width_cap)) {
4661                dev_warn(adap->pdev_dev,
4662                         "Unable to determine PCIe device BW capabilities\n");
4663                return;
4664        }
4665
4666        if (pcie_get_minimum_link(adap->pdev, &speed, &width) ||
4667            speed == PCI_SPEED_UNKNOWN || width == PCIE_LNK_WIDTH_UNKNOWN) {
4668                dev_warn(adap->pdev_dev,
4669                         "Unable to determine PCI Express bandwidth.\n");
4670                return;
4671        }
4672
4673        dev_info(adap->pdev_dev, "PCIe link speed is %s, device supports %s\n",
4674                 PCIE_SPEED_STR(speed), PCIE_SPEED_STR(speed_cap));
4675        dev_info(adap->pdev_dev, "PCIe link width is x%d, device supports x%d\n",
4676                 width, width_cap);
4677        if (speed < speed_cap || width < width_cap)
4678                dev_info(adap->pdev_dev,
4679                         "A slot with more lanes and/or higher speed is "
4680                         "suggested for optimal performance.\n");
4681}
4682
4683/* Dump basic information about the adapter */
4684static void print_adapter_info(struct adapter *adapter)
4685{
4686        /* Device information */
4687        dev_info(adapter->pdev_dev, "Chelsio %s rev %d\n",
4688                 adapter->params.vpd.id,
4689                 CHELSIO_CHIP_RELEASE(adapter->params.chip));
4690        dev_info(adapter->pdev_dev, "S/N: %s, P/N: %s\n",
4691                 adapter->params.vpd.sn, adapter->params.vpd.pn);
4692
4693        /* Firmware Version */
4694        if (!adapter->params.fw_vers)
4695                dev_warn(adapter->pdev_dev, "No firmware loaded\n");
4696        else
4697                dev_info(adapter->pdev_dev, "Firmware version: %u.%u.%u.%u\n",
4698                         FW_HDR_FW_VER_MAJOR_G(adapter->params.fw_vers),
4699                         FW_HDR_FW_VER_MINOR_G(adapter->params.fw_vers),
4700                         FW_HDR_FW_VER_MICRO_G(adapter->params.fw_vers),
4701                         FW_HDR_FW_VER_BUILD_G(adapter->params.fw_vers));
4702
4703        /* Bootstrap Firmware Version. (Some adapters don't have Bootstrap
4704         * Firmware, so dev_info() is more appropriate here.)
4705         */
4706        if (!adapter->params.bs_vers)
4707                dev_info(adapter->pdev_dev, "No bootstrap loaded\n");
4708        else
4709                dev_info(adapter->pdev_dev, "Bootstrap version: %u.%u.%u.%u\n",
4710                         FW_HDR_FW_VER_MAJOR_G(adapter->params.bs_vers),
4711                         FW_HDR_FW_VER_MINOR_G(adapter->params.bs_vers),
4712                         FW_HDR_FW_VER_MICRO_G(adapter->params.bs_vers),
4713                         FW_HDR_FW_VER_BUILD_G(adapter->params.bs_vers));
4714
4715        /* TP Microcode Version */
4716        if (!adapter->params.tp_vers)
4717                dev_warn(adapter->pdev_dev, "No TP Microcode loaded\n");
4718        else
4719                dev_info(adapter->pdev_dev,
4720                         "TP Microcode version: %u.%u.%u.%u\n",
4721                         FW_HDR_FW_VER_MAJOR_G(adapter->params.tp_vers),
4722                         FW_HDR_FW_VER_MINOR_G(adapter->params.tp_vers),
4723                         FW_HDR_FW_VER_MICRO_G(adapter->params.tp_vers),
4724                         FW_HDR_FW_VER_BUILD_G(adapter->params.tp_vers));
4725
4726        /* Expansion ROM version */
4727        if (!adapter->params.er_vers)
4728                dev_info(adapter->pdev_dev, "No Expansion ROM loaded\n");
4729        else
4730                dev_info(adapter->pdev_dev,
4731                         "Expansion ROM version: %u.%u.%u.%u\n",
4732                         FW_HDR_FW_VER_MAJOR_G(adapter->params.er_vers),
4733                         FW_HDR_FW_VER_MINOR_G(adapter->params.er_vers),
4734                         FW_HDR_FW_VER_MICRO_G(adapter->params.er_vers),
4735                         FW_HDR_FW_VER_BUILD_G(adapter->params.er_vers));
4736
4737        /* Software/Hardware configuration */
4738        dev_info(adapter->pdev_dev, "Configuration: %sNIC %s, %s capable\n",
4739                 is_offload(adapter) ? "R" : "",
4740                 ((adapter->flags & USING_MSIX) ? "MSI-X" :
4741                  (adapter->flags & USING_MSI) ? "MSI" : ""),
4742                 is_offload(adapter) ? "Offload" : "non-Offload");
4743}
4744
4745static void print_port_info(const struct net_device *dev)
4746{
4747        char buf[80];
4748        char *bufp = buf;
4749        const char *spd = "";
4750        const struct port_info *pi = netdev_priv(dev);
4751        const struct adapter *adap = pi->adapter;
4752
4753        if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_2_5GB)
4754                spd = " 2.5 GT/s";
4755        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_5_0GB)
4756                spd = " 5 GT/s";
4757        else if (adap->params.pci.speed == PCI_EXP_LNKSTA_CLS_8_0GB)
4758                spd = " 8 GT/s";
4759
4760        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100M)
4761                bufp += sprintf(bufp, "100/");
4762        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_1G)
4763                bufp += sprintf(bufp, "1000/");
4764        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_10G)
4765                bufp += sprintf(bufp, "10G/");
4766        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_25G)
4767                bufp += sprintf(bufp, "25G/");
4768        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_40G)
4769                bufp += sprintf(bufp, "40G/");
4770        if (pi->link_cfg.supported & FW_PORT_CAP_SPEED_100G)
4771                bufp += sprintf(bufp, "100G/");
4772        if (bufp != buf)
4773                --bufp;
4774        sprintf(bufp, "BASE-%s", t4_get_port_type_description(pi->port_type));
4775
4776        netdev_info(dev, "%s: Chelsio %s (%s) %s\n",
4777                    dev->name, adap->params.vpd.id, adap->name, buf);
4778}
4779
4780static void enable_pcie_relaxed_ordering(struct pci_dev *dev)
4781{
4782        pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN);
4783}
4784
4785/*
4786 * Free the following resources:
4787 * - memory used for tables
4788 * - MSI/MSI-X
4789 * - net devices
4790 * - resources FW is holding for us
4791 */
4792static void free_some_resources(struct adapter *adapter)
4793{
4794        unsigned int i;
4795
4796        t4_free_mem(adapter->l2t);
4797        t4_free_mem(adapter->tids.tid_tab);
4798        kfree(adapter->sge.egr_map);
4799        kfree(adapter->sge.ingr_map);
4800        kfree(adapter->sge.starving_fl);
4801        kfree(adapter->sge.txq_maperr);
4802#ifdef CONFIG_DEBUG_FS
4803        kfree(adapter->sge.blocked_fl);
4804#endif
4805        disable_msi(adapter);
4806
4807        for_each_port(adapter, i)
4808                if (adapter->port[i]) {
4809                        struct port_info *pi = adap2pinfo(adapter, i);
4810
4811                        if (pi->viid != 0)
4812                                t4_free_vi(adapter, adapter->mbox, adapter->pf,
4813                                           0, pi->viid);
4814                        kfree(adap2pinfo(adapter, i)->rss);
4815                        free_netdev(adapter->port[i]);
4816                }
4817        if (adapter->flags & FW_OK)
4818                t4_fw_bye(adapter, adapter->pf);
4819}
4820
4821#define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
4822#define VLAN_FEAT (NETIF_F_SG | NETIF_F_IP_CSUM | TSO_FLAGS | \
4823                   NETIF_F_IPV6_CSUM | NETIF_F_HIGHDMA)
4824#define SEGMENT_SIZE 128
4825
4826static int get_chip_type(struct pci_dev *pdev, u32 pl_rev)
4827{
4828        u16 device_id;
4829
4830        /* Retrieve adapter's device ID */
4831        pci_read_config_word(pdev, PCI_DEVICE_ID, &device_id);
4832
4833        switch (device_id >> 12) {
4834        case CHELSIO_T4:
4835                return CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
4836        case CHELSIO_T5:
4837                return CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
4838        case CHELSIO_T6:
4839                return CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
4840        default:
4841                dev_err(&pdev->dev, "Device %d is not supported\n",
4842                        device_id);
4843        }
4844        return -EINVAL;
4845}
4846
4847#ifdef CONFIG_PCI_IOV
4848static int cxgb4_iov_configure(struct pci_dev *pdev, int num_vfs)
4849{
4850        int err = 0;
4851        int current_vfs = pci_num_vf(pdev);
4852        u32 pcie_fw;
4853        void __iomem *regs;
4854
4855        regs = pci_ioremap_bar(pdev, 0);
4856        if (!regs) {
4857                dev_err(&pdev->dev, "cannot map device registers\n");
4858                return -ENOMEM;
4859        }
4860
4861        pcie_fw = readl(regs + PCIE_FW_A);
4862        iounmap(regs);
4863        /* Check if cxgb4 is the MASTER and fw is initialized */
4864        if (!(pcie_fw & PCIE_FW_INIT_F) ||
4865            !(pcie_fw & PCIE_FW_MASTER_VLD_F) ||
4866            PCIE_FW_MASTER_G(pcie_fw) != 4) {
4867                dev_warn(&pdev->dev,
4868                         "cxgb4 driver needs to be MASTER to support SRIOV\n");
4869                return -EOPNOTSUPP;
4870        }
4871
4872        /* If any of the VF's is already assigned to Guest OS, then
4873         * SRIOV for the same cannot be modified
4874         */
4875        if (current_vfs && pci_vfs_assigned(pdev)) {
4876                dev_err(&pdev->dev,
4877                        "Cannot modify SR-IOV while VFs are assigned\n");
4878                num_vfs = current_vfs;
4879                return num_vfs;
4880        }
4881
4882        /* Disable SRIOV when zero is passed.
4883         * One needs to disable SRIOV before modifying it, else
4884         * stack throws the below warning:
4885         * " 'n' VFs already enabled. Disable before enabling 'm' VFs."
4886         */
4887        if (!num_vfs) {
4888                pci_disable_sriov(pdev);
4889                return num_vfs;
4890        }
4891
4892        if (num_vfs != current_vfs) {
4893                err = pci_enable_sriov(pdev, num_vfs);
4894                if (err)
4895                        return err;
4896        }
4897        return num_vfs;
4898}
4899#endif
4900
4901static int init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4902{
4903        int func, i, err, s_qpp, qpp, num_seg;
4904        struct port_info *pi;
4905        bool highdma = false;
4906        struct adapter *adapter = NULL;
4907        void __iomem *regs;
4908        u32 whoami, pl_rev;
4909        enum chip_type chip;
4910
4911        printk_once(KERN_INFO "%s - version %s\n", DRV_DESC, DRV_VERSION);
4912
4913        err = pci_request_regions(pdev, KBUILD_MODNAME);
4914        if (err) {
4915                /* Just info, some other driver may have claimed the device. */
4916                dev_info(&pdev->dev, "cannot obtain PCI resources\n");
4917                return err;
4918        }
4919
4920        err = pci_enable_device(pdev);
4921        if (err) {
4922                dev_err(&pdev->dev, "cannot enable PCI device\n");
4923                goto out_release_regions;
4924        }
4925
4926        regs = pci_ioremap_bar(pdev, 0);
4927        if (!regs) {
4928                dev_err(&pdev->dev, "cannot map device registers\n");
4929                err = -ENOMEM;
4930                goto out_disable_device;
4931        }
4932
4933        err = t4_wait_dev_ready(regs);
4934        if (err < 0)
4935                goto out_unmap_bar0;
4936
4937        /* We control everything through one PF */
4938        whoami = readl(regs + PL_WHOAMI_A);
4939        pl_rev = REV_G(readl(regs + PL_REV_A));
4940        chip = get_chip_type(pdev, pl_rev);
4941        func = CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5 ?
4942                SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
4943        if (func != ent->driver_data) {
4944                iounmap(regs);
4945                pci_disable_device(pdev);
4946                pci_save_state(pdev);        /* to restore SR-IOV later */
4947                goto sriov;
4948        }
4949
4950        if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4951                highdma = true;
4952                err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
4953                if (err) {
4954                        dev_err(&pdev->dev, "unable to obtain 64-bit DMA for "
4955                                "coherent allocations\n");
4956                        goto out_unmap_bar0;
4957                }
4958        } else {
4959                err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
4960                if (err) {
4961                        dev_err(&pdev->dev, "no usable DMA configuration\n");
4962                        goto out_unmap_bar0;
4963                }
4964        }
4965
4966        pci_enable_pcie_error_reporting(pdev);
4967        enable_pcie_relaxed_ordering(pdev);
4968        pci_set_master(pdev);
4969        pci_save_state(pdev);
4970
4971        adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
4972        if (!adapter) {
4973                err = -ENOMEM;
4974                goto out_unmap_bar0;
4975        }
4976
4977        adapter->workq = create_singlethread_workqueue("cxgb4");
4978        if (!adapter->workq) {
4979                err = -ENOMEM;
4980                goto out_free_adapter;
4981        }
4982
4983        adapter->mbox_log = kzalloc(sizeof(*adapter->mbox_log) +
4984                                    (sizeof(struct mbox_cmd) *
4985                                     T4_OS_LOG_MBOX_CMDS),
4986                                    GFP_KERNEL);
4987        if (!adapter->mbox_log) {
4988                err = -ENOMEM;
4989                goto out_free_adapter;
4990        }
4991        adapter->mbox_log->size = T4_OS_LOG_MBOX_CMDS;
4992
4993        /* PCI device has been enabled */
4994        adapter->flags |= DEV_ENABLED;
4995
4996        adapter->regs = regs;
4997        adapter->pdev = pdev;
4998        adapter->pdev_dev = &pdev->dev;
4999        adapter->name = pci_name(pdev);
5000        adapter->mbox = func;
5001        adapter->pf = func;
5002        adapter->msg_enable = dflt_msg_enable;
5003        memset(adapter->chan_map, 0xff, sizeof(adapter->chan_map));
5004
5005        spin_lock_init(&adapter->stats_lock);
5006        spin_lock_init(&adapter->tid_release_lock);
5007        spin_lock_init(&adapter->win0_lock);
5008
5009        INIT_WORK(&adapter->tid_release_task, process_tid_release_list);
5010        INIT_WORK(&adapter->db_full_task, process_db_full);
5011        INIT_WORK(&adapter->db_drop_task, process_db_drop);
5012
5013        err = t4_prep_adapter(adapter);
5014        if (err)
5015                goto out_free_adapter;
5016
5017
5018        if (!is_t4(adapter->params.chip)) {
5019                s_qpp = (QUEUESPERPAGEPF0_S +
5020                        (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) *
5021                        adapter->pf);
5022                qpp = 1 << QUEUESPERPAGEPF0_G(t4_read_reg(adapter,
5023                      SGE_EGRESS_QUEUES_PER_PAGE_PF_A) >> s_qpp);
5024                num_seg = PAGE_SIZE / SEGMENT_SIZE;
5025
5026                /* Each segment size is 128B. Write coalescing is enabled only
5027                 * when SGE_EGRESS_QUEUES_PER_PAGE_PF reg value for the
5028                 * queue is less no of segments that can be accommodated in
5029                 * a page size.
5030                 */
5031                if (qpp > num_seg) {
5032                        dev_err(&pdev->dev,
5033                                "Incorrect number of egress queues per page\n");
5034                        err = -EINVAL;
5035                        goto out_free_adapter;
5036                }
5037                adapter->bar2 = ioremap_wc(pci_resource_start(pdev, 2),
5038                pci_resource_len(pdev, 2));
5039                if (!adapter->bar2) {
5040                        dev_err(&pdev->dev, "cannot map device bar2 region\n");
5041                        err = -ENOMEM;
5042                        goto out_free_adapter;
5043                }
5044        }
5045
5046        setup_memwin(adapter);
5047        err = adap_init0(adapter);
5048#ifdef CONFIG_DEBUG_FS
5049        bitmap_zero(adapter->sge.blocked_fl, adapter->sge.egr_sz);
5050#endif
5051        setup_memwin_rdma(adapter);
5052        if (err)
5053                goto out_unmap_bar;
5054
5055        /* configure SGE_STAT_CFG_A to read WC stats */
5056        if (!is_t4(adapter->params.chip))
5057                t4_write_reg(adapter, SGE_STAT_CFG_A, STATSOURCE_T5_V(7) |
5058                             (is_t5(adapter->params.chip) ? STATMODE_V(0) :
5059                              T6_STATMODE_V(0)));
5060
5061        for_each_port(adapter, i) {
5062                struct net_device *netdev;
5063
5064                netdev = alloc_etherdev_mq(sizeof(struct port_info),
5065                                           MAX_ETH_QSETS);
5066                if (!netdev) {
5067                        err = -ENOMEM;
5068                        goto out_free_dev;
5069                }
5070
5071                SET_NETDEV_DEV(netdev, &pdev->dev);
5072
5073                adapter->port[i] = netdev;
5074                pi = netdev_priv(netdev);
5075                pi->adapter = adapter;
5076                pi->xact_addr_filt = -1;
5077                pi->port_id = i;
5078                netdev->irq = pdev->irq;
5079
5080                netdev->hw_features = NETIF_F_SG | TSO_FLAGS |
5081                        NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
5082                        NETIF_F_RXCSUM | NETIF_F_RXHASH |
5083                        NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
5084                if (highdma)
5085                        netdev->hw_features |= NETIF_F_HIGHDMA;
5086                netdev->features |= netdev->hw_features;
5087                netdev->vlan_features = netdev->features & VLAN_FEAT;
5088
5089                netdev->priv_flags |= IFF_UNICAST_FLT;
5090
5091                netdev->netdev_ops = &cxgb4_netdev_ops;
5092#ifdef CONFIG_CHELSIO_T4_DCB
5093                netdev->dcbnl_ops = &cxgb4_dcb_ops;
5094                cxgb4_dcb_state_init(netdev);
5095#endif
5096                cxgb4_set_ethtool_ops(netdev);
5097        }
5098
5099        pci_set_drvdata(pdev, adapter);
5100
5101        if (adapter->flags & FW_OK) {
5102                err = t4_port_init(adapter, func, func, 0);
5103                if (err)
5104                        goto out_free_dev;
5105        } else if (adapter->params.nports == 1) {
5106                /* If we don't have a connection to the firmware -- possibly
5107                 * because of an error -- grab the raw VPD parameters so we
5108                 * can set the proper MAC Address on the debug network
5109                 * interface that we've created.
5110                 */
5111                u8 hw_addr[ETH_ALEN];
5112                u8 *na = adapter->params.vpd.na;
5113
5114                err = t4_get_raw_vpd_params(adapter, &adapter->params.vpd);
5115                if (!err) {
5116                        for (i = 0; i < ETH_ALEN; i++)
5117                                hw_addr[i] = (hex2val(na[2 * i + 0]) * 16 +
5118                                              hex2val(na[2 * i + 1]));
5119                        t4_set_hw_addr(adapter, 0, hw_addr);
5120                }
5121        }
5122
5123        /* Configure queues and allocate tables now, they can be needed as
5124         * soon as the first register_netdev completes.
5125         */
5126        cfg_queues(adapter);
5127
5128        adapter->l2t = t4_init_l2t(adapter->l2t_start, adapter->l2t_end);
5129        if (!adapter->l2t) {
5130                /* We tolerate a lack of L2T, giving up some functionality */
5131                dev_warn(&pdev->dev, "could not allocate L2T, continuing\n");
5132                adapter->params.offload = 0;
5133        }
5134
5135#if IS_ENABLED(CONFIG_IPV6)
5136        if ((CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) &&
5137            (!(t4_read_reg(adapter, LE_DB_CONFIG_A) & ASLIPCOMPEN_F))) {
5138                /* CLIP functionality is not present in hardware,
5139                 * hence disable all offload features
5140                 */
5141                dev_warn(&pdev->dev,
5142                         "CLIP not enabled in hardware, continuing\n");
5143                adapter->params.offload = 0;
5144        } else {
5145                adapter->clipt = t4_init_clip_tbl(adapter->clipt_start,
5146                                                  adapter->clipt_end);
5147                if (!adapter->clipt) {
5148                        /* We tolerate a lack of clip_table, giving up
5149                         * some functionality
5150                         */
5151                        dev_warn(&pdev->dev,
5152                                 "could not allocate Clip table, continuing\n");
5153                        adapter->params.offload = 0;
5154                }
5155        }
5156#endif
5157        if (is_offload(adapter) && tid_init(&adapter->tids) < 0) {
5158                dev_warn(&pdev->dev, "could not allocate TID table, "
5159                         "continuing\n");
5160                adapter->params.offload = 0;
5161        }
5162
5163        if (is_offload(adapter)) {
5164                if (t4_read_reg(adapter, LE_DB_CONFIG_A) & HASHEN_F) {
5165                        u32 hash_base, hash_reg;
5166
5167                        if (chip <= CHELSIO_T5) {
5168                                hash_reg = LE_DB_TID_HASHBASE_A;
5169                                hash_base = t4_read_reg(adapter, hash_reg);
5170                                adapter->tids.hash_base = hash_base / 4;
5171                        } else {
5172                                hash_reg = T6_LE_DB_HASH_TID_BASE_A;
5173                                hash_base = t4_read_reg(adapter, hash_reg);
5174                                adapter->tids.hash_base = hash_base;
5175                        }
5176                }
5177        }
5178
5179        /* See what interrupts we'll be using */
5180        if (msi > 1 && enable_msix(adapter) == 0)
5181                adapter->flags |= USING_MSIX;
5182        else if (msi > 0 && pci_enable_msi(pdev) == 0)
5183                adapter->flags |= USING_MSI;
5184
5185        /* check for PCI Express bandwidth capabiltites */
5186        cxgb4_check_pcie_caps(adapter);
5187
5188        err = init_rss(adapter);
5189        if (err)
5190                goto out_free_dev;
5191
5192        /*
5193         * The card is now ready to go.  If any errors occur during device
5194         * registration we do not fail the whole card but rather proceed only
5195         * with the ports we manage to register successfully.  However we must
5196         * register at least one net device.
5197         */
5198        for_each_port(adapter, i) {
5199                pi = adap2pinfo(adapter, i);
5200                netif_set_real_num_tx_queues(adapter->port[i], pi->nqsets);
5201                netif_set_real_num_rx_queues(adapter->port[i], pi->nqsets);
5202
5203                err = register_netdev(adapter->port[i]);
5204                if (err)
5205                        break;
5206                adapter->chan_map[pi->tx_chan] = i;
5207                print_port_info(adapter->port[i]);
5208        }
5209        if (i == 0) {
5210                dev_err(&pdev->dev, "could not register any net devices\n");
5211                goto out_free_dev;
5212        }
5213        if (err) {
5214                dev_warn(&pdev->dev, "only %d net devices registered\n", i);
5215                err = 0;
5216        }
5217
5218        if (cxgb4_debugfs_root) {
5219                adapter->debugfs_root = debugfs_create_dir(pci_name(pdev),
5220                                                           cxgb4_debugfs_root);
5221                setup_debugfs(adapter);
5222        }
5223
5224        /* PCIe EEH recovery on powerpc platforms needs fundamental reset */
5225        pdev->needs_freset = 1;
5226
5227        if (is_offload(adapter))
5228                attach_ulds(adapter);
5229
5230        print_adapter_info(adapter);
5231
5232sriov:
5233#ifdef CONFIG_PCI_IOV
5234        if (func < ARRAY_SIZE(num_vf) && num_vf[func] > 0) {
5235                dev_warn(&pdev->dev,
5236                         "Enabling SR-IOV VFs using the num_vf module "
5237                         "parameter is deprecated - please use the pci sysfs "
5238                         "interface instead.\n");
5239                if (pci_enable_sriov(pdev, num_vf[func]) == 0)
5240                        dev_info(&pdev->dev,
5241                                 "instantiated %u virtual functions\n",
5242                                 num_vf[func]);
5243        }
5244#endif
5245        return 0;
5246
5247 out_free_dev:
5248        free_some_resources(adapter);
5249 out_unmap_bar:
5250        if (!is_t4(adapter->params.chip))
5251                iounmap(adapter->bar2);
5252 out_free_adapter:
5253        if (adapter->workq)
5254                destroy_workqueue(adapter->workq);
5255
5256        kfree(adapter->mbox_log);
5257        kfree(adapter);
5258 out_unmap_bar0:
5259        iounmap(regs);
5260 out_disable_device:
5261        pci_disable_pcie_error_reporting(pdev);
5262        pci_disable_device(pdev);
5263 out_release_regions:
5264        pci_release_regions(pdev);
5265        return err;
5266}
5267
5268static void remove_one(struct pci_dev *pdev)
5269{
5270        struct adapter *adapter = pci_get_drvdata(pdev);
5271
5272#ifdef CONFIG_PCI_IOV
5273        pci_disable_sriov(pdev);
5274
5275#endif
5276
5277        if (adapter) {
5278                int i;
5279
5280                /* Tear down per-adapter Work Queue first since it can contain
5281                 * references to our adapter data structure.
5282                 */
5283                destroy_workqueue(adapter->workq);
5284
5285                if (is_offload(adapter))
5286                        detach_ulds(adapter);
5287
5288                disable_interrupts(adapter);
5289
5290                for_each_port(adapter, i)
5291                        if (adapter->port[i]->reg_state == NETREG_REGISTERED)
5292                                unregister_netdev(adapter->port[i]);
5293
5294                debugfs_remove_recursive(adapter->debugfs_root);
5295
5296                /* If we allocated filters, free up state associated with any
5297                 * valid filters ...
5298                 */
5299                if (adapter->tids.ftid_tab) {
5300                        struct filter_entry *f = &adapter->tids.ftid_tab[0];
5301                        for (i = 0; i < (adapter->tids.nftids +
5302                                        adapter->tids.nsftids); i++, f++)
5303                                if (f->valid)
5304                                        clear_filter(adapter, f);
5305                }
5306
5307                if (adapter->flags & FULL_INIT_DONE)
5308                        cxgb_down(adapter);
5309
5310                free_some_resources(adapter);
5311#if IS_ENABLED(CONFIG_IPV6)
5312                t4_cleanup_clip_tbl(adapter);
5313#endif
5314                iounmap(adapter->regs);
5315                if (!is_t4(adapter->params.chip))
5316                        iounmap(adapter->bar2);
5317                pci_disable_pcie_error_reporting(pdev);
5318                if ((adapter->flags & DEV_ENABLED)) {
5319                        pci_disable_device(pdev);
5320                        adapter->flags &= ~DEV_ENABLED;
5321                }
5322                pci_release_regions(pdev);
5323                kfree(adapter->mbox_log);
5324                synchronize_rcu();
5325                kfree(adapter);
5326        } else
5327                pci_release_regions(pdev);
5328}
5329
5330static struct pci_driver cxgb4_driver = {
5331        .name     = KBUILD_MODNAME,
5332        .id_table = cxgb4_pci_tbl,
5333        .probe    = init_one,
5334        .remove   = remove_one,
5335        .shutdown = remove_one,
5336#ifdef CONFIG_PCI_IOV
5337        .sriov_configure = cxgb4_iov_configure,
5338#endif
5339        .err_handler = &cxgb4_eeh,
5340};
5341
5342static int __init cxgb4_init_module(void)
5343{
5344        int ret;
5345
5346        /* Debugfs support is optional, just warn if this fails */
5347        cxgb4_debugfs_root = debugfs_create_dir(KBUILD_MODNAME, NULL);
5348        if (!cxgb4_debugfs_root)
5349                pr_warn("could not create debugfs entry, continuing\n");
5350
5351        ret = pci_register_driver(&cxgb4_driver);
5352        if (ret < 0)
5353                debugfs_remove(cxgb4_debugfs_root);
5354
5355#if IS_ENABLED(CONFIG_IPV6)
5356        if (!inet6addr_registered) {
5357                register_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5358                inet6addr_registered = true;
5359        }
5360#endif
5361
5362        return ret;
5363}
5364
5365static void __exit cxgb4_cleanup_module(void)
5366{
5367#if IS_ENABLED(CONFIG_IPV6)
5368        if (inet6addr_registered) {
5369                unregister_inet6addr_notifier(&cxgb4_inet6addr_notifier);
5370                inet6addr_registered = false;
5371        }
5372#endif
5373        pci_unregister_driver(&cxgb4_driver);
5374        debugfs_remove(cxgb4_debugfs_root);  /* NULL ok */
5375}
5376
5377module_init(cxgb4_init_module);
5378module_exit(cxgb4_cleanup_module);
5379