linux/drivers/net/ethernet/freescale/gianfar.c
<<
>>
Prefs
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <asm/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120                                int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148                                  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156                            dma_addr_t buf)
 157{
 158        u32 lstatus;
 159
 160        bdp->bufPtr = cpu_to_be32(buf);
 161
 162        lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163        if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164                lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166        gfar_wmb();
 167
 168        bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173        struct gfar_private *priv = netdev_priv(ndev);
 174        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175        struct gfar_priv_tx_q *tx_queue = NULL;
 176        struct gfar_priv_rx_q *rx_queue = NULL;
 177        struct txbd8 *txbdp;
 178        u32 __iomem *rfbptr;
 179        int i, j;
 180
 181        for (i = 0; i < priv->num_tx_queues; i++) {
 182                tx_queue = priv->tx_queue[i];
 183                /* Initialize some variables in our dev structure */
 184                tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185                tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186                tx_queue->cur_tx = tx_queue->tx_bd_base;
 187                tx_queue->skb_curtx = 0;
 188                tx_queue->skb_dirtytx = 0;
 189
 190                /* Initialize Transmit Descriptor Ring */
 191                txbdp = tx_queue->tx_bd_base;
 192                for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193                        txbdp->lstatus = 0;
 194                        txbdp->bufPtr = 0;
 195                        txbdp++;
 196                }
 197
 198                /* Set the last descriptor in the ring to indicate wrap */
 199                txbdp--;
 200                txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201                                            TXBD_WRAP);
 202        }
 203
 204        rfbptr = &regs->rfbptr0;
 205        for (i = 0; i < priv->num_rx_queues; i++) {
 206                rx_queue = priv->rx_queue[i];
 207
 208                rx_queue->next_to_clean = 0;
 209                rx_queue->next_to_use = 0;
 210                rx_queue->next_to_alloc = 0;
 211
 212                /* make sure next_to_clean != next_to_use after this
 213                 * by leaving at least 1 unused descriptor
 214                 */
 215                gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217                rx_queue->rfbptr = rfbptr;
 218                rfbptr += 2;
 219        }
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224        void *vaddr;
 225        dma_addr_t addr;
 226        int i, j;
 227        struct gfar_private *priv = netdev_priv(ndev);
 228        struct device *dev = priv->dev;
 229        struct gfar_priv_tx_q *tx_queue = NULL;
 230        struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232        priv->total_tx_ring_size = 0;
 233        for (i = 0; i < priv->num_tx_queues; i++)
 234                priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236        priv->total_rx_ring_size = 0;
 237        for (i = 0; i < priv->num_rx_queues; i++)
 238                priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240        /* Allocate memory for the buffer descriptors */
 241        vaddr = dma_alloc_coherent(dev,
 242                                   (priv->total_tx_ring_size *
 243                                    sizeof(struct txbd8)) +
 244                                   (priv->total_rx_ring_size *
 245                                    sizeof(struct rxbd8)),
 246                                   &addr, GFP_KERNEL);
 247        if (!vaddr)
 248                return -ENOMEM;
 249
 250        for (i = 0; i < priv->num_tx_queues; i++) {
 251                tx_queue = priv->tx_queue[i];
 252                tx_queue->tx_bd_base = vaddr;
 253                tx_queue->tx_bd_dma_base = addr;
 254                tx_queue->dev = ndev;
 255                /* enet DMA only understands physical addresses */
 256                addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257                vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258        }
 259
 260        /* Start the rx descriptor ring where the tx ring leaves off */
 261        for (i = 0; i < priv->num_rx_queues; i++) {
 262                rx_queue = priv->rx_queue[i];
 263                rx_queue->rx_bd_base = vaddr;
 264                rx_queue->rx_bd_dma_base = addr;
 265                rx_queue->ndev = ndev;
 266                rx_queue->dev = dev;
 267                addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268                vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269        }
 270
 271        /* Setup the skbuff rings */
 272        for (i = 0; i < priv->num_tx_queues; i++) {
 273                tx_queue = priv->tx_queue[i];
 274                tx_queue->tx_skbuff =
 275                        kmalloc_array(tx_queue->tx_ring_size,
 276                                      sizeof(*tx_queue->tx_skbuff),
 277                                      GFP_KERNEL);
 278                if (!tx_queue->tx_skbuff)
 279                        goto cleanup;
 280
 281                for (j = 0; j < tx_queue->tx_ring_size; j++)
 282                        tx_queue->tx_skbuff[j] = NULL;
 283        }
 284
 285        for (i = 0; i < priv->num_rx_queues; i++) {
 286                rx_queue = priv->rx_queue[i];
 287                rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288                                            sizeof(*rx_queue->rx_buff),
 289                                            GFP_KERNEL);
 290                if (!rx_queue->rx_buff)
 291                        goto cleanup;
 292        }
 293
 294        gfar_init_bds(ndev);
 295
 296        return 0;
 297
 298cleanup:
 299        free_skb_resources(priv);
 300        return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306        u32 __iomem *baddr;
 307        int i;
 308
 309        baddr = &regs->tbase0;
 310        for (i = 0; i < priv->num_tx_queues; i++) {
 311                gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312                baddr += 2;
 313        }
 314
 315        baddr = &regs->rbase0;
 316        for (i = 0; i < priv->num_rx_queues; i++) {
 317                gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318                baddr += 2;
 319        }
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325        u32 __iomem *baddr;
 326        int i;
 327
 328        baddr = &regs->rqprm0;
 329        for (i = 0; i < priv->num_rx_queues; i++) {
 330                gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331                           (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332                baddr++;
 333        }
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338        /* set this when rx hw offload (TOE) functions are being used */
 339        priv->uses_rxfcb = 0;
 340
 341        if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342                priv->uses_rxfcb = 1;
 343
 344        if (priv->hwts_rx_en || priv->rx_filer_enable)
 345                priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351        u32 rctrl = 0;
 352
 353        if (priv->rx_filer_enable) {
 354                rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355                /* Program the RIR0 reg with the required distribution */
 356                if (priv->poll_mode == GFAR_SQ_POLLING)
 357                        gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358                else /* GFAR_MQ_POLLING */
 359                        gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360        }
 361
 362        /* Restore PROMISC mode */
 363        if (priv->ndev->flags & IFF_PROMISC)
 364                rctrl |= RCTRL_PROM;
 365
 366        if (priv->ndev->features & NETIF_F_RXCSUM)
 367                rctrl |= RCTRL_CHECKSUMMING;
 368
 369        if (priv->extended_hash)
 370                rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372        if (priv->padding) {
 373                rctrl &= ~RCTRL_PAL_MASK;
 374                rctrl |= RCTRL_PADDING(priv->padding);
 375        }
 376
 377        /* Enable HW time stamping if requested from user space */
 378        if (priv->hwts_rx_en)
 379                rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382                rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384        /* Clear the LFC bit */
 385        gfar_write(&regs->rctrl, rctrl);
 386        /* Init flow control threshold values */
 387        gfar_init_rqprm(priv);
 388        gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389        rctrl |= RCTRL_LFC;
 390
 391        /* Init rctrl based on our settings */
 392        gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398        u32 tctrl = 0;
 399
 400        if (priv->ndev->features & NETIF_F_IP_CSUM)
 401                tctrl |= TCTRL_INIT_CSUM;
 402
 403        if (priv->prio_sched_en)
 404                tctrl |= TCTRL_TXSCHED_PRIO;
 405        else {
 406                tctrl |= TCTRL_TXSCHED_WRRS;
 407                gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408                gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409        }
 410
 411        if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412                tctrl |= TCTRL_VLINS;
 413
 414        gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418                               unsigned long tx_mask, unsigned long rx_mask)
 419{
 420        struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421        u32 __iomem *baddr;
 422
 423        if (priv->mode == MQ_MG_MODE) {
 424                int i = 0;
 425
 426                baddr = &regs->txic0;
 427                for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428                        gfar_write(baddr + i, 0);
 429                        if (likely(priv->tx_queue[i]->txcoalescing))
 430                                gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431                }
 432
 433                baddr = &regs->rxic0;
 434                for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435                        gfar_write(baddr + i, 0);
 436                        if (likely(priv->rx_queue[i]->rxcoalescing))
 437                                gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438                }
 439        } else {
 440                /* Backward compatible case -- even if we enable
 441                 * multiple queues, there's only single reg to program
 442                 */
 443                gfar_write(&regs->txic, 0);
 444                if (likely(priv->tx_queue[0]->txcoalescing))
 445                        gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447                gfar_write(&regs->rxic, 0);
 448                if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449                        gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450        }
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455        gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460        struct gfar_private *priv = netdev_priv(dev);
 461        unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462        unsigned long tx_packets = 0, tx_bytes = 0;
 463        int i;
 464
 465        for (i = 0; i < priv->num_rx_queues; i++) {
 466                rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467                rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468                rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469        }
 470
 471        dev->stats.rx_packets = rx_packets;
 472        dev->stats.rx_bytes   = rx_bytes;
 473        dev->stats.rx_dropped = rx_dropped;
 474
 475        for (i = 0; i < priv->num_tx_queues; i++) {
 476                tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477                tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478        }
 479
 480        dev->stats.tx_bytes   = tx_bytes;
 481        dev->stats.tx_packets = tx_packets;
 482
 483        return &dev->stats;
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488        eth_mac_addr(dev, p);
 489
 490        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492        return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496        .ndo_open = gfar_enet_open,
 497        .ndo_start_xmit = gfar_start_xmit,
 498        .ndo_stop = gfar_close,
 499        .ndo_change_mtu = gfar_change_mtu,
 500        .ndo_set_features = gfar_set_features,
 501        .ndo_set_rx_mode = gfar_set_multi,
 502        .ndo_tx_timeout = gfar_timeout,
 503        .ndo_do_ioctl = gfar_ioctl,
 504        .ndo_get_stats = gfar_get_stats,
 505        .ndo_set_mac_address = gfar_set_mac_addr,
 506        .ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508        .ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514        int i;
 515        for (i = 0; i < priv->num_grps; i++) {
 516                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517                /* Clear IEVENT */
 518                gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520                /* Initialize IMASK */
 521                gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522        }
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527        int i;
 528        for (i = 0; i < priv->num_grps; i++) {
 529                struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530                /* Unmask the interrupts we look for */
 531                gfar_write(&regs->imask, IMASK_DEFAULT);
 532        }
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537        int i;
 538
 539        for (i = 0; i < priv->num_tx_queues; i++) {
 540                priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541                                            GFP_KERNEL);
 542                if (!priv->tx_queue[i])
 543                        return -ENOMEM;
 544
 545                priv->tx_queue[i]->tx_skbuff = NULL;
 546                priv->tx_queue[i]->qindex = i;
 547                priv->tx_queue[i]->dev = priv->ndev;
 548                spin_lock_init(&(priv->tx_queue[i]->txlock));
 549        }
 550        return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555        int i;
 556
 557        for (i = 0; i < priv->num_rx_queues; i++) {
 558                priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559                                            GFP_KERNEL);
 560                if (!priv->rx_queue[i])
 561                        return -ENOMEM;
 562
 563                priv->rx_queue[i]->qindex = i;
 564                priv->rx_queue[i]->ndev = priv->ndev;
 565        }
 566        return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571        int i;
 572
 573        for (i = 0; i < priv->num_tx_queues; i++)
 574                kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579        int i;
 580
 581        for (i = 0; i < priv->num_rx_queues; i++)
 582                kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587        int i;
 588
 589        for (i = 0; i < MAXGROUPS; i++)
 590                if (priv->gfargrp[i].regs)
 591                        iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596        int i, j;
 597
 598        for (i = 0; i < priv->num_grps; i++)
 599                for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600                        kfree(priv->gfargrp[i].irqinfo[j]);
 601                        priv->gfargrp[i].irqinfo[j] = NULL;
 602                }
 603
 604        free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609        int i;
 610
 611        for (i = 0; i < priv->num_grps; i++) {
 612                napi_disable(&priv->gfargrp[i].napi_rx);
 613                napi_disable(&priv->gfargrp[i].napi_tx);
 614        }
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619        int i;
 620
 621        for (i = 0; i < priv->num_grps; i++) {
 622                napi_enable(&priv->gfargrp[i].napi_rx);
 623                napi_enable(&priv->gfargrp[i].napi_tx);
 624        }
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628                            struct gfar_private *priv, const char *model)
 629{
 630        struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631        int i;
 632
 633        for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634                grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635                                          GFP_KERNEL);
 636                if (!grp->irqinfo[i])
 637                        return -ENOMEM;
 638        }
 639
 640        grp->regs = of_iomap(np, 0);
 641        if (!grp->regs)
 642                return -ENOMEM;
 643
 644        gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646        /* If we aren't the FEC we have multiple interrupts */
 647        if (model && strcasecmp(model, "FEC")) {
 648                gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649                gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650                if (!gfar_irq(grp, TX)->irq ||
 651                    !gfar_irq(grp, RX)->irq ||
 652                    !gfar_irq(grp, ER)->irq)
 653                        return -EINVAL;
 654        }
 655
 656        grp->priv = priv;
 657        spin_lock_init(&grp->grplock);
 658        if (priv->mode == MQ_MG_MODE) {
 659                u32 rxq_mask, txq_mask;
 660                int ret;
 661
 662                grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663                grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665                ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666                if (!ret) {
 667                        grp->rx_bit_map = rxq_mask ?
 668                        rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669                }
 670
 671                ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672                if (!ret) {
 673                        grp->tx_bit_map = txq_mask ?
 674                        txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675                }
 676
 677                if (priv->poll_mode == GFAR_SQ_POLLING) {
 678                        /* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679                        grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680                        grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681                }
 682        } else {
 683                grp->rx_bit_map = 0xFF;
 684                grp->tx_bit_map = 0xFF;
 685        }
 686
 687        /* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688         * right to left, so we need to revert the 8 bits to get the q index
 689         */
 690        grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691        grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693        /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694         * also assign queues to groups
 695         */
 696        for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697                if (!grp->rx_queue)
 698                        grp->rx_queue = priv->rx_queue[i];
 699                grp->num_rx_queues++;
 700                grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701                priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702                priv->rx_queue[i]->grp = grp;
 703        }
 704
 705        for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706                if (!grp->tx_queue)
 707                        grp->tx_queue = priv->tx_queue[i];
 708                grp->num_tx_queues++;
 709                grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710                priv->tqueue |= (TQUEUE_EN0 >> i);
 711                priv->tx_queue[i]->grp = grp;
 712        }
 713
 714        priv->num_grps++;
 715
 716        return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721        struct device_node *child;
 722        int num = 0;
 723
 724        for_each_available_child_of_node(np, child)
 725                if (!of_node_cmp(child->name, "queue-group"))
 726                        num++;
 727
 728        return num;
 729}
 730
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733        const char *model;
 734        const char *ctype;
 735        const void *mac_addr;
 736        int err = 0, i;
 737        struct net_device *dev = NULL;
 738        struct gfar_private *priv = NULL;
 739        struct device_node *np = ofdev->dev.of_node;
 740        struct device_node *child = NULL;
 741        u32 stash_len = 0;
 742        u32 stash_idx = 0;
 743        unsigned int num_tx_qs, num_rx_qs;
 744        unsigned short mode, poll_mode;
 745
 746        if (!np)
 747                return -ENODEV;
 748
 749        if (of_device_is_compatible(np, "fsl,etsec2")) {
 750                mode = MQ_MG_MODE;
 751                poll_mode = GFAR_SQ_POLLING;
 752        } else {
 753                mode = SQ_SG_MODE;
 754                poll_mode = GFAR_SQ_POLLING;
 755        }
 756
 757        if (mode == SQ_SG_MODE) {
 758                num_tx_qs = 1;
 759                num_rx_qs = 1;
 760        } else { /* MQ_MG_MODE */
 761                /* get the actual number of supported groups */
 762                unsigned int num_grps = gfar_of_group_count(np);
 763
 764                if (num_grps == 0 || num_grps > MAXGROUPS) {
 765                        dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766                                num_grps);
 767                        pr_err("Cannot do alloc_etherdev, aborting\n");
 768                        return -EINVAL;
 769                }
 770
 771                if (poll_mode == GFAR_SQ_POLLING) {
 772                        num_tx_qs = num_grps; /* one txq per int group */
 773                        num_rx_qs = num_grps; /* one rxq per int group */
 774                } else { /* GFAR_MQ_POLLING */
 775                        u32 tx_queues, rx_queues;
 776                        int ret;
 777
 778                        /* parse the num of HW tx and rx queues */
 779                        ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780                                                   &tx_queues);
 781                        num_tx_qs = ret ? 1 : tx_queues;
 782
 783                        ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784                                                   &rx_queues);
 785                        num_rx_qs = ret ? 1 : rx_queues;
 786                }
 787        }
 788
 789        if (num_tx_qs > MAX_TX_QS) {
 790                pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791                       num_tx_qs, MAX_TX_QS);
 792                pr_err("Cannot do alloc_etherdev, aborting\n");
 793                return -EINVAL;
 794        }
 795
 796        if (num_rx_qs > MAX_RX_QS) {
 797                pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798                       num_rx_qs, MAX_RX_QS);
 799                pr_err("Cannot do alloc_etherdev, aborting\n");
 800                return -EINVAL;
 801        }
 802
 803        *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804        dev = *pdev;
 805        if (NULL == dev)
 806                return -ENOMEM;
 807
 808        priv = netdev_priv(dev);
 809        priv->ndev = dev;
 810
 811        priv->mode = mode;
 812        priv->poll_mode = poll_mode;
 813
 814        priv->num_tx_queues = num_tx_qs;
 815        netif_set_real_num_rx_queues(dev, num_rx_qs);
 816        priv->num_rx_queues = num_rx_qs;
 817
 818        err = gfar_alloc_tx_queues(priv);
 819        if (err)
 820                goto tx_alloc_failed;
 821
 822        err = gfar_alloc_rx_queues(priv);
 823        if (err)
 824                goto rx_alloc_failed;
 825
 826        err = of_property_read_string(np, "model", &model);
 827        if (err) {
 828                pr_err("Device model property missing, aborting\n");
 829                goto rx_alloc_failed;
 830        }
 831
 832        /* Init Rx queue filer rule set linked list */
 833        INIT_LIST_HEAD(&priv->rx_list.list);
 834        priv->rx_list.count = 0;
 835        mutex_init(&priv->rx_queue_access);
 836
 837        for (i = 0; i < MAXGROUPS; i++)
 838                priv->gfargrp[i].regs = NULL;
 839
 840        /* Parse and initialize group specific information */
 841        if (priv->mode == MQ_MG_MODE) {
 842                for_each_available_child_of_node(np, child) {
 843                        if (of_node_cmp(child->name, "queue-group"))
 844                                continue;
 845
 846                        err = gfar_parse_group(child, priv, model);
 847                        if (err)
 848                                goto err_grp_init;
 849                }
 850        } else { /* SQ_SG_MODE */
 851                err = gfar_parse_group(np, priv, model);
 852                if (err)
 853                        goto err_grp_init;
 854        }
 855
 856        if (of_property_read_bool(np, "bd-stash")) {
 857                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858                priv->bd_stash_en = 1;
 859        }
 860
 861        err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863        if (err == 0)
 864                priv->rx_stash_size = stash_len;
 865
 866        err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868        if (err == 0)
 869                priv->rx_stash_index = stash_idx;
 870
 871        if (stash_len || stash_idx)
 872                priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874        mac_addr = of_get_mac_address(np);
 875
 876        if (mac_addr)
 877                memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 878
 879        if (model && !strcasecmp(model, "TSEC"))
 880                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 882                                     FSL_GIANFAR_DEV_HAS_RMON |
 883                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885        if (model && !strcasecmp(model, "eTSEC"))
 886                priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887                                     FSL_GIANFAR_DEV_HAS_COALESCE |
 888                                     FSL_GIANFAR_DEV_HAS_RMON |
 889                                     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890                                     FSL_GIANFAR_DEV_HAS_CSUM |
 891                                     FSL_GIANFAR_DEV_HAS_VLAN |
 892                                     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893                                     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894                                     FSL_GIANFAR_DEV_HAS_TIMER |
 895                                     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897        err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899        /* We only care about rgmii-id.  The rest are autodetected */
 900        if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901                priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 902        else
 903                priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905        if (of_find_property(np, "fsl,magic-packet", NULL))
 906                priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908        if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909                priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911        priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913        /* In the case of a fixed PHY, the DT node associated
 914         * to the PHY is the Ethernet MAC DT node.
 915         */
 916        if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917                err = of_phy_register_fixed_link(np);
 918                if (err)
 919                        goto err_grp_init;
 920
 921                priv->phy_node = of_node_get(np);
 922        }
 923
 924        /* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925        priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927        return 0;
 928
 929err_grp_init:
 930        unmap_group_regs(priv);
 931rx_alloc_failed:
 932        gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934        gfar_free_tx_queues(priv);
 935        free_gfar_dev(priv);
 936        return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941        struct hwtstamp_config config;
 942        struct gfar_private *priv = netdev_priv(netdev);
 943
 944        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945                return -EFAULT;
 946
 947        /* reserved for future extensions */
 948        if (config.flags)
 949                return -EINVAL;
 950
 951        switch (config.tx_type) {
 952        case HWTSTAMP_TX_OFF:
 953                priv->hwts_tx_en = 0;
 954                break;
 955        case HWTSTAMP_TX_ON:
 956                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957                        return -ERANGE;
 958                priv->hwts_tx_en = 1;
 959                break;
 960        default:
 961                return -ERANGE;
 962        }
 963
 964        switch (config.rx_filter) {
 965        case HWTSTAMP_FILTER_NONE:
 966                if (priv->hwts_rx_en) {
 967                        priv->hwts_rx_en = 0;
 968                        reset_gfar(netdev);
 969                }
 970                break;
 971        default:
 972                if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973                        return -ERANGE;
 974                if (!priv->hwts_rx_en) {
 975                        priv->hwts_rx_en = 1;
 976                        reset_gfar(netdev);
 977                }
 978                config.rx_filter = HWTSTAMP_FILTER_ALL;
 979                break;
 980        }
 981
 982        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983                -EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988        struct hwtstamp_config config;
 989        struct gfar_private *priv = netdev_priv(netdev);
 990
 991        config.flags = 0;
 992        config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993        config.rx_filter = (priv->hwts_rx_en ?
 994                            HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996        return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997                -EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002        struct phy_device *phydev = dev->phydev;
1003
1004        if (!netif_running(dev))
1005                return -EINVAL;
1006
1007        if (cmd == SIOCSHWTSTAMP)
1008                return gfar_hwtstamp_set(dev, rq);
1009        if (cmd == SIOCGHWTSTAMP)
1010                return gfar_hwtstamp_get(dev, rq);
1011
1012        if (!phydev)
1013                return -ENODEV;
1014
1015        return phy_mii_ioctl(phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019                                   u32 class)
1020{
1021        u32 rqfpr = FPR_FILER_MASK;
1022        u32 rqfcr = 0x0;
1023
1024        rqfar--;
1025        rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026        priv->ftp_rqfpr[rqfar] = rqfpr;
1027        priv->ftp_rqfcr[rqfar] = rqfcr;
1028        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030        rqfar--;
1031        rqfcr = RQFCR_CMP_NOMATCH;
1032        priv->ftp_rqfpr[rqfar] = rqfpr;
1033        priv->ftp_rqfcr[rqfar] = rqfcr;
1034        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036        rqfar--;
1037        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038        rqfpr = class;
1039        priv->ftp_rqfcr[rqfar] = rqfcr;
1040        priv->ftp_rqfpr[rqfar] = rqfpr;
1041        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043        rqfar--;
1044        rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045        rqfpr = class;
1046        priv->ftp_rqfcr[rqfar] = rqfcr;
1047        priv->ftp_rqfpr[rqfar] = rqfpr;
1048        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050        return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055        int i = 0x0;
1056        u32 rqfar = MAX_FILER_IDX;
1057        u32 rqfcr = 0x0;
1058        u32 rqfpr = FPR_FILER_MASK;
1059
1060        /* Default rule */
1061        rqfcr = RQFCR_CMP_MATCH;
1062        priv->ftp_rqfcr[rqfar] = rqfcr;
1063        priv->ftp_rqfpr[rqfar] = rqfpr;
1064        gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071        rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073        /* cur_filer_idx indicated the first non-masked rule */
1074        priv->cur_filer_idx = rqfar;
1075
1076        /* Rest are masked rules */
1077        rqfcr = RQFCR_CMP_NOMATCH;
1078        for (i = 0; i < rqfar; i++) {
1079                priv->ftp_rqfcr[i] = rqfcr;
1080                priv->ftp_rqfpr[i] = rqfpr;
1081                gfar_write_filer(priv, i, rqfcr, rqfpr);
1082        }
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088        unsigned int pvr = mfspr(SPRN_PVR);
1089        unsigned int svr = mfspr(SPRN_SVR);
1090        unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091        unsigned int rev = svr & 0xffff;
1092
1093        /* MPC8313 Rev 2.0 and higher; All MPC837x */
1094        if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096                priv->errata |= GFAR_ERRATA_74;
1097
1098        /* MPC8313 and MPC837x all rev */
1099        if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100            (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101                priv->errata |= GFAR_ERRATA_76;
1102
1103        /* MPC8313 Rev < 2.0 */
1104        if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105                priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110        unsigned int svr = mfspr(SPRN_SVR);
1111
1112        if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113                priv->errata |= GFAR_ERRATA_12;
1114        /* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115        if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116            ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117            ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118                priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124        struct device *dev = &priv->ofdev->dev;
1125
1126        /* no plans to fix */
1127        priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130        if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131                __gfar_detect_errata_85xx(priv);
1132        else /* non-mpc85xx parts, i.e. e300 core based */
1133                __gfar_detect_errata_83xx(priv);
1134#endif
1135
1136        if (priv->errata)
1137                dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138                         priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144        u32 tempval;
1145
1146        /* Reset MAC layer */
1147        gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149        /* We need to delay at least 3 TX clocks */
1150        udelay(3);
1151
1152        /* the soft reset bit is not self-resetting, so we need to
1153         * clear it before resuming normal operation
1154         */
1155        gfar_write(&regs->maccfg1, 0);
1156
1157        udelay(3);
1158
1159        gfar_rx_offload_en(priv);
1160
1161        /* Initialize the max receive frame/buffer lengths */
1162        gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163        gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165        /* Initialize the Minimum Frame Length Register */
1166        gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168        /* Initialize MACCFG2. */
1169        tempval = MACCFG2_INIT_SETTINGS;
1170
1171        /* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172         * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173         * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174         */
1175        if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176                tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178        gfar_write(&regs->maccfg2, tempval);
1179
1180        /* Clear mac addr hash registers */
1181        gfar_write(&regs->igaddr0, 0);
1182        gfar_write(&regs->igaddr1, 0);
1183        gfar_write(&regs->igaddr2, 0);
1184        gfar_write(&regs->igaddr3, 0);
1185        gfar_write(&regs->igaddr4, 0);
1186        gfar_write(&regs->igaddr5, 0);
1187        gfar_write(&regs->igaddr6, 0);
1188        gfar_write(&regs->igaddr7, 0);
1189
1190        gfar_write(&regs->gaddr0, 0);
1191        gfar_write(&regs->gaddr1, 0);
1192        gfar_write(&regs->gaddr2, 0);
1193        gfar_write(&regs->gaddr3, 0);
1194        gfar_write(&regs->gaddr4, 0);
1195        gfar_write(&regs->gaddr5, 0);
1196        gfar_write(&regs->gaddr6, 0);
1197        gfar_write(&regs->gaddr7, 0);
1198
1199        if (priv->extended_hash)
1200                gfar_clear_exact_match(priv->ndev);
1201
1202        gfar_mac_rx_config(priv);
1203
1204        gfar_mac_tx_config(priv);
1205
1206        gfar_set_mac_address(priv->ndev);
1207
1208        gfar_set_multi(priv->ndev);
1209
1210        /* clear ievent and imask before configuring coalescing */
1211        gfar_ints_disable(priv);
1212
1213        /* Configure the coalescing support */
1214        gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220        u32 attrs;
1221
1222        /* Stop the DMA engine now, in case it was running before
1223         * (The firmware could have used it, and left it running).
1224         */
1225        gfar_halt(priv);
1226
1227        gfar_mac_reset(priv);
1228
1229        /* Zero out the rmon mib registers if it has them */
1230        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231                memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233                /* Mask off the CAM interrupts */
1234                gfar_write(&regs->rmon.cam1, 0xffffffff);
1235                gfar_write(&regs->rmon.cam2, 0xffffffff);
1236        }
1237
1238        /* Initialize ECNTRL */
1239        gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241        /* Set the extraction length and index */
1242        attrs = ATTRELI_EL(priv->rx_stash_size) |
1243                ATTRELI_EI(priv->rx_stash_index);
1244
1245        gfar_write(&regs->attreli, attrs);
1246
1247        /* Start with defaults, and add stashing
1248         * depending on driver parameters
1249         */
1250        attrs = ATTR_INIT_SETTINGS;
1251
1252        if (priv->bd_stash_en)
1253                attrs |= ATTR_BDSTASH;
1254
1255        if (priv->rx_stash_size != 0)
1256                attrs |= ATTR_BUFSTASH;
1257
1258        gfar_write(&regs->attr, attrs);
1259
1260        /* FIFO configs */
1261        gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262        gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263        gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265        /* Program the interrupt steering regs, only for MG devices */
1266        if (priv->num_grps > 1)
1267                gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275                priv->extended_hash = 1;
1276                priv->hash_width = 9;
1277
1278                priv->hash_regs[0] = &regs->igaddr0;
1279                priv->hash_regs[1] = &regs->igaddr1;
1280                priv->hash_regs[2] = &regs->igaddr2;
1281                priv->hash_regs[3] = &regs->igaddr3;
1282                priv->hash_regs[4] = &regs->igaddr4;
1283                priv->hash_regs[5] = &regs->igaddr5;
1284                priv->hash_regs[6] = &regs->igaddr6;
1285                priv->hash_regs[7] = &regs->igaddr7;
1286                priv->hash_regs[8] = &regs->gaddr0;
1287                priv->hash_regs[9] = &regs->gaddr1;
1288                priv->hash_regs[10] = &regs->gaddr2;
1289                priv->hash_regs[11] = &regs->gaddr3;
1290                priv->hash_regs[12] = &regs->gaddr4;
1291                priv->hash_regs[13] = &regs->gaddr5;
1292                priv->hash_regs[14] = &regs->gaddr6;
1293                priv->hash_regs[15] = &regs->gaddr7;
1294
1295        } else {
1296                priv->extended_hash = 0;
1297                priv->hash_width = 8;
1298
1299                priv->hash_regs[0] = &regs->gaddr0;
1300                priv->hash_regs[1] = &regs->gaddr1;
1301                priv->hash_regs[2] = &regs->gaddr2;
1302                priv->hash_regs[3] = &regs->gaddr3;
1303                priv->hash_regs[4] = &regs->gaddr4;
1304                priv->hash_regs[5] = &regs->gaddr5;
1305                priv->hash_regs[6] = &regs->gaddr6;
1306                priv->hash_regs[7] = &regs->gaddr7;
1307        }
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315        struct net_device *dev = NULL;
1316        struct gfar_private *priv = NULL;
1317        int err = 0, i;
1318
1319        err = gfar_of_init(ofdev, &dev);
1320
1321        if (err)
1322                return err;
1323
1324        priv = netdev_priv(dev);
1325        priv->ndev = dev;
1326        priv->ofdev = ofdev;
1327        priv->dev = &ofdev->dev;
1328        SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330        INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332        platform_set_drvdata(ofdev, priv);
1333
1334        gfar_detect_errata(priv);
1335
1336        /* Set the dev->base_addr to the gfar reg region */
1337        dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339        /* Fill in the dev structure */
1340        dev->watchdog_timeo = TX_TIMEOUT;
1341        dev->mtu = 1500;
1342        dev->netdev_ops = &gfar_netdev_ops;
1343        dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345        /* Register for napi ...We are registering NAPI for each grp */
1346        for (i = 0; i < priv->num_grps; i++) {
1347                if (priv->poll_mode == GFAR_SQ_POLLING) {
1348                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349                                       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351                                       gfar_poll_tx_sq, 2);
1352                } else {
1353                        netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354                                       gfar_poll_rx, GFAR_DEV_WEIGHT);
1355                        netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356                                       gfar_poll_tx, 2);
1357                }
1358        }
1359
1360        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361                dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362                                   NETIF_F_RXCSUM;
1363                dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364                                 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365        }
1366
1367        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368                dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369                                    NETIF_F_HW_VLAN_CTAG_RX;
1370                dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371        }
1372
1373        dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375        gfar_init_addr_hash_table(priv);
1376
1377        /* Insert receive time stamps into padding alignment bytes */
1378        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379                priv->padding = 8;
1380
1381        if (dev->features & NETIF_F_IP_CSUM ||
1382            priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383                dev->needed_headroom = GMAC_FCB_LEN;
1384
1385        /* Initializing some of the rx/tx queue level parameters */
1386        for (i = 0; i < priv->num_tx_queues; i++) {
1387                priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388                priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389                priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390                priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391        }
1392
1393        for (i = 0; i < priv->num_rx_queues; i++) {
1394                priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395                priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396                priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397        }
1398
1399        /* Always enable rx filer if available */
1400        priv->rx_filer_enable =
1401            (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402        /* Enable most messages by default */
1403        priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404        /* use pritority h/w tx queue scheduling for single queue devices */
1405        if (priv->num_tx_queues == 1)
1406                priv->prio_sched_en = 1;
1407
1408        set_bit(GFAR_DOWN, &priv->state);
1409
1410        gfar_hw_init(priv);
1411
1412        /* Carrier starts down, phylib will bring it up */
1413        netif_carrier_off(dev);
1414
1415        err = register_netdev(dev);
1416
1417        if (err) {
1418                pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419                goto register_fail;
1420        }
1421
1422        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423                priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426            priv->rx_filer_enable)
1427                priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429        device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431        /* fill out IRQ number and name fields */
1432        for (i = 0; i < priv->num_grps; i++) {
1433                struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434                if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435                        sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436                                dev->name, "_g", '0' + i, "_tx");
1437                        sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438                                dev->name, "_g", '0' + i, "_rx");
1439                        sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440                                dev->name, "_g", '0' + i, "_er");
1441                } else
1442                        strcpy(gfar_irq(grp, TX)->name, dev->name);
1443        }
1444
1445        /* Initialize the filer table */
1446        gfar_init_filer_table(priv);
1447
1448        /* Print out the device info */
1449        netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451        /* Even more device info helps when determining which kernel
1452         * provided which set of benchmarks.
1453         */
1454        netdev_info(dev, "Running with NAPI enabled\n");
1455        for (i = 0; i < priv->num_rx_queues; i++)
1456                netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457                            i, priv->rx_queue[i]->rx_ring_size);
1458        for (i = 0; i < priv->num_tx_queues; i++)
1459                netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460                            i, priv->tx_queue[i]->tx_ring_size);
1461
1462        return 0;
1463
1464register_fail:
1465        unmap_group_regs(priv);
1466        gfar_free_rx_queues(priv);
1467        gfar_free_tx_queues(priv);
1468        of_node_put(priv->phy_node);
1469        of_node_put(priv->tbi_node);
1470        free_gfar_dev(priv);
1471        return err;
1472}
1473
1474static int gfar_remove(struct platform_device *ofdev)
1475{
1476        struct gfar_private *priv = platform_get_drvdata(ofdev);
1477
1478        of_node_put(priv->phy_node);
1479        of_node_put(priv->tbi_node);
1480
1481        unregister_netdev(priv->ndev);
1482        unmap_group_regs(priv);
1483        gfar_free_rx_queues(priv);
1484        gfar_free_tx_queues(priv);
1485        free_gfar_dev(priv);
1486
1487        return 0;
1488}
1489
1490#ifdef CONFIG_PM
1491
1492static void __gfar_filer_disable(struct gfar_private *priv)
1493{
1494        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495        u32 temp;
1496
1497        temp = gfar_read(&regs->rctrl);
1498        temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499        gfar_write(&regs->rctrl, temp);
1500}
1501
1502static void __gfar_filer_enable(struct gfar_private *priv)
1503{
1504        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505        u32 temp;
1506
1507        temp = gfar_read(&regs->rctrl);
1508        temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509        gfar_write(&regs->rctrl, temp);
1510}
1511
1512/* Filer rules implementing wol capabilities */
1513static void gfar_filer_config_wol(struct gfar_private *priv)
1514{
1515        unsigned int i;
1516        u32 rqfcr;
1517
1518        __gfar_filer_disable(priv);
1519
1520        /* clear the filer table, reject any packet by default */
1521        rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522        for (i = 0; i <= MAX_FILER_IDX; i++)
1523                gfar_write_filer(priv, i, rqfcr, 0);
1524
1525        i = 0;
1526        if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527                /* unicast packet, accept it */
1528                struct net_device *ndev = priv->ndev;
1529                /* get the default rx queue index */
1530                u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531                u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532                                    (ndev->dev_addr[1] << 8) |
1533                                     ndev->dev_addr[2];
1534
1535                rqfcr = (qindex << 10) | RQFCR_AND |
1536                        RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540                dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541                                (ndev->dev_addr[4] << 8) |
1542                                 ndev->dev_addr[5];
1543                rqfcr = (qindex << 10) | RQFCR_GPI |
1544                        RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545                gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546        }
1547
1548        __gfar_filer_enable(priv);
1549}
1550
1551static void gfar_filer_restore_table(struct gfar_private *priv)
1552{
1553        u32 rqfcr, rqfpr;
1554        unsigned int i;
1555
1556        __gfar_filer_disable(priv);
1557
1558        for (i = 0; i <= MAX_FILER_IDX; i++) {
1559                rqfcr = priv->ftp_rqfcr[i];
1560                rqfpr = priv->ftp_rqfpr[i];
1561                gfar_write_filer(priv, i, rqfcr, rqfpr);
1562        }
1563
1564        __gfar_filer_enable(priv);
1565}
1566
1567/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568static void gfar_start_wol_filer(struct gfar_private *priv)
1569{
1570        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571        u32 tempval;
1572        int i = 0;
1573
1574        /* Enable Rx hw queues */
1575        gfar_write(&regs->rqueue, priv->rqueue);
1576
1577        /* Initialize DMACTRL to have WWR and WOP */
1578        tempval = gfar_read(&regs->dmactrl);
1579        tempval |= DMACTRL_INIT_SETTINGS;
1580        gfar_write(&regs->dmactrl, tempval);
1581
1582        /* Make sure we aren't stopped */
1583        tempval = gfar_read(&regs->dmactrl);
1584        tempval &= ~DMACTRL_GRS;
1585        gfar_write(&regs->dmactrl, tempval);
1586
1587        for (i = 0; i < priv->num_grps; i++) {
1588                regs = priv->gfargrp[i].regs;
1589                /* Clear RHLT, so that the DMA starts polling now */
1590                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1591                /* enable the Filer General Purpose Interrupt */
1592                gfar_write(&regs->imask, IMASK_FGPI);
1593        }
1594
1595        /* Enable Rx DMA */
1596        tempval = gfar_read(&regs->maccfg1);
1597        tempval |= MACCFG1_RX_EN;
1598        gfar_write(&regs->maccfg1, tempval);
1599}
1600
1601static int gfar_suspend(struct device *dev)
1602{
1603        struct gfar_private *priv = dev_get_drvdata(dev);
1604        struct net_device *ndev = priv->ndev;
1605        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606        u32 tempval;
1607        u16 wol = priv->wol_opts;
1608
1609        if (!netif_running(ndev))
1610                return 0;
1611
1612        disable_napi(priv);
1613        netif_tx_lock(ndev);
1614        netif_device_detach(ndev);
1615        netif_tx_unlock(ndev);
1616
1617        gfar_halt(priv);
1618
1619        if (wol & GFAR_WOL_MAGIC) {
1620                /* Enable interrupt on Magic Packet */
1621                gfar_write(&regs->imask, IMASK_MAG);
1622
1623                /* Enable Magic Packet mode */
1624                tempval = gfar_read(&regs->maccfg2);
1625                tempval |= MACCFG2_MPEN;
1626                gfar_write(&regs->maccfg2, tempval);
1627
1628                /* re-enable the Rx block */
1629                tempval = gfar_read(&regs->maccfg1);
1630                tempval |= MACCFG1_RX_EN;
1631                gfar_write(&regs->maccfg1, tempval);
1632
1633        } else if (wol & GFAR_WOL_FILER_UCAST) {
1634                gfar_filer_config_wol(priv);
1635                gfar_start_wol_filer(priv);
1636
1637        } else {
1638                phy_stop(ndev->phydev);
1639        }
1640
1641        return 0;
1642}
1643
1644static int gfar_resume(struct device *dev)
1645{
1646        struct gfar_private *priv = dev_get_drvdata(dev);
1647        struct net_device *ndev = priv->ndev;
1648        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649        u32 tempval;
1650        u16 wol = priv->wol_opts;
1651
1652        if (!netif_running(ndev))
1653                return 0;
1654
1655        if (wol & GFAR_WOL_MAGIC) {
1656                /* Disable Magic Packet mode */
1657                tempval = gfar_read(&regs->maccfg2);
1658                tempval &= ~MACCFG2_MPEN;
1659                gfar_write(&regs->maccfg2, tempval);
1660
1661        } else if (wol & GFAR_WOL_FILER_UCAST) {
1662                /* need to stop rx only, tx is already down */
1663                gfar_halt(priv);
1664                gfar_filer_restore_table(priv);
1665
1666        } else {
1667                phy_start(ndev->phydev);
1668        }
1669
1670        gfar_start(priv);
1671
1672        netif_device_attach(ndev);
1673        enable_napi(priv);
1674
1675        return 0;
1676}
1677
1678static int gfar_restore(struct device *dev)
1679{
1680        struct gfar_private *priv = dev_get_drvdata(dev);
1681        struct net_device *ndev = priv->ndev;
1682
1683        if (!netif_running(ndev)) {
1684                netif_device_attach(ndev);
1685
1686                return 0;
1687        }
1688
1689        gfar_init_bds(ndev);
1690
1691        gfar_mac_reset(priv);
1692
1693        gfar_init_tx_rx_base(priv);
1694
1695        gfar_start(priv);
1696
1697        priv->oldlink = 0;
1698        priv->oldspeed = 0;
1699        priv->oldduplex = -1;
1700
1701        if (ndev->phydev)
1702                phy_start(ndev->phydev);
1703
1704        netif_device_attach(ndev);
1705        enable_napi(priv);
1706
1707        return 0;
1708}
1709
1710static struct dev_pm_ops gfar_pm_ops = {
1711        .suspend = gfar_suspend,
1712        .resume = gfar_resume,
1713        .freeze = gfar_suspend,
1714        .thaw = gfar_resume,
1715        .restore = gfar_restore,
1716};
1717
1718#define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720#else
1721
1722#define GFAR_PM_OPS NULL
1723
1724#endif
1725
1726/* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729static phy_interface_t gfar_get_interface(struct net_device *dev)
1730{
1731        struct gfar_private *priv = netdev_priv(dev);
1732        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733        u32 ecntrl;
1734
1735        ecntrl = gfar_read(&regs->ecntrl);
1736
1737        if (ecntrl & ECNTRL_SGMII_MODE)
1738                return PHY_INTERFACE_MODE_SGMII;
1739
1740        if (ecntrl & ECNTRL_TBI_MODE) {
1741                if (ecntrl & ECNTRL_REDUCED_MODE)
1742                        return PHY_INTERFACE_MODE_RTBI;
1743                else
1744                        return PHY_INTERFACE_MODE_TBI;
1745        }
1746
1747        if (ecntrl & ECNTRL_REDUCED_MODE) {
1748                if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749                        return PHY_INTERFACE_MODE_RMII;
1750                }
1751                else {
1752                        phy_interface_t interface = priv->interface;
1753
1754                        /* This isn't autodetected right now, so it must
1755                         * be set by the device tree or platform code.
1756                         */
1757                        if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758                                return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760                        return PHY_INTERFACE_MODE_RGMII;
1761                }
1762        }
1763
1764        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765                return PHY_INTERFACE_MODE_GMII;
1766
1767        return PHY_INTERFACE_MODE_MII;
1768}
1769
1770
1771/* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774static int init_phy(struct net_device *dev)
1775{
1776        struct gfar_private *priv = netdev_priv(dev);
1777        uint gigabit_support =
1778                priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779                GFAR_SUPPORTED_GBIT : 0;
1780        phy_interface_t interface;
1781        struct phy_device *phydev;
1782
1783        priv->oldlink = 0;
1784        priv->oldspeed = 0;
1785        priv->oldduplex = -1;
1786
1787        interface = gfar_get_interface(dev);
1788
1789        phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1790                                interface);
1791        if (!phydev) {
1792                dev_err(&dev->dev, "could not attach to PHY\n");
1793                return -ENODEV;
1794        }
1795
1796        if (interface == PHY_INTERFACE_MODE_SGMII)
1797                gfar_configure_serdes(dev);
1798
1799        /* Remove any features not supported by the controller */
1800        phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1801        phydev->advertising = phydev->supported;
1802
1803        /* Add support for flow control, but don't advertise it by default */
1804        phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1805
1806        return 0;
1807}
1808
1809/* Initialize TBI PHY interface for communicating with the
1810 * SERDES lynx PHY on the chip.  We communicate with this PHY
1811 * through the MDIO bus on each controller, treating it as a
1812 * "normal" PHY at the address found in the TBIPA register.  We assume
1813 * that the TBIPA register is valid.  Either the MDIO bus code will set
1814 * it to a value that doesn't conflict with other PHYs on the bus, or the
1815 * value doesn't matter, as there are no other PHYs on the bus.
1816 */
1817static void gfar_configure_serdes(struct net_device *dev)
1818{
1819        struct gfar_private *priv = netdev_priv(dev);
1820        struct phy_device *tbiphy;
1821
1822        if (!priv->tbi_node) {
1823                dev_warn(&dev->dev, "error: SGMII mode requires that the "
1824                                    "device tree specify a tbi-handle\n");
1825                return;
1826        }
1827
1828        tbiphy = of_phy_find_device(priv->tbi_node);
1829        if (!tbiphy) {
1830                dev_err(&dev->dev, "error: Could not get TBI device\n");
1831                return;
1832        }
1833
1834        /* If the link is already up, we must already be ok, and don't need to
1835         * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1836         * everything for us?  Resetting it takes the link down and requires
1837         * several seconds for it to come back.
1838         */
1839        if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1840                put_device(&tbiphy->mdio.dev);
1841                return;
1842        }
1843
1844        /* Single clk mode, mii mode off(for serdes communication) */
1845        phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1846
1847        phy_write(tbiphy, MII_ADVERTISE,
1848                  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1849                  ADVERTISE_1000XPSE_ASYM);
1850
1851        phy_write(tbiphy, MII_BMCR,
1852                  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1853                  BMCR_SPEED1000);
1854
1855        put_device(&tbiphy->mdio.dev);
1856}
1857
1858static int __gfar_is_rx_idle(struct gfar_private *priv)
1859{
1860        u32 res;
1861
1862        /* Normaly TSEC should not hang on GRS commands, so we should
1863         * actually wait for IEVENT_GRSC flag.
1864         */
1865        if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1866                return 0;
1867
1868        /* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1869         * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1870         * and the Rx can be safely reset.
1871         */
1872        res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1873        res &= 0x7f807f80;
1874        if ((res & 0xffff) == (res >> 16))
1875                return 1;
1876
1877        return 0;
1878}
1879
1880/* Halt the receive and transmit queues */
1881static void gfar_halt_nodisable(struct gfar_private *priv)
1882{
1883        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1884        u32 tempval;
1885        unsigned int timeout;
1886        int stopped;
1887
1888        gfar_ints_disable(priv);
1889
1890        if (gfar_is_dma_stopped(priv))
1891                return;
1892
1893        /* Stop the DMA, and wait for it to stop */
1894        tempval = gfar_read(&regs->dmactrl);
1895        tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1896        gfar_write(&regs->dmactrl, tempval);
1897
1898retry:
1899        timeout = 1000;
1900        while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1901                cpu_relax();
1902                timeout--;
1903        }
1904
1905        if (!timeout)
1906                stopped = gfar_is_dma_stopped(priv);
1907
1908        if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1909            !__gfar_is_rx_idle(priv))
1910                goto retry;
1911}
1912
1913/* Halt the receive and transmit queues */
1914void gfar_halt(struct gfar_private *priv)
1915{
1916        struct gfar __iomem *regs = priv->gfargrp[0].regs;
1917        u32 tempval;
1918
1919        /* Dissable the Rx/Tx hw queues */
1920        gfar_write(&regs->rqueue, 0);
1921        gfar_write(&regs->tqueue, 0);
1922
1923        mdelay(10);
1924
1925        gfar_halt_nodisable(priv);
1926
1927        /* Disable Rx/Tx DMA */
1928        tempval = gfar_read(&regs->maccfg1);
1929        tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1930        gfar_write(&regs->maccfg1, tempval);
1931}
1932
1933void stop_gfar(struct net_device *dev)
1934{
1935        struct gfar_private *priv = netdev_priv(dev);
1936
1937        netif_tx_stop_all_queues(dev);
1938
1939        smp_mb__before_atomic();
1940        set_bit(GFAR_DOWN, &priv->state);
1941        smp_mb__after_atomic();
1942
1943        disable_napi(priv);
1944
1945        /* disable ints and gracefully shut down Rx/Tx DMA */
1946        gfar_halt(priv);
1947
1948        phy_stop(dev->phydev);
1949
1950        free_skb_resources(priv);
1951}
1952
1953static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1954{
1955        struct txbd8 *txbdp;
1956        struct gfar_private *priv = netdev_priv(tx_queue->dev);
1957        int i, j;
1958
1959        txbdp = tx_queue->tx_bd_base;
1960
1961        for (i = 0; i < tx_queue->tx_ring_size; i++) {
1962                if (!tx_queue->tx_skbuff[i])
1963                        continue;
1964
1965                dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1966                                 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1967                txbdp->lstatus = 0;
1968                for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1969                     j++) {
1970                        txbdp++;
1971                        dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1972                                       be16_to_cpu(txbdp->length),
1973                                       DMA_TO_DEVICE);
1974                }
1975                txbdp++;
1976                dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1977                tx_queue->tx_skbuff[i] = NULL;
1978        }
1979        kfree(tx_queue->tx_skbuff);
1980        tx_queue->tx_skbuff = NULL;
1981}
1982
1983static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1984{
1985        int i;
1986
1987        struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1988
1989        if (rx_queue->skb)
1990                dev_kfree_skb(rx_queue->skb);
1991
1992        for (i = 0; i < rx_queue->rx_ring_size; i++) {
1993                struct  gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1994
1995                rxbdp->lstatus = 0;
1996                rxbdp->bufPtr = 0;
1997                rxbdp++;
1998
1999                if (!rxb->page)
2000                        continue;
2001
2002                dma_unmap_single(rx_queue->dev, rxb->dma,
2003                                 PAGE_SIZE, DMA_FROM_DEVICE);
2004                __free_page(rxb->page);
2005
2006                rxb->page = NULL;
2007        }
2008
2009        kfree(rx_queue->rx_buff);
2010        rx_queue->rx_buff = NULL;
2011}
2012
2013/* If there are any tx skbs or rx skbs still around, free them.
2014 * Then free tx_skbuff and rx_skbuff
2015 */
2016static void free_skb_resources(struct gfar_private *priv)
2017{
2018        struct gfar_priv_tx_q *tx_queue = NULL;
2019        struct gfar_priv_rx_q *rx_queue = NULL;
2020        int i;
2021
2022        /* Go through all the buffer descriptors and free their data buffers */
2023        for (i = 0; i < priv->num_tx_queues; i++) {
2024                struct netdev_queue *txq;
2025
2026                tx_queue = priv->tx_queue[i];
2027                txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2028                if (tx_queue->tx_skbuff)
2029                        free_skb_tx_queue(tx_queue);
2030                netdev_tx_reset_queue(txq);
2031        }
2032
2033        for (i = 0; i < priv->num_rx_queues; i++) {
2034                rx_queue = priv->rx_queue[i];
2035                if (rx_queue->rx_buff)
2036                        free_skb_rx_queue(rx_queue);
2037        }
2038
2039        dma_free_coherent(priv->dev,
2040                          sizeof(struct txbd8) * priv->total_tx_ring_size +
2041                          sizeof(struct rxbd8) * priv->total_rx_ring_size,
2042                          priv->tx_queue[0]->tx_bd_base,
2043                          priv->tx_queue[0]->tx_bd_dma_base);
2044}
2045
2046void gfar_start(struct gfar_private *priv)
2047{
2048        struct gfar __iomem *regs = priv->gfargrp[0].regs;
2049        u32 tempval;
2050        int i = 0;
2051
2052        /* Enable Rx/Tx hw queues */
2053        gfar_write(&regs->rqueue, priv->rqueue);
2054        gfar_write(&regs->tqueue, priv->tqueue);
2055
2056        /* Initialize DMACTRL to have WWR and WOP */
2057        tempval = gfar_read(&regs->dmactrl);
2058        tempval |= DMACTRL_INIT_SETTINGS;
2059        gfar_write(&regs->dmactrl, tempval);
2060
2061        /* Make sure we aren't stopped */
2062        tempval = gfar_read(&regs->dmactrl);
2063        tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2064        gfar_write(&regs->dmactrl, tempval);
2065
2066        for (i = 0; i < priv->num_grps; i++) {
2067                regs = priv->gfargrp[i].regs;
2068                /* Clear THLT/RHLT, so that the DMA starts polling now */
2069                gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2070                gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2071        }
2072
2073        /* Enable Rx/Tx DMA */
2074        tempval = gfar_read(&regs->maccfg1);
2075        tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2076        gfar_write(&regs->maccfg1, tempval);
2077
2078        gfar_ints_enable(priv);
2079
2080        netif_trans_update(priv->ndev); /* prevent tx timeout */
2081}
2082
2083static void free_grp_irqs(struct gfar_priv_grp *grp)
2084{
2085        free_irq(gfar_irq(grp, TX)->irq, grp);
2086        free_irq(gfar_irq(grp, RX)->irq, grp);
2087        free_irq(gfar_irq(grp, ER)->irq, grp);
2088}
2089
2090static int register_grp_irqs(struct gfar_priv_grp *grp)
2091{
2092        struct gfar_private *priv = grp->priv;
2093        struct net_device *dev = priv->ndev;
2094        int err;
2095
2096        /* If the device has multiple interrupts, register for
2097         * them.  Otherwise, only register for the one
2098         */
2099        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2100                /* Install our interrupt handlers for Error,
2101                 * Transmit, and Receive
2102                 */
2103                err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2104                                  gfar_irq(grp, ER)->name, grp);
2105                if (err < 0) {
2106                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2107                                  gfar_irq(grp, ER)->irq);
2108
2109                        goto err_irq_fail;
2110                }
2111                enable_irq_wake(gfar_irq(grp, ER)->irq);
2112
2113                err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2114                                  gfar_irq(grp, TX)->name, grp);
2115                if (err < 0) {
2116                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2117                                  gfar_irq(grp, TX)->irq);
2118                        goto tx_irq_fail;
2119                }
2120                err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2121                                  gfar_irq(grp, RX)->name, grp);
2122                if (err < 0) {
2123                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2124                                  gfar_irq(grp, RX)->irq);
2125                        goto rx_irq_fail;
2126                }
2127                enable_irq_wake(gfar_irq(grp, RX)->irq);
2128
2129        } else {
2130                err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2131                                  gfar_irq(grp, TX)->name, grp);
2132                if (err < 0) {
2133                        netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2134                                  gfar_irq(grp, TX)->irq);
2135                        goto err_irq_fail;
2136                }
2137                enable_irq_wake(gfar_irq(grp, TX)->irq);
2138        }
2139
2140        return 0;
2141
2142rx_irq_fail:
2143        free_irq(gfar_irq(grp, TX)->irq, grp);
2144tx_irq_fail:
2145        free_irq(gfar_irq(grp, ER)->irq, grp);
2146err_irq_fail:
2147        return err;
2148
2149}
2150
2151static void gfar_free_irq(struct gfar_private *priv)
2152{
2153        int i;
2154
2155        /* Free the IRQs */
2156        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2157                for (i = 0; i < priv->num_grps; i++)
2158                        free_grp_irqs(&priv->gfargrp[i]);
2159        } else {
2160                for (i = 0; i < priv->num_grps; i++)
2161                        free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2162                                 &priv->gfargrp[i]);
2163        }
2164}
2165
2166static int gfar_request_irq(struct gfar_private *priv)
2167{
2168        int err, i, j;
2169
2170        for (i = 0; i < priv->num_grps; i++) {
2171                err = register_grp_irqs(&priv->gfargrp[i]);
2172                if (err) {
2173                        for (j = 0; j < i; j++)
2174                                free_grp_irqs(&priv->gfargrp[j]);
2175                        return err;
2176                }
2177        }
2178
2179        return 0;
2180}
2181
2182/* Bring the controller up and running */
2183int startup_gfar(struct net_device *ndev)
2184{
2185        struct gfar_private *priv = netdev_priv(ndev);
2186        int err;
2187
2188        gfar_mac_reset(priv);
2189
2190        err = gfar_alloc_skb_resources(ndev);
2191        if (err)
2192                return err;
2193
2194        gfar_init_tx_rx_base(priv);
2195
2196        smp_mb__before_atomic();
2197        clear_bit(GFAR_DOWN, &priv->state);
2198        smp_mb__after_atomic();
2199
2200        /* Start Rx/Tx DMA and enable the interrupts */
2201        gfar_start(priv);
2202
2203        /* force link state update after mac reset */
2204        priv->oldlink = 0;
2205        priv->oldspeed = 0;
2206        priv->oldduplex = -1;
2207
2208        phy_start(ndev->phydev);
2209
2210        enable_napi(priv);
2211
2212        netif_tx_wake_all_queues(ndev);
2213
2214        return 0;
2215}
2216
2217/* Called when something needs to use the ethernet device
2218 * Returns 0 for success.
2219 */
2220static int gfar_enet_open(struct net_device *dev)
2221{
2222        struct gfar_private *priv = netdev_priv(dev);
2223        int err;
2224
2225        err = init_phy(dev);
2226        if (err)
2227                return err;
2228
2229        err = gfar_request_irq(priv);
2230        if (err)
2231                return err;
2232
2233        err = startup_gfar(dev);
2234        if (err)
2235                return err;
2236
2237        return err;
2238}
2239
2240static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2241{
2242        struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2243
2244        memset(fcb, 0, GMAC_FCB_LEN);
2245
2246        return fcb;
2247}
2248
2249static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2250                                    int fcb_length)
2251{
2252        /* If we're here, it's a IP packet with a TCP or UDP
2253         * payload.  We set it to checksum, using a pseudo-header
2254         * we provide
2255         */
2256        u8 flags = TXFCB_DEFAULT;
2257
2258        /* Tell the controller what the protocol is
2259         * And provide the already calculated phcs
2260         */
2261        if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2262                flags |= TXFCB_UDP;
2263                fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2264        } else
2265                fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2266
2267        /* l3os is the distance between the start of the
2268         * frame (skb->data) and the start of the IP hdr.
2269         * l4os is the distance between the start of the
2270         * l3 hdr and the l4 hdr
2271         */
2272        fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2273        fcb->l4os = skb_network_header_len(skb);
2274
2275        fcb->flags = flags;
2276}
2277
2278static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2279{
2280        fcb->flags |= TXFCB_VLN;
2281        fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2282}
2283
2284static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2285                                      struct txbd8 *base, int ring_size)
2286{
2287        struct txbd8 *new_bd = bdp + stride;
2288
2289        return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2290}
2291
2292static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2293                                      int ring_size)
2294{
2295        return skip_txbd(bdp, 1, base, ring_size);
2296}
2297
2298/* eTSEC12: csum generation not supported for some fcb offsets */
2299static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2300                                       unsigned long fcb_addr)
2301{
2302        return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2303               (fcb_addr % 0x20) > 0x18);
2304}
2305
2306/* eTSEC76: csum generation for frames larger than 2500 may
2307 * cause excess delays before start of transmission
2308 */
2309static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2310                                       unsigned int len)
2311{
2312        return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2313               (len > 2500));
2314}
2315
2316/* This is called by the kernel when a frame is ready for transmission.
2317 * It is pointed to by the dev->hard_start_xmit function pointer
2318 */
2319static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2320{
2321        struct gfar_private *priv = netdev_priv(dev);
2322        struct gfar_priv_tx_q *tx_queue = NULL;
2323        struct netdev_queue *txq;
2324        struct gfar __iomem *regs = NULL;
2325        struct txfcb *fcb = NULL;
2326        struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2327        u32 lstatus;
2328        skb_frag_t *frag;
2329        int i, rq = 0;
2330        int do_tstamp, do_csum, do_vlan;
2331        u32 bufaddr;
2332        unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2333
2334        rq = skb->queue_mapping;
2335        tx_queue = priv->tx_queue[rq];
2336        txq = netdev_get_tx_queue(dev, rq);
2337        base = tx_queue->tx_bd_base;
2338        regs = tx_queue->grp->regs;
2339
2340        do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2341        do_vlan = skb_vlan_tag_present(skb);
2342        do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2343                    priv->hwts_tx_en;
2344
2345        if (do_csum || do_vlan)
2346                fcb_len = GMAC_FCB_LEN;
2347
2348        /* check if time stamp should be generated */
2349        if (unlikely(do_tstamp))
2350                fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2351
2352        /* make space for additional header when fcb is needed */
2353        if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2354                struct sk_buff *skb_new;
2355
2356                skb_new = skb_realloc_headroom(skb, fcb_len);
2357                if (!skb_new) {
2358                        dev->stats.tx_errors++;
2359                        dev_kfree_skb_any(skb);
2360                        return NETDEV_TX_OK;
2361                }
2362
2363                if (skb->sk)
2364                        skb_set_owner_w(skb_new, skb->sk);
2365                dev_consume_skb_any(skb);
2366                skb = skb_new;
2367        }
2368
2369        /* total number of fragments in the SKB */
2370        nr_frags = skb_shinfo(skb)->nr_frags;
2371
2372        /* calculate the required number of TxBDs for this skb */
2373        if (unlikely(do_tstamp))
2374                nr_txbds = nr_frags + 2;
2375        else
2376                nr_txbds = nr_frags + 1;
2377
2378        /* check if there is space to queue this packet */
2379        if (nr_txbds > tx_queue->num_txbdfree) {
2380                /* no space, stop the queue */
2381                netif_tx_stop_queue(txq);
2382                dev->stats.tx_fifo_errors++;
2383                return NETDEV_TX_BUSY;
2384        }
2385
2386        /* Update transmit stats */
2387        bytes_sent = skb->len;
2388        tx_queue->stats.tx_bytes += bytes_sent;
2389        /* keep Tx bytes on wire for BQL accounting */
2390        GFAR_CB(skb)->bytes_sent = bytes_sent;
2391        tx_queue->stats.tx_packets++;
2392
2393        txbdp = txbdp_start = tx_queue->cur_tx;
2394        lstatus = be32_to_cpu(txbdp->lstatus);
2395
2396        /* Add TxPAL between FCB and frame if required */
2397        if (unlikely(do_tstamp)) {
2398                skb_push(skb, GMAC_TXPAL_LEN);
2399                memset(skb->data, 0, GMAC_TXPAL_LEN);
2400        }
2401
2402        /* Add TxFCB if required */
2403        if (fcb_len) {
2404                fcb = gfar_add_fcb(skb);
2405                lstatus |= BD_LFLAG(TXBD_TOE);
2406        }
2407
2408        /* Set up checksumming */
2409        if (do_csum) {
2410                gfar_tx_checksum(skb, fcb, fcb_len);
2411
2412                if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2413                    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2414                        __skb_pull(skb, GMAC_FCB_LEN);
2415                        skb_checksum_help(skb);
2416                        if (do_vlan || do_tstamp) {
2417                                /* put back a new fcb for vlan/tstamp TOE */
2418                                fcb = gfar_add_fcb(skb);
2419                        } else {
2420                                /* Tx TOE not used */
2421                                lstatus &= ~(BD_LFLAG(TXBD_TOE));
2422                                fcb = NULL;
2423                        }
2424                }
2425        }
2426
2427        if (do_vlan)
2428                gfar_tx_vlan(skb, fcb);
2429
2430        bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2431                                 DMA_TO_DEVICE);
2432        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2433                goto dma_map_err;
2434
2435        txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2436
2437        /* Time stamp insertion requires one additional TxBD */
2438        if (unlikely(do_tstamp))
2439                txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2440                                                 tx_queue->tx_ring_size);
2441
2442        if (likely(!nr_frags)) {
2443                if (likely(!do_tstamp))
2444                        lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2445        } else {
2446                u32 lstatus_start = lstatus;
2447
2448                /* Place the fragment addresses and lengths into the TxBDs */
2449                frag = &skb_shinfo(skb)->frags[0];
2450                for (i = 0; i < nr_frags; i++, frag++) {
2451                        unsigned int size;
2452
2453                        /* Point at the next BD, wrapping as needed */
2454                        txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2455
2456                        size = skb_frag_size(frag);
2457
2458                        lstatus = be32_to_cpu(txbdp->lstatus) | size |
2459                                  BD_LFLAG(TXBD_READY);
2460
2461                        /* Handle the last BD specially */
2462                        if (i == nr_frags - 1)
2463                                lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2464
2465                        bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2466                                                   size, DMA_TO_DEVICE);
2467                        if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2468                                goto dma_map_err;
2469
2470                        /* set the TxBD length and buffer pointer */
2471                        txbdp->bufPtr = cpu_to_be32(bufaddr);
2472                        txbdp->lstatus = cpu_to_be32(lstatus);
2473                }
2474
2475                lstatus = lstatus_start;
2476        }
2477
2478        /* If time stamping is requested one additional TxBD must be set up. The
2479         * first TxBD points to the FCB and must have a data length of
2480         * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2481         * the full frame length.
2482         */
2483        if (unlikely(do_tstamp)) {
2484                u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2485
2486                bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2487                bufaddr += fcb_len;
2488
2489                lstatus_ts |= BD_LFLAG(TXBD_READY) |
2490                              (skb_headlen(skb) - fcb_len);
2491                if (!nr_frags)
2492                        lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2493
2494                txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2495                txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2496                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2497
2498                /* Setup tx hardware time stamping */
2499                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2500                fcb->ptp = 1;
2501        } else {
2502                lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2503        }
2504
2505        netdev_tx_sent_queue(txq, bytes_sent);
2506
2507        gfar_wmb();
2508
2509        txbdp_start->lstatus = cpu_to_be32(lstatus);
2510
2511        gfar_wmb(); /* force lstatus write before tx_skbuff */
2512
2513        tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2514
2515        /* Update the current skb pointer to the next entry we will use
2516         * (wrapping if necessary)
2517         */
2518        tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2519                              TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2520
2521        tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2522
2523        /* We can work in parallel with gfar_clean_tx_ring(), except
2524         * when modifying num_txbdfree. Note that we didn't grab the lock
2525         * when we were reading the num_txbdfree and checking for available
2526         * space, that's because outside of this function it can only grow.
2527         */
2528        spin_lock_bh(&tx_queue->txlock);
2529        /* reduce TxBD free count */
2530        tx_queue->num_txbdfree -= (nr_txbds);
2531        spin_unlock_bh(&tx_queue->txlock);
2532
2533        /* If the next BD still needs to be cleaned up, then the bds
2534         * are full.  We need to tell the kernel to stop sending us stuff.
2535         */
2536        if (!tx_queue->num_txbdfree) {
2537                netif_tx_stop_queue(txq);
2538
2539                dev->stats.tx_fifo_errors++;
2540        }
2541
2542        /* Tell the DMA to go go go */
2543        gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2544
2545        return NETDEV_TX_OK;
2546
2547dma_map_err:
2548        txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2549        if (do_tstamp)
2550                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2551        for (i = 0; i < nr_frags; i++) {
2552                lstatus = be32_to_cpu(txbdp->lstatus);
2553                if (!(lstatus & BD_LFLAG(TXBD_READY)))
2554                        break;
2555
2556                lstatus &= ~BD_LFLAG(TXBD_READY);
2557                txbdp->lstatus = cpu_to_be32(lstatus);
2558                bufaddr = be32_to_cpu(txbdp->bufPtr);
2559                dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2560                               DMA_TO_DEVICE);
2561                txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562        }
2563        gfar_wmb();
2564        dev_kfree_skb_any(skb);
2565        return NETDEV_TX_OK;
2566}
2567
2568/* Stops the kernel queue, and halts the controller */
2569static int gfar_close(struct net_device *dev)
2570{
2571        struct gfar_private *priv = netdev_priv(dev);
2572
2573        cancel_work_sync(&priv->reset_task);
2574        stop_gfar(dev);
2575
2576        /* Disconnect from the PHY */
2577        phy_disconnect(dev->phydev);
2578
2579        gfar_free_irq(priv);
2580
2581        return 0;
2582}
2583
2584/* Changes the mac address if the controller is not running. */
2585static int gfar_set_mac_address(struct net_device *dev)
2586{
2587        gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2588
2589        return 0;
2590}
2591
2592static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2593{
2594        struct gfar_private *priv = netdev_priv(dev);
2595        int frame_size = new_mtu + ETH_HLEN;
2596
2597        if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2598                netif_err(priv, drv, dev, "Invalid MTU setting\n");
2599                return -EINVAL;
2600        }
2601
2602        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2603                cpu_relax();
2604
2605        if (dev->flags & IFF_UP)
2606                stop_gfar(dev);
2607
2608        dev->mtu = new_mtu;
2609
2610        if (dev->flags & IFF_UP)
2611                startup_gfar(dev);
2612
2613        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2614
2615        return 0;
2616}
2617
2618void reset_gfar(struct net_device *ndev)
2619{
2620        struct gfar_private *priv = netdev_priv(ndev);
2621
2622        while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2623                cpu_relax();
2624
2625        stop_gfar(ndev);
2626        startup_gfar(ndev);
2627
2628        clear_bit_unlock(GFAR_RESETTING, &priv->state);
2629}
2630
2631/* gfar_reset_task gets scheduled when a packet has not been
2632 * transmitted after a set amount of time.
2633 * For now, assume that clearing out all the structures, and
2634 * starting over will fix the problem.
2635 */
2636static void gfar_reset_task(struct work_struct *work)
2637{
2638        struct gfar_private *priv = container_of(work, struct gfar_private,
2639                                                 reset_task);
2640        reset_gfar(priv->ndev);
2641}
2642
2643static void gfar_timeout(struct net_device *dev)
2644{
2645        struct gfar_private *priv = netdev_priv(dev);
2646
2647        dev->stats.tx_errors++;
2648        schedule_work(&priv->reset_task);
2649}
2650
2651/* Interrupt Handler for Transmit complete */
2652static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2653{
2654        struct net_device *dev = tx_queue->dev;
2655        struct netdev_queue *txq;
2656        struct gfar_private *priv = netdev_priv(dev);
2657        struct txbd8 *bdp, *next = NULL;
2658        struct txbd8 *lbdp = NULL;
2659        struct txbd8 *base = tx_queue->tx_bd_base;
2660        struct sk_buff *skb;
2661        int skb_dirtytx;
2662        int tx_ring_size = tx_queue->tx_ring_size;
2663        int frags = 0, nr_txbds = 0;
2664        int i;
2665        int howmany = 0;
2666        int tqi = tx_queue->qindex;
2667        unsigned int bytes_sent = 0;
2668        u32 lstatus;
2669        size_t buflen;
2670
2671        txq = netdev_get_tx_queue(dev, tqi);
2672        bdp = tx_queue->dirty_tx;
2673        skb_dirtytx = tx_queue->skb_dirtytx;
2674
2675        while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2676
2677                frags = skb_shinfo(skb)->nr_frags;
2678
2679                /* When time stamping, one additional TxBD must be freed.
2680                 * Also, we need to dma_unmap_single() the TxPAL.
2681                 */
2682                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2683                        nr_txbds = frags + 2;
2684                else
2685                        nr_txbds = frags + 1;
2686
2687                lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2688
2689                lstatus = be32_to_cpu(lbdp->lstatus);
2690
2691                /* Only clean completed frames */
2692                if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2693                    (lstatus & BD_LENGTH_MASK))
2694                        break;
2695
2696                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2697                        next = next_txbd(bdp, base, tx_ring_size);
2698                        buflen = be16_to_cpu(next->length) +
2699                                 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2700                } else
2701                        buflen = be16_to_cpu(bdp->length);
2702
2703                dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2704                                 buflen, DMA_TO_DEVICE);
2705
2706                if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2707                        struct skb_shared_hwtstamps shhwtstamps;
2708                        u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2709                                          ~0x7UL);
2710
2711                        memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2712                        shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2713                        skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2714                        skb_tstamp_tx(skb, &shhwtstamps);
2715                        gfar_clear_txbd_status(bdp);
2716                        bdp = next;
2717                }
2718
2719                gfar_clear_txbd_status(bdp);
2720                bdp = next_txbd(bdp, base, tx_ring_size);
2721
2722                for (i = 0; i < frags; i++) {
2723                        dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2724                                       be16_to_cpu(bdp->length),
2725                                       DMA_TO_DEVICE);
2726                        gfar_clear_txbd_status(bdp);
2727                        bdp = next_txbd(bdp, base, tx_ring_size);
2728                }
2729
2730                bytes_sent += GFAR_CB(skb)->bytes_sent;
2731
2732                dev_kfree_skb_any(skb);
2733
2734                tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2735
2736                skb_dirtytx = (skb_dirtytx + 1) &
2737                              TX_RING_MOD_MASK(tx_ring_size);
2738
2739                howmany++;
2740                spin_lock(&tx_queue->txlock);
2741                tx_queue->num_txbdfree += nr_txbds;
2742                spin_unlock(&tx_queue->txlock);
2743        }
2744
2745        /* If we freed a buffer, we can restart transmission, if necessary */
2746        if (tx_queue->num_txbdfree &&
2747            netif_tx_queue_stopped(txq) &&
2748            !(test_bit(GFAR_DOWN, &priv->state)))
2749                netif_wake_subqueue(priv->ndev, tqi);
2750
2751        /* Update dirty indicators */
2752        tx_queue->skb_dirtytx = skb_dirtytx;
2753        tx_queue->dirty_tx = bdp;
2754
2755        netdev_tx_completed_queue(txq, howmany, bytes_sent);
2756}
2757
2758static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2759{
2760        struct page *page;
2761        dma_addr_t addr;
2762
2763        page = dev_alloc_page();
2764        if (unlikely(!page))
2765                return false;
2766
2767        addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2768        if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2769                __free_page(page);
2770
2771                return false;
2772        }
2773
2774        rxb->dma = addr;
2775        rxb->page = page;
2776        rxb->page_offset = 0;
2777
2778        return true;
2779}
2780
2781static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2782{
2783        struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2784        struct gfar_extra_stats *estats = &priv->extra_stats;
2785
2786        netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2787        atomic64_inc(&estats->rx_alloc_err);
2788}
2789
2790static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2791                                int alloc_cnt)
2792{
2793        struct rxbd8 *bdp;
2794        struct gfar_rx_buff *rxb;
2795        int i;
2796
2797        i = rx_queue->next_to_use;
2798        bdp = &rx_queue->rx_bd_base[i];
2799        rxb = &rx_queue->rx_buff[i];
2800
2801        while (alloc_cnt--) {
2802                /* try reuse page */
2803                if (unlikely(!rxb->page)) {
2804                        if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2805                                gfar_rx_alloc_err(rx_queue);
2806                                break;
2807                        }
2808                }
2809
2810                /* Setup the new RxBD */
2811                gfar_init_rxbdp(rx_queue, bdp,
2812                                rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2813
2814                /* Update to the next pointer */
2815                bdp++;
2816                rxb++;
2817
2818                if (unlikely(++i == rx_queue->rx_ring_size)) {
2819                        i = 0;
2820                        bdp = rx_queue->rx_bd_base;
2821                        rxb = rx_queue->rx_buff;
2822                }
2823        }
2824
2825        rx_queue->next_to_use = i;
2826        rx_queue->next_to_alloc = i;
2827}
2828
2829static void count_errors(u32 lstatus, struct net_device *ndev)
2830{
2831        struct gfar_private *priv = netdev_priv(ndev);
2832        struct net_device_stats *stats = &ndev->stats;
2833        struct gfar_extra_stats *estats = &priv->extra_stats;
2834
2835        /* If the packet was truncated, none of the other errors matter */
2836        if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2837                stats->rx_length_errors++;
2838
2839                atomic64_inc(&estats->rx_trunc);
2840
2841                return;
2842        }
2843        /* Count the errors, if there were any */
2844        if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2845                stats->rx_length_errors++;
2846
2847                if (lstatus & BD_LFLAG(RXBD_LARGE))
2848                        atomic64_inc(&estats->rx_large);
2849                else
2850                        atomic64_inc(&estats->rx_short);
2851        }
2852        if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2853                stats->rx_frame_errors++;
2854                atomic64_inc(&estats->rx_nonoctet);
2855        }
2856        if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2857                atomic64_inc(&estats->rx_crcerr);
2858                stats->rx_crc_errors++;
2859        }
2860        if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2861                atomic64_inc(&estats->rx_overrun);
2862                stats->rx_over_errors++;
2863        }
2864}
2865
2866irqreturn_t gfar_receive(int irq, void *grp_id)
2867{
2868        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2869        unsigned long flags;
2870        u32 imask, ievent;
2871
2872        ievent = gfar_read(&grp->regs->ievent);
2873
2874        if (unlikely(ievent & IEVENT_FGPI)) {
2875                gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2876                return IRQ_HANDLED;
2877        }
2878
2879        if (likely(napi_schedule_prep(&grp->napi_rx))) {
2880                spin_lock_irqsave(&grp->grplock, flags);
2881                imask = gfar_read(&grp->regs->imask);
2882                imask &= IMASK_RX_DISABLED;
2883                gfar_write(&grp->regs->imask, imask);
2884                spin_unlock_irqrestore(&grp->grplock, flags);
2885                __napi_schedule(&grp->napi_rx);
2886        } else {
2887                /* Clear IEVENT, so interrupts aren't called again
2888                 * because of the packets that have already arrived.
2889                 */
2890                gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2891        }
2892
2893        return IRQ_HANDLED;
2894}
2895
2896/* Interrupt Handler for Transmit complete */
2897static irqreturn_t gfar_transmit(int irq, void *grp_id)
2898{
2899        struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2900        unsigned long flags;
2901        u32 imask;
2902
2903        if (likely(napi_schedule_prep(&grp->napi_tx))) {
2904                spin_lock_irqsave(&grp->grplock, flags);
2905                imask = gfar_read(&grp->regs->imask);
2906                imask &= IMASK_TX_DISABLED;
2907                gfar_write(&grp->regs->imask, imask);
2908                spin_unlock_irqrestore(&grp->grplock, flags);
2909                __napi_schedule(&grp->napi_tx);
2910        } else {
2911                /* Clear IEVENT, so interrupts aren't called again
2912                 * because of the packets that have already arrived.
2913                 */
2914                gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2915        }
2916
2917        return IRQ_HANDLED;
2918}
2919
2920static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2921                             struct sk_buff *skb, bool first)
2922{
2923        unsigned int size = lstatus & BD_LENGTH_MASK;
2924        struct page *page = rxb->page;
2925        bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2926
2927        /* Remove the FCS from the packet length */
2928        if (last)
2929                size -= ETH_FCS_LEN;
2930
2931        if (likely(first)) {
2932                skb_put(skb, size);
2933        } else {
2934                /* the last fragments' length contains the full frame length */
2935                if (last)
2936                        size -= skb->len;
2937
2938                /* in case the last fragment consisted only of the FCS */
2939                if (size > 0)
2940                        skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2941                                        rxb->page_offset + RXBUF_ALIGNMENT,
2942                                        size, GFAR_RXB_TRUESIZE);
2943        }
2944
2945        /* try reuse page */
2946        if (unlikely(page_count(page) != 1))
2947                return false;
2948
2949        /* change offset to the other half */
2950        rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2951
2952        page_ref_inc(page);
2953
2954        return true;
2955}
2956
2957static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2958                               struct gfar_rx_buff *old_rxb)
2959{
2960        struct gfar_rx_buff *new_rxb;
2961        u16 nta = rxq->next_to_alloc;
2962
2963        new_rxb = &rxq->rx_buff[nta];
2964
2965        /* find next buf that can reuse a page */
2966        nta++;
2967        rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2968
2969        /* copy page reference */
2970        *new_rxb = *old_rxb;
2971
2972        /* sync for use by the device */
2973        dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2974                                         old_rxb->page_offset,
2975                                         GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2976}
2977
2978static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2979                                            u32 lstatus, struct sk_buff *skb)
2980{
2981        struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2982        struct page *page = rxb->page;
2983        bool first = false;
2984
2985        if (likely(!skb)) {
2986                void *buff_addr = page_address(page) + rxb->page_offset;
2987
2988                skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2989                if (unlikely(!skb)) {
2990                        gfar_rx_alloc_err(rx_queue);
2991                        return NULL;
2992                }
2993                skb_reserve(skb, RXBUF_ALIGNMENT);
2994                first = true;
2995        }
2996
2997        dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2998                                      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2999
3000        if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3001                /* reuse the free half of the page */
3002                gfar_reuse_rx_page(rx_queue, rxb);
3003        } else {
3004                /* page cannot be reused, unmap it */
3005                dma_unmap_page(rx_queue->dev, rxb->dma,
3006                               PAGE_SIZE, DMA_FROM_DEVICE);
3007        }
3008
3009        /* clear rxb content */
3010        rxb->page = NULL;
3011
3012        return skb;
3013}
3014
3015static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3016{
3017        /* If valid headers were found, and valid sums
3018         * were verified, then we tell the kernel that no
3019         * checksumming is necessary.  Otherwise, it is [FIXME]
3020         */
3021        if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3022            (RXFCB_CIP | RXFCB_CTU))
3023                skb->ip_summed = CHECKSUM_UNNECESSARY;
3024        else
3025                skb_checksum_none_assert(skb);
3026}
3027
3028/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3029static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3030{
3031        struct gfar_private *priv = netdev_priv(ndev);
3032        struct rxfcb *fcb = NULL;
3033
3034        /* fcb is at the beginning if exists */
3035        fcb = (struct rxfcb *)skb->data;
3036
3037        /* Remove the FCB from the skb
3038         * Remove the padded bytes, if there are any
3039         */
3040        if (priv->uses_rxfcb)
3041                skb_pull(skb, GMAC_FCB_LEN);
3042
3043        /* Get receive timestamp from the skb */
3044        if (priv->hwts_rx_en) {
3045                struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3046                u64 *ns = (u64 *) skb->data;
3047
3048                memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3049                shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3050        }
3051
3052        if (priv->padding)
3053                skb_pull(skb, priv->padding);
3054
3055        if (ndev->features & NETIF_F_RXCSUM)
3056                gfar_rx_checksum(skb, fcb);
3057
3058        /* Tell the skb what kind of packet this is */
3059        skb->protocol = eth_type_trans(skb, ndev);
3060
3061        /* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3062         * Even if vlan rx accel is disabled, on some chips
3063         * RXFCB_VLN is pseudo randomly set.
3064         */
3065        if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3066            be16_to_cpu(fcb->flags) & RXFCB_VLN)
3067                __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3068                                       be16_to_cpu(fcb->vlctl));
3069}
3070
3071/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3072 * until the budget/quota has been reached. Returns the number
3073 * of frames handled
3074 */
3075int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3076{
3077        struct net_device *ndev = rx_queue->ndev;
3078        struct gfar_private *priv = netdev_priv(ndev);
3079        struct rxbd8 *bdp;
3080        int i, howmany = 0;
3081        struct sk_buff *skb = rx_queue->skb;
3082        int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3083        unsigned int total_bytes = 0, total_pkts = 0;
3084
3085        /* Get the first full descriptor */
3086        i = rx_queue->next_to_clean;
3087
3088        while (rx_work_limit--) {
3089                u32 lstatus;
3090
3091                if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3092                        gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3093                        cleaned_cnt = 0;
3094                }
3095
3096                bdp = &rx_queue->rx_bd_base[i];
3097                lstatus = be32_to_cpu(bdp->lstatus);
3098                if (lstatus & BD_LFLAG(RXBD_EMPTY))
3099                        break;
3100
3101                /* order rx buffer descriptor reads */
3102                rmb();
3103
3104                /* fetch next to clean buffer from the ring */
3105                skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3106                if (unlikely(!skb))
3107                        break;
3108
3109                cleaned_cnt++;
3110                howmany++;
3111
3112                if (unlikely(++i == rx_queue->rx_ring_size))
3113                        i = 0;
3114
3115                rx_queue->next_to_clean = i;
3116
3117                /* fetch next buffer if not the last in frame */
3118                if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3119                        continue;
3120
3121                if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3122                        count_errors(lstatus, ndev);
3123
3124                        /* discard faulty buffer */
3125                        dev_kfree_skb(skb);
3126                        skb = NULL;
3127                        rx_queue->stats.rx_dropped++;
3128                        continue;
3129                }
3130
3131                /* Increment the number of packets */
3132                total_pkts++;
3133                total_bytes += skb->len;
3134
3135                skb_record_rx_queue(skb, rx_queue->qindex);
3136
3137                gfar_process_frame(ndev, skb);
3138
3139                /* Send the packet up the stack */
3140                napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3141
3142                skb = NULL;
3143        }
3144
3145        /* Store incomplete frames for completion */
3146        rx_queue->skb = skb;
3147
3148        rx_queue->stats.rx_packets += total_pkts;
3149        rx_queue->stats.rx_bytes += total_bytes;
3150
3151        if (cleaned_cnt)
3152                gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3153
3154        /* Update Last Free RxBD pointer for LFC */
3155        if (unlikely(priv->tx_actual_en)) {
3156                u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3157
3158                gfar_write(rx_queue->rfbptr, bdp_dma);
3159        }
3160
3161        return howmany;
3162}
3163
3164static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3165{
3166        struct gfar_priv_grp *gfargrp =
3167                container_of(napi, struct gfar_priv_grp, napi_rx);
3168        struct gfar __iomem *regs = gfargrp->regs;
3169        struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3170        int work_done = 0;
3171
3172        /* Clear IEVENT, so interrupts aren't called again
3173         * because of the packets that have already arrived
3174         */
3175        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3176
3177        work_done = gfar_clean_rx_ring(rx_queue, budget);
3178
3179        if (work_done < budget) {
3180                u32 imask;
3181                napi_complete(napi);
3182                /* Clear the halt bit in RSTAT */
3183                gfar_write(&regs->rstat, gfargrp->rstat);
3184
3185                spin_lock_irq(&gfargrp->grplock);
3186                imask = gfar_read(&regs->imask);
3187                imask |= IMASK_RX_DEFAULT;
3188                gfar_write(&regs->imask, imask);
3189                spin_unlock_irq(&gfargrp->grplock);
3190        }
3191
3192        return work_done;
3193}
3194
3195static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3196{
3197        struct gfar_priv_grp *gfargrp =
3198                container_of(napi, struct gfar_priv_grp, napi_tx);
3199        struct gfar __iomem *regs = gfargrp->regs;
3200        struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3201        u32 imask;
3202
3203        /* Clear IEVENT, so interrupts aren't called again
3204         * because of the packets that have already arrived
3205         */
3206        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3207
3208        /* run Tx cleanup to completion */
3209        if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3210                gfar_clean_tx_ring(tx_queue);
3211
3212        napi_complete(napi);
3213
3214        spin_lock_irq(&gfargrp->grplock);
3215        imask = gfar_read(&regs->imask);
3216        imask |= IMASK_TX_DEFAULT;
3217        gfar_write(&regs->imask, imask);
3218        spin_unlock_irq(&gfargrp->grplock);
3219
3220        return 0;
3221}
3222
3223static int gfar_poll_rx(struct napi_struct *napi, int budget)
3224{
3225        struct gfar_priv_grp *gfargrp =
3226                container_of(napi, struct gfar_priv_grp, napi_rx);
3227        struct gfar_private *priv = gfargrp->priv;
3228        struct gfar __iomem *regs = gfargrp->regs;
3229        struct gfar_priv_rx_q *rx_queue = NULL;
3230        int work_done = 0, work_done_per_q = 0;
3231        int i, budget_per_q = 0;
3232        unsigned long rstat_rxf;
3233        int num_act_queues;
3234
3235        /* Clear IEVENT, so interrupts aren't called again
3236         * because of the packets that have already arrived
3237         */
3238        gfar_write(&regs->ievent, IEVENT_RX_MASK);
3239
3240        rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3241
3242        num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3243        if (num_act_queues)
3244                budget_per_q = budget/num_act_queues;
3245
3246        for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3247                /* skip queue if not active */
3248                if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3249                        continue;
3250
3251                rx_queue = priv->rx_queue[i];
3252                work_done_per_q =
3253                        gfar_clean_rx_ring(rx_queue, budget_per_q);
3254                work_done += work_done_per_q;
3255
3256                /* finished processing this queue */
3257                if (work_done_per_q < budget_per_q) {
3258                        /* clear active queue hw indication */
3259                        gfar_write(&regs->rstat,
3260                                   RSTAT_CLEAR_RXF0 >> i);
3261                        num_act_queues--;
3262
3263                        if (!num_act_queues)
3264                                break;
3265                }
3266        }
3267
3268        if (!num_act_queues) {
3269                u32 imask;
3270                napi_complete(napi);
3271
3272                /* Clear the halt bit in RSTAT */
3273                gfar_write(&regs->rstat, gfargrp->rstat);
3274
3275                spin_lock_irq(&gfargrp->grplock);
3276                imask = gfar_read(&regs->imask);
3277                imask |= IMASK_RX_DEFAULT;
3278                gfar_write(&regs->imask, imask);
3279                spin_unlock_irq(&gfargrp->grplock);
3280        }
3281
3282        return work_done;
3283}
3284
3285static int gfar_poll_tx(struct napi_struct *napi, int budget)
3286{
3287        struct gfar_priv_grp *gfargrp =
3288                container_of(napi, struct gfar_priv_grp, napi_tx);
3289        struct gfar_private *priv = gfargrp->priv;
3290        struct gfar __iomem *regs = gfargrp->regs;
3291        struct gfar_priv_tx_q *tx_queue = NULL;
3292        int has_tx_work = 0;
3293        int i;
3294
3295        /* Clear IEVENT, so interrupts aren't called again
3296         * because of the packets that have already arrived
3297         */
3298        gfar_write(&regs->ievent, IEVENT_TX_MASK);
3299
3300        for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3301                tx_queue = priv->tx_queue[i];
3302                /* run Tx cleanup to completion */
3303                if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3304                        gfar_clean_tx_ring(tx_queue);
3305                        has_tx_work = 1;
3306                }
3307        }
3308
3309        if (!has_tx_work) {
3310                u32 imask;
3311                napi_complete(napi);
3312
3313                spin_lock_irq(&gfargrp->grplock);
3314                imask = gfar_read(&regs->imask);
3315                imask |= IMASK_TX_DEFAULT;
3316                gfar_write(&regs->imask, imask);
3317                spin_unlock_irq(&gfargrp->grplock);
3318        }
3319
3320        return 0;
3321}
3322
3323
3324#ifdef CONFIG_NET_POLL_CONTROLLER
3325/* Polling 'interrupt' - used by things like netconsole to send skbs
3326 * without having to re-enable interrupts. It's not called while
3327 * the interrupt routine is executing.
3328 */
3329static void gfar_netpoll(struct net_device *dev)
3330{
3331        struct gfar_private *priv = netdev_priv(dev);
3332        int i;
3333
3334        /* If the device has multiple interrupts, run tx/rx */
3335        if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3336                for (i = 0; i < priv->num_grps; i++) {
3337                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3338
3339                        disable_irq(gfar_irq(grp, TX)->irq);
3340                        disable_irq(gfar_irq(grp, RX)->irq);
3341                        disable_irq(gfar_irq(grp, ER)->irq);
3342                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3343                        enable_irq(gfar_irq(grp, ER)->irq);
3344                        enable_irq(gfar_irq(grp, RX)->irq);
3345                        enable_irq(gfar_irq(grp, TX)->irq);
3346                }
3347        } else {
3348                for (i = 0; i < priv->num_grps; i++) {
3349                        struct gfar_priv_grp *grp = &priv->gfargrp[i];
3350
3351                        disable_irq(gfar_irq(grp, TX)->irq);
3352                        gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3353                        enable_irq(gfar_irq(grp, TX)->irq);
3354                }
3355        }
3356}
3357#endif
3358
3359/* The interrupt handler for devices with one interrupt */
3360static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3361{
3362        struct gfar_priv_grp *gfargrp = grp_id;
3363
3364        /* Save ievent for future reference */
3365        u32 events = gfar_read(&gfargrp->regs->ievent);
3366
3367        /* Check for reception */
3368        if (events & IEVENT_RX_MASK)
3369                gfar_receive(irq, grp_id);
3370
3371        /* Check for transmit completion */
3372        if (events & IEVENT_TX_MASK)
3373                gfar_transmit(irq, grp_id);
3374
3375        /* Check for errors */
3376        if (events & IEVENT_ERR_MASK)
3377                gfar_error(irq, grp_id);
3378
3379        return IRQ_HANDLED;
3380}
3381
3382/* Called every time the controller might need to be made
3383 * aware of new link state.  The PHY code conveys this
3384 * information through variables in the phydev structure, and this
3385 * function converts those variables into the appropriate
3386 * register values, and can bring down the device if needed.
3387 */
3388static void adjust_link(struct net_device *dev)
3389{
3390        struct gfar_private *priv = netdev_priv(dev);
3391        struct phy_device *phydev = dev->phydev;
3392
3393        if (unlikely(phydev->link != priv->oldlink ||
3394                     (phydev->link && (phydev->duplex != priv->oldduplex ||
3395                                       phydev->speed != priv->oldspeed))))
3396                gfar_update_link_state(priv);
3397}
3398
3399/* Update the hash table based on the current list of multicast
3400 * addresses we subscribe to.  Also, change the promiscuity of
3401 * the device based on the flags (this function is called
3402 * whenever dev->flags is changed
3403 */
3404static void gfar_set_multi(struct net_device *dev)
3405{
3406        struct netdev_hw_addr *ha;
3407        struct gfar_private *priv = netdev_priv(dev);
3408        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3409        u32 tempval;
3410
3411        if (dev->flags & IFF_PROMISC) {
3412                /* Set RCTRL to PROM */
3413                tempval = gfar_read(&regs->rctrl);
3414                tempval |= RCTRL_PROM;
3415                gfar_write(&regs->rctrl, tempval);
3416        } else {
3417                /* Set RCTRL to not PROM */
3418                tempval = gfar_read(&regs->rctrl);
3419                tempval &= ~(RCTRL_PROM);
3420                gfar_write(&regs->rctrl, tempval);
3421        }
3422
3423        if (dev->flags & IFF_ALLMULTI) {
3424                /* Set the hash to rx all multicast frames */
3425                gfar_write(&regs->igaddr0, 0xffffffff);
3426                gfar_write(&regs->igaddr1, 0xffffffff);
3427                gfar_write(&regs->igaddr2, 0xffffffff);
3428                gfar_write(&regs->igaddr3, 0xffffffff);
3429                gfar_write(&regs->igaddr4, 0xffffffff);
3430                gfar_write(&regs->igaddr5, 0xffffffff);
3431                gfar_write(&regs->igaddr6, 0xffffffff);
3432                gfar_write(&regs->igaddr7, 0xffffffff);
3433                gfar_write(&regs->gaddr0, 0xffffffff);
3434                gfar_write(&regs->gaddr1, 0xffffffff);
3435                gfar_write(&regs->gaddr2, 0xffffffff);
3436                gfar_write(&regs->gaddr3, 0xffffffff);
3437                gfar_write(&regs->gaddr4, 0xffffffff);
3438                gfar_write(&regs->gaddr5, 0xffffffff);
3439                gfar_write(&regs->gaddr6, 0xffffffff);
3440                gfar_write(&regs->gaddr7, 0xffffffff);
3441        } else {
3442                int em_num;
3443                int idx;
3444
3445                /* zero out the hash */
3446                gfar_write(&regs->igaddr0, 0x0);
3447                gfar_write(&regs->igaddr1, 0x0);
3448                gfar_write(&regs->igaddr2, 0x0);
3449                gfar_write(&regs->igaddr3, 0x0);
3450                gfar_write(&regs->igaddr4, 0x0);
3451                gfar_write(&regs->igaddr5, 0x0);
3452                gfar_write(&regs->igaddr6, 0x0);
3453                gfar_write(&regs->igaddr7, 0x0);
3454                gfar_write(&regs->gaddr0, 0x0);
3455                gfar_write(&regs->gaddr1, 0x0);
3456                gfar_write(&regs->gaddr2, 0x0);
3457                gfar_write(&regs->gaddr3, 0x0);
3458                gfar_write(&regs->gaddr4, 0x0);
3459                gfar_write(&regs->gaddr5, 0x0);
3460                gfar_write(&regs->gaddr6, 0x0);
3461                gfar_write(&regs->gaddr7, 0x0);
3462
3463                /* If we have extended hash tables, we need to
3464                 * clear the exact match registers to prepare for
3465                 * setting them
3466                 */
3467                if (priv->extended_hash) {
3468                        em_num = GFAR_EM_NUM + 1;
3469                        gfar_clear_exact_match(dev);
3470                        idx = 1;
3471                } else {
3472                        idx = 0;
3473                        em_num = 0;
3474                }
3475
3476                if (netdev_mc_empty(dev))
3477                        return;
3478
3479                /* Parse the list, and set the appropriate bits */
3480                netdev_for_each_mc_addr(ha, dev) {
3481                        if (idx < em_num) {
3482                                gfar_set_mac_for_addr(dev, idx, ha->addr);
3483                                idx++;
3484                        } else
3485                                gfar_set_hash_for_addr(dev, ha->addr);
3486                }
3487        }
3488}
3489
3490
3491/* Clears each of the exact match registers to zero, so they
3492 * don't interfere with normal reception
3493 */
3494static void gfar_clear_exact_match(struct net_device *dev)
3495{
3496        int idx;
3497        static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3498
3499        for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3500                gfar_set_mac_for_addr(dev, idx, zero_arr);
3501}
3502
3503/* Set the appropriate hash bit for the given addr */
3504/* The algorithm works like so:
3505 * 1) Take the Destination Address (ie the multicast address), and
3506 * do a CRC on it (little endian), and reverse the bits of the
3507 * result.
3508 * 2) Use the 8 most significant bits as a hash into a 256-entry
3509 * table.  The table is controlled through 8 32-bit registers:
3510 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3511 * gaddr7.  This means that the 3 most significant bits in the
3512 * hash index which gaddr register to use, and the 5 other bits
3513 * indicate which bit (assuming an IBM numbering scheme, which
3514 * for PowerPC (tm) is usually the case) in the register holds
3515 * the entry.
3516 */
3517static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3518{
3519        u32 tempval;
3520        struct gfar_private *priv = netdev_priv(dev);
3521        u32 result = ether_crc(ETH_ALEN, addr);
3522        int width = priv->hash_width;
3523        u8 whichbit = (result >> (32 - width)) & 0x1f;
3524        u8 whichreg = result >> (32 - width + 5);
3525        u32 value = (1 << (31-whichbit));
3526
3527        tempval = gfar_read(priv->hash_regs[whichreg]);
3528        tempval |= value;
3529        gfar_write(priv->hash_regs[whichreg], tempval);
3530}
3531
3532
3533/* There are multiple MAC Address register pairs on some controllers
3534 * This function sets the numth pair to a given address
3535 */
3536static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3537                                  const u8 *addr)
3538{
3539        struct gfar_private *priv = netdev_priv(dev);
3540        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3541        u32 tempval;
3542        u32 __iomem *macptr = &regs->macstnaddr1;
3543
3544        macptr += num*2;
3545
3546        /* For a station address of 0x12345678ABCD in transmission
3547         * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3548         * MACnADDR2 is set to 0x34120000.
3549         */
3550        tempval = (addr[5] << 24) | (addr[4] << 16) |
3551                  (addr[3] << 8)  |  addr[2];
3552
3553        gfar_write(macptr, tempval);
3554
3555        tempval = (addr[1] << 24) | (addr[0] << 16);
3556
3557        gfar_write(macptr+1, tempval);
3558}
3559
3560/* GFAR error interrupt handler */
3561static irqreturn_t gfar_error(int irq, void *grp_id)
3562{
3563        struct gfar_priv_grp *gfargrp = grp_id;
3564        struct gfar __iomem *regs = gfargrp->regs;
3565        struct gfar_private *priv= gfargrp->priv;
3566        struct net_device *dev = priv->ndev;
3567
3568        /* Save ievent for future reference */
3569        u32 events = gfar_read(&regs->ievent);
3570
3571        /* Clear IEVENT */
3572        gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3573
3574        /* Magic Packet is not an error. */
3575        if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3576            (events & IEVENT_MAG))
3577                events &= ~IEVENT_MAG;
3578
3579        /* Hmm... */
3580        if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3581                netdev_dbg(dev,
3582                           "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3583                           events, gfar_read(&regs->imask));
3584
3585        /* Update the error counters */
3586        if (events & IEVENT_TXE) {
3587                dev->stats.tx_errors++;
3588
3589                if (events & IEVENT_LC)
3590                        dev->stats.tx_window_errors++;
3591                if (events & IEVENT_CRL)
3592                        dev->stats.tx_aborted_errors++;
3593                if (events & IEVENT_XFUN) {
3594                        netif_dbg(priv, tx_err, dev,
3595                                  "TX FIFO underrun, packet dropped\n");
3596                        dev->stats.tx_dropped++;
3597                        atomic64_inc(&priv->extra_stats.tx_underrun);
3598
3599                        schedule_work(&priv->reset_task);
3600                }
3601                netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3602        }
3603        if (events & IEVENT_BSY) {
3604                dev->stats.rx_over_errors++;
3605                atomic64_inc(&priv->extra_stats.rx_bsy);
3606
3607                netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3608                          gfar_read(&regs->rstat));
3609        }
3610        if (events & IEVENT_BABR) {
3611                dev->stats.rx_errors++;
3612                atomic64_inc(&priv->extra_stats.rx_babr);
3613
3614                netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3615        }
3616        if (events & IEVENT_EBERR) {
3617                atomic64_inc(&priv->extra_stats.eberr);
3618                netif_dbg(priv, rx_err, dev, "bus error\n");
3619        }
3620        if (events & IEVENT_RXC)
3621                netif_dbg(priv, rx_status, dev, "control frame\n");
3622
3623        if (events & IEVENT_BABT) {
3624                atomic64_inc(&priv->extra_stats.tx_babt);
3625                netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3626        }
3627        return IRQ_HANDLED;
3628}
3629
3630static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3631{
3632        struct net_device *ndev = priv->ndev;
3633        struct phy_device *phydev = ndev->phydev;
3634        u32 val = 0;
3635
3636        if (!phydev->duplex)
3637                return val;
3638
3639        if (!priv->pause_aneg_en) {
3640                if (priv->tx_pause_en)
3641                        val |= MACCFG1_TX_FLOW;
3642                if (priv->rx_pause_en)
3643                        val |= MACCFG1_RX_FLOW;
3644        } else {
3645                u16 lcl_adv, rmt_adv;
3646                u8 flowctrl;
3647                /* get link partner capabilities */
3648                rmt_adv = 0;
3649                if (phydev->pause)
3650                        rmt_adv = LPA_PAUSE_CAP;
3651                if (phydev->asym_pause)
3652                        rmt_adv |= LPA_PAUSE_ASYM;
3653
3654                lcl_adv = 0;
3655                if (phydev->advertising & ADVERTISED_Pause)
3656                        lcl_adv |= ADVERTISE_PAUSE_CAP;
3657                if (phydev->advertising & ADVERTISED_Asym_Pause)
3658                        lcl_adv |= ADVERTISE_PAUSE_ASYM;
3659
3660                flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3661                if (flowctrl & FLOW_CTRL_TX)
3662                        val |= MACCFG1_TX_FLOW;
3663                if (flowctrl & FLOW_CTRL_RX)
3664                        val |= MACCFG1_RX_FLOW;
3665        }
3666
3667        return val;
3668}
3669
3670static noinline void gfar_update_link_state(struct gfar_private *priv)
3671{
3672        struct gfar __iomem *regs = priv->gfargrp[0].regs;
3673        struct net_device *ndev = priv->ndev;
3674        struct phy_device *phydev = ndev->phydev;
3675        struct gfar_priv_rx_q *rx_queue = NULL;
3676        int i;
3677
3678        if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3679                return;
3680
3681        if (phydev->link) {
3682                u32 tempval1 = gfar_read(&regs->maccfg1);
3683                u32 tempval = gfar_read(&regs->maccfg2);
3684                u32 ecntrl = gfar_read(&regs->ecntrl);
3685                u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3686
3687                if (phydev->duplex != priv->oldduplex) {
3688                        if (!(phydev->duplex))
3689                                tempval &= ~(MACCFG2_FULL_DUPLEX);
3690                        else
3691                                tempval |= MACCFG2_FULL_DUPLEX;
3692
3693                        priv->oldduplex = phydev->duplex;
3694                }
3695
3696                if (phydev->speed != priv->oldspeed) {
3697                        switch (phydev->speed) {
3698                        case 1000:
3699                                tempval =
3700                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3701
3702                                ecntrl &= ~(ECNTRL_R100);
3703                                break;
3704                        case 100:
3705                        case 10:
3706                                tempval =
3707                                    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3708
3709                                /* Reduced mode distinguishes
3710                                 * between 10 and 100
3711                                 */
3712                                if (phydev->speed == SPEED_100)
3713                                        ecntrl |= ECNTRL_R100;
3714                                else
3715                                        ecntrl &= ~(ECNTRL_R100);
3716                                break;
3717                        default:
3718                                netif_warn(priv, link, priv->ndev,
3719                                           "Ack!  Speed (%d) is not 10/100/1000!\n",
3720                                           phydev->speed);
3721                                break;
3722                        }
3723
3724                        priv->oldspeed = phydev->speed;
3725                }
3726
3727                tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3728                tempval1 |= gfar_get_flowctrl_cfg(priv);
3729
3730                /* Turn last free buffer recording on */
3731                if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3732                        for (i = 0; i < priv->num_rx_queues; i++) {
3733                                u32 bdp_dma;
3734
3735                                rx_queue = priv->rx_queue[i];
3736                                bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3737                                gfar_write(rx_queue->rfbptr, bdp_dma);
3738                        }
3739
3740                        priv->tx_actual_en = 1;
3741                }
3742
3743                if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3744                        priv->tx_actual_en = 0;
3745
3746                gfar_write(&regs->maccfg1, tempval1);
3747                gfar_write(&regs->maccfg2, tempval);
3748                gfar_write(&regs->ecntrl, ecntrl);
3749
3750                if (!priv->oldlink)
3751                        priv->oldlink = 1;
3752
3753        } else if (priv->oldlink) {
3754                priv->oldlink = 0;
3755                priv->oldspeed = 0;
3756                priv->oldduplex = -1;
3757        }
3758
3759        if (netif_msg_link(priv))
3760                phy_print_status(phydev);
3761}
3762
3763static const struct of_device_id gfar_match[] =
3764{
3765        {
3766                .type = "network",
3767                .compatible = "gianfar",
3768        },
3769        {
3770                .compatible = "fsl,etsec2",
3771        },
3772        {},
3773};
3774MODULE_DEVICE_TABLE(of, gfar_match);
3775
3776/* Structure for a device driver */
3777static struct platform_driver gfar_driver = {
3778        .driver = {
3779                .name = "fsl-gianfar",
3780                .pm = GFAR_PM_OPS,
3781                .of_match_table = gfar_match,
3782        },
3783        .probe = gfar_probe,
3784        .remove = gfar_remove,
3785};
3786
3787module_platform_driver(gfar_driver);
3788