linux/drivers/net/ethernet/intel/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2016 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
  31#include <linux/sched.h>
  32#include <linux/netdevice.h>
  33
  34#include "ixgbe.h"
  35#include "ixgbe_common.h"
  36#include "ixgbe_phy.h"
  37
  38static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  39static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  40static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  41static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  43static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  44                                        u16 count);
  45static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  46static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  48static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  49
  50static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  51static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  52static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  53                                             u16 words, u16 *data);
  54static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  55                                             u16 words, u16 *data);
  56static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  57                                                 u16 offset);
  58static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw);
  59
  60/* Base table for registers values that change by MAC */
  61const u32 ixgbe_mvals_8259X[IXGBE_MVALS_IDX_LIMIT] = {
  62        IXGBE_MVALS_INIT(8259X)
  63};
  64
  65/**
  66 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
  67 *  control
  68 *  @hw: pointer to hardware structure
  69 *
  70 *  There are several phys that do not support autoneg flow control. This
  71 *  function check the device id to see if the associated phy supports
  72 *  autoneg flow control.
  73 **/
  74bool ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
  75{
  76        bool supported = false;
  77        ixgbe_link_speed speed;
  78        bool link_up;
  79
  80        switch (hw->phy.media_type) {
  81        case ixgbe_media_type_fiber:
  82                hw->mac.ops.check_link(hw, &speed, &link_up, false);
  83                /* if link is down, assume supported */
  84                if (link_up)
  85                        supported = speed == IXGBE_LINK_SPEED_1GB_FULL ?
  86                                true : false;
  87                else
  88                        supported = true;
  89                break;
  90        case ixgbe_media_type_backplane:
  91                supported = true;
  92                break;
  93        case ixgbe_media_type_copper:
  94                /* only some copper devices support flow control autoneg */
  95                switch (hw->device_id) {
  96                case IXGBE_DEV_ID_82599_T3_LOM:
  97                case IXGBE_DEV_ID_X540T:
  98                case IXGBE_DEV_ID_X540T1:
  99                case IXGBE_DEV_ID_X550T:
 100                case IXGBE_DEV_ID_X550T1:
 101                case IXGBE_DEV_ID_X550EM_X_10G_T:
 102                        supported = true;
 103                        break;
 104                default:
 105                        break;
 106                }
 107        default:
 108                break;
 109        }
 110
 111        return supported;
 112}
 113
 114/**
 115 *  ixgbe_setup_fc_generic - Set up flow control
 116 *  @hw: pointer to hardware structure
 117 *
 118 *  Called at init time to set up flow control.
 119 **/
 120s32 ixgbe_setup_fc_generic(struct ixgbe_hw *hw)
 121{
 122        s32 ret_val = 0;
 123        u32 reg = 0, reg_bp = 0;
 124        u16 reg_cu = 0;
 125        bool locked = false;
 126
 127        /*
 128         * Validate the requested mode.  Strict IEEE mode does not allow
 129         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 130         */
 131        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 132                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict IEEE mode\n");
 133                return IXGBE_ERR_INVALID_LINK_SETTINGS;
 134        }
 135
 136        /*
 137         * 10gig parts do not have a word in the EEPROM to determine the
 138         * default flow control setting, so we explicitly set it to full.
 139         */
 140        if (hw->fc.requested_mode == ixgbe_fc_default)
 141                hw->fc.requested_mode = ixgbe_fc_full;
 142
 143        /*
 144         * Set up the 1G and 10G flow control advertisement registers so the
 145         * HW will be able to do fc autoneg once the cable is plugged in.  If
 146         * we link at 10G, the 1G advertisement is harmless and vice versa.
 147         */
 148        switch (hw->phy.media_type) {
 149        case ixgbe_media_type_backplane:
 150                /* some MAC's need RMW protection on AUTOC */
 151                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &reg_bp);
 152                if (ret_val)
 153                        return ret_val;
 154
 155                /* only backplane uses autoc so fall though */
 156        case ixgbe_media_type_fiber:
 157                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 158
 159                break;
 160        case ixgbe_media_type_copper:
 161                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 162                                        MDIO_MMD_AN, &reg_cu);
 163                break;
 164        default:
 165                break;
 166        }
 167
 168        /*
 169         * The possible values of fc.requested_mode are:
 170         * 0: Flow control is completely disabled
 171         * 1: Rx flow control is enabled (we can receive pause frames,
 172         *    but not send pause frames).
 173         * 2: Tx flow control is enabled (we can send pause frames but
 174         *    we do not support receiving pause frames).
 175         * 3: Both Rx and Tx flow control (symmetric) are enabled.
 176         * other: Invalid.
 177         */
 178        switch (hw->fc.requested_mode) {
 179        case ixgbe_fc_none:
 180                /* Flow control completely disabled by software override. */
 181                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 182                if (hw->phy.media_type == ixgbe_media_type_backplane)
 183                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
 184                                    IXGBE_AUTOC_ASM_PAUSE);
 185                else if (hw->phy.media_type == ixgbe_media_type_copper)
 186                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
 187                break;
 188        case ixgbe_fc_tx_pause:
 189                /*
 190                 * Tx Flow control is enabled, and Rx Flow control is
 191                 * disabled by software override.
 192                 */
 193                reg |= IXGBE_PCS1GANA_ASM_PAUSE;
 194                reg &= ~IXGBE_PCS1GANA_SYM_PAUSE;
 195                if (hw->phy.media_type == ixgbe_media_type_backplane) {
 196                        reg_bp |= IXGBE_AUTOC_ASM_PAUSE;
 197                        reg_bp &= ~IXGBE_AUTOC_SYM_PAUSE;
 198                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
 199                        reg_cu |= IXGBE_TAF_ASM_PAUSE;
 200                        reg_cu &= ~IXGBE_TAF_SYM_PAUSE;
 201                }
 202                break;
 203        case ixgbe_fc_rx_pause:
 204                /*
 205                 * Rx Flow control is enabled and Tx Flow control is
 206                 * disabled by software override. Since there really
 207                 * isn't a way to advertise that we are capable of RX
 208                 * Pause ONLY, we will advertise that we support both
 209                 * symmetric and asymmetric Rx PAUSE, as such we fall
 210                 * through to the fc_full statement.  Later, we will
 211                 * disable the adapter's ability to send PAUSE frames.
 212                 */
 213        case ixgbe_fc_full:
 214                /* Flow control (both Rx and Tx) is enabled by SW override. */
 215                reg |= IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE;
 216                if (hw->phy.media_type == ixgbe_media_type_backplane)
 217                        reg_bp |= IXGBE_AUTOC_SYM_PAUSE |
 218                                  IXGBE_AUTOC_ASM_PAUSE;
 219                else if (hw->phy.media_type == ixgbe_media_type_copper)
 220                        reg_cu |= IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE;
 221                break;
 222        default:
 223                hw_dbg(hw, "Flow control param set incorrectly\n");
 224                return IXGBE_ERR_CONFIG;
 225        }
 226
 227        if (hw->mac.type != ixgbe_mac_X540) {
 228                /*
 229                 * Enable auto-negotiation between the MAC & PHY;
 230                 * the MAC will advertise clause 37 flow control.
 231                 */
 232                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 233                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 234
 235                /* Disable AN timeout */
 236                if (hw->fc.strict_ieee)
 237                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 238
 239                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 240                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 241        }
 242
 243        /*
 244         * AUTOC restart handles negotiation of 1G and 10G on backplane
 245         * and copper. There is no need to set the PCS1GCTL register.
 246         *
 247         */
 248        if (hw->phy.media_type == ixgbe_media_type_backplane) {
 249                /* Need the SW/FW semaphore around AUTOC writes if 82599 and
 250                 * LESM is on, likewise reset_pipeline requries the lock as
 251                 * it also writes AUTOC.
 252                 */
 253                ret_val = hw->mac.ops.prot_autoc_write(hw, reg_bp, locked);
 254                if (ret_val)
 255                        return ret_val;
 256
 257        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
 258                   ixgbe_device_supports_autoneg_fc(hw)) {
 259                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 260                                      MDIO_MMD_AN, reg_cu);
 261        }
 262
 263        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 264        return ret_val;
 265}
 266
 267/**
 268 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 269 *  @hw: pointer to hardware structure
 270 *
 271 *  Starts the hardware by filling the bus info structure and media type, clears
 272 *  all on chip counters, initializes receive address registers, multicast
 273 *  table, VLAN filter table, calls routine to set up link and flow control
 274 *  settings, and leaves transmit and receive units disabled and uninitialized
 275 **/
 276s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 277{
 278        s32 ret_val;
 279        u32 ctrl_ext;
 280        u16 device_caps;
 281
 282        /* Set the media type */
 283        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 284
 285        /* Identify the PHY */
 286        hw->phy.ops.identify(hw);
 287
 288        /* Clear the VLAN filter table */
 289        hw->mac.ops.clear_vfta(hw);
 290
 291        /* Clear statistics registers */
 292        hw->mac.ops.clear_hw_cntrs(hw);
 293
 294        /* Set No Snoop Disable */
 295        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 296        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 297        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 298        IXGBE_WRITE_FLUSH(hw);
 299
 300        /* Setup flow control */
 301        ret_val = hw->mac.ops.setup_fc(hw);
 302        if (ret_val)
 303                return ret_val;
 304
 305        /* Cashe bit indicating need for crosstalk fix */
 306        switch (hw->mac.type) {
 307        case ixgbe_mac_82599EB:
 308        case ixgbe_mac_X550EM_x:
 309        case ixgbe_mac_x550em_a:
 310                hw->mac.ops.get_device_caps(hw, &device_caps);
 311                if (device_caps & IXGBE_DEVICE_CAPS_NO_CROSSTALK_WR)
 312                        hw->need_crosstalk_fix = false;
 313                else
 314                        hw->need_crosstalk_fix = true;
 315                break;
 316        default:
 317                hw->need_crosstalk_fix = false;
 318                break;
 319        }
 320
 321        /* Clear adapter stopped flag */
 322        hw->adapter_stopped = false;
 323
 324        return 0;
 325}
 326
 327/**
 328 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 329 *  @hw: pointer to hw structure
 330 *
 331 * Performs the init sequence common to the second generation
 332 * of 10 GbE devices.
 333 * Devices in the second generation:
 334 *     82599
 335 *     X540
 336 **/
 337s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 338{
 339        u32 i;
 340
 341        /* Clear the rate limiters */
 342        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 343                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 344                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 345        }
 346        IXGBE_WRITE_FLUSH(hw);
 347
 348#ifndef CONFIG_SPARC
 349        /* Disable relaxed ordering */
 350        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 351                u32 regval;
 352
 353                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 354                regval &= ~IXGBE_DCA_TXCTRL_DESC_WRO_EN;
 355                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 356        }
 357
 358        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 359                u32 regval;
 360
 361                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 362                regval &= ~(IXGBE_DCA_RXCTRL_DATA_WRO_EN |
 363                            IXGBE_DCA_RXCTRL_HEAD_WRO_EN);
 364                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 365        }
 366#endif
 367        return 0;
 368}
 369
 370/**
 371 *  ixgbe_init_hw_generic - Generic hardware initialization
 372 *  @hw: pointer to hardware structure
 373 *
 374 *  Initialize the hardware by resetting the hardware, filling the bus info
 375 *  structure and media type, clears all on chip counters, initializes receive
 376 *  address registers, multicast table, VLAN filter table, calls routine to set
 377 *  up link and flow control settings, and leaves transmit and receive units
 378 *  disabled and uninitialized
 379 **/
 380s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 381{
 382        s32 status;
 383
 384        /* Reset the hardware */
 385        status = hw->mac.ops.reset_hw(hw);
 386
 387        if (status == 0) {
 388                /* Start the HW */
 389                status = hw->mac.ops.start_hw(hw);
 390        }
 391
 392        return status;
 393}
 394
 395/**
 396 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 397 *  @hw: pointer to hardware structure
 398 *
 399 *  Clears all hardware statistics counters by reading them from the hardware
 400 *  Statistics counters are clear on read.
 401 **/
 402s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 403{
 404        u16 i = 0;
 405
 406        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 407        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 408        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 409        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 410        for (i = 0; i < 8; i++)
 411                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 412
 413        IXGBE_READ_REG(hw, IXGBE_MLFC);
 414        IXGBE_READ_REG(hw, IXGBE_MRFC);
 415        IXGBE_READ_REG(hw, IXGBE_RLEC);
 416        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 417        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 418        if (hw->mac.type >= ixgbe_mac_82599EB) {
 419                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 420                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 421        } else {
 422                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 423                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 424        }
 425
 426        for (i = 0; i < 8; i++) {
 427                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 428                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 429                if (hw->mac.type >= ixgbe_mac_82599EB) {
 430                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 431                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 432                } else {
 433                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 434                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 435                }
 436        }
 437        if (hw->mac.type >= ixgbe_mac_82599EB)
 438                for (i = 0; i < 8; i++)
 439                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 440        IXGBE_READ_REG(hw, IXGBE_PRC64);
 441        IXGBE_READ_REG(hw, IXGBE_PRC127);
 442        IXGBE_READ_REG(hw, IXGBE_PRC255);
 443        IXGBE_READ_REG(hw, IXGBE_PRC511);
 444        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 445        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 446        IXGBE_READ_REG(hw, IXGBE_GPRC);
 447        IXGBE_READ_REG(hw, IXGBE_BPRC);
 448        IXGBE_READ_REG(hw, IXGBE_MPRC);
 449        IXGBE_READ_REG(hw, IXGBE_GPTC);
 450        IXGBE_READ_REG(hw, IXGBE_GORCL);
 451        IXGBE_READ_REG(hw, IXGBE_GORCH);
 452        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 453        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 454        if (hw->mac.type == ixgbe_mac_82598EB)
 455                for (i = 0; i < 8; i++)
 456                        IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 457        IXGBE_READ_REG(hw, IXGBE_RUC);
 458        IXGBE_READ_REG(hw, IXGBE_RFC);
 459        IXGBE_READ_REG(hw, IXGBE_ROC);
 460        IXGBE_READ_REG(hw, IXGBE_RJC);
 461        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 462        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 463        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 464        IXGBE_READ_REG(hw, IXGBE_TORL);
 465        IXGBE_READ_REG(hw, IXGBE_TORH);
 466        IXGBE_READ_REG(hw, IXGBE_TPR);
 467        IXGBE_READ_REG(hw, IXGBE_TPT);
 468        IXGBE_READ_REG(hw, IXGBE_PTC64);
 469        IXGBE_READ_REG(hw, IXGBE_PTC127);
 470        IXGBE_READ_REG(hw, IXGBE_PTC255);
 471        IXGBE_READ_REG(hw, IXGBE_PTC511);
 472        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 473        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 474        IXGBE_READ_REG(hw, IXGBE_MPTC);
 475        IXGBE_READ_REG(hw, IXGBE_BPTC);
 476        for (i = 0; i < 16; i++) {
 477                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 478                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 479                if (hw->mac.type >= ixgbe_mac_82599EB) {
 480                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 481                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 482                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 483                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 484                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 485                } else {
 486                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 487                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 488                }
 489        }
 490
 491        if (hw->mac.type == ixgbe_mac_X550 || hw->mac.type == ixgbe_mac_X540) {
 492                if (hw->phy.id == 0)
 493                        hw->phy.ops.identify(hw);
 494                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECL, MDIO_MMD_PCS, &i);
 495                hw->phy.ops.read_reg(hw, IXGBE_PCRC8ECH, MDIO_MMD_PCS, &i);
 496                hw->phy.ops.read_reg(hw, IXGBE_LDPCECL, MDIO_MMD_PCS, &i);
 497                hw->phy.ops.read_reg(hw, IXGBE_LDPCECH, MDIO_MMD_PCS, &i);
 498        }
 499
 500        return 0;
 501}
 502
 503/**
 504 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 505 *  @hw: pointer to hardware structure
 506 *  @pba_num: stores the part number string from the EEPROM
 507 *  @pba_num_size: part number string buffer length
 508 *
 509 *  Reads the part number string from the EEPROM.
 510 **/
 511s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 512                                  u32 pba_num_size)
 513{
 514        s32 ret_val;
 515        u16 data;
 516        u16 pba_ptr;
 517        u16 offset;
 518        u16 length;
 519
 520        if (pba_num == NULL) {
 521                hw_dbg(hw, "PBA string buffer was null\n");
 522                return IXGBE_ERR_INVALID_ARGUMENT;
 523        }
 524
 525        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 526        if (ret_val) {
 527                hw_dbg(hw, "NVM Read Error\n");
 528                return ret_val;
 529        }
 530
 531        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 532        if (ret_val) {
 533                hw_dbg(hw, "NVM Read Error\n");
 534                return ret_val;
 535        }
 536
 537        /*
 538         * if data is not ptr guard the PBA must be in legacy format which
 539         * means pba_ptr is actually our second data word for the PBA number
 540         * and we can decode it into an ascii string
 541         */
 542        if (data != IXGBE_PBANUM_PTR_GUARD) {
 543                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 544
 545                /* we will need 11 characters to store the PBA */
 546                if (pba_num_size < 11) {
 547                        hw_dbg(hw, "PBA string buffer too small\n");
 548                        return IXGBE_ERR_NO_SPACE;
 549                }
 550
 551                /* extract hex string from data and pba_ptr */
 552                pba_num[0] = (data >> 12) & 0xF;
 553                pba_num[1] = (data >> 8) & 0xF;
 554                pba_num[2] = (data >> 4) & 0xF;
 555                pba_num[3] = data & 0xF;
 556                pba_num[4] = (pba_ptr >> 12) & 0xF;
 557                pba_num[5] = (pba_ptr >> 8) & 0xF;
 558                pba_num[6] = '-';
 559                pba_num[7] = 0;
 560                pba_num[8] = (pba_ptr >> 4) & 0xF;
 561                pba_num[9] = pba_ptr & 0xF;
 562
 563                /* put a null character on the end of our string */
 564                pba_num[10] = '\0';
 565
 566                /* switch all the data but the '-' to hex char */
 567                for (offset = 0; offset < 10; offset++) {
 568                        if (pba_num[offset] < 0xA)
 569                                pba_num[offset] += '0';
 570                        else if (pba_num[offset] < 0x10)
 571                                pba_num[offset] += 'A' - 0xA;
 572                }
 573
 574                return 0;
 575        }
 576
 577        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 578        if (ret_val) {
 579                hw_dbg(hw, "NVM Read Error\n");
 580                return ret_val;
 581        }
 582
 583        if (length == 0xFFFF || length == 0) {
 584                hw_dbg(hw, "NVM PBA number section invalid length\n");
 585                return IXGBE_ERR_PBA_SECTION;
 586        }
 587
 588        /* check if pba_num buffer is big enough */
 589        if (pba_num_size  < (((u32)length * 2) - 1)) {
 590                hw_dbg(hw, "PBA string buffer too small\n");
 591                return IXGBE_ERR_NO_SPACE;
 592        }
 593
 594        /* trim pba length from start of string */
 595        pba_ptr++;
 596        length--;
 597
 598        for (offset = 0; offset < length; offset++) {
 599                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 600                if (ret_val) {
 601                        hw_dbg(hw, "NVM Read Error\n");
 602                        return ret_val;
 603                }
 604                pba_num[offset * 2] = (u8)(data >> 8);
 605                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 606        }
 607        pba_num[offset * 2] = '\0';
 608
 609        return 0;
 610}
 611
 612/**
 613 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 614 *  @hw: pointer to hardware structure
 615 *  @mac_addr: Adapter MAC address
 616 *
 617 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 618 *  A reset of the adapter must be performed prior to calling this function
 619 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 620 **/
 621s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 622{
 623        u32 rar_high;
 624        u32 rar_low;
 625        u16 i;
 626
 627        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 628        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 629
 630        for (i = 0; i < 4; i++)
 631                mac_addr[i] = (u8)(rar_low >> (i*8));
 632
 633        for (i = 0; i < 2; i++)
 634                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 635
 636        return 0;
 637}
 638
 639enum ixgbe_bus_width ixgbe_convert_bus_width(u16 link_status)
 640{
 641        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 642        case IXGBE_PCI_LINK_WIDTH_1:
 643                return ixgbe_bus_width_pcie_x1;
 644        case IXGBE_PCI_LINK_WIDTH_2:
 645                return ixgbe_bus_width_pcie_x2;
 646        case IXGBE_PCI_LINK_WIDTH_4:
 647                return ixgbe_bus_width_pcie_x4;
 648        case IXGBE_PCI_LINK_WIDTH_8:
 649                return ixgbe_bus_width_pcie_x8;
 650        default:
 651                return ixgbe_bus_width_unknown;
 652        }
 653}
 654
 655enum ixgbe_bus_speed ixgbe_convert_bus_speed(u16 link_status)
 656{
 657        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 658        case IXGBE_PCI_LINK_SPEED_2500:
 659                return ixgbe_bus_speed_2500;
 660        case IXGBE_PCI_LINK_SPEED_5000:
 661                return ixgbe_bus_speed_5000;
 662        case IXGBE_PCI_LINK_SPEED_8000:
 663                return ixgbe_bus_speed_8000;
 664        default:
 665                return ixgbe_bus_speed_unknown;
 666        }
 667}
 668
 669/**
 670 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 671 *  @hw: pointer to hardware structure
 672 *
 673 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 674 **/
 675s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 676{
 677        u16 link_status;
 678
 679        hw->bus.type = ixgbe_bus_type_pci_express;
 680
 681        /* Get the negotiated link width and speed from PCI config space */
 682        link_status = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_LINK_STATUS);
 683
 684        hw->bus.width = ixgbe_convert_bus_width(link_status);
 685        hw->bus.speed = ixgbe_convert_bus_speed(link_status);
 686
 687        hw->mac.ops.set_lan_id(hw);
 688
 689        return 0;
 690}
 691
 692/**
 693 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 694 *  @hw: pointer to the HW structure
 695 *
 696 *  Determines the LAN function id by reading memory-mapped registers
 697 *  and swaps the port value if requested.
 698 **/
 699void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 700{
 701        struct ixgbe_bus_info *bus = &hw->bus;
 702        u16 ee_ctrl_4;
 703        u32 reg;
 704
 705        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 706        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 707        bus->lan_id = bus->func;
 708
 709        /* check for a port swap */
 710        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS(hw));
 711        if (reg & IXGBE_FACTPS_LFS)
 712                bus->func ^= 0x1;
 713
 714        /* Get MAC instance from EEPROM for configuring CS4227 */
 715        if (hw->device_id == IXGBE_DEV_ID_X550EM_A_SFP) {
 716                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CTRL_4, &ee_ctrl_4);
 717                bus->instance_id = (ee_ctrl_4 & IXGBE_EE_CTRL_4_INST_ID) >>
 718                                   IXGBE_EE_CTRL_4_INST_ID_SHIFT;
 719        }
 720}
 721
 722/**
 723 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 724 *  @hw: pointer to hardware structure
 725 *
 726 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 727 *  disables transmit and receive units. The adapter_stopped flag is used by
 728 *  the shared code and drivers to determine if the adapter is in a stopped
 729 *  state and should not touch the hardware.
 730 **/
 731s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 732{
 733        u32 reg_val;
 734        u16 i;
 735
 736        /*
 737         * Set the adapter_stopped flag so other driver functions stop touching
 738         * the hardware
 739         */
 740        hw->adapter_stopped = true;
 741
 742        /* Disable the receive unit */
 743        hw->mac.ops.disable_rx(hw);
 744
 745        /* Clear interrupt mask to stop interrupts from being generated */
 746        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 747
 748        /* Clear any pending interrupts, flush previous writes */
 749        IXGBE_READ_REG(hw, IXGBE_EICR);
 750
 751        /* Disable the transmit unit.  Each queue must be disabled. */
 752        for (i = 0; i < hw->mac.max_tx_queues; i++)
 753                IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), IXGBE_TXDCTL_SWFLSH);
 754
 755        /* Disable the receive unit by stopping each queue */
 756        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 757                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 758                reg_val &= ~IXGBE_RXDCTL_ENABLE;
 759                reg_val |= IXGBE_RXDCTL_SWFLSH;
 760                IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 761        }
 762
 763        /* flush all queues disables */
 764        IXGBE_WRITE_FLUSH(hw);
 765        usleep_range(1000, 2000);
 766
 767        /*
 768         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 769         * access and verify no pending requests
 770         */
 771        return ixgbe_disable_pcie_master(hw);
 772}
 773
 774/**
 775 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 776 *  @hw: pointer to hardware structure
 777 *  @index: led number to turn on
 778 **/
 779s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 780{
 781        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 782
 783        if (index > 3)
 784                return IXGBE_ERR_PARAM;
 785
 786        /* To turn on the LED, set mode to ON. */
 787        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 788        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 789        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 790        IXGBE_WRITE_FLUSH(hw);
 791
 792        return 0;
 793}
 794
 795/**
 796 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 797 *  @hw: pointer to hardware structure
 798 *  @index: led number to turn off
 799 **/
 800s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 801{
 802        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 803
 804        if (index > 3)
 805                return IXGBE_ERR_PARAM;
 806
 807        /* To turn off the LED, set mode to OFF. */
 808        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 809        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 810        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 811        IXGBE_WRITE_FLUSH(hw);
 812
 813        return 0;
 814}
 815
 816/**
 817 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 818 *  @hw: pointer to hardware structure
 819 *
 820 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 821 *  ixgbe_hw struct in order to set up EEPROM access.
 822 **/
 823s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 824{
 825        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 826        u32 eec;
 827        u16 eeprom_size;
 828
 829        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 830                eeprom->type = ixgbe_eeprom_none;
 831                /* Set default semaphore delay to 10ms which is a well
 832                 * tested value */
 833                eeprom->semaphore_delay = 10;
 834                /* Clear EEPROM page size, it will be initialized as needed */
 835                eeprom->word_page_size = 0;
 836
 837                /*
 838                 * Check for EEPROM present first.
 839                 * If not present leave as none
 840                 */
 841                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
 842                if (eec & IXGBE_EEC_PRES) {
 843                        eeprom->type = ixgbe_eeprom_spi;
 844
 845                        /*
 846                         * SPI EEPROM is assumed here.  This code would need to
 847                         * change if a future EEPROM is not SPI.
 848                         */
 849                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 850                                            IXGBE_EEC_SIZE_SHIFT);
 851                        eeprom->word_size = BIT(eeprom_size +
 852                                                 IXGBE_EEPROM_WORD_SIZE_SHIFT);
 853                }
 854
 855                if (eec & IXGBE_EEC_ADDR_SIZE)
 856                        eeprom->address_bits = 16;
 857                else
 858                        eeprom->address_bits = 8;
 859                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: %d\n",
 860                       eeprom->type, eeprom->word_size, eeprom->address_bits);
 861        }
 862
 863        return 0;
 864}
 865
 866/**
 867 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 868 *  @hw: pointer to hardware structure
 869 *  @offset: offset within the EEPROM to write
 870 *  @words: number of words
 871 *  @data: 16 bit word(s) to write to EEPROM
 872 *
 873 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 874 **/
 875s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 876                                               u16 words, u16 *data)
 877{
 878        s32 status;
 879        u16 i, count;
 880
 881        hw->eeprom.ops.init_params(hw);
 882
 883        if (words == 0)
 884                return IXGBE_ERR_INVALID_ARGUMENT;
 885
 886        if (offset + words > hw->eeprom.word_size)
 887                return IXGBE_ERR_EEPROM;
 888
 889        /*
 890         * The EEPROM page size cannot be queried from the chip. We do lazy
 891         * initialization. It is worth to do that when we write large buffer.
 892         */
 893        if ((hw->eeprom.word_page_size == 0) &&
 894            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 895                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 896
 897        /*
 898         * We cannot hold synchronization semaphores for too long
 899         * to avoid other entity starvation. However it is more efficient
 900         * to read in bursts than synchronizing access for each word.
 901         */
 902        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 903                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 904                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 905                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 906                                                            count, &data[i]);
 907
 908                if (status != 0)
 909                        break;
 910        }
 911
 912        return status;
 913}
 914
 915/**
 916 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 917 *  @hw: pointer to hardware structure
 918 *  @offset: offset within the EEPROM to be written to
 919 *  @words: number of word(s)
 920 *  @data: 16 bit word(s) to be written to the EEPROM
 921 *
 922 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 923 *  EEPROM will most likely contain an invalid checksum.
 924 **/
 925static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 926                                              u16 words, u16 *data)
 927{
 928        s32 status;
 929        u16 word;
 930        u16 page_size;
 931        u16 i;
 932        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 933
 934        /* Prepare the EEPROM for writing  */
 935        status = ixgbe_acquire_eeprom(hw);
 936        if (status)
 937                return status;
 938
 939        if (ixgbe_ready_eeprom(hw) != 0) {
 940                ixgbe_release_eeprom(hw);
 941                return IXGBE_ERR_EEPROM;
 942        }
 943
 944        for (i = 0; i < words; i++) {
 945                ixgbe_standby_eeprom(hw);
 946
 947                /* Send the WRITE ENABLE command (8 bit opcode) */
 948                ixgbe_shift_out_eeprom_bits(hw,
 949                                            IXGBE_EEPROM_WREN_OPCODE_SPI,
 950                                            IXGBE_EEPROM_OPCODE_BITS);
 951
 952                ixgbe_standby_eeprom(hw);
 953
 954                /* Some SPI eeproms use the 8th address bit embedded
 955                 * in the opcode
 956                 */
 957                if ((hw->eeprom.address_bits == 8) &&
 958                    ((offset + i) >= 128))
 959                        write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 960
 961                /* Send the Write command (8-bit opcode + addr) */
 962                ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 963                                            IXGBE_EEPROM_OPCODE_BITS);
 964                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 965                                            hw->eeprom.address_bits);
 966
 967                page_size = hw->eeprom.word_page_size;
 968
 969                /* Send the data in burst via SPI */
 970                do {
 971                        word = data[i];
 972                        word = (word >> 8) | (word << 8);
 973                        ixgbe_shift_out_eeprom_bits(hw, word, 16);
 974
 975                        if (page_size == 0)
 976                                break;
 977
 978                        /* do not wrap around page */
 979                        if (((offset + i) & (page_size - 1)) ==
 980                            (page_size - 1))
 981                                break;
 982                } while (++i < words);
 983
 984                ixgbe_standby_eeprom(hw);
 985                usleep_range(10000, 20000);
 986        }
 987        /* Done with writing - release the EEPROM */
 988        ixgbe_release_eeprom(hw);
 989
 990        return 0;
 991}
 992
 993/**
 994 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 995 *  @hw: pointer to hardware structure
 996 *  @offset: offset within the EEPROM to be written to
 997 *  @data: 16 bit word to be written to the EEPROM
 998 *
 999 *  If ixgbe_eeprom_update_checksum is not called after this function, the
1000 *  EEPROM will most likely contain an invalid checksum.
1001 **/
1002s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1003{
1004        hw->eeprom.ops.init_params(hw);
1005
1006        if (offset >= hw->eeprom.word_size)
1007                return IXGBE_ERR_EEPROM;
1008
1009        return ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
1010}
1011
1012/**
1013 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
1014 *  @hw: pointer to hardware structure
1015 *  @offset: offset within the EEPROM to be read
1016 *  @words: number of word(s)
1017 *  @data: read 16 bit words(s) from EEPROM
1018 *
1019 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1020 **/
1021s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1022                                              u16 words, u16 *data)
1023{
1024        s32 status;
1025        u16 i, count;
1026
1027        hw->eeprom.ops.init_params(hw);
1028
1029        if (words == 0)
1030                return IXGBE_ERR_INVALID_ARGUMENT;
1031
1032        if (offset + words > hw->eeprom.word_size)
1033                return IXGBE_ERR_EEPROM;
1034
1035        /*
1036         * We cannot hold synchronization semaphores for too long
1037         * to avoid other entity starvation. However it is more efficient
1038         * to read in bursts than synchronizing access for each word.
1039         */
1040        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
1041                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
1042                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
1043
1044                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
1045                                                           count, &data[i]);
1046
1047                if (status)
1048                        return status;
1049        }
1050
1051        return 0;
1052}
1053
1054/**
1055 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
1056 *  @hw: pointer to hardware structure
1057 *  @offset: offset within the EEPROM to be read
1058 *  @words: number of word(s)
1059 *  @data: read 16 bit word(s) from EEPROM
1060 *
1061 *  Reads 16 bit word(s) from EEPROM through bit-bang method
1062 **/
1063static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
1064                                             u16 words, u16 *data)
1065{
1066        s32 status;
1067        u16 word_in;
1068        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
1069        u16 i;
1070
1071        /* Prepare the EEPROM for reading  */
1072        status = ixgbe_acquire_eeprom(hw);
1073        if (status)
1074                return status;
1075
1076        if (ixgbe_ready_eeprom(hw) != 0) {
1077                ixgbe_release_eeprom(hw);
1078                return IXGBE_ERR_EEPROM;
1079        }
1080
1081        for (i = 0; i < words; i++) {
1082                ixgbe_standby_eeprom(hw);
1083                /* Some SPI eeproms use the 8th address bit embedded
1084                 * in the opcode
1085                 */
1086                if ((hw->eeprom.address_bits == 8) &&
1087                    ((offset + i) >= 128))
1088                        read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
1089
1090                /* Send the READ command (opcode + addr) */
1091                ixgbe_shift_out_eeprom_bits(hw, read_opcode,
1092                                            IXGBE_EEPROM_OPCODE_BITS);
1093                ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
1094                                            hw->eeprom.address_bits);
1095
1096                /* Read the data. */
1097                word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
1098                data[i] = (word_in >> 8) | (word_in << 8);
1099        }
1100
1101        /* End this read operation */
1102        ixgbe_release_eeprom(hw);
1103
1104        return 0;
1105}
1106
1107/**
1108 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
1109 *  @hw: pointer to hardware structure
1110 *  @offset: offset within the EEPROM to be read
1111 *  @data: read 16 bit value from EEPROM
1112 *
1113 *  Reads 16 bit value from EEPROM through bit-bang method
1114 **/
1115s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
1116                                       u16 *data)
1117{
1118        hw->eeprom.ops.init_params(hw);
1119
1120        if (offset >= hw->eeprom.word_size)
1121                return IXGBE_ERR_EEPROM;
1122
1123        return ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1124}
1125
1126/**
1127 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
1128 *  @hw: pointer to hardware structure
1129 *  @offset: offset of word in the EEPROM to read
1130 *  @words: number of word(s)
1131 *  @data: 16 bit word(s) from the EEPROM
1132 *
1133 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
1134 **/
1135s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1136                                   u16 words, u16 *data)
1137{
1138        u32 eerd;
1139        s32 status;
1140        u32 i;
1141
1142        hw->eeprom.ops.init_params(hw);
1143
1144        if (words == 0)
1145                return IXGBE_ERR_INVALID_ARGUMENT;
1146
1147        if (offset >= hw->eeprom.word_size)
1148                return IXGBE_ERR_EEPROM;
1149
1150        for (i = 0; i < words; i++) {
1151                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1152                       IXGBE_EEPROM_RW_REG_START;
1153
1154                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
1155                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
1156
1157                if (status == 0) {
1158                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
1159                                   IXGBE_EEPROM_RW_REG_DATA);
1160                } else {
1161                        hw_dbg(hw, "Eeprom read timed out\n");
1162                        return status;
1163                }
1164        }
1165
1166        return 0;
1167}
1168
1169/**
1170 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
1171 *  @hw: pointer to hardware structure
1172 *  @offset: offset within the EEPROM to be used as a scratch pad
1173 *
1174 *  Discover EEPROM page size by writing marching data at given offset.
1175 *  This function is called only when we are writing a new large buffer
1176 *  at given offset so the data would be overwritten anyway.
1177 **/
1178static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
1179                                                 u16 offset)
1180{
1181        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
1182        s32 status;
1183        u16 i;
1184
1185        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
1186                data[i] = i;
1187
1188        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
1189        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
1190                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
1191        hw->eeprom.word_page_size = 0;
1192        if (status)
1193                return status;
1194
1195        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
1196        if (status)
1197                return status;
1198
1199        /*
1200         * When writing in burst more than the actual page size
1201         * EEPROM address wraps around current page.
1202         */
1203        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
1204
1205        hw_dbg(hw, "Detected EEPROM page size = %d words.\n",
1206               hw->eeprom.word_page_size);
1207        return 0;
1208}
1209
1210/**
1211 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1212 *  @hw: pointer to hardware structure
1213 *  @offset: offset of  word in the EEPROM to read
1214 *  @data: word read from the EEPROM
1215 *
1216 *  Reads a 16 bit word from the EEPROM using the EERD register.
1217 **/
1218s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1219{
1220        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1221}
1222
1223/**
1224 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1225 *  @hw: pointer to hardware structure
1226 *  @offset: offset of  word in the EEPROM to write
1227 *  @words: number of words
1228 *  @data: word(s) write to the EEPROM
1229 *
1230 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1231 **/
1232s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1233                                    u16 words, u16 *data)
1234{
1235        u32 eewr;
1236        s32 status;
1237        u16 i;
1238
1239        hw->eeprom.ops.init_params(hw);
1240
1241        if (words == 0)
1242                return IXGBE_ERR_INVALID_ARGUMENT;
1243
1244        if (offset >= hw->eeprom.word_size)
1245                return IXGBE_ERR_EEPROM;
1246
1247        for (i = 0; i < words; i++) {
1248                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1249                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1250                       IXGBE_EEPROM_RW_REG_START;
1251
1252                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1253                if (status) {
1254                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1255                        return status;
1256                }
1257
1258                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1259
1260                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1261                if (status) {
1262                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1263                        return status;
1264                }
1265        }
1266
1267        return 0;
1268}
1269
1270/**
1271 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1272 *  @hw: pointer to hardware structure
1273 *  @offset: offset of  word in the EEPROM to write
1274 *  @data: word write to the EEPROM
1275 *
1276 *  Write a 16 bit word to the EEPROM using the EEWR register.
1277 **/
1278s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1279{
1280        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1281}
1282
1283/**
1284 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1285 *  @hw: pointer to hardware structure
1286 *  @ee_reg: EEPROM flag for polling
1287 *
1288 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1289 *  read or write is done respectively.
1290 **/
1291static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1292{
1293        u32 i;
1294        u32 reg;
1295
1296        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1297                if (ee_reg == IXGBE_NVM_POLL_READ)
1298                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1299                else
1300                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1301
1302                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1303                        return 0;
1304                }
1305                udelay(5);
1306        }
1307        return IXGBE_ERR_EEPROM;
1308}
1309
1310/**
1311 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1312 *  @hw: pointer to hardware structure
1313 *
1314 *  Prepares EEPROM for access using bit-bang method. This function should
1315 *  be called before issuing a command to the EEPROM.
1316 **/
1317static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1318{
1319        u32 eec;
1320        u32 i;
1321
1322        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1323                return IXGBE_ERR_SWFW_SYNC;
1324
1325        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1326
1327        /* Request EEPROM Access */
1328        eec |= IXGBE_EEC_REQ;
1329        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1330
1331        for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1332                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1333                if (eec & IXGBE_EEC_GNT)
1334                        break;
1335                udelay(5);
1336        }
1337
1338        /* Release if grant not acquired */
1339        if (!(eec & IXGBE_EEC_GNT)) {
1340                eec &= ~IXGBE_EEC_REQ;
1341                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1342                hw_dbg(hw, "Could not acquire EEPROM grant\n");
1343
1344                hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1345                return IXGBE_ERR_EEPROM;
1346        }
1347
1348        /* Setup EEPROM for Read/Write */
1349        /* Clear CS and SK */
1350        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1351        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1352        IXGBE_WRITE_FLUSH(hw);
1353        udelay(1);
1354        return 0;
1355}
1356
1357/**
1358 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1359 *  @hw: pointer to hardware structure
1360 *
1361 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1362 **/
1363static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1364{
1365        u32 timeout = 2000;
1366        u32 i;
1367        u32 swsm;
1368
1369        /* Get SMBI software semaphore between device drivers first */
1370        for (i = 0; i < timeout; i++) {
1371                /*
1372                 * If the SMBI bit is 0 when we read it, then the bit will be
1373                 * set and we have the semaphore
1374                 */
1375                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1376                if (!(swsm & IXGBE_SWSM_SMBI))
1377                        break;
1378                usleep_range(50, 100);
1379        }
1380
1381        if (i == timeout) {
1382                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore not granted.\n");
1383                /* this release is particularly important because our attempts
1384                 * above to get the semaphore may have succeeded, and if there
1385                 * was a timeout, we should unconditionally clear the semaphore
1386                 * bits to free the driver to make progress
1387                 */
1388                ixgbe_release_eeprom_semaphore(hw);
1389
1390                usleep_range(50, 100);
1391                /* one last try
1392                 * If the SMBI bit is 0 when we read it, then the bit will be
1393                 * set and we have the semaphore
1394                 */
1395                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1396                if (swsm & IXGBE_SWSM_SMBI) {
1397                        hw_dbg(hw, "Software semaphore SMBI between device drivers not granted.\n");
1398                        return IXGBE_ERR_EEPROM;
1399                }
1400        }
1401
1402        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1403        for (i = 0; i < timeout; i++) {
1404                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1405
1406                /* Set the SW EEPROM semaphore bit to request access */
1407                swsm |= IXGBE_SWSM_SWESMBI;
1408                IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1409
1410                /* If we set the bit successfully then we got the
1411                 * semaphore.
1412                 */
1413                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1414                if (swsm & IXGBE_SWSM_SWESMBI)
1415                        break;
1416
1417                usleep_range(50, 100);
1418        }
1419
1420        /* Release semaphores and return error if SW EEPROM semaphore
1421         * was not granted because we don't have access to the EEPROM
1422         */
1423        if (i >= timeout) {
1424                hw_dbg(hw, "SWESMBI Software EEPROM semaphore not granted.\n");
1425                ixgbe_release_eeprom_semaphore(hw);
1426                return IXGBE_ERR_EEPROM;
1427        }
1428
1429        return 0;
1430}
1431
1432/**
1433 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1434 *  @hw: pointer to hardware structure
1435 *
1436 *  This function clears hardware semaphore bits.
1437 **/
1438static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1439{
1440        u32 swsm;
1441
1442        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM(hw));
1443
1444        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1445        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1446        IXGBE_WRITE_REG(hw, IXGBE_SWSM(hw), swsm);
1447        IXGBE_WRITE_FLUSH(hw);
1448}
1449
1450/**
1451 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1452 *  @hw: pointer to hardware structure
1453 **/
1454static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1455{
1456        u16 i;
1457        u8 spi_stat_reg;
1458
1459        /*
1460         * Read "Status Register" repeatedly until the LSB is cleared.  The
1461         * EEPROM will signal that the command has been completed by clearing
1462         * bit 0 of the internal status register.  If it's not cleared within
1463         * 5 milliseconds, then error out.
1464         */
1465        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1466                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1467                                            IXGBE_EEPROM_OPCODE_BITS);
1468                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1469                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1470                        break;
1471
1472                udelay(5);
1473                ixgbe_standby_eeprom(hw);
1474        }
1475
1476        /*
1477         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1478         * devices (and only 0-5mSec on 5V devices)
1479         */
1480        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1481                hw_dbg(hw, "SPI EEPROM Status error\n");
1482                return IXGBE_ERR_EEPROM;
1483        }
1484
1485        return 0;
1486}
1487
1488/**
1489 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1490 *  @hw: pointer to hardware structure
1491 **/
1492static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1493{
1494        u32 eec;
1495
1496        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1497
1498        /* Toggle CS to flush commands */
1499        eec |= IXGBE_EEC_CS;
1500        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1501        IXGBE_WRITE_FLUSH(hw);
1502        udelay(1);
1503        eec &= ~IXGBE_EEC_CS;
1504        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1505        IXGBE_WRITE_FLUSH(hw);
1506        udelay(1);
1507}
1508
1509/**
1510 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1511 *  @hw: pointer to hardware structure
1512 *  @data: data to send to the EEPROM
1513 *  @count: number of bits to shift out
1514 **/
1515static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1516                                        u16 count)
1517{
1518        u32 eec;
1519        u32 mask;
1520        u32 i;
1521
1522        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1523
1524        /*
1525         * Mask is used to shift "count" bits of "data" out to the EEPROM
1526         * one bit at a time.  Determine the starting bit based on count
1527         */
1528        mask = BIT(count - 1);
1529
1530        for (i = 0; i < count; i++) {
1531                /*
1532                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1533                 * "1", and then raising and then lowering the clock (the SK
1534                 * bit controls the clock input to the EEPROM).  A "0" is
1535                 * shifted out to the EEPROM by setting "DI" to "0" and then
1536                 * raising and then lowering the clock.
1537                 */
1538                if (data & mask)
1539                        eec |= IXGBE_EEC_DI;
1540                else
1541                        eec &= ~IXGBE_EEC_DI;
1542
1543                IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1544                IXGBE_WRITE_FLUSH(hw);
1545
1546                udelay(1);
1547
1548                ixgbe_raise_eeprom_clk(hw, &eec);
1549                ixgbe_lower_eeprom_clk(hw, &eec);
1550
1551                /*
1552                 * Shift mask to signify next bit of data to shift in to the
1553                 * EEPROM
1554                 */
1555                mask = mask >> 1;
1556        }
1557
1558        /* We leave the "DI" bit set to "0" when we leave this routine. */
1559        eec &= ~IXGBE_EEC_DI;
1560        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1561        IXGBE_WRITE_FLUSH(hw);
1562}
1563
1564/**
1565 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1566 *  @hw: pointer to hardware structure
1567 **/
1568static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1569{
1570        u32 eec;
1571        u32 i;
1572        u16 data = 0;
1573
1574        /*
1575         * In order to read a register from the EEPROM, we need to shift
1576         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1577         * the clock input to the EEPROM (setting the SK bit), and then reading
1578         * the value of the "DO" bit.  During this "shifting in" process the
1579         * "DI" bit should always be clear.
1580         */
1581        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1582
1583        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1584
1585        for (i = 0; i < count; i++) {
1586                data = data << 1;
1587                ixgbe_raise_eeprom_clk(hw, &eec);
1588
1589                eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1590
1591                eec &= ~(IXGBE_EEC_DI);
1592                if (eec & IXGBE_EEC_DO)
1593                        data |= 1;
1594
1595                ixgbe_lower_eeprom_clk(hw, &eec);
1596        }
1597
1598        return data;
1599}
1600
1601/**
1602 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1603 *  @hw: pointer to hardware structure
1604 *  @eec: EEC register's current value
1605 **/
1606static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1607{
1608        /*
1609         * Raise the clock input to the EEPROM
1610         * (setting the SK bit), then delay
1611         */
1612        *eec = *eec | IXGBE_EEC_SK;
1613        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1614        IXGBE_WRITE_FLUSH(hw);
1615        udelay(1);
1616}
1617
1618/**
1619 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1620 *  @hw: pointer to hardware structure
1621 *  @eecd: EECD's current value
1622 **/
1623static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1624{
1625        /*
1626         * Lower the clock input to the EEPROM (clearing the SK bit), then
1627         * delay
1628         */
1629        *eec = *eec & ~IXGBE_EEC_SK;
1630        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), *eec);
1631        IXGBE_WRITE_FLUSH(hw);
1632        udelay(1);
1633}
1634
1635/**
1636 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1637 *  @hw: pointer to hardware structure
1638 **/
1639static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1640{
1641        u32 eec;
1642
1643        eec = IXGBE_READ_REG(hw, IXGBE_EEC(hw));
1644
1645        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1646        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1647
1648        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1649        IXGBE_WRITE_FLUSH(hw);
1650
1651        udelay(1);
1652
1653        /* Stop requesting EEPROM access */
1654        eec &= ~IXGBE_EEC_REQ;
1655        IXGBE_WRITE_REG(hw, IXGBE_EEC(hw), eec);
1656
1657        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1658
1659        /*
1660         * Delay before attempt to obtain semaphore again to allow FW
1661         * access. semaphore_delay is in ms we need us for usleep_range
1662         */
1663        usleep_range(hw->eeprom.semaphore_delay * 1000,
1664                     hw->eeprom.semaphore_delay * 2000);
1665}
1666
1667/**
1668 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1669 *  @hw: pointer to hardware structure
1670 **/
1671s32 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1672{
1673        u16 i;
1674        u16 j;
1675        u16 checksum = 0;
1676        u16 length = 0;
1677        u16 pointer = 0;
1678        u16 word = 0;
1679
1680        /* Include 0x0-0x3F in the checksum */
1681        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1682                if (hw->eeprom.ops.read(hw, i, &word)) {
1683                        hw_dbg(hw, "EEPROM read failed\n");
1684                        break;
1685                }
1686                checksum += word;
1687        }
1688
1689        /* Include all data from pointers except for the fw pointer */
1690        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1691                if (hw->eeprom.ops.read(hw, i, &pointer)) {
1692                        hw_dbg(hw, "EEPROM read failed\n");
1693                        return IXGBE_ERR_EEPROM;
1694                }
1695
1696                /* If the pointer seems invalid */
1697                if (pointer == 0xFFFF || pointer == 0)
1698                        continue;
1699
1700                if (hw->eeprom.ops.read(hw, pointer, &length)) {
1701                        hw_dbg(hw, "EEPROM read failed\n");
1702                        return IXGBE_ERR_EEPROM;
1703                }
1704
1705                if (length == 0xFFFF || length == 0)
1706                        continue;
1707
1708                for (j = pointer + 1; j <= pointer + length; j++) {
1709                        if (hw->eeprom.ops.read(hw, j, &word)) {
1710                                hw_dbg(hw, "EEPROM read failed\n");
1711                                return IXGBE_ERR_EEPROM;
1712                        }
1713                        checksum += word;
1714                }
1715        }
1716
1717        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1718
1719        return (s32)checksum;
1720}
1721
1722/**
1723 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1724 *  @hw: pointer to hardware structure
1725 *  @checksum_val: calculated checksum
1726 *
1727 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1728 *  caller does not need checksum_val, the value can be NULL.
1729 **/
1730s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1731                                           u16 *checksum_val)
1732{
1733        s32 status;
1734        u16 checksum;
1735        u16 read_checksum = 0;
1736
1737        /*
1738         * Read the first word from the EEPROM. If this times out or fails, do
1739         * not continue or we could be in for a very long wait while every
1740         * EEPROM read fails
1741         */
1742        status = hw->eeprom.ops.read(hw, 0, &checksum);
1743        if (status) {
1744                hw_dbg(hw, "EEPROM read failed\n");
1745                return status;
1746        }
1747
1748        status = hw->eeprom.ops.calc_checksum(hw);
1749        if (status < 0)
1750                return status;
1751
1752        checksum = (u16)(status & 0xffff);
1753
1754        status = hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1755        if (status) {
1756                hw_dbg(hw, "EEPROM read failed\n");
1757                return status;
1758        }
1759
1760        /* Verify read checksum from EEPROM is the same as
1761         * calculated checksum
1762         */
1763        if (read_checksum != checksum)
1764                status = IXGBE_ERR_EEPROM_CHECKSUM;
1765
1766        /* If the user cares, return the calculated checksum */
1767        if (checksum_val)
1768                *checksum_val = checksum;
1769
1770        return status;
1771}
1772
1773/**
1774 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1775 *  @hw: pointer to hardware structure
1776 **/
1777s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1778{
1779        s32 status;
1780        u16 checksum;
1781
1782        /*
1783         * Read the first word from the EEPROM. If this times out or fails, do
1784         * not continue or we could be in for a very long wait while every
1785         * EEPROM read fails
1786         */
1787        status = hw->eeprom.ops.read(hw, 0, &checksum);
1788        if (status) {
1789                hw_dbg(hw, "EEPROM read failed\n");
1790                return status;
1791        }
1792
1793        status = hw->eeprom.ops.calc_checksum(hw);
1794        if (status < 0)
1795                return status;
1796
1797        checksum = (u16)(status & 0xffff);
1798
1799        status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM, checksum);
1800
1801        return status;
1802}
1803
1804/**
1805 *  ixgbe_set_rar_generic - Set Rx address register
1806 *  @hw: pointer to hardware structure
1807 *  @index: Receive address register to write
1808 *  @addr: Address to put into receive address register
1809 *  @vmdq: VMDq "set" or "pool" index
1810 *  @enable_addr: set flag that address is active
1811 *
1812 *  Puts an ethernet address into a receive address register.
1813 **/
1814s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1815                          u32 enable_addr)
1816{
1817        u32 rar_low, rar_high;
1818        u32 rar_entries = hw->mac.num_rar_entries;
1819
1820        /* Make sure we are using a valid rar index range */
1821        if (index >= rar_entries) {
1822                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1823                return IXGBE_ERR_INVALID_ARGUMENT;
1824        }
1825
1826        /* setup VMDq pool selection before this RAR gets enabled */
1827        hw->mac.ops.set_vmdq(hw, index, vmdq);
1828
1829        /*
1830         * HW expects these in little endian so we reverse the byte
1831         * order from network order (big endian) to little endian
1832         */
1833        rar_low = ((u32)addr[0] |
1834                   ((u32)addr[1] << 8) |
1835                   ((u32)addr[2] << 16) |
1836                   ((u32)addr[3] << 24));
1837        /*
1838         * Some parts put the VMDq setting in the extra RAH bits,
1839         * so save everything except the lower 16 bits that hold part
1840         * of the address and the address valid bit.
1841         */
1842        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1843        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1844        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846        if (enable_addr != 0)
1847                rar_high |= IXGBE_RAH_AV;
1848
1849        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1850        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1851
1852        return 0;
1853}
1854
1855/**
1856 *  ixgbe_clear_rar_generic - Remove Rx address register
1857 *  @hw: pointer to hardware structure
1858 *  @index: Receive address register to write
1859 *
1860 *  Clears an ethernet address from a receive address register.
1861 **/
1862s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1863{
1864        u32 rar_high;
1865        u32 rar_entries = hw->mac.num_rar_entries;
1866
1867        /* Make sure we are using a valid rar index range */
1868        if (index >= rar_entries) {
1869                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1870                return IXGBE_ERR_INVALID_ARGUMENT;
1871        }
1872
1873        /*
1874         * Some parts put the VMDq setting in the extra RAH bits,
1875         * so save everything except the lower 16 bits that hold part
1876         * of the address and the address valid bit.
1877         */
1878        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1879        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1880
1881        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1882        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1883
1884        /* clear VMDq pool/queue selection for this RAR */
1885        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1886
1887        return 0;
1888}
1889
1890/**
1891 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1892 *  @hw: pointer to hardware structure
1893 *
1894 *  Places the MAC address in receive address register 0 and clears the rest
1895 *  of the receive address registers. Clears the multicast table. Assumes
1896 *  the receiver is in reset when the routine is called.
1897 **/
1898s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1899{
1900        u32 i;
1901        u32 rar_entries = hw->mac.num_rar_entries;
1902
1903        /*
1904         * If the current mac address is valid, assume it is a software override
1905         * to the permanent address.
1906         * Otherwise, use the permanent address from the eeprom.
1907         */
1908        if (!is_valid_ether_addr(hw->mac.addr)) {
1909                /* Get the MAC address from the RAR0 for later reference */
1910                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1911
1912                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1913        } else {
1914                /* Setup the receive address. */
1915                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1916                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1917
1918                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1919        }
1920
1921        /*  clear VMDq pool/queue selection for RAR 0 */
1922        hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1923
1924        hw->addr_ctrl.overflow_promisc = 0;
1925
1926        hw->addr_ctrl.rar_used_count = 1;
1927
1928        /* Zero out the other receive addresses. */
1929        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1930        for (i = 1; i < rar_entries; i++) {
1931                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1932                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1933        }
1934
1935        /* Clear the MTA */
1936        hw->addr_ctrl.mta_in_use = 0;
1937        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1938
1939        hw_dbg(hw, " Clearing MTA\n");
1940        for (i = 0; i < hw->mac.mcft_size; i++)
1941                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1942
1943        if (hw->mac.ops.init_uta_tables)
1944                hw->mac.ops.init_uta_tables(hw);
1945
1946        return 0;
1947}
1948
1949/**
1950 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1951 *  @hw: pointer to hardware structure
1952 *  @mc_addr: the multicast address
1953 *
1954 *  Extracts the 12 bits, from a multicast address, to determine which
1955 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1956 *  incoming rx multicast addresses, to determine the bit-vector to check in
1957 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1958 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1959 *  to mc_filter_type.
1960 **/
1961static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1962{
1963        u32 vector = 0;
1964
1965        switch (hw->mac.mc_filter_type) {
1966        case 0:   /* use bits [47:36] of the address */
1967                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1968                break;
1969        case 1:   /* use bits [46:35] of the address */
1970                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1971                break;
1972        case 2:   /* use bits [45:34] of the address */
1973                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1974                break;
1975        case 3:   /* use bits [43:32] of the address */
1976                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1977                break;
1978        default:  /* Invalid mc_filter_type */
1979                hw_dbg(hw, "MC filter type param set incorrectly\n");
1980                break;
1981        }
1982
1983        /* vector can only be 12-bits or boundary will be exceeded */
1984        vector &= 0xFFF;
1985        return vector;
1986}
1987
1988/**
1989 *  ixgbe_set_mta - Set bit-vector in multicast table
1990 *  @hw: pointer to hardware structure
1991 *  @hash_value: Multicast address hash value
1992 *
1993 *  Sets the bit-vector in the multicast table.
1994 **/
1995static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1996{
1997        u32 vector;
1998        u32 vector_bit;
1999        u32 vector_reg;
2000
2001        hw->addr_ctrl.mta_in_use++;
2002
2003        vector = ixgbe_mta_vector(hw, mc_addr);
2004        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
2005
2006        /*
2007         * The MTA is a register array of 128 32-bit registers. It is treated
2008         * like an array of 4096 bits.  We want to set bit
2009         * BitArray[vector_value]. So we figure out what register the bit is
2010         * in, read it, OR in the new bit, then write back the new value.  The
2011         * register is determined by the upper 7 bits of the vector value and
2012         * the bit within that register are determined by the lower 5 bits of
2013         * the value.
2014         */
2015        vector_reg = (vector >> 5) & 0x7F;
2016        vector_bit = vector & 0x1F;
2017        hw->mac.mta_shadow[vector_reg] |= BIT(vector_bit);
2018}
2019
2020/**
2021 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
2022 *  @hw: pointer to hardware structure
2023 *  @netdev: pointer to net device structure
2024 *
2025 *  The given list replaces any existing list. Clears the MC addrs from receive
2026 *  address registers and the multicast table. Uses unused receive address
2027 *  registers for the first multicast addresses, and hashes the rest into the
2028 *  multicast table.
2029 **/
2030s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
2031                                      struct net_device *netdev)
2032{
2033        struct netdev_hw_addr *ha;
2034        u32 i;
2035
2036        /*
2037         * Set the new number of MC addresses that we are being requested to
2038         * use.
2039         */
2040        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
2041        hw->addr_ctrl.mta_in_use = 0;
2042
2043        /* Clear mta_shadow */
2044        hw_dbg(hw, " Clearing MTA\n");
2045        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
2046
2047        /* Update mta shadow */
2048        netdev_for_each_mc_addr(ha, netdev) {
2049                hw_dbg(hw, " Adding the multicast addresses:\n");
2050                ixgbe_set_mta(hw, ha->addr);
2051        }
2052
2053        /* Enable mta */
2054        for (i = 0; i < hw->mac.mcft_size; i++)
2055                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
2056                                      hw->mac.mta_shadow[i]);
2057
2058        if (hw->addr_ctrl.mta_in_use > 0)
2059                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
2060                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
2061
2062        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
2063        return 0;
2064}
2065
2066/**
2067 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
2068 *  @hw: pointer to hardware structure
2069 *
2070 *  Enables multicast address in RAR and the use of the multicast hash table.
2071 **/
2072s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
2073{
2074        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2075
2076        if (a->mta_in_use > 0)
2077                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
2078                                hw->mac.mc_filter_type);
2079
2080        return 0;
2081}
2082
2083/**
2084 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
2085 *  @hw: pointer to hardware structure
2086 *
2087 *  Disables multicast address in RAR and the use of the multicast hash table.
2088 **/
2089s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
2090{
2091        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
2092
2093        if (a->mta_in_use > 0)
2094                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
2095
2096        return 0;
2097}
2098
2099/**
2100 *  ixgbe_fc_enable_generic - Enable flow control
2101 *  @hw: pointer to hardware structure
2102 *
2103 *  Enable flow control according to the current settings.
2104 **/
2105s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw)
2106{
2107        u32 mflcn_reg, fccfg_reg;
2108        u32 reg;
2109        u32 fcrtl, fcrth;
2110        int i;
2111
2112        /* Validate the water mark configuration. */
2113        if (!hw->fc.pause_time)
2114                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2115
2116        /* Low water mark of zero causes XOFF floods */
2117        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2118                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2119                    hw->fc.high_water[i]) {
2120                        if (!hw->fc.low_water[i] ||
2121                            hw->fc.low_water[i] >= hw->fc.high_water[i]) {
2122                                hw_dbg(hw, "Invalid water mark configuration\n");
2123                                return IXGBE_ERR_INVALID_LINK_SETTINGS;
2124                        }
2125                }
2126        }
2127
2128        /* Negotiate the fc mode to use */
2129        ixgbe_fc_autoneg(hw);
2130
2131        /* Disable any previous flow control settings */
2132        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
2133        mflcn_reg &= ~(IXGBE_MFLCN_RPFCE_MASK | IXGBE_MFLCN_RFCE);
2134
2135        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
2136        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
2137
2138        /*
2139         * The possible values of fc.current_mode are:
2140         * 0: Flow control is completely disabled
2141         * 1: Rx flow control is enabled (we can receive pause frames,
2142         *    but not send pause frames).
2143         * 2: Tx flow control is enabled (we can send pause frames but
2144         *    we do not support receiving pause frames).
2145         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2146         * other: Invalid.
2147         */
2148        switch (hw->fc.current_mode) {
2149        case ixgbe_fc_none:
2150                /*
2151                 * Flow control is disabled by software override or autoneg.
2152                 * The code below will actually disable it in the HW.
2153                 */
2154                break;
2155        case ixgbe_fc_rx_pause:
2156                /*
2157                 * Rx Flow control is enabled and Tx Flow control is
2158                 * disabled by software override. Since there really
2159                 * isn't a way to advertise that we are capable of RX
2160                 * Pause ONLY, we will advertise that we support both
2161                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2162                 * disable the adapter's ability to send PAUSE frames.
2163                 */
2164                mflcn_reg |= IXGBE_MFLCN_RFCE;
2165                break;
2166        case ixgbe_fc_tx_pause:
2167                /*
2168                 * Tx Flow control is enabled, and Rx Flow control is
2169                 * disabled by software override.
2170                 */
2171                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2172                break;
2173        case ixgbe_fc_full:
2174                /* Flow control (both Rx and Tx) is enabled by SW override. */
2175                mflcn_reg |= IXGBE_MFLCN_RFCE;
2176                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
2177                break;
2178        default:
2179                hw_dbg(hw, "Flow control param set incorrectly\n");
2180                return IXGBE_ERR_CONFIG;
2181        }
2182
2183        /* Set 802.3x based flow control settings. */
2184        mflcn_reg |= IXGBE_MFLCN_DPF;
2185        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2186        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2187
2188        /* Set up and enable Rx high/low water mark thresholds, enable XON. */
2189        for (i = 0; i < MAX_TRAFFIC_CLASS; i++) {
2190                if ((hw->fc.current_mode & ixgbe_fc_tx_pause) &&
2191                    hw->fc.high_water[i]) {
2192                        fcrtl = (hw->fc.low_water[i] << 10) | IXGBE_FCRTL_XONE;
2193                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), fcrtl);
2194                        fcrth = (hw->fc.high_water[i] << 10) | IXGBE_FCRTH_FCEN;
2195                } else {
2196                        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(i), 0);
2197                        /*
2198                         * In order to prevent Tx hangs when the internal Tx
2199                         * switch is enabled we must set the high water mark
2200                         * to the Rx packet buffer size - 24KB.  This allows
2201                         * the Tx switch to function even under heavy Rx
2202                         * workloads.
2203                         */
2204                        fcrth = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(i)) - 24576;
2205                }
2206
2207                IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(i), fcrth);
2208        }
2209
2210        /* Configure pause time (2 TCs per register) */
2211        reg = hw->fc.pause_time * 0x00010001;
2212        for (i = 0; i < (MAX_TRAFFIC_CLASS / 2); i++)
2213                IXGBE_WRITE_REG(hw, IXGBE_FCTTV(i), reg);
2214
2215        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, hw->fc.pause_time / 2);
2216
2217        return 0;
2218}
2219
2220/**
2221 *  ixgbe_negotiate_fc - Negotiate flow control
2222 *  @hw: pointer to hardware structure
2223 *  @adv_reg: flow control advertised settings
2224 *  @lp_reg: link partner's flow control settings
2225 *  @adv_sym: symmetric pause bit in advertisement
2226 *  @adv_asm: asymmetric pause bit in advertisement
2227 *  @lp_sym: symmetric pause bit in link partner advertisement
2228 *  @lp_asm: asymmetric pause bit in link partner advertisement
2229 *
2230 *  Find the intersection between advertised settings and link partner's
2231 *  advertised settings
2232 **/
2233static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2234                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2235{
2236        if ((!(adv_reg)) ||  (!(lp_reg)))
2237                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2238
2239        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2240                /*
2241                 * Now we need to check if the user selected Rx ONLY
2242                 * of pause frames.  In this case, we had to advertise
2243                 * FULL flow control because we could not advertise RX
2244                 * ONLY. Hence, we must now check to see if we need to
2245                 * turn OFF the TRANSMISSION of PAUSE frames.
2246                 */
2247                if (hw->fc.requested_mode == ixgbe_fc_full) {
2248                        hw->fc.current_mode = ixgbe_fc_full;
2249                        hw_dbg(hw, "Flow Control = FULL.\n");
2250                } else {
2251                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2252                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2253                }
2254        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2255                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2256                hw->fc.current_mode = ixgbe_fc_tx_pause;
2257                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2258        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2259                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2260                hw->fc.current_mode = ixgbe_fc_rx_pause;
2261                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2262        } else {
2263                hw->fc.current_mode = ixgbe_fc_none;
2264                hw_dbg(hw, "Flow Control = NONE.\n");
2265        }
2266        return 0;
2267}
2268
2269/**
2270 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2271 *  @hw: pointer to hardware structure
2272 *
2273 *  Enable flow control according on 1 gig fiber.
2274 **/
2275static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2276{
2277        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2278        s32 ret_val;
2279
2280        /*
2281         * On multispeed fiber at 1g, bail out if
2282         * - link is up but AN did not complete, or if
2283         * - link is up and AN completed but timed out
2284         */
2285
2286        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2287        if ((!!(linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2288            (!!(linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1))
2289                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2290
2291        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2292        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2293
2294        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2295                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2296                               IXGBE_PCS1GANA_ASM_PAUSE,
2297                               IXGBE_PCS1GANA_SYM_PAUSE,
2298                               IXGBE_PCS1GANA_ASM_PAUSE);
2299
2300        return ret_val;
2301}
2302
2303/**
2304 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2305 *  @hw: pointer to hardware structure
2306 *
2307 *  Enable flow control according to IEEE clause 37.
2308 **/
2309static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2310{
2311        u32 links2, anlp1_reg, autoc_reg, links;
2312        s32 ret_val;
2313
2314        /*
2315         * On backplane, bail out if
2316         * - backplane autoneg was not completed, or if
2317         * - we are 82599 and link partner is not AN enabled
2318         */
2319        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2320        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0)
2321                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2322
2323        if (hw->mac.type == ixgbe_mac_82599EB) {
2324                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2325                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)
2326                        return IXGBE_ERR_FC_NOT_NEGOTIATED;
2327        }
2328        /*
2329         * Read the 10g AN autoc and LP ability registers and resolve
2330         * local flow control settings accordingly
2331         */
2332        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2333        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2334
2335        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2336                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2337                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2338
2339        return ret_val;
2340}
2341
2342/**
2343 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2344 *  @hw: pointer to hardware structure
2345 *
2346 *  Enable flow control according to IEEE clause 37.
2347 **/
2348static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2349{
2350        u16 technology_ability_reg = 0;
2351        u16 lp_technology_ability_reg = 0;
2352
2353        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2354                             MDIO_MMD_AN,
2355                             &technology_ability_reg);
2356        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2357                             MDIO_MMD_AN,
2358                             &lp_technology_ability_reg);
2359
2360        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2361                                  (u32)lp_technology_ability_reg,
2362                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2363                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2364}
2365
2366/**
2367 *  ixgbe_fc_autoneg - Configure flow control
2368 *  @hw: pointer to hardware structure
2369 *
2370 *  Compares our advertised flow control capabilities to those advertised by
2371 *  our link partner, and determines the proper flow control mode to use.
2372 **/
2373void ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2374{
2375        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2376        ixgbe_link_speed speed;
2377        bool link_up;
2378
2379        /*
2380         * AN should have completed when the cable was plugged in.
2381         * Look for reasons to bail out.  Bail out if:
2382         * - FC autoneg is disabled, or if
2383         * - link is not up.
2384         *
2385         * Since we're being called from an LSC, link is already known to be up.
2386         * So use link_up_wait_to_complete=false.
2387         */
2388        if (hw->fc.disable_fc_autoneg)
2389                goto out;
2390
2391        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2392        if (!link_up)
2393                goto out;
2394
2395        switch (hw->phy.media_type) {
2396        /* Autoneg flow control on fiber adapters */
2397        case ixgbe_media_type_fiber:
2398                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2399                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2400                break;
2401
2402        /* Autoneg flow control on backplane adapters */
2403        case ixgbe_media_type_backplane:
2404                ret_val = ixgbe_fc_autoneg_backplane(hw);
2405                break;
2406
2407        /* Autoneg flow control on copper adapters */
2408        case ixgbe_media_type_copper:
2409                if (ixgbe_device_supports_autoneg_fc(hw))
2410                        ret_val = ixgbe_fc_autoneg_copper(hw);
2411                break;
2412
2413        default:
2414                break;
2415        }
2416
2417out:
2418        if (ret_val == 0) {
2419                hw->fc.fc_was_autonegged = true;
2420        } else {
2421                hw->fc.fc_was_autonegged = false;
2422                hw->fc.current_mode = hw->fc.requested_mode;
2423        }
2424}
2425
2426/**
2427 * ixgbe_pcie_timeout_poll - Return number of times to poll for completion
2428 * @hw: pointer to hardware structure
2429 *
2430 * System-wide timeout range is encoded in PCIe Device Control2 register.
2431 *
2432 *  Add 10% to specified maximum and return the number of times to poll for
2433 *  completion timeout, in units of 100 microsec.  Never return less than
2434 *  800 = 80 millisec.
2435 **/
2436static u32 ixgbe_pcie_timeout_poll(struct ixgbe_hw *hw)
2437{
2438        s16 devctl2;
2439        u32 pollcnt;
2440
2441        devctl2 = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_CONTROL2);
2442        devctl2 &= IXGBE_PCIDEVCTRL2_TIMEO_MASK;
2443
2444        switch (devctl2) {
2445        case IXGBE_PCIDEVCTRL2_65_130ms:
2446                 pollcnt = 1300;         /* 130 millisec */
2447                break;
2448        case IXGBE_PCIDEVCTRL2_260_520ms:
2449                pollcnt = 5200;         /* 520 millisec */
2450                break;
2451        case IXGBE_PCIDEVCTRL2_1_2s:
2452                pollcnt = 20000;        /* 2 sec */
2453                break;
2454        case IXGBE_PCIDEVCTRL2_4_8s:
2455                pollcnt = 80000;        /* 8 sec */
2456                break;
2457        case IXGBE_PCIDEVCTRL2_17_34s:
2458                pollcnt = 34000;        /* 34 sec */
2459                break;
2460        case IXGBE_PCIDEVCTRL2_50_100us:        /* 100 microsecs */
2461        case IXGBE_PCIDEVCTRL2_1_2ms:           /* 2 millisecs */
2462        case IXGBE_PCIDEVCTRL2_16_32ms:         /* 32 millisec */
2463        case IXGBE_PCIDEVCTRL2_16_32ms_def:     /* 32 millisec default */
2464        default:
2465                pollcnt = 800;          /* 80 millisec minimum */
2466                break;
2467        }
2468
2469        /* add 10% to spec maximum */
2470        return (pollcnt * 11) / 10;
2471}
2472
2473/**
2474 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2475 *  @hw: pointer to hardware structure
2476 *
2477 *  Disables PCI-Express master access and verifies there are no pending
2478 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2479 *  bit hasn't caused the master requests to be disabled, else 0
2480 *  is returned signifying master requests disabled.
2481 **/
2482static s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2483{
2484        u32 i, poll;
2485        u16 value;
2486
2487        /* Always set this bit to ensure any future transactions are blocked */
2488        IXGBE_WRITE_REG(hw, IXGBE_CTRL, IXGBE_CTRL_GIO_DIS);
2489
2490        /* Poll for bit to read as set */
2491        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2492                if (IXGBE_READ_REG(hw, IXGBE_CTRL) & IXGBE_CTRL_GIO_DIS)
2493                        break;
2494                usleep_range(100, 120);
2495        }
2496        if (i >= IXGBE_PCI_MASTER_DISABLE_TIMEOUT) {
2497                hw_dbg(hw, "GIO disable did not set - requesting resets\n");
2498                goto gio_disable_fail;
2499        }
2500
2501        /* Exit if master requests are blocked */
2502        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO) ||
2503            ixgbe_removed(hw->hw_addr))
2504                return 0;
2505
2506        /* Poll for master request bit to clear */
2507        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2508                udelay(100);
2509                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2510                        return 0;
2511        }
2512
2513        /*
2514         * Two consecutive resets are required via CTRL.RST per datasheet
2515         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2516         * of this need.  The first reset prevents new master requests from
2517         * being issued by our device.  We then must wait 1usec or more for any
2518         * remaining completions from the PCIe bus to trickle in, and then reset
2519         * again to clear out any effects they may have had on our device.
2520         */
2521        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2522gio_disable_fail:
2523        hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2524
2525        if (hw->mac.type >= ixgbe_mac_X550)
2526                return 0;
2527
2528        /*
2529         * Before proceeding, make sure that the PCIe block does not have
2530         * transactions pending.
2531         */
2532        poll = ixgbe_pcie_timeout_poll(hw);
2533        for (i = 0; i < poll; i++) {
2534                udelay(100);
2535                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
2536                if (ixgbe_removed(hw->hw_addr))
2537                        return 0;
2538                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2539                        return 0;
2540        }
2541
2542        hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2543        return IXGBE_ERR_MASTER_REQUESTS_PENDING;
2544}
2545
2546/**
2547 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2548 *  @hw: pointer to hardware structure
2549 *  @mask: Mask to specify which semaphore to acquire
2550 *
2551 *  Acquires the SWFW semaphore through the GSSR register for the specified
2552 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2553 **/
2554s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2555{
2556        u32 gssr = 0;
2557        u32 swmask = mask;
2558        u32 fwmask = mask << 5;
2559        u32 timeout = 200;
2560        u32 i;
2561
2562        for (i = 0; i < timeout; i++) {
2563                /*
2564                 * SW NVM semaphore bit is used for access to all
2565                 * SW_FW_SYNC bits (not just NVM)
2566                 */
2567                if (ixgbe_get_eeprom_semaphore(hw))
2568                        return IXGBE_ERR_SWFW_SYNC;
2569
2570                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2571                if (!(gssr & (fwmask | swmask))) {
2572                        gssr |= swmask;
2573                        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2574                        ixgbe_release_eeprom_semaphore(hw);
2575                        return 0;
2576                } else {
2577                        /* Resource is currently in use by FW or SW */
2578                        ixgbe_release_eeprom_semaphore(hw);
2579                        usleep_range(5000, 10000);
2580                }
2581        }
2582
2583        /* If time expired clear the bits holding the lock and retry */
2584        if (gssr & (fwmask | swmask))
2585                ixgbe_release_swfw_sync(hw, gssr & (fwmask | swmask));
2586
2587        usleep_range(5000, 10000);
2588        return IXGBE_ERR_SWFW_SYNC;
2589}
2590
2591/**
2592 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2593 *  @hw: pointer to hardware structure
2594 *  @mask: Mask to specify which semaphore to release
2595 *
2596 *  Releases the SWFW semaphore through the GSSR register for the specified
2597 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2598 **/
2599void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u32 mask)
2600{
2601        u32 gssr;
2602        u32 swmask = mask;
2603
2604        ixgbe_get_eeprom_semaphore(hw);
2605
2606        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2607        gssr &= ~swmask;
2608        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2609
2610        ixgbe_release_eeprom_semaphore(hw);
2611}
2612
2613/**
2614 * prot_autoc_read_generic - Hides MAC differences needed for AUTOC read
2615 * @hw: pointer to hardware structure
2616 * @reg_val: Value we read from AUTOC
2617 * @locked: bool to indicate whether the SW/FW lock should be taken.  Never
2618 *          true in this the generic case.
2619 *
2620 * The default case requires no protection so just to the register read.
2621 **/
2622s32 prot_autoc_read_generic(struct ixgbe_hw *hw, bool *locked, u32 *reg_val)
2623{
2624        *locked = false;
2625        *reg_val = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2626        return 0;
2627}
2628
2629/**
2630 * prot_autoc_write_generic - Hides MAC differences needed for AUTOC write
2631 * @hw: pointer to hardware structure
2632 * @reg_val: value to write to AUTOC
2633 * @locked: bool to indicate whether the SW/FW lock was already taken by
2634 *          previous read.
2635 **/
2636s32 prot_autoc_write_generic(struct ixgbe_hw *hw, u32 reg_val, bool locked)
2637{
2638        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_val);
2639        return 0;
2640}
2641
2642/**
2643 *  ixgbe_disable_rx_buff_generic - Stops the receive data path
2644 *  @hw: pointer to hardware structure
2645 *
2646 *  Stops the receive data path and waits for the HW to internally
2647 *  empty the Rx security block.
2648 **/
2649s32 ixgbe_disable_rx_buff_generic(struct ixgbe_hw *hw)
2650{
2651#define IXGBE_MAX_SECRX_POLL 40
2652        int i;
2653        int secrxreg;
2654
2655        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2656        secrxreg |= IXGBE_SECRXCTRL_RX_DIS;
2657        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2658        for (i = 0; i < IXGBE_MAX_SECRX_POLL; i++) {
2659                secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXSTAT);
2660                if (secrxreg & IXGBE_SECRXSTAT_SECRX_RDY)
2661                        break;
2662                else
2663                        /* Use interrupt-safe sleep just in case */
2664                        udelay(1000);
2665        }
2666
2667        /* For informational purposes only */
2668        if (i >= IXGBE_MAX_SECRX_POLL)
2669                hw_dbg(hw, "Rx unit being enabled before security path fully disabled. Continuing with init.\n");
2670
2671        return 0;
2672
2673}
2674
2675/**
2676 *  ixgbe_enable_rx_buff - Enables the receive data path
2677 *  @hw: pointer to hardware structure
2678 *
2679 *  Enables the receive data path
2680 **/
2681s32 ixgbe_enable_rx_buff_generic(struct ixgbe_hw *hw)
2682{
2683        u32 secrxreg;
2684
2685        secrxreg = IXGBE_READ_REG(hw, IXGBE_SECRXCTRL);
2686        secrxreg &= ~IXGBE_SECRXCTRL_RX_DIS;
2687        IXGBE_WRITE_REG(hw, IXGBE_SECRXCTRL, secrxreg);
2688        IXGBE_WRITE_FLUSH(hw);
2689
2690        return 0;
2691}
2692
2693/**
2694 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2695 *  @hw: pointer to hardware structure
2696 *  @regval: register value to write to RXCTRL
2697 *
2698 *  Enables the Rx DMA unit
2699 **/
2700s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2701{
2702        if (regval & IXGBE_RXCTRL_RXEN)
2703                hw->mac.ops.enable_rx(hw);
2704        else
2705                hw->mac.ops.disable_rx(hw);
2706
2707        return 0;
2708}
2709
2710/**
2711 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2712 *  @hw: pointer to hardware structure
2713 *  @index: led number to blink
2714 **/
2715s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2716{
2717        ixgbe_link_speed speed = 0;
2718        bool link_up = false;
2719        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2720        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2721        bool locked = false;
2722        s32 ret_val;
2723
2724        if (index > 3)
2725                return IXGBE_ERR_PARAM;
2726
2727        /*
2728         * Link must be up to auto-blink the LEDs;
2729         * Force it if link is down.
2730         */
2731        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2732
2733        if (!link_up) {
2734                ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2735                if (ret_val)
2736                        return ret_val;
2737
2738                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2739                autoc_reg |= IXGBE_AUTOC_FLU;
2740
2741                ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2742                if (ret_val)
2743                        return ret_val;
2744
2745                IXGBE_WRITE_FLUSH(hw);
2746
2747                usleep_range(10000, 20000);
2748        }
2749
2750        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2751        led_reg |= IXGBE_LED_BLINK(index);
2752        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2753        IXGBE_WRITE_FLUSH(hw);
2754
2755        return 0;
2756}
2757
2758/**
2759 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2760 *  @hw: pointer to hardware structure
2761 *  @index: led number to stop blinking
2762 **/
2763s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2764{
2765        u32 autoc_reg = 0;
2766        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2767        bool locked = false;
2768        s32 ret_val;
2769
2770        if (index > 3)
2771                return IXGBE_ERR_PARAM;
2772
2773        ret_val = hw->mac.ops.prot_autoc_read(hw, &locked, &autoc_reg);
2774        if (ret_val)
2775                return ret_val;
2776
2777        autoc_reg &= ~IXGBE_AUTOC_FLU;
2778        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2779
2780        ret_val = hw->mac.ops.prot_autoc_write(hw, autoc_reg, locked);
2781        if (ret_val)
2782                return ret_val;
2783
2784        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2785        led_reg &= ~IXGBE_LED_BLINK(index);
2786        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2787        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2788        IXGBE_WRITE_FLUSH(hw);
2789
2790        return 0;
2791}
2792
2793/**
2794 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2795 *  @hw: pointer to hardware structure
2796 *  @san_mac_offset: SAN MAC address offset
2797 *
2798 *  This function will read the EEPROM location for the SAN MAC address
2799 *  pointer, and returns the value at that location.  This is used in both
2800 *  get and set mac_addr routines.
2801 **/
2802static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2803                                        u16 *san_mac_offset)
2804{
2805        s32 ret_val;
2806
2807        /*
2808         * First read the EEPROM pointer to see if the MAC addresses are
2809         * available.
2810         */
2811        ret_val = hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR,
2812                                      san_mac_offset);
2813        if (ret_val)
2814                hw_err(hw, "eeprom read at offset %d failed\n",
2815                       IXGBE_SAN_MAC_ADDR_PTR);
2816
2817        return ret_val;
2818}
2819
2820/**
2821 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2822 *  @hw: pointer to hardware structure
2823 *  @san_mac_addr: SAN MAC address
2824 *
2825 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2826 *  per-port, so set_lan_id() must be called before reading the addresses.
2827 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2828 *  upon for non-SFP connections, so we must call it here.
2829 **/
2830s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2831{
2832        u16 san_mac_data, san_mac_offset;
2833        u8 i;
2834        s32 ret_val;
2835
2836        /*
2837         * First read the EEPROM pointer to see if the MAC addresses are
2838         * available.  If they're not, no point in calling set_lan_id() here.
2839         */
2840        ret_val = ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2841        if (ret_val || san_mac_offset == 0 || san_mac_offset == 0xFFFF)
2842
2843                goto san_mac_addr_clr;
2844
2845        /* make sure we know which port we need to program */
2846        hw->mac.ops.set_lan_id(hw);
2847        /* apply the port offset to the address offset */
2848        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2849                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2850        for (i = 0; i < 3; i++) {
2851                ret_val = hw->eeprom.ops.read(hw, san_mac_offset,
2852                                              &san_mac_data);
2853                if (ret_val) {
2854                        hw_err(hw, "eeprom read at offset %d failed\n",
2855                               san_mac_offset);
2856                        goto san_mac_addr_clr;
2857                }
2858                san_mac_addr[i * 2] = (u8)(san_mac_data);
2859                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2860                san_mac_offset++;
2861        }
2862        return 0;
2863
2864san_mac_addr_clr:
2865        /* No addresses available in this EEPROM.  It's not necessarily an
2866         * error though, so just wipe the local address and return.
2867         */
2868        for (i = 0; i < 6; i++)
2869                san_mac_addr[i] = 0xFF;
2870        return ret_val;
2871}
2872
2873/**
2874 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2875 *  @hw: pointer to hardware structure
2876 *
2877 *  Read PCIe configuration space, and get the MSI-X vector count from
2878 *  the capabilities table.
2879 **/
2880u16 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2881{
2882        u16 msix_count;
2883        u16 max_msix_count;
2884        u16 pcie_offset;
2885
2886        switch (hw->mac.type) {
2887        case ixgbe_mac_82598EB:
2888                pcie_offset = IXGBE_PCIE_MSIX_82598_CAPS;
2889                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82598;
2890                break;
2891        case ixgbe_mac_82599EB:
2892        case ixgbe_mac_X540:
2893        case ixgbe_mac_X550:
2894        case ixgbe_mac_X550EM_x:
2895        case ixgbe_mac_x550em_a:
2896                pcie_offset = IXGBE_PCIE_MSIX_82599_CAPS;
2897                max_msix_count = IXGBE_MAX_MSIX_VECTORS_82599;
2898                break;
2899        default:
2900                return 1;
2901        }
2902
2903        msix_count = ixgbe_read_pci_cfg_word(hw, pcie_offset);
2904        if (ixgbe_removed(hw->hw_addr))
2905                msix_count = 0;
2906        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2907
2908        /* MSI-X count is zero-based in HW */
2909        msix_count++;
2910
2911        if (msix_count > max_msix_count)
2912                msix_count = max_msix_count;
2913
2914        return msix_count;
2915}
2916
2917/**
2918 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2919 *  @hw: pointer to hardware struct
2920 *  @rar: receive address register index to disassociate
2921 *  @vmdq: VMDq pool index to remove from the rar
2922 **/
2923s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2924{
2925        u32 mpsar_lo, mpsar_hi;
2926        u32 rar_entries = hw->mac.num_rar_entries;
2927
2928        /* Make sure we are using a valid rar index range */
2929        if (rar >= rar_entries) {
2930                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2931                return IXGBE_ERR_INVALID_ARGUMENT;
2932        }
2933
2934        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2935        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2936
2937        if (ixgbe_removed(hw->hw_addr))
2938                return 0;
2939
2940        if (!mpsar_lo && !mpsar_hi)
2941                return 0;
2942
2943        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2944                if (mpsar_lo) {
2945                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2946                        mpsar_lo = 0;
2947                }
2948                if (mpsar_hi) {
2949                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2950                        mpsar_hi = 0;
2951                }
2952        } else if (vmdq < 32) {
2953                mpsar_lo &= ~BIT(vmdq);
2954                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2955        } else {
2956                mpsar_hi &= ~BIT(vmdq - 32);
2957                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2958        }
2959
2960        /* was that the last pool using this rar? */
2961        if (mpsar_lo == 0 && mpsar_hi == 0 &&
2962            rar != 0 && rar != hw->mac.san_mac_rar_index)
2963                hw->mac.ops.clear_rar(hw, rar);
2964
2965        return 0;
2966}
2967
2968/**
2969 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2970 *  @hw: pointer to hardware struct
2971 *  @rar: receive address register index to associate with a VMDq index
2972 *  @vmdq: VMDq pool index
2973 **/
2974s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2975{
2976        u32 mpsar;
2977        u32 rar_entries = hw->mac.num_rar_entries;
2978
2979        /* Make sure we are using a valid rar index range */
2980        if (rar >= rar_entries) {
2981                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2982                return IXGBE_ERR_INVALID_ARGUMENT;
2983        }
2984
2985        if (vmdq < 32) {
2986                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2987                mpsar |= BIT(vmdq);
2988                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2989        } else {
2990                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2991                mpsar |= BIT(vmdq - 32);
2992                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2993        }
2994        return 0;
2995}
2996
2997/**
2998 *  This function should only be involved in the IOV mode.
2999 *  In IOV mode, Default pool is next pool after the number of
3000 *  VFs advertized and not 0.
3001 *  MPSAR table needs to be updated for SAN_MAC RAR [hw->mac.san_mac_rar_index]
3002 *
3003 *  ixgbe_set_vmdq_san_mac - Associate default VMDq pool index with a rx address
3004 *  @hw: pointer to hardware struct
3005 *  @vmdq: VMDq pool index
3006 **/
3007s32 ixgbe_set_vmdq_san_mac_generic(struct ixgbe_hw *hw, u32 vmdq)
3008{
3009        u32 rar = hw->mac.san_mac_rar_index;
3010
3011        if (vmdq < 32) {
3012                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), BIT(vmdq));
3013                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
3014        } else {
3015                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
3016                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), BIT(vmdq - 32));
3017        }
3018
3019        return 0;
3020}
3021
3022/**
3023 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
3024 *  @hw: pointer to hardware structure
3025 **/
3026s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
3027{
3028        int i;
3029
3030        for (i = 0; i < 128; i++)
3031                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
3032
3033        return 0;
3034}
3035
3036/**
3037 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
3038 *  @hw: pointer to hardware structure
3039 *  @vlan: VLAN id to write to VLAN filter
3040 *
3041 *  return the VLVF index where this VLAN id should be placed
3042 *
3043 **/
3044static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan, bool vlvf_bypass)
3045{
3046        s32 regindex, first_empty_slot;
3047        u32 bits;
3048
3049        /* short cut the special case */
3050        if (vlan == 0)
3051                return 0;
3052
3053        /* if vlvf_bypass is set we don't want to use an empty slot, we
3054         * will simply bypass the VLVF if there are no entries present in the
3055         * VLVF that contain our VLAN
3056         */
3057        first_empty_slot = vlvf_bypass ? IXGBE_ERR_NO_SPACE : 0;
3058
3059        /* add VLAN enable bit for comparison */
3060        vlan |= IXGBE_VLVF_VIEN;
3061
3062        /* Search for the vlan id in the VLVF entries. Save off the first empty
3063         * slot found along the way.
3064         *
3065         * pre-decrement loop covering (IXGBE_VLVF_ENTRIES - 1) .. 1
3066         */
3067        for (regindex = IXGBE_VLVF_ENTRIES; --regindex;) {
3068                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
3069                if (bits == vlan)
3070                        return regindex;
3071                if (!first_empty_slot && !bits)
3072                        first_empty_slot = regindex;
3073        }
3074
3075        /* If we are here then we didn't find the VLAN.  Return first empty
3076         * slot we found during our search, else error.
3077         */
3078        if (!first_empty_slot)
3079                hw_dbg(hw, "No space in VLVF.\n");
3080
3081        return first_empty_slot ? : IXGBE_ERR_NO_SPACE;
3082}
3083
3084/**
3085 *  ixgbe_set_vfta_generic - Set VLAN filter table
3086 *  @hw: pointer to hardware structure
3087 *  @vlan: VLAN id to write to VLAN filter
3088 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
3089 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
3090 *  @vlvf_bypass: boolean flag indicating updating default pool is okay
3091 *
3092 *  Turn on/off specified VLAN in the VLAN filter table.
3093 **/
3094s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
3095                           bool vlan_on, bool vlvf_bypass)
3096{
3097        u32 regidx, vfta_delta, vfta, bits;
3098        s32 vlvf_index;
3099
3100        if ((vlan > 4095) || (vind > 63))
3101                return IXGBE_ERR_PARAM;
3102
3103        /*
3104         * this is a 2 part operation - first the VFTA, then the
3105         * VLVF and VLVFB if VT Mode is set
3106         * We don't write the VFTA until we know the VLVF part succeeded.
3107         */
3108
3109        /* Part 1
3110         * The VFTA is a bitstring made up of 128 32-bit registers
3111         * that enable the particular VLAN id, much like the MTA:
3112         *    bits[11-5]: which register
3113         *    bits[4-0]:  which bit in the register
3114         */
3115        regidx = vlan / 32;
3116        vfta_delta = BIT(vlan % 32);
3117        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regidx));
3118
3119        /* vfta_delta represents the difference between the current value
3120         * of vfta and the value we want in the register.  Since the diff
3121         * is an XOR mask we can just update vfta using an XOR.
3122         */
3123        vfta_delta &= vlan_on ? ~vfta : vfta;
3124        vfta ^= vfta_delta;
3125
3126        /* Part 2
3127         * If VT Mode is set
3128         *   Either vlan_on
3129         *     make sure the vlan is in VLVF
3130         *     set the vind bit in the matching VLVFB
3131         *   Or !vlan_on
3132         *     clear the pool bit and possibly the vind
3133         */
3134        if (!(IXGBE_READ_REG(hw, IXGBE_VT_CTL) & IXGBE_VT_CTL_VT_ENABLE))
3135                goto vfta_update;
3136
3137        vlvf_index = ixgbe_find_vlvf_slot(hw, vlan, vlvf_bypass);
3138        if (vlvf_index < 0) {
3139                if (vlvf_bypass)
3140                        goto vfta_update;
3141                return vlvf_index;
3142        }
3143
3144        bits = IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32));
3145
3146        /* set the pool bit */
3147        bits |= BIT(vind % 32);
3148        if (vlan_on)
3149                goto vlvf_update;
3150
3151        /* clear the pool bit */
3152        bits ^= BIT(vind % 32);
3153
3154        if (!bits &&
3155            !IXGBE_READ_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + 1 - vind / 32))) {
3156                /* Clear VFTA first, then disable VLVF.  Otherwise
3157                 * we run the risk of stray packets leaking into
3158                 * the PF via the default pool
3159                 */
3160                if (vfta_delta)
3161                        IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3162
3163                /* disable VLVF and clear remaining bit from pool */
3164                IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3165                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), 0);
3166
3167                return 0;
3168        }
3169
3170        /* If there are still bits set in the VLVFB registers
3171         * for the VLAN ID indicated we need to see if the
3172         * caller is requesting that we clear the VFTA entry bit.
3173         * If the caller has requested that we clear the VFTA
3174         * entry bit but there are still pools/VFs using this VLAN
3175         * ID entry then ignore the request.  We're not worried
3176         * about the case where we're turning the VFTA VLAN ID
3177         * entry bit on, only when requested to turn it off as
3178         * there may be multiple pools and/or VFs using the
3179         * VLAN ID entry.  In that case we cannot clear the
3180         * VFTA bit until all pools/VFs using that VLAN ID have also
3181         * been cleared.  This will be indicated by "bits" being
3182         * zero.
3183         */
3184        vfta_delta = 0;
3185
3186vlvf_update:
3187        /* record pool change and enable VLAN ID if not already enabled */
3188        IXGBE_WRITE_REG(hw, IXGBE_VLVFB(vlvf_index * 2 + vind / 32), bits);
3189        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), IXGBE_VLVF_VIEN | vlan);
3190
3191vfta_update:
3192        /* Update VFTA now that we are ready for traffic */
3193        if (vfta_delta)
3194                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regidx), vfta);
3195
3196        return 0;
3197}
3198
3199/**
3200 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3201 *  @hw: pointer to hardware structure
3202 *
3203 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3204 **/
3205s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3206{
3207        u32 offset;
3208
3209        for (offset = 0; offset < hw->mac.vft_size; offset++)
3210                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3211
3212        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3213                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3214                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2), 0);
3215                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset * 2 + 1), 0);
3216        }
3217
3218        return 0;
3219}
3220
3221/**
3222 *  ixgbe_need_crosstalk_fix - Determine if we need to do cross talk fix
3223 *  @hw: pointer to hardware structure
3224 *
3225 *  Contains the logic to identify if we need to verify link for the
3226 *  crosstalk fix
3227 **/
3228static bool ixgbe_need_crosstalk_fix(struct ixgbe_hw *hw)
3229{
3230        /* Does FW say we need the fix */
3231        if (!hw->need_crosstalk_fix)
3232                return false;
3233
3234        /* Only consider SFP+ PHYs i.e. media type fiber */
3235        switch (hw->mac.ops.get_media_type(hw)) {
3236        case ixgbe_media_type_fiber:
3237        case ixgbe_media_type_fiber_qsfp:
3238                break;
3239        default:
3240                return false;
3241        }
3242
3243        return true;
3244}
3245
3246/**
3247 *  ixgbe_check_mac_link_generic - Determine link and speed status
3248 *  @hw: pointer to hardware structure
3249 *  @speed: pointer to link speed
3250 *  @link_up: true when link is up
3251 *  @link_up_wait_to_complete: bool used to wait for link up or not
3252 *
3253 *  Reads the links register to determine if link is up and the current speed
3254 **/
3255s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3256                                 bool *link_up, bool link_up_wait_to_complete)
3257{
3258        u32 links_reg, links_orig;
3259        u32 i;
3260
3261        /* If Crosstalk fix enabled do the sanity check of making sure
3262         * the SFP+ cage is full.
3263         */
3264        if (ixgbe_need_crosstalk_fix(hw)) {
3265                u32 sfp_cage_full;
3266
3267                switch (hw->mac.type) {
3268                case ixgbe_mac_82599EB:
3269                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3270                                        IXGBE_ESDP_SDP2;
3271                        break;
3272                case ixgbe_mac_X550EM_x:
3273                case ixgbe_mac_x550em_a:
3274                        sfp_cage_full = IXGBE_READ_REG(hw, IXGBE_ESDP) &
3275                                        IXGBE_ESDP_SDP0;
3276                        break;
3277                default:
3278                        /* sanity check - No SFP+ devices here */
3279                        sfp_cage_full = false;
3280                        break;
3281                }
3282
3283                if (!sfp_cage_full) {
3284                        *link_up = false;
3285                        *speed = IXGBE_LINK_SPEED_UNKNOWN;
3286                        return 0;
3287                }
3288        }
3289
3290        /* clear the old state */
3291        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3292
3293        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3294
3295        if (links_orig != links_reg) {
3296                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3297                       links_orig, links_reg);
3298        }
3299
3300        if (link_up_wait_to_complete) {
3301                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3302                        if (links_reg & IXGBE_LINKS_UP) {
3303                                *link_up = true;
3304                                break;
3305                        } else {
3306                                *link_up = false;
3307                        }
3308                        msleep(100);
3309                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3310                }
3311        } else {
3312                if (links_reg & IXGBE_LINKS_UP)
3313                        *link_up = true;
3314                else
3315                        *link_up = false;
3316        }
3317
3318        switch (links_reg & IXGBE_LINKS_SPEED_82599) {
3319        case IXGBE_LINKS_SPEED_10G_82599:
3320                if ((hw->mac.type >= ixgbe_mac_X550) &&
3321                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3322                        *speed = IXGBE_LINK_SPEED_2_5GB_FULL;
3323                else
3324                        *speed = IXGBE_LINK_SPEED_10GB_FULL;
3325                break;
3326        case IXGBE_LINKS_SPEED_1G_82599:
3327                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3328                break;
3329        case IXGBE_LINKS_SPEED_100_82599:
3330                if ((hw->mac.type >= ixgbe_mac_X550) &&
3331                    (links_reg & IXGBE_LINKS_SPEED_NON_STD))
3332                        *speed = IXGBE_LINK_SPEED_5GB_FULL;
3333                else
3334                        *speed = IXGBE_LINK_SPEED_100_FULL;
3335                break;
3336        default:
3337                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3338        }
3339
3340        return 0;
3341}
3342
3343/**
3344 *  ixgbe_get_wwn_prefix_generic - Get alternative WWNN/WWPN prefix from
3345 *  the EEPROM
3346 *  @hw: pointer to hardware structure
3347 *  @wwnn_prefix: the alternative WWNN prefix
3348 *  @wwpn_prefix: the alternative WWPN prefix
3349 *
3350 *  This function will read the EEPROM from the alternative SAN MAC address
3351 *  block to check the support for the alternative WWNN/WWPN prefix support.
3352 **/
3353s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3354                                        u16 *wwpn_prefix)
3355{
3356        u16 offset, caps;
3357        u16 alt_san_mac_blk_offset;
3358
3359        /* clear output first */
3360        *wwnn_prefix = 0xFFFF;
3361        *wwpn_prefix = 0xFFFF;
3362
3363        /* check if alternative SAN MAC is supported */
3364        offset = IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR;
3365        if (hw->eeprom.ops.read(hw, offset, &alt_san_mac_blk_offset))
3366                goto wwn_prefix_err;
3367
3368        if ((alt_san_mac_blk_offset == 0) ||
3369            (alt_san_mac_blk_offset == 0xFFFF))
3370                return 0;
3371
3372        /* check capability in alternative san mac address block */
3373        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3374        if (hw->eeprom.ops.read(hw, offset, &caps))
3375                goto wwn_prefix_err;
3376        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3377                return 0;
3378
3379        /* get the corresponding prefix for WWNN/WWPN */
3380        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3381        if (hw->eeprom.ops.read(hw, offset, wwnn_prefix))
3382                hw_err(hw, "eeprom read at offset %d failed\n", offset);
3383
3384        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3385        if (hw->eeprom.ops.read(hw, offset, wwpn_prefix))
3386                goto wwn_prefix_err;
3387
3388        return 0;
3389
3390wwn_prefix_err:
3391        hw_err(hw, "eeprom read at offset %d failed\n", offset);
3392        return 0;
3393}
3394
3395/**
3396 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3397 *  @hw: pointer to hardware structure
3398 *  @enable: enable or disable switch for MAC anti-spoofing
3399 *  @vf: Virtual Function pool - VF Pool to set for MAC anti-spoofing
3400 *
3401 **/
3402void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3403{
3404        int vf_target_reg = vf >> 3;
3405        int vf_target_shift = vf % 8;
3406        u32 pfvfspoof;
3407
3408        if (hw->mac.type == ixgbe_mac_82598EB)
3409                return;
3410
3411        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3412        if (enable)
3413                pfvfspoof |= BIT(vf_target_shift);
3414        else
3415                pfvfspoof &= ~BIT(vf_target_shift);
3416        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3417}
3418
3419/**
3420 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3421 *  @hw: pointer to hardware structure
3422 *  @enable: enable or disable switch for VLAN anti-spoofing
3423 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3424 *
3425 **/
3426void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3427{
3428        int vf_target_reg = vf >> 3;
3429        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3430        u32 pfvfspoof;
3431
3432        if (hw->mac.type == ixgbe_mac_82598EB)
3433                return;
3434
3435        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3436        if (enable)
3437                pfvfspoof |= BIT(vf_target_shift);
3438        else
3439                pfvfspoof &= ~BIT(vf_target_shift);
3440        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3441}
3442
3443/**
3444 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3445 *  @hw: pointer to hardware structure
3446 *  @device_caps: the EEPROM word with the extra device capabilities
3447 *
3448 *  This function will read the EEPROM location for the device capabilities,
3449 *  and return the word through device_caps.
3450 **/
3451s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3452{
3453        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3454
3455        return 0;
3456}
3457
3458/**
3459 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3460 * @hw: pointer to hardware structure
3461 * @num_pb: number of packet buffers to allocate
3462 * @headroom: reserve n KB of headroom
3463 * @strategy: packet buffer allocation strategy
3464 **/
3465void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3466                             int num_pb,
3467                             u32 headroom,
3468                             int strategy)
3469{
3470        u32 pbsize = hw->mac.rx_pb_size;
3471        int i = 0;
3472        u32 rxpktsize, txpktsize, txpbthresh;
3473
3474        /* Reserve headroom */
3475        pbsize -= headroom;
3476
3477        if (!num_pb)
3478                num_pb = 1;
3479
3480        /* Divide remaining packet buffer space amongst the number
3481         * of packet buffers requested using supplied strategy.
3482         */
3483        switch (strategy) {
3484        case (PBA_STRATEGY_WEIGHTED):
3485                /* pba_80_48 strategy weight first half of packet buffer with
3486                 * 5/8 of the packet buffer space.
3487                 */
3488                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3489                pbsize -= rxpktsize * (num_pb / 2);
3490                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3491                for (; i < (num_pb / 2); i++)
3492                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3493                /* Fall through to configure remaining packet buffers */
3494        case (PBA_STRATEGY_EQUAL):
3495                /* Divide the remaining Rx packet buffer evenly among the TCs */
3496                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3497                for (; i < num_pb; i++)
3498                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3499                break;
3500        default:
3501                break;
3502        }
3503
3504        /*
3505         * Setup Tx packet buffer and threshold equally for all TCs
3506         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3507         * 10 since the largest packet we support is just over 9K.
3508         */
3509        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3510        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3511        for (i = 0; i < num_pb; i++) {
3512                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3513                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3514        }
3515
3516        /* Clear unused TCs, if any, to zero buffer size*/
3517        for (; i < IXGBE_MAX_PB; i++) {
3518                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3519                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3520                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3521        }
3522}
3523
3524/**
3525 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3526 *  @buffer: pointer to EEPROM
3527 *  @length: size of EEPROM to calculate a checksum for
3528 *
3529 *  Calculates the checksum for some buffer on a specified length.  The
3530 *  checksum calculated is returned.
3531 **/
3532static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3533{
3534        u32 i;
3535        u8 sum = 0;
3536
3537        if (!buffer)
3538                return 0;
3539
3540        for (i = 0; i < length; i++)
3541                sum += buffer[i];
3542
3543        return (u8) (0 - sum);
3544}
3545
3546/**
3547 *  ixgbe_host_interface_command - Issue command to manageability block
3548 *  @hw: pointer to the HW structure
3549 *  @buffer: contains the command to write and where the return status will
3550 *           be placed
3551 *  @length: length of buffer, must be multiple of 4 bytes
3552 *  @timeout: time in ms to wait for command completion
3553 *  @return_data: read and return data from the buffer (true) or not (false)
3554 *  Needed because FW structures are big endian and decoding of
3555 *  these fields can be 8 bit or 16 bit based on command. Decoding
3556 *  is not easily understood without making a table of commands.
3557 *  So we will leave this up to the caller to read back the data
3558 *  in these cases.
3559 *
3560 *  Communicates with the manageability block.  On success return 0
3561 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3562 **/
3563s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, void *buffer,
3564                                 u32 length, u32 timeout,
3565                                 bool return_data)
3566{
3567        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3568        u32 hicr, i, bi, fwsts;
3569        u16 buf_len, dword_len;
3570        union {
3571                struct ixgbe_hic_hdr hdr;
3572                u32 u32arr[1];
3573        } *bp = buffer;
3574        s32 status;
3575
3576        if (!length || length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3577                hw_dbg(hw, "Buffer length failure buffersize-%d.\n", length);
3578                return IXGBE_ERR_HOST_INTERFACE_COMMAND;
3579        }
3580        /* Take management host interface semaphore */
3581        status = hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3582        if (status)
3583                return status;
3584
3585        /* Set bit 9 of FWSTS clearing FW reset indication */
3586        fwsts = IXGBE_READ_REG(hw, IXGBE_FWSTS);
3587        IXGBE_WRITE_REG(hw, IXGBE_FWSTS, fwsts | IXGBE_FWSTS_FWRI);
3588
3589        /* Check that the host interface is enabled. */
3590        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3591        if (!(hicr & IXGBE_HICR_EN)) {
3592                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3593                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3594                goto rel_out;
3595        }
3596
3597        /* Calculate length in DWORDs. We must be DWORD aligned */
3598        if (length % sizeof(u32)) {
3599                hw_dbg(hw, "Buffer length failure, not aligned to dword");
3600                status = IXGBE_ERR_INVALID_ARGUMENT;
3601                goto rel_out;
3602        }
3603
3604        dword_len = length >> 2;
3605
3606        /* The device driver writes the relevant command block
3607         * into the ram area.
3608         */
3609        for (i = 0; i < dword_len; i++)
3610                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3611                                      i, cpu_to_le32(bp->u32arr[i]));
3612
3613        /* Setting this bit tells the ARC that a new command is pending. */
3614        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3615
3616        for (i = 0; i < timeout; i++) {
3617                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3618                if (!(hicr & IXGBE_HICR_C))
3619                        break;
3620                usleep_range(1000, 2000);
3621        }
3622
3623        /* Check command successful completion. */
3624        if ((timeout && i == timeout) ||
3625            !(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV)) {
3626                hw_dbg(hw, "Command has failed with no status valid.\n");
3627                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3628                goto rel_out;
3629        }
3630
3631        if (!return_data)
3632                goto rel_out;
3633
3634        /* Calculate length in DWORDs */
3635        dword_len = hdr_size >> 2;
3636
3637        /* first pull in the header so we know the buffer length */
3638        for (bi = 0; bi < dword_len; bi++) {
3639                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3640                le32_to_cpus(&bp->u32arr[bi]);
3641        }
3642
3643        /* If there is any thing in data position pull it in */
3644        buf_len = bp->hdr.buf_len;
3645        if (!buf_len)
3646                goto rel_out;
3647
3648        if (length < round_up(buf_len, 4) + hdr_size) {
3649                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3650                status = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3651                goto rel_out;
3652        }
3653
3654        /* Calculate length in DWORDs, add 3 for odd lengths */
3655        dword_len = (buf_len + 3) >> 2;
3656
3657        /* Pull in the rest of the buffer (bi is where we left off) */
3658        for (; bi <= dword_len; bi++) {
3659                bp->u32arr[bi] = IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, bi);
3660                le32_to_cpus(&bp->u32arr[bi]);
3661        }
3662
3663rel_out:
3664        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3665
3666        return status;
3667}
3668
3669/**
3670 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3671 *  @hw: pointer to the HW structure
3672 *  @maj: driver version major number
3673 *  @min: driver version minor number
3674 *  @build: driver version build number
3675 *  @sub: driver version sub build number
3676 *
3677 *  Sends driver version number to firmware through the manageability
3678 *  block.  On success return 0
3679 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3680 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3681 **/
3682s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3683                                 u8 build, u8 sub)
3684{
3685        struct ixgbe_hic_drv_info fw_cmd;
3686        int i;
3687        s32 ret_val;
3688
3689        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3690        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3691        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3692        fw_cmd.port_num = hw->bus.func;
3693        fw_cmd.ver_maj = maj;
3694        fw_cmd.ver_min = min;
3695        fw_cmd.ver_build = build;
3696        fw_cmd.ver_sub = sub;
3697        fw_cmd.hdr.checksum = 0;
3698        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3699                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3700        fw_cmd.pad = 0;
3701        fw_cmd.pad2 = 0;
3702
3703        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3704                ret_val = ixgbe_host_interface_command(hw, &fw_cmd,
3705                                                       sizeof(fw_cmd),
3706                                                       IXGBE_HI_COMMAND_TIMEOUT,
3707                                                       true);
3708                if (ret_val != 0)
3709                        continue;
3710
3711                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3712                    FW_CEM_RESP_STATUS_SUCCESS)
3713                        ret_val = 0;
3714                else
3715                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3716
3717                break;
3718        }
3719
3720        return ret_val;
3721}
3722
3723/**
3724 * ixgbe_clear_tx_pending - Clear pending TX work from the PCIe fifo
3725 * @hw: pointer to the hardware structure
3726 *
3727 * The 82599 and x540 MACs can experience issues if TX work is still pending
3728 * when a reset occurs.  This function prevents this by flushing the PCIe
3729 * buffers on the system.
3730 **/
3731void ixgbe_clear_tx_pending(struct ixgbe_hw *hw)
3732{
3733        u32 gcr_ext, hlreg0, i, poll;
3734        u16 value;
3735
3736        /*
3737         * If double reset is not requested then all transactions should
3738         * already be clear and as such there is no work to do
3739         */
3740        if (!(hw->mac.flags & IXGBE_FLAGS_DOUBLE_RESET_REQUIRED))
3741                return;
3742
3743        /*
3744         * Set loopback enable to prevent any transmits from being sent
3745         * should the link come up.  This assumes that the RXCTRL.RXEN bit
3746         * has already been cleared.
3747         */
3748        hlreg0 = IXGBE_READ_REG(hw, IXGBE_HLREG0);
3749        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0 | IXGBE_HLREG0_LPBK);
3750
3751        /* wait for a last completion before clearing buffers */
3752        IXGBE_WRITE_FLUSH(hw);
3753        usleep_range(3000, 6000);
3754
3755        /* Before proceeding, make sure that the PCIe block does not have
3756         * transactions pending.
3757         */
3758        poll = ixgbe_pcie_timeout_poll(hw);
3759        for (i = 0; i < poll; i++) {
3760                usleep_range(100, 200);
3761                value = ixgbe_read_pci_cfg_word(hw, IXGBE_PCI_DEVICE_STATUS);
3762                if (ixgbe_removed(hw->hw_addr))
3763                        break;
3764                if (!(value & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
3765                        break;
3766        }
3767
3768        /* initiate cleaning flow for buffers in the PCIe transaction layer */
3769        gcr_ext = IXGBE_READ_REG(hw, IXGBE_GCR_EXT);
3770        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT,
3771                        gcr_ext | IXGBE_GCR_EXT_BUFFERS_CLEAR);
3772
3773        /* Flush all writes and allow 20usec for all transactions to clear */
3774        IXGBE_WRITE_FLUSH(hw);
3775        udelay(20);
3776
3777        /* restore previous register values */
3778        IXGBE_WRITE_REG(hw, IXGBE_GCR_EXT, gcr_ext);
3779        IXGBE_WRITE_REG(hw, IXGBE_HLREG0, hlreg0);
3780}
3781
3782static const u8 ixgbe_emc_temp_data[4] = {
3783        IXGBE_EMC_INTERNAL_DATA,
3784        IXGBE_EMC_DIODE1_DATA,
3785        IXGBE_EMC_DIODE2_DATA,
3786        IXGBE_EMC_DIODE3_DATA
3787};
3788static const u8 ixgbe_emc_therm_limit[4] = {
3789        IXGBE_EMC_INTERNAL_THERM_LIMIT,
3790        IXGBE_EMC_DIODE1_THERM_LIMIT,
3791        IXGBE_EMC_DIODE2_THERM_LIMIT,
3792        IXGBE_EMC_DIODE3_THERM_LIMIT
3793};
3794
3795/**
3796 *  ixgbe_get_ets_data - Extracts the ETS bit data
3797 *  @hw: pointer to hardware structure
3798 *  @ets_cfg: extected ETS data
3799 *  @ets_offset: offset of ETS data
3800 *
3801 *  Returns error code.
3802 **/
3803static s32 ixgbe_get_ets_data(struct ixgbe_hw *hw, u16 *ets_cfg,
3804                              u16 *ets_offset)
3805{
3806        s32 status;
3807
3808        status = hw->eeprom.ops.read(hw, IXGBE_ETS_CFG, ets_offset);
3809        if (status)
3810                return status;
3811
3812        if ((*ets_offset == 0x0000) || (*ets_offset == 0xFFFF))
3813                return IXGBE_NOT_IMPLEMENTED;
3814
3815        status = hw->eeprom.ops.read(hw, *ets_offset, ets_cfg);
3816        if (status)
3817                return status;
3818
3819        if ((*ets_cfg & IXGBE_ETS_TYPE_MASK) != IXGBE_ETS_TYPE_EMC_SHIFTED)
3820                return IXGBE_NOT_IMPLEMENTED;
3821
3822        return 0;
3823}
3824
3825/**
3826 *  ixgbe_get_thermal_sensor_data - Gathers thermal sensor data
3827 *  @hw: pointer to hardware structure
3828 *
3829 *  Returns the thermal sensor data structure
3830 **/
3831s32 ixgbe_get_thermal_sensor_data_generic(struct ixgbe_hw *hw)
3832{
3833        s32 status;
3834        u16 ets_offset;
3835        u16 ets_cfg;
3836        u16 ets_sensor;
3837        u8  num_sensors;
3838        u8  i;
3839        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3840
3841        /* Only support thermal sensors attached to physical port 0 */
3842        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3843                return IXGBE_NOT_IMPLEMENTED;
3844
3845        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3846        if (status)
3847                return status;
3848
3849        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3850        if (num_sensors > IXGBE_MAX_SENSORS)
3851                num_sensors = IXGBE_MAX_SENSORS;
3852
3853        for (i = 0; i < num_sensors; i++) {
3854                u8  sensor_index;
3855                u8  sensor_location;
3856
3857                status = hw->eeprom.ops.read(hw, (ets_offset + 1 + i),
3858                                             &ets_sensor);
3859                if (status)
3860                        return status;
3861
3862                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3863                                IXGBE_ETS_DATA_INDEX_SHIFT);
3864                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3865                                   IXGBE_ETS_DATA_LOC_SHIFT);
3866
3867                if (sensor_location != 0) {
3868                        status = hw->phy.ops.read_i2c_byte(hw,
3869                                        ixgbe_emc_temp_data[sensor_index],
3870                                        IXGBE_I2C_THERMAL_SENSOR_ADDR,
3871                                        &data->sensor[i].temp);
3872                        if (status)
3873                                return status;
3874                }
3875        }
3876
3877        return 0;
3878}
3879
3880/**
3881 * ixgbe_init_thermal_sensor_thresh_generic - Inits thermal sensor thresholds
3882 * @hw: pointer to hardware structure
3883 *
3884 * Inits the thermal sensor thresholds according to the NVM map
3885 * and save off the threshold and location values into mac.thermal_sensor_data
3886 **/
3887s32 ixgbe_init_thermal_sensor_thresh_generic(struct ixgbe_hw *hw)
3888{
3889        s32 status;
3890        u16 ets_offset;
3891        u16 ets_cfg;
3892        u16 ets_sensor;
3893        u8  low_thresh_delta;
3894        u8  num_sensors;
3895        u8  therm_limit;
3896        u8  i;
3897        struct ixgbe_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
3898
3899        memset(data, 0, sizeof(struct ixgbe_thermal_sensor_data));
3900
3901        /* Only support thermal sensors attached to physical port 0 */
3902        if ((IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_LAN_ID_1))
3903                return IXGBE_NOT_IMPLEMENTED;
3904
3905        status = ixgbe_get_ets_data(hw, &ets_cfg, &ets_offset);
3906        if (status)
3907                return status;
3908
3909        low_thresh_delta = ((ets_cfg & IXGBE_ETS_LTHRES_DELTA_MASK) >>
3910                             IXGBE_ETS_LTHRES_DELTA_SHIFT);
3911        num_sensors = (ets_cfg & IXGBE_ETS_NUM_SENSORS_MASK);
3912        if (num_sensors > IXGBE_MAX_SENSORS)
3913                num_sensors = IXGBE_MAX_SENSORS;
3914
3915        for (i = 0; i < num_sensors; i++) {
3916                u8  sensor_index;
3917                u8  sensor_location;
3918
3919                if (hw->eeprom.ops.read(hw, ets_offset + 1 + i, &ets_sensor)) {
3920                        hw_err(hw, "eeprom read at offset %d failed\n",
3921                               ets_offset + 1 + i);
3922                        continue;
3923                }
3924                sensor_index = ((ets_sensor & IXGBE_ETS_DATA_INDEX_MASK) >>
3925                                IXGBE_ETS_DATA_INDEX_SHIFT);
3926                sensor_location = ((ets_sensor & IXGBE_ETS_DATA_LOC_MASK) >>
3927                                   IXGBE_ETS_DATA_LOC_SHIFT);
3928                therm_limit = ets_sensor & IXGBE_ETS_DATA_HTHRESH_MASK;
3929
3930                hw->phy.ops.write_i2c_byte(hw,
3931                        ixgbe_emc_therm_limit[sensor_index],
3932                        IXGBE_I2C_THERMAL_SENSOR_ADDR, therm_limit);
3933
3934                if (sensor_location == 0)
3935                        continue;
3936
3937                data->sensor[i].location = sensor_location;
3938                data->sensor[i].caution_thresh = therm_limit;
3939                data->sensor[i].max_op_thresh = therm_limit - low_thresh_delta;
3940        }
3941
3942        return 0;
3943}
3944
3945void ixgbe_disable_rx_generic(struct ixgbe_hw *hw)
3946{
3947        u32 rxctrl;
3948
3949        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3950        if (rxctrl & IXGBE_RXCTRL_RXEN) {
3951                if (hw->mac.type != ixgbe_mac_82598EB) {
3952                        u32 pfdtxgswc;
3953
3954                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3955                        if (pfdtxgswc & IXGBE_PFDTXGSWC_VT_LBEN) {
3956                                pfdtxgswc &= ~IXGBE_PFDTXGSWC_VT_LBEN;
3957                                IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3958                                hw->mac.set_lben = true;
3959                        } else {
3960                                hw->mac.set_lben = false;
3961                        }
3962                }
3963                rxctrl &= ~IXGBE_RXCTRL_RXEN;
3964                IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, rxctrl);
3965        }
3966}
3967
3968void ixgbe_enable_rx_generic(struct ixgbe_hw *hw)
3969{
3970        u32 rxctrl;
3971
3972        rxctrl = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
3973        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, (rxctrl | IXGBE_RXCTRL_RXEN));
3974
3975        if (hw->mac.type != ixgbe_mac_82598EB) {
3976                if (hw->mac.set_lben) {
3977                        u32 pfdtxgswc;
3978
3979                        pfdtxgswc = IXGBE_READ_REG(hw, IXGBE_PFDTXGSWC);
3980                        pfdtxgswc |= IXGBE_PFDTXGSWC_VT_LBEN;
3981                        IXGBE_WRITE_REG(hw, IXGBE_PFDTXGSWC, pfdtxgswc);
3982                        hw->mac.set_lben = false;
3983                }
3984        }
3985}
3986
3987/** ixgbe_mng_present - returns true when management capability is present
3988 * @hw: pointer to hardware structure
3989 **/
3990bool ixgbe_mng_present(struct ixgbe_hw *hw)
3991{
3992        u32 fwsm;
3993
3994        if (hw->mac.type < ixgbe_mac_82599EB)
3995                return false;
3996
3997        fwsm = IXGBE_READ_REG(hw, IXGBE_FWSM(hw));
3998        fwsm &= IXGBE_FWSM_MODE_MASK;
3999        return fwsm == IXGBE_FWSM_FW_MODE_PT;
4000}
4001
4002/**
4003 *  ixgbe_setup_mac_link_multispeed_fiber - Set MAC link speed
4004 *  @hw: pointer to hardware structure
4005 *  @speed: new link speed
4006 *  @autoneg_wait_to_complete: true when waiting for completion is needed
4007 *
4008 *  Set the link speed in the MAC and/or PHY register and restarts link.
4009 */
4010s32 ixgbe_setup_mac_link_multispeed_fiber(struct ixgbe_hw *hw,
4011                                          ixgbe_link_speed speed,
4012                                          bool autoneg_wait_to_complete)
4013{
4014        ixgbe_link_speed link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4015        ixgbe_link_speed highest_link_speed = IXGBE_LINK_SPEED_UNKNOWN;
4016        s32 status = 0;
4017        u32 speedcnt = 0;
4018        u32 i = 0;
4019        bool autoneg, link_up = false;
4020
4021        /* Mask off requested but non-supported speeds */
4022        status = hw->mac.ops.get_link_capabilities(hw, &link_speed, &autoneg);
4023        if (status)
4024                return status;
4025
4026        speed &= link_speed;
4027
4028        /* Try each speed one by one, highest priority first.  We do this in
4029         * software because 10Gb fiber doesn't support speed autonegotiation.
4030         */
4031        if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
4032                speedcnt++;
4033                highest_link_speed = IXGBE_LINK_SPEED_10GB_FULL;
4034
4035                /* If we already have link at this speed, just jump out */
4036                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4037                                                false);
4038                if (status)
4039                        return status;
4040
4041                if (link_speed == IXGBE_LINK_SPEED_10GB_FULL && link_up)
4042                        goto out;
4043
4044                /* Set the module link speed */
4045                switch (hw->phy.media_type) {
4046                case ixgbe_media_type_fiber:
4047                        hw->mac.ops.set_rate_select_speed(hw,
4048                                                    IXGBE_LINK_SPEED_10GB_FULL);
4049                        break;
4050                case ixgbe_media_type_fiber_qsfp:
4051                        /* QSFP module automatically detects MAC link speed */
4052                        break;
4053                default:
4054                        hw_dbg(hw, "Unexpected media type\n");
4055                        break;
4056                }
4057
4058                /* Allow module to change analog characteristics (1G->10G) */
4059                msleep(40);
4060
4061                status = hw->mac.ops.setup_mac_link(hw,
4062                                                    IXGBE_LINK_SPEED_10GB_FULL,
4063                                                    autoneg_wait_to_complete);
4064                if (status)
4065                        return status;
4066
4067                /* Flap the Tx laser if it has not already been done */
4068                if (hw->mac.ops.flap_tx_laser)
4069                        hw->mac.ops.flap_tx_laser(hw);
4070
4071                /* Wait for the controller to acquire link.  Per IEEE 802.3ap,
4072                 * Section 73.10.2, we may have to wait up to 500ms if KR is
4073                 * attempted.  82599 uses the same timing for 10g SFI.
4074                 */
4075                for (i = 0; i < 5; i++) {
4076                        /* Wait for the link partner to also set speed */
4077                        msleep(100);
4078
4079                        /* If we have link, just jump out */
4080                        status = hw->mac.ops.check_link(hw, &link_speed,
4081                                                        &link_up, false);
4082                        if (status)
4083                                return status;
4084
4085                        if (link_up)
4086                                goto out;
4087                }
4088        }
4089
4090        if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
4091                speedcnt++;
4092                if (highest_link_speed == IXGBE_LINK_SPEED_UNKNOWN)
4093                        highest_link_speed = IXGBE_LINK_SPEED_1GB_FULL;
4094
4095                /* If we already have link at this speed, just jump out */
4096                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4097                                                false);
4098                if (status)
4099                        return status;
4100
4101                if (link_speed == IXGBE_LINK_SPEED_1GB_FULL && link_up)
4102                        goto out;
4103
4104                /* Set the module link speed */
4105                switch (hw->phy.media_type) {
4106                case ixgbe_media_type_fiber:
4107                        hw->mac.ops.set_rate_select_speed(hw,
4108                                                     IXGBE_LINK_SPEED_1GB_FULL);
4109                        break;
4110                case ixgbe_media_type_fiber_qsfp:
4111                        /* QSFP module automatically detects link speed */
4112                        break;
4113                default:
4114                        hw_dbg(hw, "Unexpected media type\n");
4115                        break;
4116                }
4117
4118                /* Allow module to change analog characteristics (10G->1G) */
4119                msleep(40);
4120
4121                status = hw->mac.ops.setup_mac_link(hw,
4122                                                    IXGBE_LINK_SPEED_1GB_FULL,
4123                                                    autoneg_wait_to_complete);
4124                if (status)
4125                        return status;
4126
4127                /* Flap the Tx laser if it has not already been done */
4128                if (hw->mac.ops.flap_tx_laser)
4129                        hw->mac.ops.flap_tx_laser(hw);
4130
4131                /* Wait for the link partner to also set speed */
4132                msleep(100);
4133
4134                /* If we have link, just jump out */
4135                status = hw->mac.ops.check_link(hw, &link_speed, &link_up,
4136                                                false);
4137                if (status)
4138                        return status;
4139
4140                if (link_up)
4141                        goto out;
4142        }
4143
4144        /* We didn't get link.  Configure back to the highest speed we tried,
4145         * (if there was more than one).  We call ourselves back with just the
4146         * single highest speed that the user requested.
4147         */
4148        if (speedcnt > 1)
4149                status = ixgbe_setup_mac_link_multispeed_fiber(hw,
4150                                                      highest_link_speed,
4151                                                      autoneg_wait_to_complete);
4152
4153out:
4154        /* Set autoneg_advertised value based on input link speed */
4155        hw->phy.autoneg_advertised = 0;
4156
4157        if (speed & IXGBE_LINK_SPEED_10GB_FULL)
4158                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
4159
4160        if (speed & IXGBE_LINK_SPEED_1GB_FULL)
4161                hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
4162
4163        return status;
4164}
4165
4166/**
4167 *  ixgbe_set_soft_rate_select_speed - Set module link speed
4168 *  @hw: pointer to hardware structure
4169 *  @speed: link speed to set
4170 *
4171 *  Set module link speed via the soft rate select.
4172 */
4173void ixgbe_set_soft_rate_select_speed(struct ixgbe_hw *hw,
4174                                      ixgbe_link_speed speed)
4175{
4176        s32 status;
4177        u8 rs, eeprom_data;
4178
4179        switch (speed) {
4180        case IXGBE_LINK_SPEED_10GB_FULL:
4181                /* one bit mask same as setting on */
4182                rs = IXGBE_SFF_SOFT_RS_SELECT_10G;
4183                break;
4184        case IXGBE_LINK_SPEED_1GB_FULL:
4185                rs = IXGBE_SFF_SOFT_RS_SELECT_1G;
4186                break;
4187        default:
4188                hw_dbg(hw, "Invalid fixed module speed\n");
4189                return;
4190        }
4191
4192        /* Set RS0 */
4193        status = hw->phy.ops.read_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4194                                           IXGBE_I2C_EEPROM_DEV_ADDR2,
4195                                           &eeprom_data);
4196        if (status) {
4197                hw_dbg(hw, "Failed to read Rx Rate Select RS0\n");
4198                return;
4199        }
4200
4201        eeprom_data = (eeprom_data & ~IXGBE_SFF_SOFT_RS_SELECT_MASK) | rs;
4202
4203        status = hw->phy.ops.write_i2c_byte(hw, IXGBE_SFF_SFF_8472_OSCB,
4204                                            IXGBE_I2C_EEPROM_DEV_ADDR2,
4205                                            eeprom_data);
4206        if (status) {
4207                hw_dbg(hw, "Failed to write Rx Rate Select RS0\n");
4208                return;
4209        }
4210}
4211