linux/drivers/net/ethernet/sfc/farch.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2005-2006 Fen Systems Ltd.
   4 * Copyright 2006-2013 Solarflare Communications Inc.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation, incorporated herein by reference.
   9 */
  10
  11#include <linux/bitops.h>
  12#include <linux/delay.h>
  13#include <linux/interrupt.h>
  14#include <linux/pci.h>
  15#include <linux/module.h>
  16#include <linux/seq_file.h>
  17#include <linux/crc32.h>
  18#include "net_driver.h"
  19#include "bitfield.h"
  20#include "efx.h"
  21#include "nic.h"
  22#include "farch_regs.h"
  23#include "sriov.h"
  24#include "siena_sriov.h"
  25#include "io.h"
  26#include "workarounds.h"
  27
  28/* Falcon-architecture (SFC4000 and SFC9000-family) support */
  29
  30/**************************************************************************
  31 *
  32 * Configurable values
  33 *
  34 **************************************************************************
  35 */
  36
  37/* This is set to 16 for a good reason.  In summary, if larger than
  38 * 16, the descriptor cache holds more than a default socket
  39 * buffer's worth of packets (for UDP we can only have at most one
  40 * socket buffer's worth outstanding).  This combined with the fact
  41 * that we only get 1 TX event per descriptor cache means the NIC
  42 * goes idle.
  43 */
  44#define TX_DC_ENTRIES 16
  45#define TX_DC_ENTRIES_ORDER 1
  46
  47#define RX_DC_ENTRIES 64
  48#define RX_DC_ENTRIES_ORDER 3
  49
  50/* If EFX_MAX_INT_ERRORS internal errors occur within
  51 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
  52 * disable it.
  53 */
  54#define EFX_INT_ERROR_EXPIRE 3600
  55#define EFX_MAX_INT_ERRORS 5
  56
  57/* Depth of RX flush request fifo */
  58#define EFX_RX_FLUSH_COUNT 4
  59
  60/* Driver generated events */
  61#define _EFX_CHANNEL_MAGIC_TEST         0x000101
  62#define _EFX_CHANNEL_MAGIC_FILL         0x000102
  63#define _EFX_CHANNEL_MAGIC_RX_DRAIN     0x000103
  64#define _EFX_CHANNEL_MAGIC_TX_DRAIN     0x000104
  65
  66#define _EFX_CHANNEL_MAGIC(_code, _data)        ((_code) << 8 | (_data))
  67#define _EFX_CHANNEL_MAGIC_CODE(_magic)         ((_magic) >> 8)
  68
  69#define EFX_CHANNEL_MAGIC_TEST(_channel)                                \
  70        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
  71#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)                               \
  72        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,                     \
  73                           efx_rx_queue_index(_rx_queue))
  74#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)                           \
  75        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,                 \
  76                           efx_rx_queue_index(_rx_queue))
  77#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)                           \
  78        _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,                 \
  79                           (_tx_queue)->queue)
  80
  81static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
  82
  83/**************************************************************************
  84 *
  85 * Hardware access
  86 *
  87 **************************************************************************/
  88
  89static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
  90                                     unsigned int index)
  91{
  92        efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
  93                        value, index);
  94}
  95
  96static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
  97                                     const efx_oword_t *mask)
  98{
  99        return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
 100                ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
 101}
 102
 103int efx_farch_test_registers(struct efx_nic *efx,
 104                             const struct efx_farch_register_test *regs,
 105                             size_t n_regs)
 106{
 107        unsigned address = 0;
 108        int i, j;
 109        efx_oword_t mask, imask, original, reg, buf;
 110
 111        for (i = 0; i < n_regs; ++i) {
 112                address = regs[i].address;
 113                mask = imask = regs[i].mask;
 114                EFX_INVERT_OWORD(imask);
 115
 116                efx_reado(efx, &original, address);
 117
 118                /* bit sweep on and off */
 119                for (j = 0; j < 128; j++) {
 120                        if (!EFX_EXTRACT_OWORD32(mask, j, j))
 121                                continue;
 122
 123                        /* Test this testable bit can be set in isolation */
 124                        EFX_AND_OWORD(reg, original, mask);
 125                        EFX_SET_OWORD32(reg, j, j, 1);
 126
 127                        efx_writeo(efx, &reg, address);
 128                        efx_reado(efx, &buf, address);
 129
 130                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 131                                goto fail;
 132
 133                        /* Test this testable bit can be cleared in isolation */
 134                        EFX_OR_OWORD(reg, original, mask);
 135                        EFX_SET_OWORD32(reg, j, j, 0);
 136
 137                        efx_writeo(efx, &reg, address);
 138                        efx_reado(efx, &buf, address);
 139
 140                        if (efx_masked_compare_oword(&reg, &buf, &mask))
 141                                goto fail;
 142                }
 143
 144                efx_writeo(efx, &original, address);
 145        }
 146
 147        return 0;
 148
 149fail:
 150        netif_err(efx, hw, efx->net_dev,
 151                  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
 152                  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
 153                  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
 154        return -EIO;
 155}
 156
 157/**************************************************************************
 158 *
 159 * Special buffer handling
 160 * Special buffers are used for event queues and the TX and RX
 161 * descriptor rings.
 162 *
 163 *************************************************************************/
 164
 165/*
 166 * Initialise a special buffer
 167 *
 168 * This will define a buffer (previously allocated via
 169 * efx_alloc_special_buffer()) in the buffer table, allowing
 170 * it to be used for event queues, descriptor rings etc.
 171 */
 172static void
 173efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 174{
 175        efx_qword_t buf_desc;
 176        unsigned int index;
 177        dma_addr_t dma_addr;
 178        int i;
 179
 180        EFX_BUG_ON_PARANOID(!buffer->buf.addr);
 181
 182        /* Write buffer descriptors to NIC */
 183        for (i = 0; i < buffer->entries; i++) {
 184                index = buffer->index + i;
 185                dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
 186                netif_dbg(efx, probe, efx->net_dev,
 187                          "mapping special buffer %d at %llx\n",
 188                          index, (unsigned long long)dma_addr);
 189                EFX_POPULATE_QWORD_3(buf_desc,
 190                                     FRF_AZ_BUF_ADR_REGION, 0,
 191                                     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
 192                                     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
 193                efx_write_buf_tbl(efx, &buf_desc, index);
 194        }
 195}
 196
 197/* Unmaps a buffer and clears the buffer table entries */
 198static void
 199efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 200{
 201        efx_oword_t buf_tbl_upd;
 202        unsigned int start = buffer->index;
 203        unsigned int end = (buffer->index + buffer->entries - 1);
 204
 205        if (!buffer->entries)
 206                return;
 207
 208        netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
 209                  buffer->index, buffer->index + buffer->entries - 1);
 210
 211        EFX_POPULATE_OWORD_4(buf_tbl_upd,
 212                             FRF_AZ_BUF_UPD_CMD, 0,
 213                             FRF_AZ_BUF_CLR_CMD, 1,
 214                             FRF_AZ_BUF_CLR_END_ID, end,
 215                             FRF_AZ_BUF_CLR_START_ID, start);
 216        efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
 217}
 218
 219/*
 220 * Allocate a new special buffer
 221 *
 222 * This allocates memory for a new buffer, clears it and allocates a
 223 * new buffer ID range.  It does not write into the buffer table.
 224 *
 225 * This call will allocate 4KB buffers, since 8KB buffers can't be
 226 * used for event queues and descriptor rings.
 227 */
 228static int efx_alloc_special_buffer(struct efx_nic *efx,
 229                                    struct efx_special_buffer *buffer,
 230                                    unsigned int len)
 231{
 232#ifdef CONFIG_SFC_SRIOV
 233        struct siena_nic_data *nic_data = efx->nic_data;
 234#endif
 235        len = ALIGN(len, EFX_BUF_SIZE);
 236
 237        if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
 238                return -ENOMEM;
 239        buffer->entries = len / EFX_BUF_SIZE;
 240        BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
 241
 242        /* Select new buffer ID */
 243        buffer->index = efx->next_buffer_table;
 244        efx->next_buffer_table += buffer->entries;
 245#ifdef CONFIG_SFC_SRIOV
 246        BUG_ON(efx_siena_sriov_enabled(efx) &&
 247               nic_data->vf_buftbl_base < efx->next_buffer_table);
 248#endif
 249
 250        netif_dbg(efx, probe, efx->net_dev,
 251                  "allocating special buffers %d-%d at %llx+%x "
 252                  "(virt %p phys %llx)\n", buffer->index,
 253                  buffer->index + buffer->entries - 1,
 254                  (u64)buffer->buf.dma_addr, len,
 255                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 256
 257        return 0;
 258}
 259
 260static void
 261efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
 262{
 263        if (!buffer->buf.addr)
 264                return;
 265
 266        netif_dbg(efx, hw, efx->net_dev,
 267                  "deallocating special buffers %d-%d at %llx+%x "
 268                  "(virt %p phys %llx)\n", buffer->index,
 269                  buffer->index + buffer->entries - 1,
 270                  (u64)buffer->buf.dma_addr, buffer->buf.len,
 271                  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
 272
 273        efx_nic_free_buffer(efx, &buffer->buf);
 274        buffer->entries = 0;
 275}
 276
 277/**************************************************************************
 278 *
 279 * TX path
 280 *
 281 **************************************************************************/
 282
 283/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
 284static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
 285{
 286        unsigned write_ptr;
 287        efx_dword_t reg;
 288
 289        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 290        EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
 291        efx_writed_page(tx_queue->efx, &reg,
 292                        FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
 293}
 294
 295/* Write pointer and first descriptor for TX descriptor ring */
 296static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
 297                                          const efx_qword_t *txd)
 298{
 299        unsigned write_ptr;
 300        efx_oword_t reg;
 301
 302        BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
 303        BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
 304
 305        write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 306        EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
 307                             FRF_AZ_TX_DESC_WPTR, write_ptr);
 308        reg.qword[0] = *txd;
 309        efx_writeo_page(tx_queue->efx, &reg,
 310                        FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
 311}
 312
 313
 314/* For each entry inserted into the software descriptor ring, create a
 315 * descriptor in the hardware TX descriptor ring (in host memory), and
 316 * write a doorbell.
 317 */
 318void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
 319{
 320        struct efx_tx_buffer *buffer;
 321        efx_qword_t *txd;
 322        unsigned write_ptr;
 323        unsigned old_write_count = tx_queue->write_count;
 324
 325        tx_queue->xmit_more_available = false;
 326        if (unlikely(tx_queue->write_count == tx_queue->insert_count))
 327                return;
 328
 329        do {
 330                write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
 331                buffer = &tx_queue->buffer[write_ptr];
 332                txd = efx_tx_desc(tx_queue, write_ptr);
 333                ++tx_queue->write_count;
 334
 335                EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
 336
 337                /* Create TX descriptor ring entry */
 338                BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
 339                EFX_POPULATE_QWORD_4(*txd,
 340                                     FSF_AZ_TX_KER_CONT,
 341                                     buffer->flags & EFX_TX_BUF_CONT,
 342                                     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
 343                                     FSF_AZ_TX_KER_BUF_REGION, 0,
 344                                     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
 345        } while (tx_queue->write_count != tx_queue->insert_count);
 346
 347        wmb(); /* Ensure descriptors are written before they are fetched */
 348
 349        if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
 350                txd = efx_tx_desc(tx_queue,
 351                                  old_write_count & tx_queue->ptr_mask);
 352                efx_farch_push_tx_desc(tx_queue, txd);
 353                ++tx_queue->pushes;
 354        } else {
 355                efx_farch_notify_tx_desc(tx_queue);
 356        }
 357}
 358
 359/* Allocate hardware resources for a TX queue */
 360int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
 361{
 362        struct efx_nic *efx = tx_queue->efx;
 363        unsigned entries;
 364
 365        entries = tx_queue->ptr_mask + 1;
 366        return efx_alloc_special_buffer(efx, &tx_queue->txd,
 367                                        entries * sizeof(efx_qword_t));
 368}
 369
 370void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
 371{
 372        struct efx_nic *efx = tx_queue->efx;
 373        efx_oword_t reg;
 374
 375        /* Pin TX descriptor ring */
 376        efx_init_special_buffer(efx, &tx_queue->txd);
 377
 378        /* Push TX descriptor ring to card */
 379        EFX_POPULATE_OWORD_10(reg,
 380                              FRF_AZ_TX_DESCQ_EN, 1,
 381                              FRF_AZ_TX_ISCSI_DDIG_EN, 0,
 382                              FRF_AZ_TX_ISCSI_HDIG_EN, 0,
 383                              FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
 384                              FRF_AZ_TX_DESCQ_EVQ_ID,
 385                              tx_queue->channel->channel,
 386                              FRF_AZ_TX_DESCQ_OWNER_ID, 0,
 387                              FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
 388                              FRF_AZ_TX_DESCQ_SIZE,
 389                              __ffs(tx_queue->txd.entries),
 390                              FRF_AZ_TX_DESCQ_TYPE, 0,
 391                              FRF_BZ_TX_NON_IP_DROP_DIS, 1);
 392
 393        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 394                int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
 395                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
 396                EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
 397                                    !csum);
 398        }
 399
 400        efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
 401                         tx_queue->queue);
 402
 403        if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
 404                /* Only 128 bits in this register */
 405                BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
 406
 407                efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
 408                if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
 409                        __clear_bit_le(tx_queue->queue, &reg);
 410                else
 411                        __set_bit_le(tx_queue->queue, &reg);
 412                efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
 413        }
 414
 415        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
 416                EFX_POPULATE_OWORD_1(reg,
 417                                     FRF_BZ_TX_PACE,
 418                                     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
 419                                     FFE_BZ_TX_PACE_OFF :
 420                                     FFE_BZ_TX_PACE_RESERVED);
 421                efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
 422                                 tx_queue->queue);
 423        }
 424}
 425
 426static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
 427{
 428        struct efx_nic *efx = tx_queue->efx;
 429        efx_oword_t tx_flush_descq;
 430
 431        WARN_ON(atomic_read(&tx_queue->flush_outstanding));
 432        atomic_set(&tx_queue->flush_outstanding, 1);
 433
 434        EFX_POPULATE_OWORD_2(tx_flush_descq,
 435                             FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
 436                             FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
 437        efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
 438}
 439
 440void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
 441{
 442        struct efx_nic *efx = tx_queue->efx;
 443        efx_oword_t tx_desc_ptr;
 444
 445        /* Remove TX descriptor ring from card */
 446        EFX_ZERO_OWORD(tx_desc_ptr);
 447        efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
 448                         tx_queue->queue);
 449
 450        /* Unpin TX descriptor ring */
 451        efx_fini_special_buffer(efx, &tx_queue->txd);
 452}
 453
 454/* Free buffers backing TX queue */
 455void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
 456{
 457        efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
 458}
 459
 460/**************************************************************************
 461 *
 462 * RX path
 463 *
 464 **************************************************************************/
 465
 466/* This creates an entry in the RX descriptor queue */
 467static inline void
 468efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
 469{
 470        struct efx_rx_buffer *rx_buf;
 471        efx_qword_t *rxd;
 472
 473        rxd = efx_rx_desc(rx_queue, index);
 474        rx_buf = efx_rx_buffer(rx_queue, index);
 475        EFX_POPULATE_QWORD_3(*rxd,
 476                             FSF_AZ_RX_KER_BUF_SIZE,
 477                             rx_buf->len -
 478                             rx_queue->efx->type->rx_buffer_padding,
 479                             FSF_AZ_RX_KER_BUF_REGION, 0,
 480                             FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
 481}
 482
 483/* This writes to the RX_DESC_WPTR register for the specified receive
 484 * descriptor ring.
 485 */
 486void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
 487{
 488        struct efx_nic *efx = rx_queue->efx;
 489        efx_dword_t reg;
 490        unsigned write_ptr;
 491
 492        while (rx_queue->notified_count != rx_queue->added_count) {
 493                efx_farch_build_rx_desc(
 494                        rx_queue,
 495                        rx_queue->notified_count & rx_queue->ptr_mask);
 496                ++rx_queue->notified_count;
 497        }
 498
 499        wmb();
 500        write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
 501        EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
 502        efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
 503                        efx_rx_queue_index(rx_queue));
 504}
 505
 506int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
 507{
 508        struct efx_nic *efx = rx_queue->efx;
 509        unsigned entries;
 510
 511        entries = rx_queue->ptr_mask + 1;
 512        return efx_alloc_special_buffer(efx, &rx_queue->rxd,
 513                                        entries * sizeof(efx_qword_t));
 514}
 515
 516void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
 517{
 518        efx_oword_t rx_desc_ptr;
 519        struct efx_nic *efx = rx_queue->efx;
 520        bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
 521        bool iscsi_digest_en = is_b0;
 522        bool jumbo_en;
 523
 524        /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
 525         * DMA to continue after a PCIe page boundary (and scattering
 526         * is not possible).  In Falcon B0 and Siena, it enables
 527         * scatter.
 528         */
 529        jumbo_en = !is_b0 || efx->rx_scatter;
 530
 531        netif_dbg(efx, hw, efx->net_dev,
 532                  "RX queue %d ring in special buffers %d-%d\n",
 533                  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
 534                  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
 535
 536        rx_queue->scatter_n = 0;
 537
 538        /* Pin RX descriptor ring */
 539        efx_init_special_buffer(efx, &rx_queue->rxd);
 540
 541        /* Push RX descriptor ring to card */
 542        EFX_POPULATE_OWORD_10(rx_desc_ptr,
 543                              FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
 544                              FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
 545                              FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
 546                              FRF_AZ_RX_DESCQ_EVQ_ID,
 547                              efx_rx_queue_channel(rx_queue)->channel,
 548                              FRF_AZ_RX_DESCQ_OWNER_ID, 0,
 549                              FRF_AZ_RX_DESCQ_LABEL,
 550                              efx_rx_queue_index(rx_queue),
 551                              FRF_AZ_RX_DESCQ_SIZE,
 552                              __ffs(rx_queue->rxd.entries),
 553                              FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
 554                              FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
 555                              FRF_AZ_RX_DESCQ_EN, 1);
 556        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 557                         efx_rx_queue_index(rx_queue));
 558}
 559
 560static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
 561{
 562        struct efx_nic *efx = rx_queue->efx;
 563        efx_oword_t rx_flush_descq;
 564
 565        EFX_POPULATE_OWORD_2(rx_flush_descq,
 566                             FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
 567                             FRF_AZ_RX_FLUSH_DESCQ,
 568                             efx_rx_queue_index(rx_queue));
 569        efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
 570}
 571
 572void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
 573{
 574        efx_oword_t rx_desc_ptr;
 575        struct efx_nic *efx = rx_queue->efx;
 576
 577        /* Remove RX descriptor ring from card */
 578        EFX_ZERO_OWORD(rx_desc_ptr);
 579        efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
 580                         efx_rx_queue_index(rx_queue));
 581
 582        /* Unpin RX descriptor ring */
 583        efx_fini_special_buffer(efx, &rx_queue->rxd);
 584}
 585
 586/* Free buffers backing RX queue */
 587void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
 588{
 589        efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
 590}
 591
 592/**************************************************************************
 593 *
 594 * Flush handling
 595 *
 596 **************************************************************************/
 597
 598/* efx_farch_flush_queues() must be woken up when all flushes are completed,
 599 * or more RX flushes can be kicked off.
 600 */
 601static bool efx_farch_flush_wake(struct efx_nic *efx)
 602{
 603        /* Ensure that all updates are visible to efx_farch_flush_queues() */
 604        smp_mb();
 605
 606        return (atomic_read(&efx->active_queues) == 0 ||
 607                (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
 608                 && atomic_read(&efx->rxq_flush_pending) > 0));
 609}
 610
 611static bool efx_check_tx_flush_complete(struct efx_nic *efx)
 612{
 613        bool i = true;
 614        efx_oword_t txd_ptr_tbl;
 615        struct efx_channel *channel;
 616        struct efx_tx_queue *tx_queue;
 617
 618        efx_for_each_channel(channel, efx) {
 619                efx_for_each_channel_tx_queue(tx_queue, channel) {
 620                        efx_reado_table(efx, &txd_ptr_tbl,
 621                                        FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
 622                        if (EFX_OWORD_FIELD(txd_ptr_tbl,
 623                                            FRF_AZ_TX_DESCQ_FLUSH) ||
 624                            EFX_OWORD_FIELD(txd_ptr_tbl,
 625                                            FRF_AZ_TX_DESCQ_EN)) {
 626                                netif_dbg(efx, hw, efx->net_dev,
 627                                          "flush did not complete on TXQ %d\n",
 628                                          tx_queue->queue);
 629                                i = false;
 630                        } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
 631                                                  1, 0)) {
 632                                /* The flush is complete, but we didn't
 633                                 * receive a flush completion event
 634                                 */
 635                                netif_dbg(efx, hw, efx->net_dev,
 636                                          "flush complete on TXQ %d, so drain "
 637                                          "the queue\n", tx_queue->queue);
 638                                /* Don't need to increment active_queues as it
 639                                 * has already been incremented for the queues
 640                                 * which did not drain
 641                                 */
 642                                efx_farch_magic_event(channel,
 643                                                      EFX_CHANNEL_MAGIC_TX_DRAIN(
 644                                                              tx_queue));
 645                        }
 646                }
 647        }
 648
 649        return i;
 650}
 651
 652/* Flush all the transmit queues, and continue flushing receive queues until
 653 * they're all flushed. Wait for the DRAIN events to be received so that there
 654 * are no more RX and TX events left on any channel. */
 655static int efx_farch_do_flush(struct efx_nic *efx)
 656{
 657        unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
 658        struct efx_channel *channel;
 659        struct efx_rx_queue *rx_queue;
 660        struct efx_tx_queue *tx_queue;
 661        int rc = 0;
 662
 663        efx_for_each_channel(channel, efx) {
 664                efx_for_each_channel_tx_queue(tx_queue, channel) {
 665                        efx_farch_flush_tx_queue(tx_queue);
 666                }
 667                efx_for_each_channel_rx_queue(rx_queue, channel) {
 668                        rx_queue->flush_pending = true;
 669                        atomic_inc(&efx->rxq_flush_pending);
 670                }
 671        }
 672
 673        while (timeout && atomic_read(&efx->active_queues) > 0) {
 674                /* If SRIOV is enabled, then offload receive queue flushing to
 675                 * the firmware (though we will still have to poll for
 676                 * completion). If that fails, fall back to the old scheme.
 677                 */
 678                if (efx_siena_sriov_enabled(efx)) {
 679                        rc = efx_mcdi_flush_rxqs(efx);
 680                        if (!rc)
 681                                goto wait;
 682                }
 683
 684                /* The hardware supports four concurrent rx flushes, each of
 685                 * which may need to be retried if there is an outstanding
 686                 * descriptor fetch
 687                 */
 688                efx_for_each_channel(channel, efx) {
 689                        efx_for_each_channel_rx_queue(rx_queue, channel) {
 690                                if (atomic_read(&efx->rxq_flush_outstanding) >=
 691                                    EFX_RX_FLUSH_COUNT)
 692                                        break;
 693
 694                                if (rx_queue->flush_pending) {
 695                                        rx_queue->flush_pending = false;
 696                                        atomic_dec(&efx->rxq_flush_pending);
 697                                        atomic_inc(&efx->rxq_flush_outstanding);
 698                                        efx_farch_flush_rx_queue(rx_queue);
 699                                }
 700                        }
 701                }
 702
 703        wait:
 704                timeout = wait_event_timeout(efx->flush_wq,
 705                                             efx_farch_flush_wake(efx),
 706                                             timeout);
 707        }
 708
 709        if (atomic_read(&efx->active_queues) &&
 710            !efx_check_tx_flush_complete(efx)) {
 711                netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
 712                          "(rx %d+%d)\n", atomic_read(&efx->active_queues),
 713                          atomic_read(&efx->rxq_flush_outstanding),
 714                          atomic_read(&efx->rxq_flush_pending));
 715                rc = -ETIMEDOUT;
 716
 717                atomic_set(&efx->active_queues, 0);
 718                atomic_set(&efx->rxq_flush_pending, 0);
 719                atomic_set(&efx->rxq_flush_outstanding, 0);
 720        }
 721
 722        return rc;
 723}
 724
 725int efx_farch_fini_dmaq(struct efx_nic *efx)
 726{
 727        struct efx_channel *channel;
 728        struct efx_tx_queue *tx_queue;
 729        struct efx_rx_queue *rx_queue;
 730        int rc = 0;
 731
 732        /* Do not attempt to write to the NIC during EEH recovery */
 733        if (efx->state != STATE_RECOVERY) {
 734                /* Only perform flush if DMA is enabled */
 735                if (efx->pci_dev->is_busmaster) {
 736                        efx->type->prepare_flush(efx);
 737                        rc = efx_farch_do_flush(efx);
 738                        efx->type->finish_flush(efx);
 739                }
 740
 741                efx_for_each_channel(channel, efx) {
 742                        efx_for_each_channel_rx_queue(rx_queue, channel)
 743                                efx_farch_rx_fini(rx_queue);
 744                        efx_for_each_channel_tx_queue(tx_queue, channel)
 745                                efx_farch_tx_fini(tx_queue);
 746                }
 747        }
 748
 749        return rc;
 750}
 751
 752/* Reset queue and flush accounting after FLR
 753 *
 754 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
 755 * mastering was disabled), in which case we don't receive (RXQ) flush
 756 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
 757 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
 758 * events were received, and we didn't go through efx_check_tx_flush_complete())
 759 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
 760 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
 761 * for batched flush requests; and the efx->active_queues gets messed up because
 762 * we keep incrementing for the newly initialised queues, but it never went to
 763 * zero previously.  Then we get a timeout every time we try to restart the
 764 * queues, as it doesn't go back to zero when we should be flushing the queues.
 765 */
 766void efx_farch_finish_flr(struct efx_nic *efx)
 767{
 768        atomic_set(&efx->rxq_flush_pending, 0);
 769        atomic_set(&efx->rxq_flush_outstanding, 0);
 770        atomic_set(&efx->active_queues, 0);
 771}
 772
 773
 774/**************************************************************************
 775 *
 776 * Event queue processing
 777 * Event queues are processed by per-channel tasklets.
 778 *
 779 **************************************************************************/
 780
 781/* Update a channel's event queue's read pointer (RPTR) register
 782 *
 783 * This writes the EVQ_RPTR_REG register for the specified channel's
 784 * event queue.
 785 */
 786void efx_farch_ev_read_ack(struct efx_channel *channel)
 787{
 788        efx_dword_t reg;
 789        struct efx_nic *efx = channel->efx;
 790
 791        EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
 792                             channel->eventq_read_ptr & channel->eventq_mask);
 793
 794        /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
 795         * of 4 bytes, but it is really 16 bytes just like later revisions.
 796         */
 797        efx_writed(efx, &reg,
 798                   efx->type->evq_rptr_tbl_base +
 799                   FR_BZ_EVQ_RPTR_STEP * channel->channel);
 800}
 801
 802/* Use HW to insert a SW defined event */
 803void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
 804                              efx_qword_t *event)
 805{
 806        efx_oword_t drv_ev_reg;
 807
 808        BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
 809                     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
 810        drv_ev_reg.u32[0] = event->u32[0];
 811        drv_ev_reg.u32[1] = event->u32[1];
 812        drv_ev_reg.u32[2] = 0;
 813        drv_ev_reg.u32[3] = 0;
 814        EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
 815        efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
 816}
 817
 818static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
 819{
 820        efx_qword_t event;
 821
 822        EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
 823                             FSE_AZ_EV_CODE_DRV_GEN_EV,
 824                             FSF_AZ_DRV_GEN_EV_MAGIC, magic);
 825        efx_farch_generate_event(channel->efx, channel->channel, &event);
 826}
 827
 828/* Handle a transmit completion event
 829 *
 830 * The NIC batches TX completion events; the message we receive is of
 831 * the form "complete all TX events up to this index".
 832 */
 833static int
 834efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
 835{
 836        unsigned int tx_ev_desc_ptr;
 837        unsigned int tx_ev_q_label;
 838        struct efx_tx_queue *tx_queue;
 839        struct efx_nic *efx = channel->efx;
 840        int tx_packets = 0;
 841
 842        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 843                return 0;
 844
 845        if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
 846                /* Transmit completion */
 847                tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
 848                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 849                tx_queue = efx_channel_get_tx_queue(
 850                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 851                tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
 852                              tx_queue->ptr_mask);
 853                efx_xmit_done(tx_queue, tx_ev_desc_ptr);
 854        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
 855                /* Rewrite the FIFO write pointer */
 856                tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
 857                tx_queue = efx_channel_get_tx_queue(
 858                        channel, tx_ev_q_label % EFX_TXQ_TYPES);
 859
 860                netif_tx_lock(efx->net_dev);
 861                efx_farch_notify_tx_desc(tx_queue);
 862                netif_tx_unlock(efx->net_dev);
 863        } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
 864                efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
 865        } else {
 866                netif_err(efx, tx_err, efx->net_dev,
 867                          "channel %d unexpected TX event "
 868                          EFX_QWORD_FMT"\n", channel->channel,
 869                          EFX_QWORD_VAL(*event));
 870        }
 871
 872        return tx_packets;
 873}
 874
 875/* Detect errors included in the rx_evt_pkt_ok bit. */
 876static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
 877                                      const efx_qword_t *event)
 878{
 879        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 880        struct efx_nic *efx = rx_queue->efx;
 881        bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
 882        bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
 883        bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
 884        bool rx_ev_other_err, rx_ev_pause_frm;
 885        bool rx_ev_hdr_type, rx_ev_mcast_pkt;
 886        unsigned rx_ev_pkt_type;
 887
 888        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
 889        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
 890        rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
 891        rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
 892        rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
 893                                                 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
 894        rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
 895                                                  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
 896        rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
 897                                                   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
 898        rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
 899        rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
 900        rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
 901                          0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
 902        rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
 903
 904        /* Every error apart from tobe_disc and pause_frm */
 905        rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
 906                           rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
 907                           rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
 908
 909        /* Count errors that are not in MAC stats.  Ignore expected
 910         * checksum errors during self-test. */
 911        if (rx_ev_frm_trunc)
 912                ++channel->n_rx_frm_trunc;
 913        else if (rx_ev_tobe_disc)
 914                ++channel->n_rx_tobe_disc;
 915        else if (!efx->loopback_selftest) {
 916                if (rx_ev_ip_hdr_chksum_err)
 917                        ++channel->n_rx_ip_hdr_chksum_err;
 918                else if (rx_ev_tcp_udp_chksum_err)
 919                        ++channel->n_rx_tcp_udp_chksum_err;
 920        }
 921
 922        /* TOBE_DISC is expected on unicast mismatches; don't print out an
 923         * error message.  FRM_TRUNC indicates RXDP dropped the packet due
 924         * to a FIFO overflow.
 925         */
 926#ifdef DEBUG
 927        if (rx_ev_other_err && net_ratelimit()) {
 928                netif_dbg(efx, rx_err, efx->net_dev,
 929                          " RX queue %d unexpected RX event "
 930                          EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
 931                          efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
 932                          rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
 933                          rx_ev_ip_hdr_chksum_err ?
 934                          " [IP_HDR_CHKSUM_ERR]" : "",
 935                          rx_ev_tcp_udp_chksum_err ?
 936                          " [TCP_UDP_CHKSUM_ERR]" : "",
 937                          rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
 938                          rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
 939                          rx_ev_drib_nib ? " [DRIB_NIB]" : "",
 940                          rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
 941                          rx_ev_pause_frm ? " [PAUSE]" : "");
 942        }
 943#endif
 944
 945        /* The frame must be discarded if any of these are true. */
 946        return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
 947                rx_ev_tobe_disc | rx_ev_pause_frm) ?
 948                EFX_RX_PKT_DISCARD : 0;
 949}
 950
 951/* Handle receive events that are not in-order. Return true if this
 952 * can be handled as a partial packet discard, false if it's more
 953 * serious.
 954 */
 955static bool
 956efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
 957{
 958        struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
 959        struct efx_nic *efx = rx_queue->efx;
 960        unsigned expected, dropped;
 961
 962        if (rx_queue->scatter_n &&
 963            index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
 964                      rx_queue->ptr_mask)) {
 965                ++channel->n_rx_nodesc_trunc;
 966                return true;
 967        }
 968
 969        expected = rx_queue->removed_count & rx_queue->ptr_mask;
 970        dropped = (index - expected) & rx_queue->ptr_mask;
 971        netif_info(efx, rx_err, efx->net_dev,
 972                   "dropped %d events (index=%d expected=%d)\n",
 973                   dropped, index, expected);
 974
 975        efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
 976                           RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
 977        return false;
 978}
 979
 980/* Handle a packet received event
 981 *
 982 * The NIC gives a "discard" flag if it's a unicast packet with the
 983 * wrong destination address
 984 * Also "is multicast" and "matches multicast filter" flags can be used to
 985 * discard non-matching multicast packets.
 986 */
 987static void
 988efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
 989{
 990        unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
 991        unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
 992        unsigned expected_ptr;
 993        bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
 994        u16 flags;
 995        struct efx_rx_queue *rx_queue;
 996        struct efx_nic *efx = channel->efx;
 997
 998        if (unlikely(ACCESS_ONCE(efx->reset_pending)))
 999                return;
1000
1001        rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
1002        rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1003        WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1004                channel->channel);
1005
1006        rx_queue = efx_channel_get_rx_queue(channel);
1007
1008        rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1009        expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1010                        rx_queue->ptr_mask);
1011
1012        /* Check for partial drops and other errors */
1013        if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1014            unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1015                if (rx_ev_desc_ptr != expected_ptr &&
1016                    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1017                        return;
1018
1019                /* Discard all pending fragments */
1020                if (rx_queue->scatter_n) {
1021                        efx_rx_packet(
1022                                rx_queue,
1023                                rx_queue->removed_count & rx_queue->ptr_mask,
1024                                rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1025                        rx_queue->removed_count += rx_queue->scatter_n;
1026                        rx_queue->scatter_n = 0;
1027                }
1028
1029                /* Return if there is no new fragment */
1030                if (rx_ev_desc_ptr != expected_ptr)
1031                        return;
1032
1033                /* Discard new fragment if not SOP */
1034                if (!rx_ev_sop) {
1035                        efx_rx_packet(
1036                                rx_queue,
1037                                rx_queue->removed_count & rx_queue->ptr_mask,
1038                                1, 0, EFX_RX_PKT_DISCARD);
1039                        ++rx_queue->removed_count;
1040                        return;
1041                }
1042        }
1043
1044        ++rx_queue->scatter_n;
1045        if (rx_ev_cont)
1046                return;
1047
1048        rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1049        rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1050        rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1051
1052        if (likely(rx_ev_pkt_ok)) {
1053                /* If packet is marked as OK then we can rely on the
1054                 * hardware checksum and classification.
1055                 */
1056                flags = 0;
1057                switch (rx_ev_hdr_type) {
1058                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1059                        flags |= EFX_RX_PKT_TCP;
1060                        /* fall through */
1061                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1062                        flags |= EFX_RX_PKT_CSUMMED;
1063                        /* fall through */
1064                case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1065                case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1066                        break;
1067                }
1068        } else {
1069                flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1070        }
1071
1072        /* Detect multicast packets that didn't match the filter */
1073        rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1074        if (rx_ev_mcast_pkt) {
1075                unsigned int rx_ev_mcast_hash_match =
1076                        EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1077
1078                if (unlikely(!rx_ev_mcast_hash_match)) {
1079                        ++channel->n_rx_mcast_mismatch;
1080                        flags |= EFX_RX_PKT_DISCARD;
1081                }
1082        }
1083
1084        channel->irq_mod_score += 2;
1085
1086        /* Handle received packet */
1087        efx_rx_packet(rx_queue,
1088                      rx_queue->removed_count & rx_queue->ptr_mask,
1089                      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1090        rx_queue->removed_count += rx_queue->scatter_n;
1091        rx_queue->scatter_n = 0;
1092}
1093
1094/* If this flush done event corresponds to a &struct efx_tx_queue, then
1095 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1096 * of all transmit completions.
1097 */
1098static void
1099efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1100{
1101        struct efx_tx_queue *tx_queue;
1102        int qid;
1103
1104        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1105        if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1106                tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1107                                            qid % EFX_TXQ_TYPES);
1108                if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1109                        efx_farch_magic_event(tx_queue->channel,
1110                                              EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1111                }
1112        }
1113}
1114
1115/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1116 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1117 * the RX queue back to the mask of RX queues in need of flushing.
1118 */
1119static void
1120efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1121{
1122        struct efx_channel *channel;
1123        struct efx_rx_queue *rx_queue;
1124        int qid;
1125        bool failed;
1126
1127        qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1128        failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1129        if (qid >= efx->n_channels)
1130                return;
1131        channel = efx_get_channel(efx, qid);
1132        if (!efx_channel_has_rx_queue(channel))
1133                return;
1134        rx_queue = efx_channel_get_rx_queue(channel);
1135
1136        if (failed) {
1137                netif_info(efx, hw, efx->net_dev,
1138                           "RXQ %d flush retry\n", qid);
1139                rx_queue->flush_pending = true;
1140                atomic_inc(&efx->rxq_flush_pending);
1141        } else {
1142                efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1143                                      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1144        }
1145        atomic_dec(&efx->rxq_flush_outstanding);
1146        if (efx_farch_flush_wake(efx))
1147                wake_up(&efx->flush_wq);
1148}
1149
1150static void
1151efx_farch_handle_drain_event(struct efx_channel *channel)
1152{
1153        struct efx_nic *efx = channel->efx;
1154
1155        WARN_ON(atomic_read(&efx->active_queues) == 0);
1156        atomic_dec(&efx->active_queues);
1157        if (efx_farch_flush_wake(efx))
1158                wake_up(&efx->flush_wq);
1159}
1160
1161static void efx_farch_handle_generated_event(struct efx_channel *channel,
1162                                             efx_qword_t *event)
1163{
1164        struct efx_nic *efx = channel->efx;
1165        struct efx_rx_queue *rx_queue =
1166                efx_channel_has_rx_queue(channel) ?
1167                efx_channel_get_rx_queue(channel) : NULL;
1168        unsigned magic, code;
1169
1170        magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1171        code = _EFX_CHANNEL_MAGIC_CODE(magic);
1172
1173        if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1174                channel->event_test_cpu = raw_smp_processor_id();
1175        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1176                /* The queue must be empty, so we won't receive any rx
1177                 * events, so efx_process_channel() won't refill the
1178                 * queue. Refill it here */
1179                efx_fast_push_rx_descriptors(rx_queue, true);
1180        } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1181                efx_farch_handle_drain_event(channel);
1182        } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1183                efx_farch_handle_drain_event(channel);
1184        } else {
1185                netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1186                          "generated event "EFX_QWORD_FMT"\n",
1187                          channel->channel, EFX_QWORD_VAL(*event));
1188        }
1189}
1190
1191static void
1192efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1193{
1194        struct efx_nic *efx = channel->efx;
1195        unsigned int ev_sub_code;
1196        unsigned int ev_sub_data;
1197
1198        ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1199        ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1200
1201        switch (ev_sub_code) {
1202        case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1203                netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1204                           channel->channel, ev_sub_data);
1205                efx_farch_handle_tx_flush_done(efx, event);
1206#ifdef CONFIG_SFC_SRIOV
1207                efx_siena_sriov_tx_flush_done(efx, event);
1208#endif
1209                break;
1210        case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1211                netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1212                           channel->channel, ev_sub_data);
1213                efx_farch_handle_rx_flush_done(efx, event);
1214#ifdef CONFIG_SFC_SRIOV
1215                efx_siena_sriov_rx_flush_done(efx, event);
1216#endif
1217                break;
1218        case FSE_AZ_EVQ_INIT_DONE_EV:
1219                netif_dbg(efx, hw, efx->net_dev,
1220                          "channel %d EVQ %d initialised\n",
1221                          channel->channel, ev_sub_data);
1222                break;
1223        case FSE_AZ_SRM_UPD_DONE_EV:
1224                netif_vdbg(efx, hw, efx->net_dev,
1225                           "channel %d SRAM update done\n", channel->channel);
1226                break;
1227        case FSE_AZ_WAKE_UP_EV:
1228                netif_vdbg(efx, hw, efx->net_dev,
1229                           "channel %d RXQ %d wakeup event\n",
1230                           channel->channel, ev_sub_data);
1231                break;
1232        case FSE_AZ_TIMER_EV:
1233                netif_vdbg(efx, hw, efx->net_dev,
1234                           "channel %d RX queue %d timer expired\n",
1235                           channel->channel, ev_sub_data);
1236                break;
1237        case FSE_AA_RX_RECOVER_EV:
1238                netif_err(efx, rx_err, efx->net_dev,
1239                          "channel %d seen DRIVER RX_RESET event. "
1240                        "Resetting.\n", channel->channel);
1241                atomic_inc(&efx->rx_reset);
1242                efx_schedule_reset(efx,
1243                                   EFX_WORKAROUND_6555(efx) ?
1244                                   RESET_TYPE_RX_RECOVERY :
1245                                   RESET_TYPE_DISABLE);
1246                break;
1247        case FSE_BZ_RX_DSC_ERROR_EV:
1248                if (ev_sub_data < EFX_VI_BASE) {
1249                        netif_err(efx, rx_err, efx->net_dev,
1250                                  "RX DMA Q %d reports descriptor fetch error."
1251                                  " RX Q %d is disabled.\n", ev_sub_data,
1252                                  ev_sub_data);
1253                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1254                }
1255#ifdef CONFIG_SFC_SRIOV
1256                else
1257                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1258#endif
1259                break;
1260        case FSE_BZ_TX_DSC_ERROR_EV:
1261                if (ev_sub_data < EFX_VI_BASE) {
1262                        netif_err(efx, tx_err, efx->net_dev,
1263                                  "TX DMA Q %d reports descriptor fetch error."
1264                                  " TX Q %d is disabled.\n", ev_sub_data,
1265                                  ev_sub_data);
1266                        efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1267                }
1268#ifdef CONFIG_SFC_SRIOV
1269                else
1270                        efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1271#endif
1272                break;
1273        default:
1274                netif_vdbg(efx, hw, efx->net_dev,
1275                           "channel %d unknown driver event code %d "
1276                           "data %04x\n", channel->channel, ev_sub_code,
1277                           ev_sub_data);
1278                break;
1279        }
1280}
1281
1282int efx_farch_ev_process(struct efx_channel *channel, int budget)
1283{
1284        struct efx_nic *efx = channel->efx;
1285        unsigned int read_ptr;
1286        efx_qword_t event, *p_event;
1287        int ev_code;
1288        int tx_packets = 0;
1289        int spent = 0;
1290
1291        if (budget <= 0)
1292                return spent;
1293
1294        read_ptr = channel->eventq_read_ptr;
1295
1296        for (;;) {
1297                p_event = efx_event(channel, read_ptr);
1298                event = *p_event;
1299
1300                if (!efx_event_present(&event))
1301                        /* End of events */
1302                        break;
1303
1304                netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1305                           "channel %d event is "EFX_QWORD_FMT"\n",
1306                           channel->channel, EFX_QWORD_VAL(event));
1307
1308                /* Clear this event by marking it all ones */
1309                EFX_SET_QWORD(*p_event);
1310
1311                ++read_ptr;
1312
1313                ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1314
1315                switch (ev_code) {
1316                case FSE_AZ_EV_CODE_RX_EV:
1317                        efx_farch_handle_rx_event(channel, &event);
1318                        if (++spent == budget)
1319                                goto out;
1320                        break;
1321                case FSE_AZ_EV_CODE_TX_EV:
1322                        tx_packets += efx_farch_handle_tx_event(channel,
1323                                                                &event);
1324                        if (tx_packets > efx->txq_entries) {
1325                                spent = budget;
1326                                goto out;
1327                        }
1328                        break;
1329                case FSE_AZ_EV_CODE_DRV_GEN_EV:
1330                        efx_farch_handle_generated_event(channel, &event);
1331                        break;
1332                case FSE_AZ_EV_CODE_DRIVER_EV:
1333                        efx_farch_handle_driver_event(channel, &event);
1334                        break;
1335#ifdef CONFIG_SFC_SRIOV
1336                case FSE_CZ_EV_CODE_USER_EV:
1337                        efx_siena_sriov_event(channel, &event);
1338                        break;
1339#endif
1340                case FSE_CZ_EV_CODE_MCDI_EV:
1341                        efx_mcdi_process_event(channel, &event);
1342                        break;
1343                case FSE_AZ_EV_CODE_GLOBAL_EV:
1344                        if (efx->type->handle_global_event &&
1345                            efx->type->handle_global_event(channel, &event))
1346                                break;
1347                        /* else fall through */
1348                default:
1349                        netif_err(channel->efx, hw, channel->efx->net_dev,
1350                                  "channel %d unknown event type %d (data "
1351                                  EFX_QWORD_FMT ")\n", channel->channel,
1352                                  ev_code, EFX_QWORD_VAL(event));
1353                }
1354        }
1355
1356out:
1357        channel->eventq_read_ptr = read_ptr;
1358        return spent;
1359}
1360
1361/* Allocate buffer table entries for event queue */
1362int efx_farch_ev_probe(struct efx_channel *channel)
1363{
1364        struct efx_nic *efx = channel->efx;
1365        unsigned entries;
1366
1367        entries = channel->eventq_mask + 1;
1368        return efx_alloc_special_buffer(efx, &channel->eventq,
1369                                        entries * sizeof(efx_qword_t));
1370}
1371
1372int efx_farch_ev_init(struct efx_channel *channel)
1373{
1374        efx_oword_t reg;
1375        struct efx_nic *efx = channel->efx;
1376
1377        netif_dbg(efx, hw, efx->net_dev,
1378                  "channel %d event queue in special buffers %d-%d\n",
1379                  channel->channel, channel->eventq.index,
1380                  channel->eventq.index + channel->eventq.entries - 1);
1381
1382        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1383                EFX_POPULATE_OWORD_3(reg,
1384                                     FRF_CZ_TIMER_Q_EN, 1,
1385                                     FRF_CZ_HOST_NOTIFY_MODE, 0,
1386                                     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1387                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1388        }
1389
1390        /* Pin event queue buffer */
1391        efx_init_special_buffer(efx, &channel->eventq);
1392
1393        /* Fill event queue with all ones (i.e. empty events) */
1394        memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1395
1396        /* Push event queue to card */
1397        EFX_POPULATE_OWORD_3(reg,
1398                             FRF_AZ_EVQ_EN, 1,
1399                             FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1400                             FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1401        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1402                         channel->channel);
1403
1404        return 0;
1405}
1406
1407void efx_farch_ev_fini(struct efx_channel *channel)
1408{
1409        efx_oword_t reg;
1410        struct efx_nic *efx = channel->efx;
1411
1412        /* Remove event queue from card */
1413        EFX_ZERO_OWORD(reg);
1414        efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1415                         channel->channel);
1416        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1417                efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1418
1419        /* Unpin event queue */
1420        efx_fini_special_buffer(efx, &channel->eventq);
1421}
1422
1423/* Free buffers backing event queue */
1424void efx_farch_ev_remove(struct efx_channel *channel)
1425{
1426        efx_free_special_buffer(channel->efx, &channel->eventq);
1427}
1428
1429
1430void efx_farch_ev_test_generate(struct efx_channel *channel)
1431{
1432        efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1433}
1434
1435void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1436{
1437        efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1438                              EFX_CHANNEL_MAGIC_FILL(rx_queue));
1439}
1440
1441/**************************************************************************
1442 *
1443 * Hardware interrupts
1444 * The hardware interrupt handler does very little work; all the event
1445 * queue processing is carried out by per-channel tasklets.
1446 *
1447 **************************************************************************/
1448
1449/* Enable/disable/generate interrupts */
1450static inline void efx_farch_interrupts(struct efx_nic *efx,
1451                                      bool enabled, bool force)
1452{
1453        efx_oword_t int_en_reg_ker;
1454
1455        EFX_POPULATE_OWORD_3(int_en_reg_ker,
1456                             FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1457                             FRF_AZ_KER_INT_KER, force,
1458                             FRF_AZ_DRV_INT_EN_KER, enabled);
1459        efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1460}
1461
1462void efx_farch_irq_enable_master(struct efx_nic *efx)
1463{
1464        EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1465        wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1466
1467        efx_farch_interrupts(efx, true, false);
1468}
1469
1470void efx_farch_irq_disable_master(struct efx_nic *efx)
1471{
1472        /* Disable interrupts */
1473        efx_farch_interrupts(efx, false, false);
1474}
1475
1476/* Generate a test interrupt
1477 * Interrupt must already have been enabled, otherwise nasty things
1478 * may happen.
1479 */
1480void efx_farch_irq_test_generate(struct efx_nic *efx)
1481{
1482        efx_farch_interrupts(efx, true, true);
1483}
1484
1485/* Process a fatal interrupt
1486 * Disable bus mastering ASAP and schedule a reset
1487 */
1488irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1489{
1490        struct falcon_nic_data *nic_data = efx->nic_data;
1491        efx_oword_t *int_ker = efx->irq_status.addr;
1492        efx_oword_t fatal_intr;
1493        int error, mem_perr;
1494
1495        efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1496        error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1497
1498        netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1499                  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1500                  EFX_OWORD_VAL(fatal_intr),
1501                  error ? "disabling bus mastering" : "no recognised error");
1502
1503        /* If this is a memory parity error dump which blocks are offending */
1504        mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1505                    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1506        if (mem_perr) {
1507                efx_oword_t reg;
1508                efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1509                netif_err(efx, hw, efx->net_dev,
1510                          "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1511                          EFX_OWORD_VAL(reg));
1512        }
1513
1514        /* Disable both devices */
1515        pci_clear_master(efx->pci_dev);
1516        if (efx_nic_is_dual_func(efx))
1517                pci_clear_master(nic_data->pci_dev2);
1518        efx_farch_irq_disable_master(efx);
1519
1520        /* Count errors and reset or disable the NIC accordingly */
1521        if (efx->int_error_count == 0 ||
1522            time_after(jiffies, efx->int_error_expire)) {
1523                efx->int_error_count = 0;
1524                efx->int_error_expire =
1525                        jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1526        }
1527        if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1528                netif_err(efx, hw, efx->net_dev,
1529                          "SYSTEM ERROR - reset scheduled\n");
1530                efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1531        } else {
1532                netif_err(efx, hw, efx->net_dev,
1533                          "SYSTEM ERROR - max number of errors seen."
1534                          "NIC will be disabled\n");
1535                efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1536        }
1537
1538        return IRQ_HANDLED;
1539}
1540
1541/* Handle a legacy interrupt
1542 * Acknowledges the interrupt and schedule event queue processing.
1543 */
1544irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1545{
1546        struct efx_nic *efx = dev_id;
1547        bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1548        efx_oword_t *int_ker = efx->irq_status.addr;
1549        irqreturn_t result = IRQ_NONE;
1550        struct efx_channel *channel;
1551        efx_dword_t reg;
1552        u32 queues;
1553        int syserr;
1554
1555        /* Read the ISR which also ACKs the interrupts */
1556        efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1557        queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1558
1559        /* Legacy interrupts are disabled too late by the EEH kernel
1560         * code. Disable them earlier.
1561         * If an EEH error occurred, the read will have returned all ones.
1562         */
1563        if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1564            !efx->eeh_disabled_legacy_irq) {
1565                disable_irq_nosync(efx->legacy_irq);
1566                efx->eeh_disabled_legacy_irq = true;
1567        }
1568
1569        /* Handle non-event-queue sources */
1570        if (queues & (1U << efx->irq_level) && soft_enabled) {
1571                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1572                if (unlikely(syserr))
1573                        return efx_farch_fatal_interrupt(efx);
1574                efx->last_irq_cpu = raw_smp_processor_id();
1575        }
1576
1577        if (queues != 0) {
1578                efx->irq_zero_count = 0;
1579
1580                /* Schedule processing of any interrupting queues */
1581                if (likely(soft_enabled)) {
1582                        efx_for_each_channel(channel, efx) {
1583                                if (queues & 1)
1584                                        efx_schedule_channel_irq(channel);
1585                                queues >>= 1;
1586                        }
1587                }
1588                result = IRQ_HANDLED;
1589
1590        } else {
1591                efx_qword_t *event;
1592
1593                /* Legacy ISR read can return zero once (SF bug 15783) */
1594
1595                /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1596                 * because this might be a shared interrupt. */
1597                if (efx->irq_zero_count++ == 0)
1598                        result = IRQ_HANDLED;
1599
1600                /* Ensure we schedule or rearm all event queues */
1601                if (likely(soft_enabled)) {
1602                        efx_for_each_channel(channel, efx) {
1603                                event = efx_event(channel,
1604                                                  channel->eventq_read_ptr);
1605                                if (efx_event_present(event))
1606                                        efx_schedule_channel_irq(channel);
1607                                else
1608                                        efx_farch_ev_read_ack(channel);
1609                        }
1610                }
1611        }
1612
1613        if (result == IRQ_HANDLED)
1614                netif_vdbg(efx, intr, efx->net_dev,
1615                           "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1616                           irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1617
1618        return result;
1619}
1620
1621/* Handle an MSI interrupt
1622 *
1623 * Handle an MSI hardware interrupt.  This routine schedules event
1624 * queue processing.  No interrupt acknowledgement cycle is necessary.
1625 * Also, we never need to check that the interrupt is for us, since
1626 * MSI interrupts cannot be shared.
1627 */
1628irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1629{
1630        struct efx_msi_context *context = dev_id;
1631        struct efx_nic *efx = context->efx;
1632        efx_oword_t *int_ker = efx->irq_status.addr;
1633        int syserr;
1634
1635        netif_vdbg(efx, intr, efx->net_dev,
1636                   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1637                   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1638
1639        if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1640                return IRQ_HANDLED;
1641
1642        /* Handle non-event-queue sources */
1643        if (context->index == efx->irq_level) {
1644                syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1645                if (unlikely(syserr))
1646                        return efx_farch_fatal_interrupt(efx);
1647                efx->last_irq_cpu = raw_smp_processor_id();
1648        }
1649
1650        /* Schedule processing of the channel */
1651        efx_schedule_channel_irq(efx->channel[context->index]);
1652
1653        return IRQ_HANDLED;
1654}
1655
1656/* Setup RSS indirection table.
1657 * This maps from the hash value of the packet to RXQ
1658 */
1659void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1660{
1661        size_t i = 0;
1662        efx_dword_t dword;
1663
1664        BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1665
1666        BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1667                     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1668
1669        for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1670                EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1671                                     efx->rx_indir_table[i]);
1672                efx_writed(efx, &dword,
1673                           FR_BZ_RX_INDIRECTION_TBL +
1674                           FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1675        }
1676}
1677
1678/* Looks at available SRAM resources and works out how many queues we
1679 * can support, and where things like descriptor caches should live.
1680 *
1681 * SRAM is split up as follows:
1682 * 0                          buftbl entries for channels
1683 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1684 * efx->rx_dc_base            RX descriptor caches
1685 * efx->tx_dc_base            TX descriptor caches
1686 */
1687void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1688{
1689        unsigned vi_count, buftbl_min;
1690
1691#ifdef CONFIG_SFC_SRIOV
1692        struct siena_nic_data *nic_data = efx->nic_data;
1693#endif
1694
1695        /* Account for the buffer table entries backing the datapath channels
1696         * and the descriptor caches for those channels.
1697         */
1698        buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1699                       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1700                       efx->n_channels * EFX_MAX_EVQ_SIZE)
1701                      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1702        vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1703
1704#ifdef CONFIG_SFC_SRIOV
1705        if (efx->type->sriov_wanted) {
1706                if (efx->type->sriov_wanted(efx)) {
1707                        unsigned vi_dc_entries, buftbl_free;
1708                        unsigned entries_per_vf, vf_limit;
1709
1710                        nic_data->vf_buftbl_base = buftbl_min;
1711
1712                        vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1713                        vi_count = max(vi_count, EFX_VI_BASE);
1714                        buftbl_free = (sram_lim_qw - buftbl_min -
1715                                       vi_count * vi_dc_entries);
1716
1717                        entries_per_vf = ((vi_dc_entries +
1718                                           EFX_VF_BUFTBL_PER_VI) *
1719                                          efx_vf_size(efx));
1720                        vf_limit = min(buftbl_free / entries_per_vf,
1721                                       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1722
1723                        if (efx->vf_count > vf_limit) {
1724                                netif_err(efx, probe, efx->net_dev,
1725                                          "Reducing VF count from from %d to %d\n",
1726                                          efx->vf_count, vf_limit);
1727                                efx->vf_count = vf_limit;
1728                        }
1729                        vi_count += efx->vf_count * efx_vf_size(efx);
1730                }
1731        }
1732#endif
1733
1734        efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1735        efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1736}
1737
1738u32 efx_farch_fpga_ver(struct efx_nic *efx)
1739{
1740        efx_oword_t altera_build;
1741        efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1742        return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1743}
1744
1745void efx_farch_init_common(struct efx_nic *efx)
1746{
1747        efx_oword_t temp;
1748
1749        /* Set positions of descriptor caches in SRAM. */
1750        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1751        efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1752        EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1753        efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1754
1755        /* Set TX descriptor cache size. */
1756        BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1757        EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1758        efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1759
1760        /* Set RX descriptor cache size.  Set low watermark to size-8, as
1761         * this allows most efficient prefetching.
1762         */
1763        BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1764        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1765        efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1766        EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1767        efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1768
1769        /* Program INT_KER address */
1770        EFX_POPULATE_OWORD_2(temp,
1771                             FRF_AZ_NORM_INT_VEC_DIS_KER,
1772                             EFX_INT_MODE_USE_MSI(efx),
1773                             FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1774        efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1775
1776        if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1777                /* Use an interrupt level unused by event queues */
1778                efx->irq_level = 0x1f;
1779        else
1780                /* Use a valid MSI-X vector */
1781                efx->irq_level = 0;
1782
1783        /* Enable all the genuinely fatal interrupts.  (They are still
1784         * masked by the overall interrupt mask, controlled by
1785         * falcon_interrupts()).
1786         *
1787         * Note: All other fatal interrupts are enabled
1788         */
1789        EFX_POPULATE_OWORD_3(temp,
1790                             FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1791                             FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1792                             FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1793        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1794                EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1795        EFX_INVERT_OWORD(temp);
1796        efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1797
1798        /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1799         * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1800         */
1801        efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1802        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1803        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1804        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1805        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1806        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1807        /* Enable SW_EV to inherit in char driver - assume harmless here */
1808        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1809        /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1810        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1811        /* Disable hardware watchdog which can misfire */
1812        EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1813        /* Squash TX of packets of 16 bytes or less */
1814        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1815                EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1816        efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1817
1818        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1819                EFX_POPULATE_OWORD_4(temp,
1820                                     /* Default values */
1821                                     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1822                                     FRF_BZ_TX_PACE_SB_AF, 0xb,
1823                                     FRF_BZ_TX_PACE_FB_BASE, 0,
1824                                     /* Allow large pace values in the
1825                                      * fast bin. */
1826                                     FRF_BZ_TX_PACE_BIN_TH,
1827                                     FFE_BZ_TX_PACE_RESERVED);
1828                efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1829        }
1830}
1831
1832/**************************************************************************
1833 *
1834 * Filter tables
1835 *
1836 **************************************************************************
1837 */
1838
1839/* "Fudge factors" - difference between programmed value and actual depth.
1840 * Due to pipelined implementation we need to program H/W with a value that
1841 * is larger than the hop limit we want.
1842 */
1843#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1844#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1845
1846/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1847 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1848 * table is full.
1849 */
1850#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1851
1852/* Don't try very hard to find space for performance hints, as this is
1853 * counter-productive. */
1854#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1855
1856enum efx_farch_filter_type {
1857        EFX_FARCH_FILTER_TCP_FULL = 0,
1858        EFX_FARCH_FILTER_TCP_WILD,
1859        EFX_FARCH_FILTER_UDP_FULL,
1860        EFX_FARCH_FILTER_UDP_WILD,
1861        EFX_FARCH_FILTER_MAC_FULL = 4,
1862        EFX_FARCH_FILTER_MAC_WILD,
1863        EFX_FARCH_FILTER_UC_DEF = 8,
1864        EFX_FARCH_FILTER_MC_DEF,
1865        EFX_FARCH_FILTER_TYPE_COUNT,            /* number of specific types */
1866};
1867
1868enum efx_farch_filter_table_id {
1869        EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1870        EFX_FARCH_FILTER_TABLE_RX_MAC,
1871        EFX_FARCH_FILTER_TABLE_RX_DEF,
1872        EFX_FARCH_FILTER_TABLE_TX_MAC,
1873        EFX_FARCH_FILTER_TABLE_COUNT,
1874};
1875
1876enum efx_farch_filter_index {
1877        EFX_FARCH_FILTER_INDEX_UC_DEF,
1878        EFX_FARCH_FILTER_INDEX_MC_DEF,
1879        EFX_FARCH_FILTER_SIZE_RX_DEF,
1880};
1881
1882struct efx_farch_filter_spec {
1883        u8      type:4;
1884        u8      priority:4;
1885        u8      flags;
1886        u16     dmaq_id;
1887        u32     data[3];
1888};
1889
1890struct efx_farch_filter_table {
1891        enum efx_farch_filter_table_id id;
1892        u32             offset;         /* address of table relative to BAR */
1893        unsigned        size;           /* number of entries */
1894        unsigned        step;           /* step between entries */
1895        unsigned        used;           /* number currently used */
1896        unsigned long   *used_bitmap;
1897        struct efx_farch_filter_spec *spec;
1898        unsigned        search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1899};
1900
1901struct efx_farch_filter_state {
1902        struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1903};
1904
1905static void
1906efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1907                                   struct efx_farch_filter_table *table,
1908                                   unsigned int filter_idx);
1909
1910/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1911 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1912static u16 efx_farch_filter_hash(u32 key)
1913{
1914        u16 tmp;
1915
1916        /* First 16 rounds */
1917        tmp = 0x1fff ^ key >> 16;
1918        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1919        tmp = tmp ^ tmp >> 9;
1920        /* Last 16 rounds */
1921        tmp = tmp ^ tmp << 13 ^ key;
1922        tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1923        return tmp ^ tmp >> 9;
1924}
1925
1926/* To allow for hash collisions, filter search continues at these
1927 * increments from the first possible entry selected by the hash. */
1928static u16 efx_farch_filter_increment(u32 key)
1929{
1930        return key * 2 - 1;
1931}
1932
1933static enum efx_farch_filter_table_id
1934efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1935{
1936        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1937                     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1938        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1939                     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1940        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1941                     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1942        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1943                     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1944        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1945                     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1946        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1947                     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1948        BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1949                     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1950        return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1951}
1952
1953static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1954{
1955        struct efx_farch_filter_state *state = efx->filter_state;
1956        struct efx_farch_filter_table *table;
1957        efx_oword_t filter_ctl;
1958
1959        efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1960
1961        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1962        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1963                            table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1964                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1965        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1966                            table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1967                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1968        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1969                            table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1970                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1971        EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1972                            table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1973                            EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1974
1975        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1976        if (table->size) {
1977                EFX_SET_OWORD_FIELD(
1978                        filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1979                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1980                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1981                EFX_SET_OWORD_FIELD(
1982                        filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1983                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1984                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1985        }
1986
1987        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1988        if (table->size) {
1989                EFX_SET_OWORD_FIELD(
1990                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1991                        table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1992                EFX_SET_OWORD_FIELD(
1993                        filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1994                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1995                           EFX_FILTER_FLAG_RX_RSS));
1996                EFX_SET_OWORD_FIELD(
1997                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1998                        table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1999                EFX_SET_OWORD_FIELD(
2000                        filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
2001                        !!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2002                           EFX_FILTER_FLAG_RX_RSS));
2003
2004                /* There is a single bit to enable RX scatter for all
2005                 * unmatched packets.  Only set it if scatter is
2006                 * enabled in both filter specs.
2007                 */
2008                EFX_SET_OWORD_FIELD(
2009                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2010                        !!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
2011                           table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
2012                           EFX_FILTER_FLAG_RX_SCATTER));
2013        } else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2014                /* We don't expose 'default' filters because unmatched
2015                 * packets always go to the queue number found in the
2016                 * RSS table.  But we still need to set the RX scatter
2017                 * bit here.
2018                 */
2019                EFX_SET_OWORD_FIELD(
2020                        filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2021                        efx->rx_scatter);
2022        }
2023
2024        efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2025}
2026
2027static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2028{
2029        struct efx_farch_filter_state *state = efx->filter_state;
2030        struct efx_farch_filter_table *table;
2031        efx_oword_t tx_cfg;
2032
2033        efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2034
2035        table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2036        if (table->size) {
2037                EFX_SET_OWORD_FIELD(
2038                        tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2039                        table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2040                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2041                EFX_SET_OWORD_FIELD(
2042                        tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2043                        table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2044                        EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2045        }
2046
2047        efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2048}
2049
2050static int
2051efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2052                               const struct efx_filter_spec *gen_spec)
2053{
2054        bool is_full = false;
2055
2056        if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2057            gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2058                return -EINVAL;
2059
2060        spec->priority = gen_spec->priority;
2061        spec->flags = gen_spec->flags;
2062        spec->dmaq_id = gen_spec->dmaq_id;
2063
2064        switch (gen_spec->match_flags) {
2065        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2066              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2067              EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2068                is_full = true;
2069                /* fall through */
2070        case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2071              EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2072                __be32 rhost, host1, host2;
2073                __be16 rport, port1, port2;
2074
2075                EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2076
2077                if (gen_spec->ether_type != htons(ETH_P_IP))
2078                        return -EPROTONOSUPPORT;
2079                if (gen_spec->loc_port == 0 ||
2080                    (is_full && gen_spec->rem_port == 0))
2081                        return -EADDRNOTAVAIL;
2082                switch (gen_spec->ip_proto) {
2083                case IPPROTO_TCP:
2084                        spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2085                                      EFX_FARCH_FILTER_TCP_WILD);
2086                        break;
2087                case IPPROTO_UDP:
2088                        spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2089                                      EFX_FARCH_FILTER_UDP_WILD);
2090                        break;
2091                default:
2092                        return -EPROTONOSUPPORT;
2093                }
2094
2095                /* Filter is constructed in terms of source and destination,
2096                 * with the odd wrinkle that the ports are swapped in a UDP
2097                 * wildcard filter.  We need to convert from local and remote
2098                 * (= zero for wildcard) addresses.
2099                 */
2100                rhost = is_full ? gen_spec->rem_host[0] : 0;
2101                rport = is_full ? gen_spec->rem_port : 0;
2102                host1 = rhost;
2103                host2 = gen_spec->loc_host[0];
2104                if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2105                        port1 = gen_spec->loc_port;
2106                        port2 = rport;
2107                } else {
2108                        port1 = rport;
2109                        port2 = gen_spec->loc_port;
2110                }
2111                spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2112                spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2113                spec->data[2] = ntohl(host2);
2114
2115                break;
2116        }
2117
2118        case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2119                is_full = true;
2120                /* fall through */
2121        case EFX_FILTER_MATCH_LOC_MAC:
2122                spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2123                              EFX_FARCH_FILTER_MAC_WILD);
2124                spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2125                spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2126                                 gen_spec->loc_mac[3] << 16 |
2127                                 gen_spec->loc_mac[4] << 8 |
2128                                 gen_spec->loc_mac[5]);
2129                spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2130                                 gen_spec->loc_mac[1]);
2131                break;
2132
2133        case EFX_FILTER_MATCH_LOC_MAC_IG:
2134                spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2135                              EFX_FARCH_FILTER_MC_DEF :
2136                              EFX_FARCH_FILTER_UC_DEF);
2137                memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2138                break;
2139
2140        default:
2141                return -EPROTONOSUPPORT;
2142        }
2143
2144        return 0;
2145}
2146
2147static void
2148efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2149                             const struct efx_farch_filter_spec *spec)
2150{
2151        bool is_full = false;
2152
2153        /* *gen_spec should be completely initialised, to be consistent
2154         * with efx_filter_init_{rx,tx}() and in case we want to copy
2155         * it back to userland.
2156         */
2157        memset(gen_spec, 0, sizeof(*gen_spec));
2158
2159        gen_spec->priority = spec->priority;
2160        gen_spec->flags = spec->flags;
2161        gen_spec->dmaq_id = spec->dmaq_id;
2162
2163        switch (spec->type) {
2164        case EFX_FARCH_FILTER_TCP_FULL:
2165        case EFX_FARCH_FILTER_UDP_FULL:
2166                is_full = true;
2167                /* fall through */
2168        case EFX_FARCH_FILTER_TCP_WILD:
2169        case EFX_FARCH_FILTER_UDP_WILD: {
2170                __be32 host1, host2;
2171                __be16 port1, port2;
2172
2173                gen_spec->match_flags =
2174                        EFX_FILTER_MATCH_ETHER_TYPE |
2175                        EFX_FILTER_MATCH_IP_PROTO |
2176                        EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2177                if (is_full)
2178                        gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2179                                                  EFX_FILTER_MATCH_REM_PORT);
2180                gen_spec->ether_type = htons(ETH_P_IP);
2181                gen_spec->ip_proto =
2182                        (spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2183                         spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2184                        IPPROTO_TCP : IPPROTO_UDP;
2185
2186                host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2187                port1 = htons(spec->data[0]);
2188                host2 = htonl(spec->data[2]);
2189                port2 = htons(spec->data[1] >> 16);
2190                if (spec->flags & EFX_FILTER_FLAG_TX) {
2191                        gen_spec->loc_host[0] = host1;
2192                        gen_spec->rem_host[0] = host2;
2193                } else {
2194                        gen_spec->loc_host[0] = host2;
2195                        gen_spec->rem_host[0] = host1;
2196                }
2197                if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2198                    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2199                        gen_spec->loc_port = port1;
2200                        gen_spec->rem_port = port2;
2201                } else {
2202                        gen_spec->loc_port = port2;
2203                        gen_spec->rem_port = port1;
2204                }
2205
2206                break;
2207        }
2208
2209        case EFX_FARCH_FILTER_MAC_FULL:
2210                is_full = true;
2211                /* fall through */
2212        case EFX_FARCH_FILTER_MAC_WILD:
2213                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2214                if (is_full)
2215                        gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2216                gen_spec->loc_mac[0] = spec->data[2] >> 8;
2217                gen_spec->loc_mac[1] = spec->data[2];
2218                gen_spec->loc_mac[2] = spec->data[1] >> 24;
2219                gen_spec->loc_mac[3] = spec->data[1] >> 16;
2220                gen_spec->loc_mac[4] = spec->data[1] >> 8;
2221                gen_spec->loc_mac[5] = spec->data[1];
2222                gen_spec->outer_vid = htons(spec->data[0]);
2223                break;
2224
2225        case EFX_FARCH_FILTER_UC_DEF:
2226        case EFX_FARCH_FILTER_MC_DEF:
2227                gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2228                gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2229                break;
2230
2231        default:
2232                WARN_ON(1);
2233                break;
2234        }
2235}
2236
2237static void
2238efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2239                              struct efx_farch_filter_spec *spec)
2240{
2241        /* If there's only one channel then disable RSS for non VF
2242         * traffic, thereby allowing VFs to use RSS when the PF can't.
2243         */
2244        spec->priority = EFX_FILTER_PRI_AUTO;
2245        spec->flags = (EFX_FILTER_FLAG_RX |
2246                       (efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0) |
2247                       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2248        spec->dmaq_id = 0;
2249}
2250
2251/* Build a filter entry and return its n-tuple key. */
2252static u32 efx_farch_filter_build(efx_oword_t *filter,
2253                                  struct efx_farch_filter_spec *spec)
2254{
2255        u32 data3;
2256
2257        switch (efx_farch_filter_spec_table_id(spec)) {
2258        case EFX_FARCH_FILTER_TABLE_RX_IP: {
2259                bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2260                               spec->type == EFX_FARCH_FILTER_UDP_WILD);
2261                EFX_POPULATE_OWORD_7(
2262                        *filter,
2263                        FRF_BZ_RSS_EN,
2264                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2265                        FRF_BZ_SCATTER_EN,
2266                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2267                        FRF_BZ_TCP_UDP, is_udp,
2268                        FRF_BZ_RXQ_ID, spec->dmaq_id,
2269                        EFX_DWORD_2, spec->data[2],
2270                        EFX_DWORD_1, spec->data[1],
2271                        EFX_DWORD_0, spec->data[0]);
2272                data3 = is_udp;
2273                break;
2274        }
2275
2276        case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2277                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2278                EFX_POPULATE_OWORD_7(
2279                        *filter,
2280                        FRF_CZ_RMFT_RSS_EN,
2281                        !!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2282                        FRF_CZ_RMFT_SCATTER_EN,
2283                        !!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2284                        FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2285                        FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2286                        FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2287                        FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2288                        FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2289                data3 = is_wild;
2290                break;
2291        }
2292
2293        case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2294                bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2295                EFX_POPULATE_OWORD_5(*filter,
2296                                     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2297                                     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2298                                     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2299                                     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2300                                     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2301                data3 = is_wild | spec->dmaq_id << 1;
2302                break;
2303        }
2304
2305        default:
2306                BUG();
2307        }
2308
2309        return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2310}
2311
2312static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2313                                   const struct efx_farch_filter_spec *right)
2314{
2315        if (left->type != right->type ||
2316            memcmp(left->data, right->data, sizeof(left->data)))
2317                return false;
2318
2319        if (left->flags & EFX_FILTER_FLAG_TX &&
2320            left->dmaq_id != right->dmaq_id)
2321                return false;
2322
2323        return true;
2324}
2325
2326/*
2327 * Construct/deconstruct external filter IDs.  At least the RX filter
2328 * IDs must be ordered by matching priority, for RX NFC semantics.
2329 *
2330 * Deconstruction needs to be robust against invalid IDs so that
2331 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2332 * accept user-provided IDs.
2333 */
2334
2335#define EFX_FARCH_FILTER_MATCH_PRI_COUNT        5
2336
2337static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2338        [EFX_FARCH_FILTER_TCP_FULL]     = 0,
2339        [EFX_FARCH_FILTER_UDP_FULL]     = 0,
2340        [EFX_FARCH_FILTER_TCP_WILD]     = 1,
2341        [EFX_FARCH_FILTER_UDP_WILD]     = 1,
2342        [EFX_FARCH_FILTER_MAC_FULL]     = 2,
2343        [EFX_FARCH_FILTER_MAC_WILD]     = 3,
2344        [EFX_FARCH_FILTER_UC_DEF]       = 4,
2345        [EFX_FARCH_FILTER_MC_DEF]       = 4,
2346};
2347
2348static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2349        EFX_FARCH_FILTER_TABLE_RX_IP,   /* RX match pri 0 */
2350        EFX_FARCH_FILTER_TABLE_RX_IP,
2351        EFX_FARCH_FILTER_TABLE_RX_MAC,
2352        EFX_FARCH_FILTER_TABLE_RX_MAC,
2353        EFX_FARCH_FILTER_TABLE_RX_DEF,  /* RX match pri 4 */
2354        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 0 */
2355        EFX_FARCH_FILTER_TABLE_TX_MAC,  /* TX match pri 1 */
2356};
2357
2358#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2359#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2360
2361static inline u32
2362efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2363                         unsigned int index)
2364{
2365        unsigned int range;
2366
2367        range = efx_farch_filter_type_match_pri[spec->type];
2368        if (!(spec->flags & EFX_FILTER_FLAG_RX))
2369                range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2370
2371        return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2372}
2373
2374static inline enum efx_farch_filter_table_id
2375efx_farch_filter_id_table_id(u32 id)
2376{
2377        unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2378
2379        if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2380                return efx_farch_filter_range_table[range];
2381        else
2382                return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2383}
2384
2385static inline unsigned int efx_farch_filter_id_index(u32 id)
2386{
2387        return id & EFX_FARCH_FILTER_INDEX_MASK;
2388}
2389
2390u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2391{
2392        struct efx_farch_filter_state *state = efx->filter_state;
2393        unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2394        enum efx_farch_filter_table_id table_id;
2395
2396        do {
2397                table_id = efx_farch_filter_range_table[range];
2398                if (state->table[table_id].size != 0)
2399                        return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2400                                state->table[table_id].size;
2401        } while (range--);
2402
2403        return 0;
2404}
2405
2406s32 efx_farch_filter_insert(struct efx_nic *efx,
2407                            struct efx_filter_spec *gen_spec,
2408                            bool replace_equal)
2409{
2410        struct efx_farch_filter_state *state = efx->filter_state;
2411        struct efx_farch_filter_table *table;
2412        struct efx_farch_filter_spec spec;
2413        efx_oword_t filter;
2414        int rep_index, ins_index;
2415        unsigned int depth = 0;
2416        int rc;
2417
2418        rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2419        if (rc)
2420                return rc;
2421
2422        table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2423        if (table->size == 0)
2424                return -EINVAL;
2425
2426        netif_vdbg(efx, hw, efx->net_dev,
2427                   "%s: type %d search_limit=%d", __func__, spec.type,
2428                   table->search_limit[spec.type]);
2429
2430        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2431                /* One filter spec per type */
2432                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2433                BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2434                             EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2435                rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2436                ins_index = rep_index;
2437
2438                spin_lock_bh(&efx->filter_lock);
2439        } else {
2440                /* Search concurrently for
2441                 * (1) a filter to be replaced (rep_index): any filter
2442                 *     with the same match values, up to the current
2443                 *     search depth for this type, and
2444                 * (2) the insertion point (ins_index): (1) or any
2445                 *     free slot before it or up to the maximum search
2446                 *     depth for this priority
2447                 * We fail if we cannot find (2).
2448                 *
2449                 * We can stop once either
2450                 * (a) we find (1), in which case we have definitely
2451                 *     found (2) as well; or
2452                 * (b) we have searched exhaustively for (1), and have
2453                 *     either found (2) or searched exhaustively for it
2454                 */
2455                u32 key = efx_farch_filter_build(&filter, &spec);
2456                unsigned int hash = efx_farch_filter_hash(key);
2457                unsigned int incr = efx_farch_filter_increment(key);
2458                unsigned int max_rep_depth = table->search_limit[spec.type];
2459                unsigned int max_ins_depth =
2460                        spec.priority <= EFX_FILTER_PRI_HINT ?
2461                        EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2462                        EFX_FARCH_FILTER_CTL_SRCH_MAX;
2463                unsigned int i = hash & (table->size - 1);
2464
2465                ins_index = -1;
2466                depth = 1;
2467
2468                spin_lock_bh(&efx->filter_lock);
2469
2470                for (;;) {
2471                        if (!test_bit(i, table->used_bitmap)) {
2472                                if (ins_index < 0)
2473                                        ins_index = i;
2474                        } else if (efx_farch_filter_equal(&spec,
2475                                                          &table->spec[i])) {
2476                                /* Case (a) */
2477                                if (ins_index < 0)
2478                                        ins_index = i;
2479                                rep_index = i;
2480                                break;
2481                        }
2482
2483                        if (depth >= max_rep_depth &&
2484                            (ins_index >= 0 || depth >= max_ins_depth)) {
2485                                /* Case (b) */
2486                                if (ins_index < 0) {
2487                                        rc = -EBUSY;
2488                                        goto out;
2489                                }
2490                                rep_index = -1;
2491                                break;
2492                        }
2493
2494                        i = (i + incr) & (table->size - 1);
2495                        ++depth;
2496                }
2497        }
2498
2499        /* If we found a filter to be replaced, check whether we
2500         * should do so
2501         */
2502        if (rep_index >= 0) {
2503                struct efx_farch_filter_spec *saved_spec =
2504                        &table->spec[rep_index];
2505
2506                if (spec.priority == saved_spec->priority && !replace_equal) {
2507                        rc = -EEXIST;
2508                        goto out;
2509                }
2510                if (spec.priority < saved_spec->priority) {
2511                        rc = -EPERM;
2512                        goto out;
2513                }
2514                if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2515                    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2516                        spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2517        }
2518
2519        /* Insert the filter */
2520        if (ins_index != rep_index) {
2521                __set_bit(ins_index, table->used_bitmap);
2522                ++table->used;
2523        }
2524        table->spec[ins_index] = spec;
2525
2526        if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2527                efx_farch_filter_push_rx_config(efx);
2528        } else {
2529                if (table->search_limit[spec.type] < depth) {
2530                        table->search_limit[spec.type] = depth;
2531                        if (spec.flags & EFX_FILTER_FLAG_TX)
2532                                efx_farch_filter_push_tx_limits(efx);
2533                        else
2534                                efx_farch_filter_push_rx_config(efx);
2535                }
2536
2537                efx_writeo(efx, &filter,
2538                           table->offset + table->step * ins_index);
2539
2540                /* If we were able to replace a filter by inserting
2541                 * at a lower depth, clear the replaced filter
2542                 */
2543                if (ins_index != rep_index && rep_index >= 0)
2544                        efx_farch_filter_table_clear_entry(efx, table,
2545                                                           rep_index);
2546        }
2547
2548        netif_vdbg(efx, hw, efx->net_dev,
2549                   "%s: filter type %d index %d rxq %u set",
2550                   __func__, spec.type, ins_index, spec.dmaq_id);
2551        rc = efx_farch_filter_make_id(&spec, ins_index);
2552
2553out:
2554        spin_unlock_bh(&efx->filter_lock);
2555        return rc;
2556}
2557
2558static void
2559efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2560                                   struct efx_farch_filter_table *table,
2561                                   unsigned int filter_idx)
2562{
2563        static efx_oword_t filter;
2564
2565        EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2566        BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2567
2568        __clear_bit(filter_idx, table->used_bitmap);
2569        --table->used;
2570        memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2571
2572        efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2573
2574        /* If this filter required a greater search depth than
2575         * any other, the search limit for its type can now be
2576         * decreased.  However, it is hard to determine that
2577         * unless the table has become completely empty - in
2578         * which case, all its search limits can be set to 0.
2579         */
2580        if (unlikely(table->used == 0)) {
2581                memset(table->search_limit, 0, sizeof(table->search_limit));
2582                if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2583                        efx_farch_filter_push_tx_limits(efx);
2584                else
2585                        efx_farch_filter_push_rx_config(efx);
2586        }
2587}
2588
2589static int efx_farch_filter_remove(struct efx_nic *efx,
2590                                   struct efx_farch_filter_table *table,
2591                                   unsigned int filter_idx,
2592                                   enum efx_filter_priority priority)
2593{
2594        struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2595
2596        if (!test_bit(filter_idx, table->used_bitmap) ||
2597            spec->priority != priority)
2598                return -ENOENT;
2599
2600        if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2601                efx_farch_filter_init_rx_auto(efx, spec);
2602                efx_farch_filter_push_rx_config(efx);
2603        } else {
2604                efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2605        }
2606
2607        return 0;
2608}
2609
2610int efx_farch_filter_remove_safe(struct efx_nic *efx,
2611                                 enum efx_filter_priority priority,
2612                                 u32 filter_id)
2613{
2614        struct efx_farch_filter_state *state = efx->filter_state;
2615        enum efx_farch_filter_table_id table_id;
2616        struct efx_farch_filter_table *table;
2617        unsigned int filter_idx;
2618        struct efx_farch_filter_spec *spec;
2619        int rc;
2620
2621        table_id = efx_farch_filter_id_table_id(filter_id);
2622        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2623                return -ENOENT;
2624        table = &state->table[table_id];
2625
2626        filter_idx = efx_farch_filter_id_index(filter_id);
2627        if (filter_idx >= table->size)
2628                return -ENOENT;
2629        spec = &table->spec[filter_idx];
2630
2631        spin_lock_bh(&efx->filter_lock);
2632        rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2633        spin_unlock_bh(&efx->filter_lock);
2634
2635        return rc;
2636}
2637
2638int efx_farch_filter_get_safe(struct efx_nic *efx,
2639                              enum efx_filter_priority priority,
2640                              u32 filter_id, struct efx_filter_spec *spec_buf)
2641{
2642        struct efx_farch_filter_state *state = efx->filter_state;
2643        enum efx_farch_filter_table_id table_id;
2644        struct efx_farch_filter_table *table;
2645        struct efx_farch_filter_spec *spec;
2646        unsigned int filter_idx;
2647        int rc;
2648
2649        table_id = efx_farch_filter_id_table_id(filter_id);
2650        if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2651                return -ENOENT;
2652        table = &state->table[table_id];
2653
2654        filter_idx = efx_farch_filter_id_index(filter_id);
2655        if (filter_idx >= table->size)
2656                return -ENOENT;
2657        spec = &table->spec[filter_idx];
2658
2659        spin_lock_bh(&efx->filter_lock);
2660
2661        if (test_bit(filter_idx, table->used_bitmap) &&
2662            spec->priority == priority) {
2663                efx_farch_filter_to_gen_spec(spec_buf, spec);
2664                rc = 0;
2665        } else {
2666                rc = -ENOENT;
2667        }
2668
2669        spin_unlock_bh(&efx->filter_lock);
2670
2671        return rc;
2672}
2673
2674static void
2675efx_farch_filter_table_clear(struct efx_nic *efx,
2676                             enum efx_farch_filter_table_id table_id,
2677                             enum efx_filter_priority priority)
2678{
2679        struct efx_farch_filter_state *state = efx->filter_state;
2680        struct efx_farch_filter_table *table = &state->table[table_id];
2681        unsigned int filter_idx;
2682
2683        spin_lock_bh(&efx->filter_lock);
2684        for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2685                if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2686                        efx_farch_filter_remove(efx, table,
2687                                                filter_idx, priority);
2688        }
2689        spin_unlock_bh(&efx->filter_lock);
2690}
2691
2692int efx_farch_filter_clear_rx(struct efx_nic *efx,
2693                               enum efx_filter_priority priority)
2694{
2695        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2696                                     priority);
2697        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2698                                     priority);
2699        efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2700                                     priority);
2701        return 0;
2702}
2703
2704u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2705                                   enum efx_filter_priority priority)
2706{
2707        struct efx_farch_filter_state *state = efx->filter_state;
2708        enum efx_farch_filter_table_id table_id;
2709        struct efx_farch_filter_table *table;
2710        unsigned int filter_idx;
2711        u32 count = 0;
2712
2713        spin_lock_bh(&efx->filter_lock);
2714
2715        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2716             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2717             table_id++) {
2718                table = &state->table[table_id];
2719                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2720                        if (test_bit(filter_idx, table->used_bitmap) &&
2721                            table->spec[filter_idx].priority == priority)
2722                                ++count;
2723                }
2724        }
2725
2726        spin_unlock_bh(&efx->filter_lock);
2727
2728        return count;
2729}
2730
2731s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2732                                enum efx_filter_priority priority,
2733                                u32 *buf, u32 size)
2734{
2735        struct efx_farch_filter_state *state = efx->filter_state;
2736        enum efx_farch_filter_table_id table_id;
2737        struct efx_farch_filter_table *table;
2738        unsigned int filter_idx;
2739        s32 count = 0;
2740
2741        spin_lock_bh(&efx->filter_lock);
2742
2743        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2744             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2745             table_id++) {
2746                table = &state->table[table_id];
2747                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2748                        if (test_bit(filter_idx, table->used_bitmap) &&
2749                            table->spec[filter_idx].priority == priority) {
2750                                if (count == size) {
2751                                        count = -EMSGSIZE;
2752                                        goto out;
2753                                }
2754                                buf[count++] = efx_farch_filter_make_id(
2755                                        &table->spec[filter_idx], filter_idx);
2756                        }
2757                }
2758        }
2759out:
2760        spin_unlock_bh(&efx->filter_lock);
2761
2762        return count;
2763}
2764
2765/* Restore filter stater after reset */
2766void efx_farch_filter_table_restore(struct efx_nic *efx)
2767{
2768        struct efx_farch_filter_state *state = efx->filter_state;
2769        enum efx_farch_filter_table_id table_id;
2770        struct efx_farch_filter_table *table;
2771        efx_oword_t filter;
2772        unsigned int filter_idx;
2773
2774        spin_lock_bh(&efx->filter_lock);
2775
2776        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2777                table = &state->table[table_id];
2778
2779                /* Check whether this is a regular register table */
2780                if (table->step == 0)
2781                        continue;
2782
2783                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2784                        if (!test_bit(filter_idx, table->used_bitmap))
2785                                continue;
2786                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2787                        efx_writeo(efx, &filter,
2788                                   table->offset + table->step * filter_idx);
2789                }
2790        }
2791
2792        efx_farch_filter_push_rx_config(efx);
2793        efx_farch_filter_push_tx_limits(efx);
2794
2795        spin_unlock_bh(&efx->filter_lock);
2796}
2797
2798void efx_farch_filter_table_remove(struct efx_nic *efx)
2799{
2800        struct efx_farch_filter_state *state = efx->filter_state;
2801        enum efx_farch_filter_table_id table_id;
2802
2803        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2804                kfree(state->table[table_id].used_bitmap);
2805                vfree(state->table[table_id].spec);
2806        }
2807        kfree(state);
2808}
2809
2810int efx_farch_filter_table_probe(struct efx_nic *efx)
2811{
2812        struct efx_farch_filter_state *state;
2813        struct efx_farch_filter_table *table;
2814        unsigned table_id;
2815
2816        state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2817        if (!state)
2818                return -ENOMEM;
2819        efx->filter_state = state;
2820
2821        if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2822                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2823                table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2824                table->offset = FR_BZ_RX_FILTER_TBL0;
2825                table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2826                table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2827        }
2828
2829        if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2830                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2831                table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2832                table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2833                table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2834                table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2835
2836                table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2837                table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2838                table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2839
2840                table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2841                table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2842                table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2843                table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2844                table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2845        }
2846
2847        for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2848                table = &state->table[table_id];
2849                if (table->size == 0)
2850                        continue;
2851                table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2852                                             sizeof(unsigned long),
2853                                             GFP_KERNEL);
2854                if (!table->used_bitmap)
2855                        goto fail;
2856                table->spec = vzalloc(table->size * sizeof(*table->spec));
2857                if (!table->spec)
2858                        goto fail;
2859        }
2860
2861        table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2862        if (table->size) {
2863                /* RX default filters must always exist */
2864                struct efx_farch_filter_spec *spec;
2865                unsigned i;
2866
2867                for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2868                        spec = &table->spec[i];
2869                        spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2870                        efx_farch_filter_init_rx_auto(efx, spec);
2871                        __set_bit(i, table->used_bitmap);
2872                }
2873        }
2874
2875        efx_farch_filter_push_rx_config(efx);
2876
2877        return 0;
2878
2879fail:
2880        efx_farch_filter_table_remove(efx);
2881        return -ENOMEM;
2882}
2883
2884/* Update scatter enable flags for filters pointing to our own RX queues */
2885void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2886{
2887        struct efx_farch_filter_state *state = efx->filter_state;
2888        enum efx_farch_filter_table_id table_id;
2889        struct efx_farch_filter_table *table;
2890        efx_oword_t filter;
2891        unsigned int filter_idx;
2892
2893        spin_lock_bh(&efx->filter_lock);
2894
2895        for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2896             table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2897             table_id++) {
2898                table = &state->table[table_id];
2899
2900                for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2901                        if (!test_bit(filter_idx, table->used_bitmap) ||
2902                            table->spec[filter_idx].dmaq_id >=
2903                            efx->n_rx_channels)
2904                                continue;
2905
2906                        if (efx->rx_scatter)
2907                                table->spec[filter_idx].flags |=
2908                                        EFX_FILTER_FLAG_RX_SCATTER;
2909                        else
2910                                table->spec[filter_idx].flags &=
2911                                        ~EFX_FILTER_FLAG_RX_SCATTER;
2912
2913                        if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2914                                /* Pushed by efx_farch_filter_push_rx_config() */
2915                                continue;
2916
2917                        efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2918                        efx_writeo(efx, &filter,
2919                                   table->offset + table->step * filter_idx);
2920                }
2921        }
2922
2923        efx_farch_filter_push_rx_config(efx);
2924
2925        spin_unlock_bh(&efx->filter_lock);
2926}
2927
2928#ifdef CONFIG_RFS_ACCEL
2929
2930s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2931                                struct efx_filter_spec *gen_spec)
2932{
2933        return efx_farch_filter_insert(efx, gen_spec, true);
2934}
2935
2936bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2937                                     unsigned int index)
2938{
2939        struct efx_farch_filter_state *state = efx->filter_state;
2940        struct efx_farch_filter_table *table =
2941                &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2942
2943        if (test_bit(index, table->used_bitmap) &&
2944            table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2945            rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2946                                flow_id, index)) {
2947                efx_farch_filter_table_clear_entry(efx, table, index);
2948                return true;
2949        }
2950
2951        return false;
2952}
2953
2954#endif /* CONFIG_RFS_ACCEL */
2955
2956void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2957{
2958        struct net_device *net_dev = efx->net_dev;
2959        struct netdev_hw_addr *ha;
2960        union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2961        u32 crc;
2962        int bit;
2963
2964        if (!efx_dev_registered(efx))
2965                return;
2966
2967        netif_addr_lock_bh(net_dev);
2968
2969        efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2970
2971        /* Build multicast hash table */
2972        if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2973                memset(mc_hash, 0xff, sizeof(*mc_hash));
2974        } else {
2975                memset(mc_hash, 0x00, sizeof(*mc_hash));
2976                netdev_for_each_mc_addr(ha, net_dev) {
2977                        crc = ether_crc_le(ETH_ALEN, ha->addr);
2978                        bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2979                        __set_bit_le(bit, mc_hash);
2980                }
2981
2982                /* Broadcast packets go through the multicast hash filter.
2983                 * ether_crc_le() of the broadcast address is 0xbe2612ff
2984                 * so we always add bit 0xff to the mask.
2985                 */
2986                __set_bit_le(0xff, mc_hash);
2987        }
2988
2989        netif_addr_unlock_bh(net_dev);
2990}
2991