linux/drivers/net/ethernet/sfc/ptp.c
<<
>>
Prefs
   1/****************************************************************************
   2 * Driver for Solarflare network controllers and boards
   3 * Copyright 2011-2013 Solarflare Communications Inc.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms of the GNU General Public License version 2 as published
   7 * by the Free Software Foundation, incorporated herein by reference.
   8 */
   9
  10/* Theory of operation:
  11 *
  12 * PTP support is assisted by firmware running on the MC, which provides
  13 * the hardware timestamping capabilities.  Both transmitted and received
  14 * PTP event packets are queued onto internal queues for subsequent processing;
  15 * this is because the MC operations are relatively long and would block
  16 * block NAPI/interrupt operation.
  17 *
  18 * Receive event processing:
  19 *      The event contains the packet's UUID and sequence number, together
  20 *      with the hardware timestamp.  The PTP receive packet queue is searched
  21 *      for this UUID/sequence number and, if found, put on a pending queue.
  22 *      Packets not matching are delivered without timestamps (MCDI events will
  23 *      always arrive after the actual packet).
  24 *      It is important for the operation of the PTP protocol that the ordering
  25 *      of packets between the event and general port is maintained.
  26 *
  27 * Work queue processing:
  28 *      If work waiting, synchronise host/hardware time
  29 *
  30 *      Transmit: send packet through MC, which returns the transmission time
  31 *      that is converted to an appropriate timestamp.
  32 *
  33 *      Receive: the packet's reception time is converted to an appropriate
  34 *      timestamp.
  35 */
  36#include <linux/ip.h>
  37#include <linux/udp.h>
  38#include <linux/time.h>
  39#include <linux/ktime.h>
  40#include <linux/module.h>
  41#include <linux/net_tstamp.h>
  42#include <linux/pps_kernel.h>
  43#include <linux/ptp_clock_kernel.h>
  44#include "net_driver.h"
  45#include "efx.h"
  46#include "mcdi.h"
  47#include "mcdi_pcol.h"
  48#include "io.h"
  49#include "farch_regs.h"
  50#include "nic.h"
  51
  52/* Maximum number of events expected to make up a PTP event */
  53#define MAX_EVENT_FRAGS                 3
  54
  55/* Maximum delay, ms, to begin synchronisation */
  56#define MAX_SYNCHRONISE_WAIT_MS         2
  57
  58/* How long, at most, to spend synchronising */
  59#define SYNCHRONISE_PERIOD_NS           250000
  60
  61/* How often to update the shared memory time */
  62#define SYNCHRONISATION_GRANULARITY_NS  200
  63
  64/* Minimum permitted length of a (corrected) synchronisation time */
  65#define DEFAULT_MIN_SYNCHRONISATION_NS  120
  66
  67/* Maximum permitted length of a (corrected) synchronisation time */
  68#define MAX_SYNCHRONISATION_NS          1000
  69
  70/* How many (MC) receive events that can be queued */
  71#define MAX_RECEIVE_EVENTS              8
  72
  73/* Length of (modified) moving average. */
  74#define AVERAGE_LENGTH                  16
  75
  76/* How long an unmatched event or packet can be held */
  77#define PKT_EVENT_LIFETIME_MS           10
  78
  79/* Offsets into PTP packet for identification.  These offsets are from the
  80 * start of the IP header, not the MAC header.  Note that neither PTP V1 nor
  81 * PTP V2 permit the use of IPV4 options.
  82 */
  83#define PTP_DPORT_OFFSET        22
  84
  85#define PTP_V1_VERSION_LENGTH   2
  86#define PTP_V1_VERSION_OFFSET   28
  87
  88#define PTP_V1_UUID_LENGTH      6
  89#define PTP_V1_UUID_OFFSET      50
  90
  91#define PTP_V1_SEQUENCE_LENGTH  2
  92#define PTP_V1_SEQUENCE_OFFSET  58
  93
  94/* The minimum length of a PTP V1 packet for offsets, etc. to be valid:
  95 * includes IP header.
  96 */
  97#define PTP_V1_MIN_LENGTH       64
  98
  99#define PTP_V2_VERSION_LENGTH   1
 100#define PTP_V2_VERSION_OFFSET   29
 101
 102#define PTP_V2_UUID_LENGTH      8
 103#define PTP_V2_UUID_OFFSET      48
 104
 105/* Although PTP V2 UUIDs are comprised a ClockIdentity (8) and PortNumber (2),
 106 * the MC only captures the last six bytes of the clock identity. These values
 107 * reflect those, not the ones used in the standard.  The standard permits
 108 * mapping of V1 UUIDs to V2 UUIDs with these same values.
 109 */
 110#define PTP_V2_MC_UUID_LENGTH   6
 111#define PTP_V2_MC_UUID_OFFSET   50
 112
 113#define PTP_V2_SEQUENCE_LENGTH  2
 114#define PTP_V2_SEQUENCE_OFFSET  58
 115
 116/* The minimum length of a PTP V2 packet for offsets, etc. to be valid:
 117 * includes IP header.
 118 */
 119#define PTP_V2_MIN_LENGTH       63
 120
 121#define PTP_MIN_LENGTH          63
 122
 123#define PTP_ADDRESS             0xe0000181      /* 224.0.1.129 */
 124#define PTP_EVENT_PORT          319
 125#define PTP_GENERAL_PORT        320
 126
 127/* Annoyingly the format of the version numbers are different between
 128 * versions 1 and 2 so it isn't possible to simply look for 1 or 2.
 129 */
 130#define PTP_VERSION_V1          1
 131
 132#define PTP_VERSION_V2          2
 133#define PTP_VERSION_V2_MASK     0x0f
 134
 135enum ptp_packet_state {
 136        PTP_PACKET_STATE_UNMATCHED = 0,
 137        PTP_PACKET_STATE_MATCHED,
 138        PTP_PACKET_STATE_TIMED_OUT,
 139        PTP_PACKET_STATE_MATCH_UNWANTED
 140};
 141
 142/* NIC synchronised with single word of time only comprising
 143 * partial seconds and full nanoseconds: 10^9 ~ 2^30 so 2 bits for seconds.
 144 */
 145#define MC_NANOSECOND_BITS      30
 146#define MC_NANOSECOND_MASK      ((1 << MC_NANOSECOND_BITS) - 1)
 147#define MC_SECOND_MASK          ((1 << (32 - MC_NANOSECOND_BITS)) - 1)
 148
 149/* Maximum parts-per-billion adjustment that is acceptable */
 150#define MAX_PPB                 1000000
 151
 152/* Number of bits required to hold the above */
 153#define MAX_PPB_BITS            20
 154
 155/* Number of extra bits allowed when calculating fractional ns.
 156 * EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS + MAX_PPB_BITS should
 157 * be less than 63.
 158 */
 159#define PPB_EXTRA_BITS          2
 160
 161/* Precalculate scale word to avoid long long division at runtime */
 162#define PPB_SCALE_WORD  ((1LL << (PPB_EXTRA_BITS + MC_CMD_PTP_IN_ADJUST_BITS +\
 163                        MAX_PPB_BITS)) / 1000000000LL)
 164
 165#define PTP_SYNC_ATTEMPTS       4
 166
 167/**
 168 * struct efx_ptp_match - Matching structure, stored in sk_buff's cb area.
 169 * @words: UUID and (partial) sequence number
 170 * @expiry: Time after which the packet should be delivered irrespective of
 171 *            event arrival.
 172 * @state: The state of the packet - whether it is ready for processing or
 173 *         whether that is of no interest.
 174 */
 175struct efx_ptp_match {
 176        u32 words[DIV_ROUND_UP(PTP_V1_UUID_LENGTH, 4)];
 177        unsigned long expiry;
 178        enum ptp_packet_state state;
 179};
 180
 181/**
 182 * struct efx_ptp_event_rx - A PTP receive event (from MC)
 183 * @seq0: First part of (PTP) UUID
 184 * @seq1: Second part of (PTP) UUID and sequence number
 185 * @hwtimestamp: Event timestamp
 186 */
 187struct efx_ptp_event_rx {
 188        struct list_head link;
 189        u32 seq0;
 190        u32 seq1;
 191        ktime_t hwtimestamp;
 192        unsigned long expiry;
 193};
 194
 195/**
 196 * struct efx_ptp_timeset - Synchronisation between host and MC
 197 * @host_start: Host time immediately before hardware timestamp taken
 198 * @major: Hardware timestamp, major
 199 * @minor: Hardware timestamp, minor
 200 * @host_end: Host time immediately after hardware timestamp taken
 201 * @wait: Number of NIC clock ticks between hardware timestamp being read and
 202 *          host end time being seen
 203 * @window: Difference of host_end and host_start
 204 * @valid: Whether this timeset is valid
 205 */
 206struct efx_ptp_timeset {
 207        u32 host_start;
 208        u32 major;
 209        u32 minor;
 210        u32 host_end;
 211        u32 wait;
 212        u32 window;     /* Derived: end - start, allowing for wrap */
 213};
 214
 215/**
 216 * struct efx_ptp_data - Precision Time Protocol (PTP) state
 217 * @efx: The NIC context
 218 * @channel: The PTP channel (Siena only)
 219 * @rx_ts_inline: Flag for whether RX timestamps are inline (else they are
 220 *      separate events)
 221 * @rxq: Receive queue (awaiting timestamps)
 222 * @txq: Transmit queue
 223 * @evt_list: List of MC receive events awaiting packets
 224 * @evt_free_list: List of free events
 225 * @evt_lock: Lock for manipulating evt_list and evt_free_list
 226 * @rx_evts: Instantiated events (on evt_list and evt_free_list)
 227 * @workwq: Work queue for processing pending PTP operations
 228 * @work: Work task
 229 * @reset_required: A serious error has occurred and the PTP task needs to be
 230 *                  reset (disable, enable).
 231 * @rxfilter_event: Receive filter when operating
 232 * @rxfilter_general: Receive filter when operating
 233 * @config: Current timestamp configuration
 234 * @enabled: PTP operation enabled
 235 * @mode: Mode in which PTP operating (PTP version)
 236 * @time_format: Time format supported by this NIC
 237 * @ns_to_nic_time: Function to convert from scalar nanoseconds to NIC time
 238 * @nic_to_kernel_time: Function to convert from NIC to kernel time
 239 * @min_synchronisation_ns: Minimum acceptable corrected sync window
 240 * @ts_corrections.tx: Required driver correction of transmit timestamps
 241 * @ts_corrections.rx: Required driver correction of receive timestamps
 242 * @ts_corrections.pps_out: PPS output error (information only)
 243 * @ts_corrections.pps_in: Required driver correction of PPS input timestamps
 244 * @evt_frags: Partly assembled PTP events
 245 * @evt_frag_idx: Current fragment number
 246 * @evt_code: Last event code
 247 * @start: Address at which MC indicates ready for synchronisation
 248 * @host_time_pps: Host time at last PPS
 249 * @current_adjfreq: Current ppb adjustment.
 250 * @phc_clock: Pointer to registered phc device (if primary function)
 251 * @phc_clock_info: Registration structure for phc device
 252 * @pps_work: pps work task for handling pps events
 253 * @pps_workwq: pps work queue
 254 * @nic_ts_enabled: Flag indicating if NIC generated TS events are handled
 255 * @txbuf: Buffer for use when transmitting (PTP) packets to MC (avoids
 256 *         allocations in main data path).
 257 * @good_syncs: Number of successful synchronisations.
 258 * @fast_syncs: Number of synchronisations requiring short delay
 259 * @bad_syncs: Number of failed synchronisations.
 260 * @sync_timeouts: Number of synchronisation timeouts
 261 * @no_time_syncs: Number of synchronisations with no good times.
 262 * @invalid_sync_windows: Number of sync windows with bad durations.
 263 * @undersize_sync_windows: Number of corrected sync windows that are too small
 264 * @oversize_sync_windows: Number of corrected sync windows that are too large
 265 * @rx_no_timestamp: Number of packets received without a timestamp.
 266 * @timeset: Last set of synchronisation statistics.
 267 */
 268struct efx_ptp_data {
 269        struct efx_nic *efx;
 270        struct efx_channel *channel;
 271        bool rx_ts_inline;
 272        struct sk_buff_head rxq;
 273        struct sk_buff_head txq;
 274        struct list_head evt_list;
 275        struct list_head evt_free_list;
 276        spinlock_t evt_lock;
 277        struct efx_ptp_event_rx rx_evts[MAX_RECEIVE_EVENTS];
 278        struct workqueue_struct *workwq;
 279        struct work_struct work;
 280        bool reset_required;
 281        u32 rxfilter_event;
 282        u32 rxfilter_general;
 283        bool rxfilter_installed;
 284        struct hwtstamp_config config;
 285        bool enabled;
 286        unsigned int mode;
 287        unsigned int time_format;
 288        void (*ns_to_nic_time)(s64 ns, u32 *nic_major, u32 *nic_minor);
 289        ktime_t (*nic_to_kernel_time)(u32 nic_major, u32 nic_minor,
 290                                      s32 correction);
 291        unsigned int min_synchronisation_ns;
 292        struct {
 293                s32 tx;
 294                s32 rx;
 295                s32 pps_out;
 296                s32 pps_in;
 297        } ts_corrections;
 298        efx_qword_t evt_frags[MAX_EVENT_FRAGS];
 299        int evt_frag_idx;
 300        int evt_code;
 301        struct efx_buffer start;
 302        struct pps_event_time host_time_pps;
 303        s64 current_adjfreq;
 304        struct ptp_clock *phc_clock;
 305        struct ptp_clock_info phc_clock_info;
 306        struct work_struct pps_work;
 307        struct workqueue_struct *pps_workwq;
 308        bool nic_ts_enabled;
 309        _MCDI_DECLARE_BUF(txbuf, MC_CMD_PTP_IN_TRANSMIT_LENMAX);
 310
 311        unsigned int good_syncs;
 312        unsigned int fast_syncs;
 313        unsigned int bad_syncs;
 314        unsigned int sync_timeouts;
 315        unsigned int no_time_syncs;
 316        unsigned int invalid_sync_windows;
 317        unsigned int undersize_sync_windows;
 318        unsigned int oversize_sync_windows;
 319        unsigned int rx_no_timestamp;
 320        struct efx_ptp_timeset
 321        timeset[MC_CMD_PTP_OUT_SYNCHRONIZE_TIMESET_MAXNUM];
 322};
 323
 324static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta);
 325static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta);
 326static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts);
 327static int efx_phc_settime(struct ptp_clock_info *ptp,
 328                           const struct timespec64 *e_ts);
 329static int efx_phc_enable(struct ptp_clock_info *ptp,
 330                          struct ptp_clock_request *request, int on);
 331
 332#define PTP_SW_STAT(ext_name, field_name)                               \
 333        { #ext_name, 0, offsetof(struct efx_ptp_data, field_name) }
 334#define PTP_MC_STAT(ext_name, mcdi_name)                                \
 335        { #ext_name, 32, MC_CMD_PTP_OUT_STATUS_STATS_ ## mcdi_name ## _OFST }
 336static const struct efx_hw_stat_desc efx_ptp_stat_desc[] = {
 337        PTP_SW_STAT(ptp_good_syncs, good_syncs),
 338        PTP_SW_STAT(ptp_fast_syncs, fast_syncs),
 339        PTP_SW_STAT(ptp_bad_syncs, bad_syncs),
 340        PTP_SW_STAT(ptp_sync_timeouts, sync_timeouts),
 341        PTP_SW_STAT(ptp_no_time_syncs, no_time_syncs),
 342        PTP_SW_STAT(ptp_invalid_sync_windows, invalid_sync_windows),
 343        PTP_SW_STAT(ptp_undersize_sync_windows, undersize_sync_windows),
 344        PTP_SW_STAT(ptp_oversize_sync_windows, oversize_sync_windows),
 345        PTP_SW_STAT(ptp_rx_no_timestamp, rx_no_timestamp),
 346        PTP_MC_STAT(ptp_tx_timestamp_packets, TX),
 347        PTP_MC_STAT(ptp_rx_timestamp_packets, RX),
 348        PTP_MC_STAT(ptp_timestamp_packets, TS),
 349        PTP_MC_STAT(ptp_filter_matches, FM),
 350        PTP_MC_STAT(ptp_non_filter_matches, NFM),
 351};
 352#define PTP_STAT_COUNT ARRAY_SIZE(efx_ptp_stat_desc)
 353static const unsigned long efx_ptp_stat_mask[] = {
 354        [0 ... BITS_TO_LONGS(PTP_STAT_COUNT) - 1] = ~0UL,
 355};
 356
 357size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings)
 358{
 359        if (!efx->ptp_data)
 360                return 0;
 361
 362        return efx_nic_describe_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 363                                      efx_ptp_stat_mask, strings);
 364}
 365
 366size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats)
 367{
 368        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_STATUS_LEN);
 369        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_STATUS_LEN);
 370        size_t i;
 371        int rc;
 372
 373        if (!efx->ptp_data)
 374                return 0;
 375
 376        /* Copy software statistics */
 377        for (i = 0; i < PTP_STAT_COUNT; i++) {
 378                if (efx_ptp_stat_desc[i].dma_width)
 379                        continue;
 380                stats[i] = *(unsigned int *)((char *)efx->ptp_data +
 381                                             efx_ptp_stat_desc[i].offset);
 382        }
 383
 384        /* Fetch MC statistics.  We *must* fill in all statistics or
 385         * risk leaking kernel memory to userland, so if the MCDI
 386         * request fails we pretend we got zeroes.
 387         */
 388        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_STATUS);
 389        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 390        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 391                          outbuf, sizeof(outbuf), NULL);
 392        if (rc)
 393                memset(outbuf, 0, sizeof(outbuf));
 394        efx_nic_update_stats(efx_ptp_stat_desc, PTP_STAT_COUNT,
 395                             efx_ptp_stat_mask,
 396                             stats, _MCDI_PTR(outbuf, 0), false);
 397
 398        return PTP_STAT_COUNT;
 399}
 400
 401/* For Siena platforms NIC time is s and ns */
 402static void efx_ptp_ns_to_s_ns(s64 ns, u32 *nic_major, u32 *nic_minor)
 403{
 404        struct timespec64 ts = ns_to_timespec64(ns);
 405        *nic_major = (u32)ts.tv_sec;
 406        *nic_minor = ts.tv_nsec;
 407}
 408
 409static ktime_t efx_ptp_s_ns_to_ktime_correction(u32 nic_major, u32 nic_minor,
 410                                                s32 correction)
 411{
 412        ktime_t kt = ktime_set(nic_major, nic_minor);
 413        if (correction >= 0)
 414                kt = ktime_add_ns(kt, (u64)correction);
 415        else
 416                kt = ktime_sub_ns(kt, (u64)-correction);
 417        return kt;
 418}
 419
 420/* To convert from s27 format to ns we multiply then divide by a power of 2.
 421 * For the conversion from ns to s27, the operation is also converted to a
 422 * multiply and shift.
 423 */
 424#define S27_TO_NS_SHIFT (27)
 425#define NS_TO_S27_MULT  (((1ULL << 63) + NSEC_PER_SEC / 2) / NSEC_PER_SEC)
 426#define NS_TO_S27_SHIFT (63 - S27_TO_NS_SHIFT)
 427#define S27_MINOR_MAX   (1 << S27_TO_NS_SHIFT)
 428
 429/* For Huntington platforms NIC time is in seconds and fractions of a second
 430 * where the minor register only uses 27 bits in units of 2^-27s.
 431 */
 432static void efx_ptp_ns_to_s27(s64 ns, u32 *nic_major, u32 *nic_minor)
 433{
 434        struct timespec64 ts = ns_to_timespec64(ns);
 435        u32 maj = (u32)ts.tv_sec;
 436        u32 min = (u32)(((u64)ts.tv_nsec * NS_TO_S27_MULT +
 437                         (1ULL << (NS_TO_S27_SHIFT - 1))) >> NS_TO_S27_SHIFT);
 438
 439        /* The conversion can result in the minor value exceeding the maximum.
 440         * In this case, round up to the next second.
 441         */
 442        if (min >= S27_MINOR_MAX) {
 443                min -= S27_MINOR_MAX;
 444                maj++;
 445        }
 446
 447        *nic_major = maj;
 448        *nic_minor = min;
 449}
 450
 451static inline ktime_t efx_ptp_s27_to_ktime(u32 nic_major, u32 nic_minor)
 452{
 453        u32 ns = (u32)(((u64)nic_minor * NSEC_PER_SEC +
 454                        (1ULL << (S27_TO_NS_SHIFT - 1))) >> S27_TO_NS_SHIFT);
 455        return ktime_set(nic_major, ns);
 456}
 457
 458static ktime_t efx_ptp_s27_to_ktime_correction(u32 nic_major, u32 nic_minor,
 459                                               s32 correction)
 460{
 461        /* Apply the correction and deal with carry */
 462        nic_minor += correction;
 463        if ((s32)nic_minor < 0) {
 464                nic_minor += S27_MINOR_MAX;
 465                nic_major--;
 466        } else if (nic_minor >= S27_MINOR_MAX) {
 467                nic_minor -= S27_MINOR_MAX;
 468                nic_major++;
 469        }
 470
 471        return efx_ptp_s27_to_ktime(nic_major, nic_minor);
 472}
 473
 474/* Get PTP attributes and set up time conversions */
 475static int efx_ptp_get_attributes(struct efx_nic *efx)
 476{
 477        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_ATTRIBUTES_LEN);
 478        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN);
 479        struct efx_ptp_data *ptp = efx->ptp_data;
 480        int rc;
 481        u32 fmt;
 482        size_t out_len;
 483
 484        /* Get the PTP attributes. If the NIC doesn't support the operation we
 485         * use the default format for compatibility with older NICs i.e.
 486         * seconds and nanoseconds.
 487         */
 488        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_GET_ATTRIBUTES);
 489        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 490        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 491                                outbuf, sizeof(outbuf), &out_len);
 492        if (rc == 0) {
 493                fmt = MCDI_DWORD(outbuf, PTP_OUT_GET_ATTRIBUTES_TIME_FORMAT);
 494        } else if (rc == -EINVAL) {
 495                fmt = MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS;
 496        } else if (rc == -EPERM) {
 497                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 498                return rc;
 499        } else {
 500                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf),
 501                                       outbuf, sizeof(outbuf), rc);
 502                return rc;
 503        }
 504
 505        if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_27FRACTION) {
 506                ptp->ns_to_nic_time = efx_ptp_ns_to_s27;
 507                ptp->nic_to_kernel_time = efx_ptp_s27_to_ktime_correction;
 508        } else if (fmt == MC_CMD_PTP_OUT_GET_ATTRIBUTES_SECONDS_NANOSECONDS) {
 509                ptp->ns_to_nic_time = efx_ptp_ns_to_s_ns;
 510                ptp->nic_to_kernel_time = efx_ptp_s_ns_to_ktime_correction;
 511        } else {
 512                return -ERANGE;
 513        }
 514
 515        ptp->time_format = fmt;
 516
 517        /* MC_CMD_PTP_OP_GET_ATTRIBUTES is an extended version of an older
 518         * operation MC_CMD_PTP_OP_GET_TIME_FORMAT that also returns a value
 519         * to use for the minimum acceptable corrected synchronization window.
 520         * If we have the extra information store it. For older firmware that
 521         * does not implement the extended command use the default value.
 522         */
 523        if (rc == 0 && out_len >= MC_CMD_PTP_OUT_GET_ATTRIBUTES_LEN)
 524                ptp->min_synchronisation_ns =
 525                        MCDI_DWORD(outbuf,
 526                                   PTP_OUT_GET_ATTRIBUTES_SYNC_WINDOW_MIN);
 527        else
 528                ptp->min_synchronisation_ns = DEFAULT_MIN_SYNCHRONISATION_NS;
 529
 530        return 0;
 531}
 532
 533/* Get PTP timestamp corrections */
 534static int efx_ptp_get_timestamp_corrections(struct efx_nic *efx)
 535{
 536        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_GET_TIMESTAMP_CORRECTIONS_LEN);
 537        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_GET_TIMESTAMP_CORRECTIONS_LEN);
 538        int rc;
 539
 540        /* Get the timestamp corrections from the NIC. If this operation is
 541         * not supported (older NICs) then no correction is required.
 542         */
 543        MCDI_SET_DWORD(inbuf, PTP_IN_OP,
 544                       MC_CMD_PTP_OP_GET_TIMESTAMP_CORRECTIONS);
 545        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 546
 547        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 548                                outbuf, sizeof(outbuf), NULL);
 549        if (rc == 0) {
 550                efx->ptp_data->ts_corrections.tx = MCDI_DWORD(outbuf,
 551                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_TRANSMIT);
 552                efx->ptp_data->ts_corrections.rx = MCDI_DWORD(outbuf,
 553                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_RECEIVE);
 554                efx->ptp_data->ts_corrections.pps_out = MCDI_DWORD(outbuf,
 555                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_OUT);
 556                efx->ptp_data->ts_corrections.pps_in = MCDI_DWORD(outbuf,
 557                        PTP_OUT_GET_TIMESTAMP_CORRECTIONS_PPS_IN);
 558        } else if (rc == -EINVAL) {
 559                efx->ptp_data->ts_corrections.tx = 0;
 560                efx->ptp_data->ts_corrections.rx = 0;
 561                efx->ptp_data->ts_corrections.pps_out = 0;
 562                efx->ptp_data->ts_corrections.pps_in = 0;
 563        } else {
 564                efx_mcdi_display_error(efx, MC_CMD_PTP, sizeof(inbuf), outbuf,
 565                                       sizeof(outbuf), rc);
 566                return rc;
 567        }
 568
 569        return 0;
 570}
 571
 572/* Enable MCDI PTP support. */
 573static int efx_ptp_enable(struct efx_nic *efx)
 574{
 575        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ENABLE_LEN);
 576        MCDI_DECLARE_BUF_ERR(outbuf);
 577        int rc;
 578
 579        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ENABLE);
 580        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 581        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_QUEUE,
 582                       efx->ptp_data->channel ?
 583                       efx->ptp_data->channel->channel : 0);
 584        MCDI_SET_DWORD(inbuf, PTP_IN_ENABLE_MODE, efx->ptp_data->mode);
 585
 586        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 587                                outbuf, sizeof(outbuf), NULL);
 588        rc = (rc == -EALREADY) ? 0 : rc;
 589        if (rc)
 590                efx_mcdi_display_error(efx, MC_CMD_PTP,
 591                                       MC_CMD_PTP_IN_ENABLE_LEN,
 592                                       outbuf, sizeof(outbuf), rc);
 593        return rc;
 594}
 595
 596/* Disable MCDI PTP support.
 597 *
 598 * Note that this function should never rely on the presence of ptp_data -
 599 * may be called before that exists.
 600 */
 601static int efx_ptp_disable(struct efx_nic *efx)
 602{
 603        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_DISABLE_LEN);
 604        MCDI_DECLARE_BUF_ERR(outbuf);
 605        int rc;
 606
 607        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_DISABLE);
 608        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
 609        rc = efx_mcdi_rpc_quiet(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
 610                                outbuf, sizeof(outbuf), NULL);
 611        rc = (rc == -EALREADY) ? 0 : rc;
 612        /* If we get ENOSYS, the NIC doesn't support PTP, and thus this function
 613         * should only have been called during probe.
 614         */
 615        if (rc == -ENOSYS || rc == -EPERM)
 616                netif_info(efx, probe, efx->net_dev, "no PTP support\n");
 617        else if (rc)
 618                efx_mcdi_display_error(efx, MC_CMD_PTP,
 619                                       MC_CMD_PTP_IN_DISABLE_LEN,
 620                                       outbuf, sizeof(outbuf), rc);
 621        return rc;
 622}
 623
 624static void efx_ptp_deliver_rx_queue(struct sk_buff_head *q)
 625{
 626        struct sk_buff *skb;
 627
 628        while ((skb = skb_dequeue(q))) {
 629                local_bh_disable();
 630                netif_receive_skb(skb);
 631                local_bh_enable();
 632        }
 633}
 634
 635static void efx_ptp_handle_no_channel(struct efx_nic *efx)
 636{
 637        netif_err(efx, drv, efx->net_dev,
 638                  "ERROR: PTP requires MSI-X and 1 additional interrupt"
 639                  "vector. PTP disabled\n");
 640}
 641
 642/* Repeatedly send the host time to the MC which will capture the hardware
 643 * time.
 644 */
 645static void efx_ptp_send_times(struct efx_nic *efx,
 646                               struct pps_event_time *last_time)
 647{
 648        struct pps_event_time now;
 649        struct timespec64 limit;
 650        struct efx_ptp_data *ptp = efx->ptp_data;
 651        struct timespec64 start;
 652        int *mc_running = ptp->start.addr;
 653
 654        pps_get_ts(&now);
 655        start = now.ts_real;
 656        limit = now.ts_real;
 657        timespec64_add_ns(&limit, SYNCHRONISE_PERIOD_NS);
 658
 659        /* Write host time for specified period or until MC is done */
 660        while ((timespec64_compare(&now.ts_real, &limit) < 0) &&
 661               ACCESS_ONCE(*mc_running)) {
 662                struct timespec64 update_time;
 663                unsigned int host_time;
 664
 665                /* Don't update continuously to avoid saturating the PCIe bus */
 666                update_time = now.ts_real;
 667                timespec64_add_ns(&update_time, SYNCHRONISATION_GRANULARITY_NS);
 668                do {
 669                        pps_get_ts(&now);
 670                } while ((timespec64_compare(&now.ts_real, &update_time) < 0) &&
 671                         ACCESS_ONCE(*mc_running));
 672
 673                /* Synchronise NIC with single word of time only */
 674                host_time = (now.ts_real.tv_sec << MC_NANOSECOND_BITS |
 675                             now.ts_real.tv_nsec);
 676                /* Update host time in NIC memory */
 677                efx->type->ptp_write_host_time(efx, host_time);
 678        }
 679        *last_time = now;
 680}
 681
 682/* Read a timeset from the MC's results and partial process. */
 683static void efx_ptp_read_timeset(MCDI_DECLARE_STRUCT_PTR(data),
 684                                 struct efx_ptp_timeset *timeset)
 685{
 686        unsigned start_ns, end_ns;
 687
 688        timeset->host_start = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTSTART);
 689        timeset->major = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MAJOR);
 690        timeset->minor = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_MINOR);
 691        timeset->host_end = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_HOSTEND),
 692        timeset->wait = MCDI_DWORD(data, PTP_OUT_SYNCHRONIZE_WAITNS);
 693
 694        /* Ignore seconds */
 695        start_ns = timeset->host_start & MC_NANOSECOND_MASK;
 696        end_ns = timeset->host_end & MC_NANOSECOND_MASK;
 697        /* Allow for rollover */
 698        if (end_ns < start_ns)
 699                end_ns += NSEC_PER_SEC;
 700        /* Determine duration of operation */
 701        timeset->window = end_ns - start_ns;
 702}
 703
 704/* Process times received from MC.
 705 *
 706 * Extract times from returned results, and establish the minimum value
 707 * seen.  The minimum value represents the "best" possible time and events
 708 * too much greater than this are rejected - the machine is, perhaps, too
 709 * busy. A number of readings are taken so that, hopefully, at least one good
 710 * synchronisation will be seen in the results.
 711 */
 712static int
 713efx_ptp_process_times(struct efx_nic *efx, MCDI_DECLARE_STRUCT_PTR(synch_buf),
 714                      size_t response_length,
 715                      const struct pps_event_time *last_time)
 716{
 717        unsigned number_readings =
 718                MCDI_VAR_ARRAY_LEN(response_length,
 719                                   PTP_OUT_SYNCHRONIZE_TIMESET);
 720        unsigned i;
 721        unsigned ngood = 0;
 722        unsigned last_good = 0;
 723        struct efx_ptp_data *ptp = efx->ptp_data;
 724        u32 last_sec;
 725        u32 start_sec;
 726        struct timespec64 delta;
 727        ktime_t mc_time;
 728
 729        if (number_readings == 0)
 730                return -EAGAIN;
 731
 732        /* Read the set of results and find the last good host-MC
 733         * synchronization result. The MC times when it finishes reading the
 734         * host time so the corrected window time should be fairly constant
 735         * for a given platform. Increment stats for any results that appear
 736         * to be erroneous.
 737         */
 738        for (i = 0; i < number_readings; i++) {
 739                s32 window, corrected;
 740                struct timespec64 wait;
 741
 742                efx_ptp_read_timeset(
 743                        MCDI_ARRAY_STRUCT_PTR(synch_buf,
 744                                              PTP_OUT_SYNCHRONIZE_TIMESET, i),
 745                        &ptp->timeset[i]);
 746
 747                wait = ktime_to_timespec64(
 748                        ptp->nic_to_kernel_time(0, ptp->timeset[i].wait, 0));
 749                window = ptp->timeset[i].window;
 750                corrected = window - wait.tv_nsec;
 751
 752                /* We expect the uncorrected synchronization window to be at
 753                 * least as large as the interval between host start and end
 754                 * times. If it is smaller than this then this is mostly likely
 755                 * to be a consequence of the host's time being adjusted.
 756                 * Check that the corrected sync window is in a reasonable
 757                 * range. If it is out of range it is likely to be because an
 758                 * interrupt or other delay occurred between reading the system
 759                 * time and writing it to MC memory.
 760                 */
 761                if (window < SYNCHRONISATION_GRANULARITY_NS) {
 762                        ++ptp->invalid_sync_windows;
 763                } else if (corrected >= MAX_SYNCHRONISATION_NS) {
 764                        ++ptp->oversize_sync_windows;
 765                } else if (corrected < ptp->min_synchronisation_ns) {
 766                        ++ptp->undersize_sync_windows;
 767                } else {
 768                        ngood++;
 769                        last_good = i;
 770                }
 771        }
 772
 773        if (ngood == 0) {
 774                netif_warn(efx, drv, efx->net_dev,
 775                           "PTP no suitable synchronisations\n");
 776                return -EAGAIN;
 777        }
 778
 779        /* Calculate delay from last good sync (host time) to last_time.
 780         * It is possible that the seconds rolled over between taking
 781         * the start reading and the last value written by the host.  The
 782         * timescales are such that a gap of more than one second is never
 783         * expected.  delta is *not* normalised.
 784         */
 785        start_sec = ptp->timeset[last_good].host_start >> MC_NANOSECOND_BITS;
 786        last_sec = last_time->ts_real.tv_sec & MC_SECOND_MASK;
 787        if (start_sec != last_sec &&
 788            ((start_sec + 1) & MC_SECOND_MASK) != last_sec) {
 789                netif_warn(efx, hw, efx->net_dev,
 790                           "PTP bad synchronisation seconds\n");
 791                return -EAGAIN;
 792        }
 793        delta.tv_sec = (last_sec - start_sec) & 1;
 794        delta.tv_nsec =
 795                last_time->ts_real.tv_nsec -
 796                (ptp->timeset[last_good].host_start & MC_NANOSECOND_MASK);
 797
 798        /* Convert the NIC time at last good sync into kernel time.
 799         * No correction is required - this time is the output of a
 800         * firmware process.
 801         */
 802        mc_time = ptp->nic_to_kernel_time(ptp->timeset[last_good].major,
 803                                          ptp->timeset[last_good].minor, 0);
 804
 805        /* Calculate delay from NIC top of second to last_time */
 806        delta.tv_nsec += ktime_to_timespec64(mc_time).tv_nsec;
 807
 808        /* Set PPS timestamp to match NIC top of second */
 809        ptp->host_time_pps = *last_time;
 810        pps_sub_ts(&ptp->host_time_pps, delta);
 811
 812        return 0;
 813}
 814
 815/* Synchronize times between the host and the MC */
 816static int efx_ptp_synchronize(struct efx_nic *efx, unsigned int num_readings)
 817{
 818        struct efx_ptp_data *ptp = efx->ptp_data;
 819        MCDI_DECLARE_BUF(synch_buf, MC_CMD_PTP_OUT_SYNCHRONIZE_LENMAX);
 820        size_t response_length;
 821        int rc;
 822        unsigned long timeout;
 823        struct pps_event_time last_time = {};
 824        unsigned int loops = 0;
 825        int *start = ptp->start.addr;
 826
 827        MCDI_SET_DWORD(synch_buf, PTP_IN_OP, MC_CMD_PTP_OP_SYNCHRONIZE);
 828        MCDI_SET_DWORD(synch_buf, PTP_IN_PERIPH_ID, 0);
 829        MCDI_SET_DWORD(synch_buf, PTP_IN_SYNCHRONIZE_NUMTIMESETS,
 830                       num_readings);
 831        MCDI_SET_QWORD(synch_buf, PTP_IN_SYNCHRONIZE_START_ADDR,
 832                       ptp->start.dma_addr);
 833
 834        /* Clear flag that signals MC ready */
 835        ACCESS_ONCE(*start) = 0;
 836        rc = efx_mcdi_rpc_start(efx, MC_CMD_PTP, synch_buf,
 837                                MC_CMD_PTP_IN_SYNCHRONIZE_LEN);
 838        EFX_BUG_ON_PARANOID(rc);
 839
 840        /* Wait for start from MCDI (or timeout) */
 841        timeout = jiffies + msecs_to_jiffies(MAX_SYNCHRONISE_WAIT_MS);
 842        while (!ACCESS_ONCE(*start) && (time_before(jiffies, timeout))) {
 843                udelay(20);     /* Usually start MCDI execution quickly */
 844                loops++;
 845        }
 846
 847        if (loops <= 1)
 848                ++ptp->fast_syncs;
 849        if (!time_before(jiffies, timeout))
 850                ++ptp->sync_timeouts;
 851
 852        if (ACCESS_ONCE(*start))
 853                efx_ptp_send_times(efx, &last_time);
 854
 855        /* Collect results */
 856        rc = efx_mcdi_rpc_finish(efx, MC_CMD_PTP,
 857                                 MC_CMD_PTP_IN_SYNCHRONIZE_LEN,
 858                                 synch_buf, sizeof(synch_buf),
 859                                 &response_length);
 860        if (rc == 0) {
 861                rc = efx_ptp_process_times(efx, synch_buf, response_length,
 862                                           &last_time);
 863                if (rc == 0)
 864                        ++ptp->good_syncs;
 865                else
 866                        ++ptp->no_time_syncs;
 867        }
 868
 869        /* Increment the bad syncs counter if the synchronize fails, whatever
 870         * the reason.
 871         */
 872        if (rc != 0)
 873                ++ptp->bad_syncs;
 874
 875        return rc;
 876}
 877
 878/* Transmit a PTP packet, via the MCDI interface, to the wire. */
 879static int efx_ptp_xmit_skb(struct efx_nic *efx, struct sk_buff *skb)
 880{
 881        struct efx_ptp_data *ptp_data = efx->ptp_data;
 882        struct skb_shared_hwtstamps timestamps;
 883        int rc = -EIO;
 884        MCDI_DECLARE_BUF(txtime, MC_CMD_PTP_OUT_TRANSMIT_LEN);
 885        size_t len;
 886
 887        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_OP, MC_CMD_PTP_OP_TRANSMIT);
 888        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_PERIPH_ID, 0);
 889        MCDI_SET_DWORD(ptp_data->txbuf, PTP_IN_TRANSMIT_LENGTH, skb->len);
 890        if (skb_shinfo(skb)->nr_frags != 0) {
 891                rc = skb_linearize(skb);
 892                if (rc != 0)
 893                        goto fail;
 894        }
 895
 896        if (skb->ip_summed == CHECKSUM_PARTIAL) {
 897                rc = skb_checksum_help(skb);
 898                if (rc != 0)
 899                        goto fail;
 900        }
 901        skb_copy_from_linear_data(skb,
 902                                  MCDI_PTR(ptp_data->txbuf,
 903                                           PTP_IN_TRANSMIT_PACKET),
 904                                  skb->len);
 905        rc = efx_mcdi_rpc(efx, MC_CMD_PTP,
 906                          ptp_data->txbuf, MC_CMD_PTP_IN_TRANSMIT_LEN(skb->len),
 907                          txtime, sizeof(txtime), &len);
 908        if (rc != 0)
 909                goto fail;
 910
 911        memset(&timestamps, 0, sizeof(timestamps));
 912        timestamps.hwtstamp = ptp_data->nic_to_kernel_time(
 913                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MAJOR),
 914                MCDI_DWORD(txtime, PTP_OUT_TRANSMIT_MINOR),
 915                ptp_data->ts_corrections.tx);
 916
 917        skb_tstamp_tx(skb, &timestamps);
 918
 919        rc = 0;
 920
 921fail:
 922        dev_kfree_skb(skb);
 923
 924        return rc;
 925}
 926
 927static void efx_ptp_drop_time_expired_events(struct efx_nic *efx)
 928{
 929        struct efx_ptp_data *ptp = efx->ptp_data;
 930        struct list_head *cursor;
 931        struct list_head *next;
 932
 933        if (ptp->rx_ts_inline)
 934                return;
 935
 936        /* Drop time-expired events */
 937        spin_lock_bh(&ptp->evt_lock);
 938        if (!list_empty(&ptp->evt_list)) {
 939                list_for_each_safe(cursor, next, &ptp->evt_list) {
 940                        struct efx_ptp_event_rx *evt;
 941
 942                        evt = list_entry(cursor, struct efx_ptp_event_rx,
 943                                         link);
 944                        if (time_after(jiffies, evt->expiry)) {
 945                                list_move(&evt->link, &ptp->evt_free_list);
 946                                netif_warn(efx, hw, efx->net_dev,
 947                                           "PTP rx event dropped\n");
 948                        }
 949                }
 950        }
 951        spin_unlock_bh(&ptp->evt_lock);
 952}
 953
 954static enum ptp_packet_state efx_ptp_match_rx(struct efx_nic *efx,
 955                                              struct sk_buff *skb)
 956{
 957        struct efx_ptp_data *ptp = efx->ptp_data;
 958        bool evts_waiting;
 959        struct list_head *cursor;
 960        struct list_head *next;
 961        struct efx_ptp_match *match;
 962        enum ptp_packet_state rc = PTP_PACKET_STATE_UNMATCHED;
 963
 964        WARN_ON_ONCE(ptp->rx_ts_inline);
 965
 966        spin_lock_bh(&ptp->evt_lock);
 967        evts_waiting = !list_empty(&ptp->evt_list);
 968        spin_unlock_bh(&ptp->evt_lock);
 969
 970        if (!evts_waiting)
 971                return PTP_PACKET_STATE_UNMATCHED;
 972
 973        match = (struct efx_ptp_match *)skb->cb;
 974        /* Look for a matching timestamp in the event queue */
 975        spin_lock_bh(&ptp->evt_lock);
 976        list_for_each_safe(cursor, next, &ptp->evt_list) {
 977                struct efx_ptp_event_rx *evt;
 978
 979                evt = list_entry(cursor, struct efx_ptp_event_rx, link);
 980                if ((evt->seq0 == match->words[0]) &&
 981                    (evt->seq1 == match->words[1])) {
 982                        struct skb_shared_hwtstamps *timestamps;
 983
 984                        /* Match - add in hardware timestamp */
 985                        timestamps = skb_hwtstamps(skb);
 986                        timestamps->hwtstamp = evt->hwtimestamp;
 987
 988                        match->state = PTP_PACKET_STATE_MATCHED;
 989                        rc = PTP_PACKET_STATE_MATCHED;
 990                        list_move(&evt->link, &ptp->evt_free_list);
 991                        break;
 992                }
 993        }
 994        spin_unlock_bh(&ptp->evt_lock);
 995
 996        return rc;
 997}
 998
 999/* Process any queued receive events and corresponding packets
1000 *
1001 * q is returned with all the packets that are ready for delivery.
1002 */
1003static void efx_ptp_process_events(struct efx_nic *efx, struct sk_buff_head *q)
1004{
1005        struct efx_ptp_data *ptp = efx->ptp_data;
1006        struct sk_buff *skb;
1007
1008        while ((skb = skb_dequeue(&ptp->rxq))) {
1009                struct efx_ptp_match *match;
1010
1011                match = (struct efx_ptp_match *)skb->cb;
1012                if (match->state == PTP_PACKET_STATE_MATCH_UNWANTED) {
1013                        __skb_queue_tail(q, skb);
1014                } else if (efx_ptp_match_rx(efx, skb) ==
1015                           PTP_PACKET_STATE_MATCHED) {
1016                        __skb_queue_tail(q, skb);
1017                } else if (time_after(jiffies, match->expiry)) {
1018                        match->state = PTP_PACKET_STATE_TIMED_OUT;
1019                        ++ptp->rx_no_timestamp;
1020                        __skb_queue_tail(q, skb);
1021                } else {
1022                        /* Replace unprocessed entry and stop */
1023                        skb_queue_head(&ptp->rxq, skb);
1024                        break;
1025                }
1026        }
1027}
1028
1029/* Complete processing of a received packet */
1030static inline void efx_ptp_process_rx(struct efx_nic *efx, struct sk_buff *skb)
1031{
1032        local_bh_disable();
1033        netif_receive_skb(skb);
1034        local_bh_enable();
1035}
1036
1037static void efx_ptp_remove_multicast_filters(struct efx_nic *efx)
1038{
1039        struct efx_ptp_data *ptp = efx->ptp_data;
1040
1041        if (ptp->rxfilter_installed) {
1042                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1043                                          ptp->rxfilter_general);
1044                efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1045                                          ptp->rxfilter_event);
1046                ptp->rxfilter_installed = false;
1047        }
1048}
1049
1050static int efx_ptp_insert_multicast_filters(struct efx_nic *efx)
1051{
1052        struct efx_ptp_data *ptp = efx->ptp_data;
1053        struct efx_filter_spec rxfilter;
1054        int rc;
1055
1056        if (!ptp->channel || ptp->rxfilter_installed)
1057                return 0;
1058
1059        /* Must filter on both event and general ports to ensure
1060         * that there is no packet re-ordering.
1061         */
1062        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1063                           efx_rx_queue_index(
1064                                   efx_channel_get_rx_queue(ptp->channel)));
1065        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1066                                       htonl(PTP_ADDRESS),
1067                                       htons(PTP_EVENT_PORT));
1068        if (rc != 0)
1069                return rc;
1070
1071        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1072        if (rc < 0)
1073                return rc;
1074        ptp->rxfilter_event = rc;
1075
1076        efx_filter_init_rx(&rxfilter, EFX_FILTER_PRI_REQUIRED, 0,
1077                           efx_rx_queue_index(
1078                                   efx_channel_get_rx_queue(ptp->channel)));
1079        rc = efx_filter_set_ipv4_local(&rxfilter, IPPROTO_UDP,
1080                                       htonl(PTP_ADDRESS),
1081                                       htons(PTP_GENERAL_PORT));
1082        if (rc != 0)
1083                goto fail;
1084
1085        rc = efx_filter_insert_filter(efx, &rxfilter, true);
1086        if (rc < 0)
1087                goto fail;
1088        ptp->rxfilter_general = rc;
1089
1090        ptp->rxfilter_installed = true;
1091        return 0;
1092
1093fail:
1094        efx_filter_remove_id_safe(efx, EFX_FILTER_PRI_REQUIRED,
1095                                  ptp->rxfilter_event);
1096        return rc;
1097}
1098
1099static int efx_ptp_start(struct efx_nic *efx)
1100{
1101        struct efx_ptp_data *ptp = efx->ptp_data;
1102        int rc;
1103
1104        ptp->reset_required = false;
1105
1106        rc = efx_ptp_insert_multicast_filters(efx);
1107        if (rc)
1108                return rc;
1109
1110        rc = efx_ptp_enable(efx);
1111        if (rc != 0)
1112                goto fail;
1113
1114        ptp->evt_frag_idx = 0;
1115        ptp->current_adjfreq = 0;
1116
1117        return 0;
1118
1119fail:
1120        efx_ptp_remove_multicast_filters(efx);
1121        return rc;
1122}
1123
1124static int efx_ptp_stop(struct efx_nic *efx)
1125{
1126        struct efx_ptp_data *ptp = efx->ptp_data;
1127        struct list_head *cursor;
1128        struct list_head *next;
1129        int rc;
1130
1131        if (ptp == NULL)
1132                return 0;
1133
1134        rc = efx_ptp_disable(efx);
1135
1136        efx_ptp_remove_multicast_filters(efx);
1137
1138        /* Make sure RX packets are really delivered */
1139        efx_ptp_deliver_rx_queue(&efx->ptp_data->rxq);
1140        skb_queue_purge(&efx->ptp_data->txq);
1141
1142        /* Drop any pending receive events */
1143        spin_lock_bh(&efx->ptp_data->evt_lock);
1144        list_for_each_safe(cursor, next, &efx->ptp_data->evt_list) {
1145                list_move(cursor, &efx->ptp_data->evt_free_list);
1146        }
1147        spin_unlock_bh(&efx->ptp_data->evt_lock);
1148
1149        return rc;
1150}
1151
1152static int efx_ptp_restart(struct efx_nic *efx)
1153{
1154        if (efx->ptp_data && efx->ptp_data->enabled)
1155                return efx_ptp_start(efx);
1156        return 0;
1157}
1158
1159static void efx_ptp_pps_worker(struct work_struct *work)
1160{
1161        struct efx_ptp_data *ptp =
1162                container_of(work, struct efx_ptp_data, pps_work);
1163        struct efx_nic *efx = ptp->efx;
1164        struct ptp_clock_event ptp_evt;
1165
1166        if (efx_ptp_synchronize(efx, PTP_SYNC_ATTEMPTS))
1167                return;
1168
1169        ptp_evt.type = PTP_CLOCK_PPSUSR;
1170        ptp_evt.pps_times = ptp->host_time_pps;
1171        ptp_clock_event(ptp->phc_clock, &ptp_evt);
1172}
1173
1174static void efx_ptp_worker(struct work_struct *work)
1175{
1176        struct efx_ptp_data *ptp_data =
1177                container_of(work, struct efx_ptp_data, work);
1178        struct efx_nic *efx = ptp_data->efx;
1179        struct sk_buff *skb;
1180        struct sk_buff_head tempq;
1181
1182        if (ptp_data->reset_required) {
1183                efx_ptp_stop(efx);
1184                efx_ptp_start(efx);
1185                return;
1186        }
1187
1188        efx_ptp_drop_time_expired_events(efx);
1189
1190        __skb_queue_head_init(&tempq);
1191        efx_ptp_process_events(efx, &tempq);
1192
1193        while ((skb = skb_dequeue(&ptp_data->txq)))
1194                efx_ptp_xmit_skb(efx, skb);
1195
1196        while ((skb = __skb_dequeue(&tempq)))
1197                efx_ptp_process_rx(efx, skb);
1198}
1199
1200static const struct ptp_clock_info efx_phc_clock_info = {
1201        .owner          = THIS_MODULE,
1202        .name           = "sfc",
1203        .max_adj        = MAX_PPB,
1204        .n_alarm        = 0,
1205        .n_ext_ts       = 0,
1206        .n_per_out      = 0,
1207        .n_pins         = 0,
1208        .pps            = 1,
1209        .adjfreq        = efx_phc_adjfreq,
1210        .adjtime        = efx_phc_adjtime,
1211        .gettime64      = efx_phc_gettime,
1212        .settime64      = efx_phc_settime,
1213        .enable         = efx_phc_enable,
1214};
1215
1216/* Initialise PTP state. */
1217int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel)
1218{
1219        struct efx_ptp_data *ptp;
1220        int rc = 0;
1221        unsigned int pos;
1222
1223        ptp = kzalloc(sizeof(struct efx_ptp_data), GFP_KERNEL);
1224        efx->ptp_data = ptp;
1225        if (!efx->ptp_data)
1226                return -ENOMEM;
1227
1228        ptp->efx = efx;
1229        ptp->channel = channel;
1230        ptp->rx_ts_inline = efx_nic_rev(efx) >= EFX_REV_HUNT_A0;
1231
1232        rc = efx_nic_alloc_buffer(efx, &ptp->start, sizeof(int), GFP_KERNEL);
1233        if (rc != 0)
1234                goto fail1;
1235
1236        skb_queue_head_init(&ptp->rxq);
1237        skb_queue_head_init(&ptp->txq);
1238        ptp->workwq = create_singlethread_workqueue("sfc_ptp");
1239        if (!ptp->workwq) {
1240                rc = -ENOMEM;
1241                goto fail2;
1242        }
1243
1244        INIT_WORK(&ptp->work, efx_ptp_worker);
1245        ptp->config.flags = 0;
1246        ptp->config.tx_type = HWTSTAMP_TX_OFF;
1247        ptp->config.rx_filter = HWTSTAMP_FILTER_NONE;
1248        INIT_LIST_HEAD(&ptp->evt_list);
1249        INIT_LIST_HEAD(&ptp->evt_free_list);
1250        spin_lock_init(&ptp->evt_lock);
1251        for (pos = 0; pos < MAX_RECEIVE_EVENTS; pos++)
1252                list_add(&ptp->rx_evts[pos].link, &ptp->evt_free_list);
1253
1254        /* Get the NIC PTP attributes and set up time conversions */
1255        rc = efx_ptp_get_attributes(efx);
1256        if (rc < 0)
1257                goto fail3;
1258
1259        /* Get the timestamp corrections */
1260        rc = efx_ptp_get_timestamp_corrections(efx);
1261        if (rc < 0)
1262                goto fail3;
1263
1264        if (efx->mcdi->fn_flags &
1265            (1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY)) {
1266                ptp->phc_clock_info = efx_phc_clock_info;
1267                ptp->phc_clock = ptp_clock_register(&ptp->phc_clock_info,
1268                                                    &efx->pci_dev->dev);
1269                if (IS_ERR(ptp->phc_clock)) {
1270                        rc = PTR_ERR(ptp->phc_clock);
1271                        goto fail3;
1272                }
1273
1274                INIT_WORK(&ptp->pps_work, efx_ptp_pps_worker);
1275                ptp->pps_workwq = create_singlethread_workqueue("sfc_pps");
1276                if (!ptp->pps_workwq) {
1277                        rc = -ENOMEM;
1278                        goto fail4;
1279                }
1280        }
1281        ptp->nic_ts_enabled = false;
1282
1283        return 0;
1284fail4:
1285        ptp_clock_unregister(efx->ptp_data->phc_clock);
1286
1287fail3:
1288        destroy_workqueue(efx->ptp_data->workwq);
1289
1290fail2:
1291        efx_nic_free_buffer(efx, &ptp->start);
1292
1293fail1:
1294        kfree(efx->ptp_data);
1295        efx->ptp_data = NULL;
1296
1297        return rc;
1298}
1299
1300/* Initialise PTP channel.
1301 *
1302 * Setting core_index to zero causes the queue to be initialised and doesn't
1303 * overlap with 'rxq0' because ptp.c doesn't use skb_record_rx_queue.
1304 */
1305static int efx_ptp_probe_channel(struct efx_channel *channel)
1306{
1307        struct efx_nic *efx = channel->efx;
1308
1309        channel->irq_moderation = 0;
1310        channel->rx_queue.core_index = 0;
1311
1312        return efx_ptp_probe(efx, channel);
1313}
1314
1315void efx_ptp_remove(struct efx_nic *efx)
1316{
1317        if (!efx->ptp_data)
1318                return;
1319
1320        (void)efx_ptp_disable(efx);
1321
1322        cancel_work_sync(&efx->ptp_data->work);
1323        cancel_work_sync(&efx->ptp_data->pps_work);
1324
1325        skb_queue_purge(&efx->ptp_data->rxq);
1326        skb_queue_purge(&efx->ptp_data->txq);
1327
1328        if (efx->ptp_data->phc_clock) {
1329                destroy_workqueue(efx->ptp_data->pps_workwq);
1330                ptp_clock_unregister(efx->ptp_data->phc_clock);
1331        }
1332
1333        destroy_workqueue(efx->ptp_data->workwq);
1334
1335        efx_nic_free_buffer(efx, &efx->ptp_data->start);
1336        kfree(efx->ptp_data);
1337}
1338
1339static void efx_ptp_remove_channel(struct efx_channel *channel)
1340{
1341        efx_ptp_remove(channel->efx);
1342}
1343
1344static void efx_ptp_get_channel_name(struct efx_channel *channel,
1345                                     char *buf, size_t len)
1346{
1347        snprintf(buf, len, "%s-ptp", channel->efx->name);
1348}
1349
1350/* Determine whether this packet should be processed by the PTP module
1351 * or transmitted conventionally.
1352 */
1353bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1354{
1355        return efx->ptp_data &&
1356                efx->ptp_data->enabled &&
1357                skb->len >= PTP_MIN_LENGTH &&
1358                skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM &&
1359                likely(skb->protocol == htons(ETH_P_IP)) &&
1360                skb_transport_header_was_set(skb) &&
1361                skb_network_header_len(skb) >= sizeof(struct iphdr) &&
1362                ip_hdr(skb)->protocol == IPPROTO_UDP &&
1363                skb_headlen(skb) >=
1364                skb_transport_offset(skb) + sizeof(struct udphdr) &&
1365                udp_hdr(skb)->dest == htons(PTP_EVENT_PORT);
1366}
1367
1368/* Receive a PTP packet.  Packets are queued until the arrival of
1369 * the receive timestamp from the MC - this will probably occur after the
1370 * packet arrival because of the processing in the MC.
1371 */
1372static bool efx_ptp_rx(struct efx_channel *channel, struct sk_buff *skb)
1373{
1374        struct efx_nic *efx = channel->efx;
1375        struct efx_ptp_data *ptp = efx->ptp_data;
1376        struct efx_ptp_match *match = (struct efx_ptp_match *)skb->cb;
1377        u8 *match_data_012, *match_data_345;
1378        unsigned int version;
1379        u8 *data;
1380
1381        match->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1382
1383        /* Correct version? */
1384        if (ptp->mode == MC_CMD_PTP_MODE_V1) {
1385                if (!pskb_may_pull(skb, PTP_V1_MIN_LENGTH)) {
1386                        return false;
1387                }
1388                data = skb->data;
1389                version = ntohs(*(__be16 *)&data[PTP_V1_VERSION_OFFSET]);
1390                if (version != PTP_VERSION_V1) {
1391                        return false;
1392                }
1393
1394                /* PTP V1 uses all six bytes of the UUID to match the packet
1395                 * to the timestamp
1396                 */
1397                match_data_012 = data + PTP_V1_UUID_OFFSET;
1398                match_data_345 = data + PTP_V1_UUID_OFFSET + 3;
1399        } else {
1400                if (!pskb_may_pull(skb, PTP_V2_MIN_LENGTH)) {
1401                        return false;
1402                }
1403                data = skb->data;
1404                version = data[PTP_V2_VERSION_OFFSET];
1405                if ((version & PTP_VERSION_V2_MASK) != PTP_VERSION_V2) {
1406                        return false;
1407                }
1408
1409                /* The original V2 implementation uses bytes 2-7 of
1410                 * the UUID to match the packet to the timestamp. This
1411                 * discards two of the bytes of the MAC address used
1412                 * to create the UUID (SF bug 33070).  The PTP V2
1413                 * enhanced mode fixes this issue and uses bytes 0-2
1414                 * and byte 5-7 of the UUID.
1415                 */
1416                match_data_345 = data + PTP_V2_UUID_OFFSET + 5;
1417                if (ptp->mode == MC_CMD_PTP_MODE_V2) {
1418                        match_data_012 = data + PTP_V2_UUID_OFFSET + 2;
1419                } else {
1420                        match_data_012 = data + PTP_V2_UUID_OFFSET + 0;
1421                        BUG_ON(ptp->mode != MC_CMD_PTP_MODE_V2_ENHANCED);
1422                }
1423        }
1424
1425        /* Does this packet require timestamping? */
1426        if (ntohs(*(__be16 *)&data[PTP_DPORT_OFFSET]) == PTP_EVENT_PORT) {
1427                match->state = PTP_PACKET_STATE_UNMATCHED;
1428
1429                /* We expect the sequence number to be in the same position in
1430                 * the packet for PTP V1 and V2
1431                 */
1432                BUILD_BUG_ON(PTP_V1_SEQUENCE_OFFSET != PTP_V2_SEQUENCE_OFFSET);
1433                BUILD_BUG_ON(PTP_V1_SEQUENCE_LENGTH != PTP_V2_SEQUENCE_LENGTH);
1434
1435                /* Extract UUID/Sequence information */
1436                match->words[0] = (match_data_012[0]         |
1437                                   (match_data_012[1] << 8)  |
1438                                   (match_data_012[2] << 16) |
1439                                   (match_data_345[0] << 24));
1440                match->words[1] = (match_data_345[1]         |
1441                                   (match_data_345[2] << 8)  |
1442                                   (data[PTP_V1_SEQUENCE_OFFSET +
1443                                         PTP_V1_SEQUENCE_LENGTH - 1] <<
1444                                    16));
1445        } else {
1446                match->state = PTP_PACKET_STATE_MATCH_UNWANTED;
1447        }
1448
1449        skb_queue_tail(&ptp->rxq, skb);
1450        queue_work(ptp->workwq, &ptp->work);
1451
1452        return true;
1453}
1454
1455/* Transmit a PTP packet.  This has to be transmitted by the MC
1456 * itself, through an MCDI call.  MCDI calls aren't permitted
1457 * in the transmit path so defer the actual transmission to a suitable worker.
1458 */
1459int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb)
1460{
1461        struct efx_ptp_data *ptp = efx->ptp_data;
1462
1463        skb_queue_tail(&ptp->txq, skb);
1464
1465        if ((udp_hdr(skb)->dest == htons(PTP_EVENT_PORT)) &&
1466            (skb->len <= MC_CMD_PTP_IN_TRANSMIT_PACKET_MAXNUM))
1467                efx_xmit_hwtstamp_pending(skb);
1468        queue_work(ptp->workwq, &ptp->work);
1469
1470        return NETDEV_TX_OK;
1471}
1472
1473int efx_ptp_get_mode(struct efx_nic *efx)
1474{
1475        return efx->ptp_data->mode;
1476}
1477
1478int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
1479                        unsigned int new_mode)
1480{
1481        if ((enable_wanted != efx->ptp_data->enabled) ||
1482            (enable_wanted && (efx->ptp_data->mode != new_mode))) {
1483                int rc = 0;
1484
1485                if (enable_wanted) {
1486                        /* Change of mode requires disable */
1487                        if (efx->ptp_data->enabled &&
1488                            (efx->ptp_data->mode != new_mode)) {
1489                                efx->ptp_data->enabled = false;
1490                                rc = efx_ptp_stop(efx);
1491                                if (rc != 0)
1492                                        return rc;
1493                        }
1494
1495                        /* Set new operating mode and establish
1496                         * baseline synchronisation, which must
1497                         * succeed.
1498                         */
1499                        efx->ptp_data->mode = new_mode;
1500                        if (netif_running(efx->net_dev))
1501                                rc = efx_ptp_start(efx);
1502                        if (rc == 0) {
1503                                rc = efx_ptp_synchronize(efx,
1504                                                         PTP_SYNC_ATTEMPTS * 2);
1505                                if (rc != 0)
1506                                        efx_ptp_stop(efx);
1507                        }
1508                } else {
1509                        rc = efx_ptp_stop(efx);
1510                }
1511
1512                if (rc != 0)
1513                        return rc;
1514
1515                efx->ptp_data->enabled = enable_wanted;
1516        }
1517
1518        return 0;
1519}
1520
1521static int efx_ptp_ts_init(struct efx_nic *efx, struct hwtstamp_config *init)
1522{
1523        int rc;
1524
1525        if (init->flags)
1526                return -EINVAL;
1527
1528        if ((init->tx_type != HWTSTAMP_TX_OFF) &&
1529            (init->tx_type != HWTSTAMP_TX_ON))
1530                return -ERANGE;
1531
1532        rc = efx->type->ptp_set_ts_config(efx, init);
1533        if (rc)
1534                return rc;
1535
1536        efx->ptp_data->config = *init;
1537        return 0;
1538}
1539
1540void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info)
1541{
1542        struct efx_ptp_data *ptp = efx->ptp_data;
1543        struct efx_nic *primary = efx->primary;
1544
1545        ASSERT_RTNL();
1546
1547        if (!ptp)
1548                return;
1549
1550        ts_info->so_timestamping |= (SOF_TIMESTAMPING_TX_HARDWARE |
1551                                     SOF_TIMESTAMPING_RX_HARDWARE |
1552                                     SOF_TIMESTAMPING_RAW_HARDWARE);
1553        if (primary && primary->ptp_data && primary->ptp_data->phc_clock)
1554                ts_info->phc_index =
1555                        ptp_clock_index(primary->ptp_data->phc_clock);
1556        ts_info->tx_types = 1 << HWTSTAMP_TX_OFF | 1 << HWTSTAMP_TX_ON;
1557        ts_info->rx_filters = ptp->efx->type->hwtstamp_filters;
1558}
1559
1560int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1561{
1562        struct hwtstamp_config config;
1563        int rc;
1564
1565        /* Not a PTP enabled port */
1566        if (!efx->ptp_data)
1567                return -EOPNOTSUPP;
1568
1569        if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1570                return -EFAULT;
1571
1572        rc = efx_ptp_ts_init(efx, &config);
1573        if (rc != 0)
1574                return rc;
1575
1576        return copy_to_user(ifr->ifr_data, &config, sizeof(config))
1577                ? -EFAULT : 0;
1578}
1579
1580int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr)
1581{
1582        if (!efx->ptp_data)
1583                return -EOPNOTSUPP;
1584
1585        return copy_to_user(ifr->ifr_data, &efx->ptp_data->config,
1586                            sizeof(efx->ptp_data->config)) ? -EFAULT : 0;
1587}
1588
1589static void ptp_event_failure(struct efx_nic *efx, int expected_frag_len)
1590{
1591        struct efx_ptp_data *ptp = efx->ptp_data;
1592
1593        netif_err(efx, hw, efx->net_dev,
1594                "PTP unexpected event length: got %d expected %d\n",
1595                ptp->evt_frag_idx, expected_frag_len);
1596        ptp->reset_required = true;
1597        queue_work(ptp->workwq, &ptp->work);
1598}
1599
1600/* Process a completed receive event.  Put it on the event queue and
1601 * start worker thread.  This is required because event and their
1602 * correspoding packets may come in either order.
1603 */
1604static void ptp_event_rx(struct efx_nic *efx, struct efx_ptp_data *ptp)
1605{
1606        struct efx_ptp_event_rx *evt = NULL;
1607
1608        if (WARN_ON_ONCE(ptp->rx_ts_inline))
1609                return;
1610
1611        if (ptp->evt_frag_idx != 3) {
1612                ptp_event_failure(efx, 3);
1613                return;
1614        }
1615
1616        spin_lock_bh(&ptp->evt_lock);
1617        if (!list_empty(&ptp->evt_free_list)) {
1618                evt = list_first_entry(&ptp->evt_free_list,
1619                                       struct efx_ptp_event_rx, link);
1620                list_del(&evt->link);
1621
1622                evt->seq0 = EFX_QWORD_FIELD(ptp->evt_frags[2], MCDI_EVENT_DATA);
1623                evt->seq1 = (EFX_QWORD_FIELD(ptp->evt_frags[2],
1624                                             MCDI_EVENT_SRC)        |
1625                             (EFX_QWORD_FIELD(ptp->evt_frags[1],
1626                                              MCDI_EVENT_SRC) << 8) |
1627                             (EFX_QWORD_FIELD(ptp->evt_frags[0],
1628                                              MCDI_EVENT_SRC) << 16));
1629                evt->hwtimestamp = efx->ptp_data->nic_to_kernel_time(
1630                        EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA),
1631                        EFX_QWORD_FIELD(ptp->evt_frags[1], MCDI_EVENT_DATA),
1632                        ptp->ts_corrections.rx);
1633                evt->expiry = jiffies + msecs_to_jiffies(PKT_EVENT_LIFETIME_MS);
1634                list_add_tail(&evt->link, &ptp->evt_list);
1635
1636                queue_work(ptp->workwq, &ptp->work);
1637        } else if (net_ratelimit()) {
1638                /* Log a rate-limited warning message. */
1639                netif_err(efx, rx_err, efx->net_dev, "PTP event queue overflow\n");
1640        }
1641        spin_unlock_bh(&ptp->evt_lock);
1642}
1643
1644static void ptp_event_fault(struct efx_nic *efx, struct efx_ptp_data *ptp)
1645{
1646        int code = EFX_QWORD_FIELD(ptp->evt_frags[0], MCDI_EVENT_DATA);
1647        if (ptp->evt_frag_idx != 1) {
1648                ptp_event_failure(efx, 1);
1649                return;
1650        }
1651
1652        netif_err(efx, hw, efx->net_dev, "PTP error %d\n", code);
1653}
1654
1655static void ptp_event_pps(struct efx_nic *efx, struct efx_ptp_data *ptp)
1656{
1657        if (ptp->nic_ts_enabled)
1658                queue_work(ptp->pps_workwq, &ptp->pps_work);
1659}
1660
1661void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev)
1662{
1663        struct efx_ptp_data *ptp = efx->ptp_data;
1664        int code = EFX_QWORD_FIELD(*ev, MCDI_EVENT_CODE);
1665
1666        if (!ptp) {
1667                if (net_ratelimit())
1668                        netif_warn(efx, drv, efx->net_dev,
1669                                   "Received PTP event but PTP not set up\n");
1670                return;
1671        }
1672
1673        if (!ptp->enabled)
1674                return;
1675
1676        if (ptp->evt_frag_idx == 0) {
1677                ptp->evt_code = code;
1678        } else if (ptp->evt_code != code) {
1679                netif_err(efx, hw, efx->net_dev,
1680                          "PTP out of sequence event %d\n", code);
1681                ptp->evt_frag_idx = 0;
1682        }
1683
1684        ptp->evt_frags[ptp->evt_frag_idx++] = *ev;
1685        if (!MCDI_EVENT_FIELD(*ev, CONT)) {
1686                /* Process resulting event */
1687                switch (code) {
1688                case MCDI_EVENT_CODE_PTP_RX:
1689                        ptp_event_rx(efx, ptp);
1690                        break;
1691                case MCDI_EVENT_CODE_PTP_FAULT:
1692                        ptp_event_fault(efx, ptp);
1693                        break;
1694                case MCDI_EVENT_CODE_PTP_PPS:
1695                        ptp_event_pps(efx, ptp);
1696                        break;
1697                default:
1698                        netif_err(efx, hw, efx->net_dev,
1699                                  "PTP unknown event %d\n", code);
1700                        break;
1701                }
1702                ptp->evt_frag_idx = 0;
1703        } else if (MAX_EVENT_FRAGS == ptp->evt_frag_idx) {
1704                netif_err(efx, hw, efx->net_dev,
1705                          "PTP too many event fragments\n");
1706                ptp->evt_frag_idx = 0;
1707        }
1708}
1709
1710void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev)
1711{
1712        channel->sync_timestamp_major = MCDI_EVENT_FIELD(*ev, PTP_TIME_MAJOR);
1713        channel->sync_timestamp_minor =
1714                MCDI_EVENT_FIELD(*ev, PTP_TIME_MINOR_26_19) << 19;
1715        /* if sync events have been disabled then we want to silently ignore
1716         * this event, so throw away result.
1717         */
1718        (void) cmpxchg(&channel->sync_events_state, SYNC_EVENTS_REQUESTED,
1719                       SYNC_EVENTS_VALID);
1720}
1721
1722/* make some assumptions about the time representation rather than abstract it,
1723 * since we currently only support one type of inline timestamping and only on
1724 * EF10.
1725 */
1726#define MINOR_TICKS_PER_SECOND 0x8000000
1727/* Fuzz factor for sync events to be out of order with RX events */
1728#define FUZZ (MINOR_TICKS_PER_SECOND / 10)
1729#define EXPECTED_SYNC_EVENTS_PER_SECOND 4
1730
1731static inline u32 efx_rx_buf_timestamp_minor(struct efx_nic *efx, const u8 *eh)
1732{
1733#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
1734        return __le32_to_cpup((const __le32 *)(eh + efx->rx_packet_ts_offset));
1735#else
1736        const u8 *data = eh + efx->rx_packet_ts_offset;
1737        return (u32)data[0]       |
1738               (u32)data[1] << 8  |
1739               (u32)data[2] << 16 |
1740               (u32)data[3] << 24;
1741#endif
1742}
1743
1744void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
1745                                   struct sk_buff *skb)
1746{
1747        struct efx_nic *efx = channel->efx;
1748        u32 pkt_timestamp_major, pkt_timestamp_minor;
1749        u32 diff, carry;
1750        struct skb_shared_hwtstamps *timestamps;
1751
1752        pkt_timestamp_minor = (efx_rx_buf_timestamp_minor(efx,
1753                                                          skb_mac_header(skb)) +
1754                               (u32) efx->ptp_data->ts_corrections.rx) &
1755                              (MINOR_TICKS_PER_SECOND - 1);
1756
1757        /* get the difference between the packet and sync timestamps,
1758         * modulo one second
1759         */
1760        diff = (pkt_timestamp_minor - channel->sync_timestamp_minor) &
1761                (MINOR_TICKS_PER_SECOND - 1);
1762        /* do we roll over a second boundary and need to carry the one? */
1763        carry = channel->sync_timestamp_minor + diff > MINOR_TICKS_PER_SECOND ?
1764                1 : 0;
1765
1766        if (diff <= MINOR_TICKS_PER_SECOND / EXPECTED_SYNC_EVENTS_PER_SECOND +
1767                    FUZZ) {
1768                /* packet is ahead of the sync event by a quarter of a second or
1769                 * less (allowing for fuzz)
1770                 */
1771                pkt_timestamp_major = channel->sync_timestamp_major + carry;
1772        } else if (diff >= MINOR_TICKS_PER_SECOND - FUZZ) {
1773                /* packet is behind the sync event but within the fuzz factor.
1774                 * This means the RX packet and sync event crossed as they were
1775                 * placed on the event queue, which can sometimes happen.
1776                 */
1777                pkt_timestamp_major = channel->sync_timestamp_major - 1 + carry;
1778        } else {
1779                /* it's outside tolerance in both directions. this might be
1780                 * indicative of us missing sync events for some reason, so
1781                 * we'll call it an error rather than risk giving a bogus
1782                 * timestamp.
1783                 */
1784                netif_vdbg(efx, drv, efx->net_dev,
1785                          "packet timestamp %x too far from sync event %x:%x\n",
1786                          pkt_timestamp_minor, channel->sync_timestamp_major,
1787                          channel->sync_timestamp_minor);
1788                return;
1789        }
1790
1791        /* attach the timestamps to the skb */
1792        timestamps = skb_hwtstamps(skb);
1793        timestamps->hwtstamp =
1794                efx_ptp_s27_to_ktime(pkt_timestamp_major, pkt_timestamp_minor);
1795}
1796
1797static int efx_phc_adjfreq(struct ptp_clock_info *ptp, s32 delta)
1798{
1799        struct efx_ptp_data *ptp_data = container_of(ptp,
1800                                                     struct efx_ptp_data,
1801                                                     phc_clock_info);
1802        struct efx_nic *efx = ptp_data->efx;
1803        MCDI_DECLARE_BUF(inadj, MC_CMD_PTP_IN_ADJUST_LEN);
1804        s64 adjustment_ns;
1805        int rc;
1806
1807        if (delta > MAX_PPB)
1808                delta = MAX_PPB;
1809        else if (delta < -MAX_PPB)
1810                delta = -MAX_PPB;
1811
1812        /* Convert ppb to fixed point ns. */
1813        adjustment_ns = (((s64)delta * PPB_SCALE_WORD) >>
1814                         (PPB_EXTRA_BITS + MAX_PPB_BITS));
1815
1816        MCDI_SET_DWORD(inadj, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1817        MCDI_SET_DWORD(inadj, PTP_IN_PERIPH_ID, 0);
1818        MCDI_SET_QWORD(inadj, PTP_IN_ADJUST_FREQ, adjustment_ns);
1819        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_SECONDS, 0);
1820        MCDI_SET_DWORD(inadj, PTP_IN_ADJUST_NANOSECONDS, 0);
1821        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inadj, sizeof(inadj),
1822                          NULL, 0, NULL);
1823        if (rc != 0)
1824                return rc;
1825
1826        ptp_data->current_adjfreq = adjustment_ns;
1827        return 0;
1828}
1829
1830static int efx_phc_adjtime(struct ptp_clock_info *ptp, s64 delta)
1831{
1832        u32 nic_major, nic_minor;
1833        struct efx_ptp_data *ptp_data = container_of(ptp,
1834                                                     struct efx_ptp_data,
1835                                                     phc_clock_info);
1836        struct efx_nic *efx = ptp_data->efx;
1837        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_ADJUST_LEN);
1838
1839        efx->ptp_data->ns_to_nic_time(delta, &nic_major, &nic_minor);
1840
1841        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_ADJUST);
1842        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1843        MCDI_SET_QWORD(inbuf, PTP_IN_ADJUST_FREQ, ptp_data->current_adjfreq);
1844        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MAJOR, nic_major);
1845        MCDI_SET_DWORD(inbuf, PTP_IN_ADJUST_MINOR, nic_minor);
1846        return efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1847                            NULL, 0, NULL);
1848}
1849
1850static int efx_phc_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
1851{
1852        struct efx_ptp_data *ptp_data = container_of(ptp,
1853                                                     struct efx_ptp_data,
1854                                                     phc_clock_info);
1855        struct efx_nic *efx = ptp_data->efx;
1856        MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_READ_NIC_TIME_LEN);
1857        MCDI_DECLARE_BUF(outbuf, MC_CMD_PTP_OUT_READ_NIC_TIME_LEN);
1858        int rc;
1859        ktime_t kt;
1860
1861        MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_READ_NIC_TIME);
1862        MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
1863
1864        rc = efx_mcdi_rpc(efx, MC_CMD_PTP, inbuf, sizeof(inbuf),
1865                          outbuf, sizeof(outbuf), NULL);
1866        if (rc != 0)
1867                return rc;
1868
1869        kt = ptp_data->nic_to_kernel_time(
1870                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MAJOR),
1871                MCDI_DWORD(outbuf, PTP_OUT_READ_NIC_TIME_MINOR), 0);
1872        *ts = ktime_to_timespec64(kt);
1873        return 0;
1874}
1875
1876static int efx_phc_settime(struct ptp_clock_info *ptp,
1877                           const struct timespec64 *e_ts)
1878{
1879        /* Get the current NIC time, efx_phc_gettime.
1880         * Subtract from the desired time to get the offset
1881         * call efx_phc_adjtime with the offset
1882         */
1883        int rc;
1884        struct timespec64 time_now;
1885        struct timespec64 delta;
1886
1887        rc = efx_phc_gettime(ptp, &time_now);
1888        if (rc != 0)
1889                return rc;
1890
1891        delta = timespec64_sub(*e_ts, time_now);
1892
1893        rc = efx_phc_adjtime(ptp, timespec64_to_ns(&delta));
1894        if (rc != 0)
1895                return rc;
1896
1897        return 0;
1898}
1899
1900static int efx_phc_enable(struct ptp_clock_info *ptp,
1901                          struct ptp_clock_request *request,
1902                          int enable)
1903{
1904        struct efx_ptp_data *ptp_data = container_of(ptp,
1905                                                     struct efx_ptp_data,
1906                                                     phc_clock_info);
1907        if (request->type != PTP_CLK_REQ_PPS)
1908                return -EOPNOTSUPP;
1909
1910        ptp_data->nic_ts_enabled = !!enable;
1911        return 0;
1912}
1913
1914static const struct efx_channel_type efx_ptp_channel_type = {
1915        .handle_no_channel      = efx_ptp_handle_no_channel,
1916        .pre_probe              = efx_ptp_probe_channel,
1917        .post_remove            = efx_ptp_remove_channel,
1918        .get_name               = efx_ptp_get_channel_name,
1919        /* no copy operation; there is no need to reallocate this channel */
1920        .receive_skb            = efx_ptp_rx,
1921        .keep_eventq            = false,
1922};
1923
1924void efx_ptp_defer_probe_with_channel(struct efx_nic *efx)
1925{
1926        /* Check whether PTP is implemented on this NIC.  The DISABLE
1927         * operation will succeed if and only if it is implemented.
1928         */
1929        if (efx_ptp_disable(efx) == 0)
1930                efx->extra_channel_type[EFX_EXTRA_CHANNEL_PTP] =
1931                        &efx_ptp_channel_type;
1932}
1933
1934void efx_ptp_start_datapath(struct efx_nic *efx)
1935{
1936        if (efx_ptp_restart(efx))
1937                netif_err(efx, drv, efx->net_dev, "Failed to restart PTP.\n");
1938        /* re-enable timestamping if it was previously enabled */
1939        if (efx->type->ptp_set_ts_sync_events)
1940                efx->type->ptp_set_ts_sync_events(efx, true, true);
1941}
1942
1943void efx_ptp_stop_datapath(struct efx_nic *efx)
1944{
1945        /* temporarily disable timestamping */
1946        if (efx->type->ptp_set_ts_sync_events)
1947                efx->type->ptp_set_ts_sync_events(efx, false, true);
1948        efx_ptp_stop(efx);
1949}
1950