linux/drivers/pwm/core.c
<<
>>
Prefs
   1/*
   2 * Generic pwmlib implementation
   3 *
   4 * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
   5 * Copyright (C) 2011-2012 Avionic Design GmbH
   6 *
   7 *  This program is free software; you can redistribute it and/or modify
   8 *  it under the terms of the GNU General Public License as published by
   9 *  the Free Software Foundation; either version 2, or (at your option)
  10 *  any later version.
  11 *
  12 *  This program is distributed in the hope that it will be useful,
  13 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 *  GNU General Public License for more details.
  16 *
  17 *  You should have received a copy of the GNU General Public License
  18 *  along with this program; see the file COPYING.  If not, write to
  19 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
  22#include <linux/module.h>
  23#include <linux/pwm.h>
  24#include <linux/radix-tree.h>
  25#include <linux/list.h>
  26#include <linux/mutex.h>
  27#include <linux/err.h>
  28#include <linux/slab.h>
  29#include <linux/device.h>
  30#include <linux/debugfs.h>
  31#include <linux/seq_file.h>
  32
  33#include <dt-bindings/pwm/pwm.h>
  34
  35#define MAX_PWMS 1024
  36
  37static DEFINE_MUTEX(pwm_lookup_lock);
  38static LIST_HEAD(pwm_lookup_list);
  39static DEFINE_MUTEX(pwm_lock);
  40static LIST_HEAD(pwm_chips);
  41static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
  42static RADIX_TREE(pwm_tree, GFP_KERNEL);
  43
  44static struct pwm_device *pwm_to_device(unsigned int pwm)
  45{
  46        return radix_tree_lookup(&pwm_tree, pwm);
  47}
  48
  49static int alloc_pwms(int pwm, unsigned int count)
  50{
  51        unsigned int from = 0;
  52        unsigned int start;
  53
  54        if (pwm >= MAX_PWMS)
  55                return -EINVAL;
  56
  57        if (pwm >= 0)
  58                from = pwm;
  59
  60        start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, from,
  61                                           count, 0);
  62
  63        if (pwm >= 0 && start != pwm)
  64                return -EEXIST;
  65
  66        if (start + count > MAX_PWMS)
  67                return -ENOSPC;
  68
  69        return start;
  70}
  71
  72static void free_pwms(struct pwm_chip *chip)
  73{
  74        unsigned int i;
  75
  76        for (i = 0; i < chip->npwm; i++) {
  77                struct pwm_device *pwm = &chip->pwms[i];
  78
  79                radix_tree_delete(&pwm_tree, pwm->pwm);
  80        }
  81
  82        bitmap_clear(allocated_pwms, chip->base, chip->npwm);
  83
  84        kfree(chip->pwms);
  85        chip->pwms = NULL;
  86}
  87
  88static struct pwm_chip *pwmchip_find_by_name(const char *name)
  89{
  90        struct pwm_chip *chip;
  91
  92        if (!name)
  93                return NULL;
  94
  95        mutex_lock(&pwm_lock);
  96
  97        list_for_each_entry(chip, &pwm_chips, list) {
  98                const char *chip_name = dev_name(chip->dev);
  99
 100                if (chip_name && strcmp(chip_name, name) == 0) {
 101                        mutex_unlock(&pwm_lock);
 102                        return chip;
 103                }
 104        }
 105
 106        mutex_unlock(&pwm_lock);
 107
 108        return NULL;
 109}
 110
 111static int pwm_device_request(struct pwm_device *pwm, const char *label)
 112{
 113        int err;
 114
 115        if (test_bit(PWMF_REQUESTED, &pwm->flags))
 116                return -EBUSY;
 117
 118        if (!try_module_get(pwm->chip->ops->owner))
 119                return -ENODEV;
 120
 121        if (pwm->chip->ops->request) {
 122                err = pwm->chip->ops->request(pwm->chip, pwm);
 123                if (err) {
 124                        module_put(pwm->chip->ops->owner);
 125                        return err;
 126                }
 127        }
 128
 129        set_bit(PWMF_REQUESTED, &pwm->flags);
 130        pwm->label = label;
 131
 132        return 0;
 133}
 134
 135struct pwm_device *
 136of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
 137{
 138        struct pwm_device *pwm;
 139
 140        if (pc->of_pwm_n_cells < 3)
 141                return ERR_PTR(-EINVAL);
 142
 143        if (args->args[0] >= pc->npwm)
 144                return ERR_PTR(-EINVAL);
 145
 146        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 147        if (IS_ERR(pwm))
 148                return pwm;
 149
 150        pwm->args.period = args->args[1];
 151
 152        if (args->args[2] & PWM_POLARITY_INVERTED)
 153                pwm->args.polarity = PWM_POLARITY_INVERSED;
 154        else
 155                pwm->args.polarity = PWM_POLARITY_NORMAL;
 156
 157        return pwm;
 158}
 159EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
 160
 161static struct pwm_device *
 162of_pwm_simple_xlate(struct pwm_chip *pc, const struct of_phandle_args *args)
 163{
 164        struct pwm_device *pwm;
 165
 166        if (pc->of_pwm_n_cells < 2)
 167                return ERR_PTR(-EINVAL);
 168
 169        if (args->args[0] >= pc->npwm)
 170                return ERR_PTR(-EINVAL);
 171
 172        pwm = pwm_request_from_chip(pc, args->args[0], NULL);
 173        if (IS_ERR(pwm))
 174                return pwm;
 175
 176        pwm->args.period = args->args[1];
 177
 178        return pwm;
 179}
 180
 181static void of_pwmchip_add(struct pwm_chip *chip)
 182{
 183        if (!chip->dev || !chip->dev->of_node)
 184                return;
 185
 186        if (!chip->of_xlate) {
 187                chip->of_xlate = of_pwm_simple_xlate;
 188                chip->of_pwm_n_cells = 2;
 189        }
 190
 191        of_node_get(chip->dev->of_node);
 192}
 193
 194static void of_pwmchip_remove(struct pwm_chip *chip)
 195{
 196        if (chip->dev)
 197                of_node_put(chip->dev->of_node);
 198}
 199
 200/**
 201 * pwm_set_chip_data() - set private chip data for a PWM
 202 * @pwm: PWM device
 203 * @data: pointer to chip-specific data
 204 *
 205 * Returns: 0 on success or a negative error code on failure.
 206 */
 207int pwm_set_chip_data(struct pwm_device *pwm, void *data)
 208{
 209        if (!pwm)
 210                return -EINVAL;
 211
 212        pwm->chip_data = data;
 213
 214        return 0;
 215}
 216EXPORT_SYMBOL_GPL(pwm_set_chip_data);
 217
 218/**
 219 * pwm_get_chip_data() - get private chip data for a PWM
 220 * @pwm: PWM device
 221 *
 222 * Returns: A pointer to the chip-private data for the PWM device.
 223 */
 224void *pwm_get_chip_data(struct pwm_device *pwm)
 225{
 226        return pwm ? pwm->chip_data : NULL;
 227}
 228EXPORT_SYMBOL_GPL(pwm_get_chip_data);
 229
 230static bool pwm_ops_check(const struct pwm_ops *ops)
 231{
 232        /* driver supports legacy, non-atomic operation */
 233        if (ops->config && ops->enable && ops->disable)
 234                return true;
 235
 236        /* driver supports atomic operation */
 237        if (ops->apply)
 238                return true;
 239
 240        return false;
 241}
 242
 243/**
 244 * pwmchip_add_with_polarity() - register a new PWM chip
 245 * @chip: the PWM chip to add
 246 * @polarity: initial polarity of PWM channels
 247 *
 248 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 249 * will be used. The initial polarity for all channels is specified by the
 250 * @polarity parameter.
 251 *
 252 * Returns: 0 on success or a negative error code on failure.
 253 */
 254int pwmchip_add_with_polarity(struct pwm_chip *chip,
 255                              enum pwm_polarity polarity)
 256{
 257        struct pwm_device *pwm;
 258        unsigned int i;
 259        int ret;
 260
 261        if (!chip || !chip->dev || !chip->ops || !chip->npwm)
 262                return -EINVAL;
 263
 264        if (!pwm_ops_check(chip->ops))
 265                return -EINVAL;
 266
 267        mutex_lock(&pwm_lock);
 268
 269        ret = alloc_pwms(chip->base, chip->npwm);
 270        if (ret < 0)
 271                goto out;
 272
 273        chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
 274        if (!chip->pwms) {
 275                ret = -ENOMEM;
 276                goto out;
 277        }
 278
 279        chip->base = ret;
 280
 281        for (i = 0; i < chip->npwm; i++) {
 282                pwm = &chip->pwms[i];
 283
 284                pwm->chip = chip;
 285                pwm->pwm = chip->base + i;
 286                pwm->hwpwm = i;
 287                pwm->state.polarity = polarity;
 288
 289                if (chip->ops->get_state)
 290                        chip->ops->get_state(chip, pwm, &pwm->state);
 291
 292                radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
 293        }
 294
 295        bitmap_set(allocated_pwms, chip->base, chip->npwm);
 296
 297        INIT_LIST_HEAD(&chip->list);
 298        list_add(&chip->list, &pwm_chips);
 299
 300        ret = 0;
 301
 302        if (IS_ENABLED(CONFIG_OF))
 303                of_pwmchip_add(chip);
 304
 305        pwmchip_sysfs_export(chip);
 306
 307out:
 308        mutex_unlock(&pwm_lock);
 309        return ret;
 310}
 311EXPORT_SYMBOL_GPL(pwmchip_add_with_polarity);
 312
 313/**
 314 * pwmchip_add() - register a new PWM chip
 315 * @chip: the PWM chip to add
 316 *
 317 * Register a new PWM chip. If chip->base < 0 then a dynamically assigned base
 318 * will be used. The initial polarity for all channels is normal.
 319 *
 320 * Returns: 0 on success or a negative error code on failure.
 321 */
 322int pwmchip_add(struct pwm_chip *chip)
 323{
 324        return pwmchip_add_with_polarity(chip, PWM_POLARITY_NORMAL);
 325}
 326EXPORT_SYMBOL_GPL(pwmchip_add);
 327
 328/**
 329 * pwmchip_remove() - remove a PWM chip
 330 * @chip: the PWM chip to remove
 331 *
 332 * Removes a PWM chip. This function may return busy if the PWM chip provides
 333 * a PWM device that is still requested.
 334 *
 335 * Returns: 0 on success or a negative error code on failure.
 336 */
 337int pwmchip_remove(struct pwm_chip *chip)
 338{
 339        unsigned int i;
 340        int ret = 0;
 341
 342        mutex_lock(&pwm_lock);
 343
 344        for (i = 0; i < chip->npwm; i++) {
 345                struct pwm_device *pwm = &chip->pwms[i];
 346
 347                if (test_bit(PWMF_REQUESTED, &pwm->flags)) {
 348                        ret = -EBUSY;
 349                        goto out;
 350                }
 351        }
 352
 353        list_del_init(&chip->list);
 354
 355        if (IS_ENABLED(CONFIG_OF))
 356                of_pwmchip_remove(chip);
 357
 358        free_pwms(chip);
 359
 360        pwmchip_sysfs_unexport(chip);
 361
 362out:
 363        mutex_unlock(&pwm_lock);
 364        return ret;
 365}
 366EXPORT_SYMBOL_GPL(pwmchip_remove);
 367
 368/**
 369 * pwm_request() - request a PWM device
 370 * @pwm: global PWM device index
 371 * @label: PWM device label
 372 *
 373 * This function is deprecated, use pwm_get() instead.
 374 *
 375 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
 376 * failure.
 377 */
 378struct pwm_device *pwm_request(int pwm, const char *label)
 379{
 380        struct pwm_device *dev;
 381        int err;
 382
 383        if (pwm < 0 || pwm >= MAX_PWMS)
 384                return ERR_PTR(-EINVAL);
 385
 386        mutex_lock(&pwm_lock);
 387
 388        dev = pwm_to_device(pwm);
 389        if (!dev) {
 390                dev = ERR_PTR(-EPROBE_DEFER);
 391                goto out;
 392        }
 393
 394        err = pwm_device_request(dev, label);
 395        if (err < 0)
 396                dev = ERR_PTR(err);
 397
 398out:
 399        mutex_unlock(&pwm_lock);
 400
 401        return dev;
 402}
 403EXPORT_SYMBOL_GPL(pwm_request);
 404
 405/**
 406 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
 407 * @chip: PWM chip
 408 * @index: per-chip index of the PWM to request
 409 * @label: a literal description string of this PWM
 410 *
 411 * Returns: A pointer to the PWM device at the given index of the given PWM
 412 * chip. A negative error code is returned if the index is not valid for the
 413 * specified PWM chip or if the PWM device cannot be requested.
 414 */
 415struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
 416                                         unsigned int index,
 417                                         const char *label)
 418{
 419        struct pwm_device *pwm;
 420        int err;
 421
 422        if (!chip || index >= chip->npwm)
 423                return ERR_PTR(-EINVAL);
 424
 425        mutex_lock(&pwm_lock);
 426        pwm = &chip->pwms[index];
 427
 428        err = pwm_device_request(pwm, label);
 429        if (err < 0)
 430                pwm = ERR_PTR(err);
 431
 432        mutex_unlock(&pwm_lock);
 433        return pwm;
 434}
 435EXPORT_SYMBOL_GPL(pwm_request_from_chip);
 436
 437/**
 438 * pwm_free() - free a PWM device
 439 * @pwm: PWM device
 440 *
 441 * This function is deprecated, use pwm_put() instead.
 442 */
 443void pwm_free(struct pwm_device *pwm)
 444{
 445        pwm_put(pwm);
 446}
 447EXPORT_SYMBOL_GPL(pwm_free);
 448
 449/**
 450 * pwm_apply_state() - atomically apply a new state to a PWM device
 451 * @pwm: PWM device
 452 * @state: new state to apply. This can be adjusted by the PWM driver
 453 *         if the requested config is not achievable, for example,
 454 *         ->duty_cycle and ->period might be approximated.
 455 */
 456int pwm_apply_state(struct pwm_device *pwm, struct pwm_state *state)
 457{
 458        int err;
 459
 460        if (!pwm || !state || !state->period ||
 461            state->duty_cycle > state->period)
 462                return -EINVAL;
 463
 464        if (!memcmp(state, &pwm->state, sizeof(*state)))
 465                return 0;
 466
 467        if (pwm->chip->ops->apply) {
 468                err = pwm->chip->ops->apply(pwm->chip, pwm, state);
 469                if (err)
 470                        return err;
 471
 472                pwm->state = *state;
 473        } else {
 474                /*
 475                 * FIXME: restore the initial state in case of error.
 476                 */
 477                if (state->polarity != pwm->state.polarity) {
 478                        if (!pwm->chip->ops->set_polarity)
 479                                return -ENOTSUPP;
 480
 481                        /*
 482                         * Changing the polarity of a running PWM is
 483                         * only allowed when the PWM driver implements
 484                         * ->apply().
 485                         */
 486                        if (pwm->state.enabled) {
 487                                pwm->chip->ops->disable(pwm->chip, pwm);
 488                                pwm->state.enabled = false;
 489                        }
 490
 491                        err = pwm->chip->ops->set_polarity(pwm->chip, pwm,
 492                                                           state->polarity);
 493                        if (err)
 494                                return err;
 495
 496                        pwm->state.polarity = state->polarity;
 497                }
 498
 499                if (state->period != pwm->state.period ||
 500                    state->duty_cycle != pwm->state.duty_cycle) {
 501                        err = pwm->chip->ops->config(pwm->chip, pwm,
 502                                                     state->duty_cycle,
 503                                                     state->period);
 504                        if (err)
 505                                return err;
 506
 507                        pwm->state.duty_cycle = state->duty_cycle;
 508                        pwm->state.period = state->period;
 509                }
 510
 511                if (state->enabled != pwm->state.enabled) {
 512                        if (state->enabled) {
 513                                err = pwm->chip->ops->enable(pwm->chip, pwm);
 514                                if (err)
 515                                        return err;
 516                        } else {
 517                                pwm->chip->ops->disable(pwm->chip, pwm);
 518                        }
 519
 520                        pwm->state.enabled = state->enabled;
 521                }
 522        }
 523
 524        return 0;
 525}
 526EXPORT_SYMBOL_GPL(pwm_apply_state);
 527
 528/**
 529 * pwm_capture() - capture and report a PWM signal
 530 * @pwm: PWM device
 531 * @result: structure to fill with capture result
 532 * @timeout: time to wait, in milliseconds, before giving up on capture
 533 *
 534 * Returns: 0 on success or a negative error code on failure.
 535 */
 536int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
 537                unsigned long timeout)
 538{
 539        int err;
 540
 541        if (!pwm || !pwm->chip->ops)
 542                return -EINVAL;
 543
 544        if (!pwm->chip->ops->capture)
 545                return -ENOSYS;
 546
 547        mutex_lock(&pwm_lock);
 548        err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
 549        mutex_unlock(&pwm_lock);
 550
 551        return err;
 552}
 553EXPORT_SYMBOL_GPL(pwm_capture);
 554
 555/**
 556 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
 557 * @pwm: PWM device
 558 *
 559 * This function will adjust the PWM config to the PWM arguments provided
 560 * by the DT or PWM lookup table. This is particularly useful to adapt
 561 * the bootloader config to the Linux one.
 562 */
 563int pwm_adjust_config(struct pwm_device *pwm)
 564{
 565        struct pwm_state state;
 566        struct pwm_args pargs;
 567
 568        pwm_get_args(pwm, &pargs);
 569        pwm_get_state(pwm, &state);
 570
 571        /*
 572         * If the current period is zero it means that either the PWM driver
 573         * does not support initial state retrieval or the PWM has not yet
 574         * been configured.
 575         *
 576         * In either case, we setup the new period and polarity, and assign a
 577         * duty cycle of 0.
 578         */
 579        if (!state.period) {
 580                state.duty_cycle = 0;
 581                state.period = pargs.period;
 582                state.polarity = pargs.polarity;
 583
 584                return pwm_apply_state(pwm, &state);
 585        }
 586
 587        /*
 588         * Adjust the PWM duty cycle/period based on the period value provided
 589         * in PWM args.
 590         */
 591        if (pargs.period != state.period) {
 592                u64 dutycycle = (u64)state.duty_cycle * pargs.period;
 593
 594                do_div(dutycycle, state.period);
 595                state.duty_cycle = dutycycle;
 596                state.period = pargs.period;
 597        }
 598
 599        /*
 600         * If the polarity changed, we should also change the duty cycle.
 601         */
 602        if (pargs.polarity != state.polarity) {
 603                state.polarity = pargs.polarity;
 604                state.duty_cycle = state.period - state.duty_cycle;
 605        }
 606
 607        return pwm_apply_state(pwm, &state);
 608}
 609EXPORT_SYMBOL_GPL(pwm_adjust_config);
 610
 611static struct pwm_chip *of_node_to_pwmchip(struct device_node *np)
 612{
 613        struct pwm_chip *chip;
 614
 615        mutex_lock(&pwm_lock);
 616
 617        list_for_each_entry(chip, &pwm_chips, list)
 618                if (chip->dev && chip->dev->of_node == np) {
 619                        mutex_unlock(&pwm_lock);
 620                        return chip;
 621                }
 622
 623        mutex_unlock(&pwm_lock);
 624
 625        return ERR_PTR(-EPROBE_DEFER);
 626}
 627
 628/**
 629 * of_pwm_get() - request a PWM via the PWM framework
 630 * @np: device node to get the PWM from
 631 * @con_id: consumer name
 632 *
 633 * Returns the PWM device parsed from the phandle and index specified in the
 634 * "pwms" property of a device tree node or a negative error-code on failure.
 635 * Values parsed from the device tree are stored in the returned PWM device
 636 * object.
 637 *
 638 * If con_id is NULL, the first PWM device listed in the "pwms" property will
 639 * be requested. Otherwise the "pwm-names" property is used to do a reverse
 640 * lookup of the PWM index. This also means that the "pwm-names" property
 641 * becomes mandatory for devices that look up the PWM device via the con_id
 642 * parameter.
 643 *
 644 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 645 * error code on failure.
 646 */
 647struct pwm_device *of_pwm_get(struct device_node *np, const char *con_id)
 648{
 649        struct pwm_device *pwm = NULL;
 650        struct of_phandle_args args;
 651        struct pwm_chip *pc;
 652        int index = 0;
 653        int err;
 654
 655        if (con_id) {
 656                index = of_property_match_string(np, "pwm-names", con_id);
 657                if (index < 0)
 658                        return ERR_PTR(index);
 659        }
 660
 661        err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
 662                                         &args);
 663        if (err) {
 664                pr_debug("%s(): can't parse \"pwms\" property\n", __func__);
 665                return ERR_PTR(err);
 666        }
 667
 668        pc = of_node_to_pwmchip(args.np);
 669        if (IS_ERR(pc)) {
 670                pr_debug("%s(): PWM chip not found\n", __func__);
 671                pwm = ERR_CAST(pc);
 672                goto put;
 673        }
 674
 675        if (args.args_count != pc->of_pwm_n_cells) {
 676                pr_debug("%s: wrong #pwm-cells for %s\n", np->full_name,
 677                         args.np->full_name);
 678                pwm = ERR_PTR(-EINVAL);
 679                goto put;
 680        }
 681
 682        pwm = pc->of_xlate(pc, &args);
 683        if (IS_ERR(pwm))
 684                goto put;
 685
 686        /*
 687         * If a consumer name was not given, try to look it up from the
 688         * "pwm-names" property if it exists. Otherwise use the name of
 689         * the user device node.
 690         */
 691        if (!con_id) {
 692                err = of_property_read_string_index(np, "pwm-names", index,
 693                                                    &con_id);
 694                if (err < 0)
 695                        con_id = np->name;
 696        }
 697
 698        pwm->label = con_id;
 699
 700put:
 701        of_node_put(args.np);
 702
 703        return pwm;
 704}
 705EXPORT_SYMBOL_GPL(of_pwm_get);
 706
 707/**
 708 * pwm_add_table() - register PWM device consumers
 709 * @table: array of consumers to register
 710 * @num: number of consumers in table
 711 */
 712void pwm_add_table(struct pwm_lookup *table, size_t num)
 713{
 714        mutex_lock(&pwm_lookup_lock);
 715
 716        while (num--) {
 717                list_add_tail(&table->list, &pwm_lookup_list);
 718                table++;
 719        }
 720
 721        mutex_unlock(&pwm_lookup_lock);
 722}
 723
 724/**
 725 * pwm_remove_table() - unregister PWM device consumers
 726 * @table: array of consumers to unregister
 727 * @num: number of consumers in table
 728 */
 729void pwm_remove_table(struct pwm_lookup *table, size_t num)
 730{
 731        mutex_lock(&pwm_lookup_lock);
 732
 733        while (num--) {
 734                list_del(&table->list);
 735                table++;
 736        }
 737
 738        mutex_unlock(&pwm_lookup_lock);
 739}
 740
 741/**
 742 * pwm_get() - look up and request a PWM device
 743 * @dev: device for PWM consumer
 744 * @con_id: consumer name
 745 *
 746 * Lookup is first attempted using DT. If the device was not instantiated from
 747 * a device tree, a PWM chip and a relative index is looked up via a table
 748 * supplied by board setup code (see pwm_add_table()).
 749 *
 750 * Once a PWM chip has been found the specified PWM device will be requested
 751 * and is ready to be used.
 752 *
 753 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 754 * error code on failure.
 755 */
 756struct pwm_device *pwm_get(struct device *dev, const char *con_id)
 757{
 758        struct pwm_device *pwm = ERR_PTR(-EPROBE_DEFER);
 759        const char *dev_id = dev ? dev_name(dev) : NULL;
 760        struct pwm_chip *chip = NULL;
 761        unsigned int best = 0;
 762        struct pwm_lookup *p, *chosen = NULL;
 763        unsigned int match;
 764
 765        /* look up via DT first */
 766        if (IS_ENABLED(CONFIG_OF) && dev && dev->of_node)
 767                return of_pwm_get(dev->of_node, con_id);
 768
 769        /*
 770         * We look up the provider in the static table typically provided by
 771         * board setup code. We first try to lookup the consumer device by
 772         * name. If the consumer device was passed in as NULL or if no match
 773         * was found, we try to find the consumer by directly looking it up
 774         * by name.
 775         *
 776         * If a match is found, the provider PWM chip is looked up by name
 777         * and a PWM device is requested using the PWM device per-chip index.
 778         *
 779         * The lookup algorithm was shamelessly taken from the clock
 780         * framework:
 781         *
 782         * We do slightly fuzzy matching here:
 783         *  An entry with a NULL ID is assumed to be a wildcard.
 784         *  If an entry has a device ID, it must match
 785         *  If an entry has a connection ID, it must match
 786         * Then we take the most specific entry - with the following order
 787         * of precedence: dev+con > dev only > con only.
 788         */
 789        mutex_lock(&pwm_lookup_lock);
 790
 791        list_for_each_entry(p, &pwm_lookup_list, list) {
 792                match = 0;
 793
 794                if (p->dev_id) {
 795                        if (!dev_id || strcmp(p->dev_id, dev_id))
 796                                continue;
 797
 798                        match += 2;
 799                }
 800
 801                if (p->con_id) {
 802                        if (!con_id || strcmp(p->con_id, con_id))
 803                                continue;
 804
 805                        match += 1;
 806                }
 807
 808                if (match > best) {
 809                        chosen = p;
 810
 811                        if (match != 3)
 812                                best = match;
 813                        else
 814                                break;
 815                }
 816        }
 817
 818        if (!chosen) {
 819                pwm = ERR_PTR(-ENODEV);
 820                goto out;
 821        }
 822
 823        chip = pwmchip_find_by_name(chosen->provider);
 824        if (!chip)
 825                goto out;
 826
 827        pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
 828        if (IS_ERR(pwm))
 829                goto out;
 830
 831        pwm->args.period = chosen->period;
 832        pwm->args.polarity = chosen->polarity;
 833
 834out:
 835        mutex_unlock(&pwm_lookup_lock);
 836        return pwm;
 837}
 838EXPORT_SYMBOL_GPL(pwm_get);
 839
 840/**
 841 * pwm_put() - release a PWM device
 842 * @pwm: PWM device
 843 */
 844void pwm_put(struct pwm_device *pwm)
 845{
 846        if (!pwm)
 847                return;
 848
 849        mutex_lock(&pwm_lock);
 850
 851        if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
 852                pr_warn("PWM device already freed\n");
 853                goto out;
 854        }
 855
 856        if (pwm->chip->ops->free)
 857                pwm->chip->ops->free(pwm->chip, pwm);
 858
 859        pwm->label = NULL;
 860
 861        module_put(pwm->chip->ops->owner);
 862out:
 863        mutex_unlock(&pwm_lock);
 864}
 865EXPORT_SYMBOL_GPL(pwm_put);
 866
 867static void devm_pwm_release(struct device *dev, void *res)
 868{
 869        pwm_put(*(struct pwm_device **)res);
 870}
 871
 872/**
 873 * devm_pwm_get() - resource managed pwm_get()
 874 * @dev: device for PWM consumer
 875 * @con_id: consumer name
 876 *
 877 * This function performs like pwm_get() but the acquired PWM device will
 878 * automatically be released on driver detach.
 879 *
 880 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 881 * error code on failure.
 882 */
 883struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
 884{
 885        struct pwm_device **ptr, *pwm;
 886
 887        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 888        if (!ptr)
 889                return ERR_PTR(-ENOMEM);
 890
 891        pwm = pwm_get(dev, con_id);
 892        if (!IS_ERR(pwm)) {
 893                *ptr = pwm;
 894                devres_add(dev, ptr);
 895        } else {
 896                devres_free(ptr);
 897        }
 898
 899        return pwm;
 900}
 901EXPORT_SYMBOL_GPL(devm_pwm_get);
 902
 903/**
 904 * devm_of_pwm_get() - resource managed of_pwm_get()
 905 * @dev: device for PWM consumer
 906 * @np: device node to get the PWM from
 907 * @con_id: consumer name
 908 *
 909 * This function performs like of_pwm_get() but the acquired PWM device will
 910 * automatically be released on driver detach.
 911 *
 912 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
 913 * error code on failure.
 914 */
 915struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
 916                                   const char *con_id)
 917{
 918        struct pwm_device **ptr, *pwm;
 919
 920        ptr = devres_alloc(devm_pwm_release, sizeof(*ptr), GFP_KERNEL);
 921        if (!ptr)
 922                return ERR_PTR(-ENOMEM);
 923
 924        pwm = of_pwm_get(np, con_id);
 925        if (!IS_ERR(pwm)) {
 926                *ptr = pwm;
 927                devres_add(dev, ptr);
 928        } else {
 929                devres_free(ptr);
 930        }
 931
 932        return pwm;
 933}
 934EXPORT_SYMBOL_GPL(devm_of_pwm_get);
 935
 936static int devm_pwm_match(struct device *dev, void *res, void *data)
 937{
 938        struct pwm_device **p = res;
 939
 940        if (WARN_ON(!p || !*p))
 941                return 0;
 942
 943        return *p == data;
 944}
 945
 946/**
 947 * devm_pwm_put() - resource managed pwm_put()
 948 * @dev: device for PWM consumer
 949 * @pwm: PWM device
 950 *
 951 * Release a PWM previously allocated using devm_pwm_get(). Calling this
 952 * function is usually not needed because devm-allocated resources are
 953 * automatically released on driver detach.
 954 */
 955void devm_pwm_put(struct device *dev, struct pwm_device *pwm)
 956{
 957        WARN_ON(devres_release(dev, devm_pwm_release, devm_pwm_match, pwm));
 958}
 959EXPORT_SYMBOL_GPL(devm_pwm_put);
 960
 961/**
 962  * pwm_can_sleep() - report whether PWM access will sleep
 963  * @pwm: PWM device
 964  *
 965  * Returns: True if accessing the PWM can sleep, false otherwise.
 966  */
 967bool pwm_can_sleep(struct pwm_device *pwm)
 968{
 969        return true;
 970}
 971EXPORT_SYMBOL_GPL(pwm_can_sleep);
 972
 973#ifdef CONFIG_DEBUG_FS
 974static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
 975{
 976        unsigned int i;
 977
 978        for (i = 0; i < chip->npwm; i++) {
 979                struct pwm_device *pwm = &chip->pwms[i];
 980                struct pwm_state state;
 981
 982                pwm_get_state(pwm, &state);
 983
 984                seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
 985
 986                if (test_bit(PWMF_REQUESTED, &pwm->flags))
 987                        seq_puts(s, " requested");
 988
 989                if (state.enabled)
 990                        seq_puts(s, " enabled");
 991
 992                seq_printf(s, " period: %u ns", state.period);
 993                seq_printf(s, " duty: %u ns", state.duty_cycle);
 994                seq_printf(s, " polarity: %s",
 995                           state.polarity ? "inverse" : "normal");
 996
 997                seq_puts(s, "\n");
 998        }
 999}
1000
1001static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1002{
1003        mutex_lock(&pwm_lock);
1004        s->private = "";
1005
1006        return seq_list_start(&pwm_chips, *pos);
1007}
1008
1009static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1010{
1011        s->private = "\n";
1012
1013        return seq_list_next(v, &pwm_chips, pos);
1014}
1015
1016static void pwm_seq_stop(struct seq_file *s, void *v)
1017{
1018        mutex_unlock(&pwm_lock);
1019}
1020
1021static int pwm_seq_show(struct seq_file *s, void *v)
1022{
1023        struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1024
1025        seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1026                   chip->dev->bus ? chip->dev->bus->name : "no-bus",
1027                   dev_name(chip->dev), chip->npwm,
1028                   (chip->npwm != 1) ? "s" : "");
1029
1030        if (chip->ops->dbg_show)
1031                chip->ops->dbg_show(chip, s);
1032        else
1033                pwm_dbg_show(chip, s);
1034
1035        return 0;
1036}
1037
1038static const struct seq_operations pwm_seq_ops = {
1039        .start = pwm_seq_start,
1040        .next = pwm_seq_next,
1041        .stop = pwm_seq_stop,
1042        .show = pwm_seq_show,
1043};
1044
1045static int pwm_seq_open(struct inode *inode, struct file *file)
1046{
1047        return seq_open(file, &pwm_seq_ops);
1048}
1049
1050static const struct file_operations pwm_debugfs_ops = {
1051        .owner = THIS_MODULE,
1052        .open = pwm_seq_open,
1053        .read = seq_read,
1054        .llseek = seq_lseek,
1055        .release = seq_release,
1056};
1057
1058static int __init pwm_debugfs_init(void)
1059{
1060        debugfs_create_file("pwm", S_IFREG | S_IRUGO, NULL, NULL,
1061                            &pwm_debugfs_ops);
1062
1063        return 0;
1064}
1065subsys_initcall(pwm_debugfs_init);
1066#endif /* CONFIG_DEBUG_FS */
1067