linux/drivers/rtc/rtc-mxc.c
<<
>>
Prefs
   1/*
   2 * Copyright 2004-2008 Freescale Semiconductor, Inc. All Rights Reserved.
   3 *
   4 * The code contained herein is licensed under the GNU General Public
   5 * License. You may obtain a copy of the GNU General Public License
   6 * Version 2 or later at the following locations:
   7 *
   8 * http://www.opensource.org/licenses/gpl-license.html
   9 * http://www.gnu.org/copyleft/gpl.html
  10 */
  11
  12#include <linux/io.h>
  13#include <linux/rtc.h>
  14#include <linux/module.h>
  15#include <linux/slab.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/clk.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21
  22#define RTC_INPUT_CLK_32768HZ   (0x00 << 5)
  23#define RTC_INPUT_CLK_32000HZ   (0x01 << 5)
  24#define RTC_INPUT_CLK_38400HZ   (0x02 << 5)
  25
  26#define RTC_SW_BIT      (1 << 0)
  27#define RTC_ALM_BIT     (1 << 2)
  28#define RTC_1HZ_BIT     (1 << 4)
  29#define RTC_2HZ_BIT     (1 << 7)
  30#define RTC_SAM0_BIT    (1 << 8)
  31#define RTC_SAM1_BIT    (1 << 9)
  32#define RTC_SAM2_BIT    (1 << 10)
  33#define RTC_SAM3_BIT    (1 << 11)
  34#define RTC_SAM4_BIT    (1 << 12)
  35#define RTC_SAM5_BIT    (1 << 13)
  36#define RTC_SAM6_BIT    (1 << 14)
  37#define RTC_SAM7_BIT    (1 << 15)
  38#define PIT_ALL_ON      (RTC_2HZ_BIT | RTC_SAM0_BIT | RTC_SAM1_BIT | \
  39                         RTC_SAM2_BIT | RTC_SAM3_BIT | RTC_SAM4_BIT | \
  40                         RTC_SAM5_BIT | RTC_SAM6_BIT | RTC_SAM7_BIT)
  41
  42#define RTC_ENABLE_BIT  (1 << 7)
  43
  44#define MAX_PIE_NUM     9
  45#define MAX_PIE_FREQ    512
  46static const u32 PIE_BIT_DEF[MAX_PIE_NUM][2] = {
  47        { 2,            RTC_2HZ_BIT },
  48        { 4,            RTC_SAM0_BIT },
  49        { 8,            RTC_SAM1_BIT },
  50        { 16,           RTC_SAM2_BIT },
  51        { 32,           RTC_SAM3_BIT },
  52        { 64,           RTC_SAM4_BIT },
  53        { 128,          RTC_SAM5_BIT },
  54        { 256,          RTC_SAM6_BIT },
  55        { MAX_PIE_FREQ, RTC_SAM7_BIT },
  56};
  57
  58#define MXC_RTC_TIME    0
  59#define MXC_RTC_ALARM   1
  60
  61#define RTC_HOURMIN     0x00    /*  32bit rtc hour/min counter reg */
  62#define RTC_SECOND      0x04    /*  32bit rtc seconds counter reg */
  63#define RTC_ALRM_HM     0x08    /*  32bit rtc alarm hour/min reg */
  64#define RTC_ALRM_SEC    0x0C    /*  32bit rtc alarm seconds reg */
  65#define RTC_RTCCTL      0x10    /*  32bit rtc control reg */
  66#define RTC_RTCISR      0x14    /*  32bit rtc interrupt status reg */
  67#define RTC_RTCIENR     0x18    /*  32bit rtc interrupt enable reg */
  68#define RTC_STPWCH      0x1C    /*  32bit rtc stopwatch min reg */
  69#define RTC_DAYR        0x20    /*  32bit rtc days counter reg */
  70#define RTC_DAYALARM    0x24    /*  32bit rtc day alarm reg */
  71#define RTC_TEST1       0x28    /*  32bit rtc test reg 1 */
  72#define RTC_TEST2       0x2C    /*  32bit rtc test reg 2 */
  73#define RTC_TEST3       0x30    /*  32bit rtc test reg 3 */
  74
  75enum imx_rtc_type {
  76        IMX1_RTC,
  77        IMX21_RTC,
  78};
  79
  80struct rtc_plat_data {
  81        struct rtc_device *rtc;
  82        void __iomem *ioaddr;
  83        int irq;
  84        struct clk *clk_ref;
  85        struct clk *clk_ipg;
  86        struct rtc_time g_rtc_alarm;
  87        enum imx_rtc_type devtype;
  88};
  89
  90static const struct platform_device_id imx_rtc_devtype[] = {
  91        {
  92                .name = "imx1-rtc",
  93                .driver_data = IMX1_RTC,
  94        }, {
  95                .name = "imx21-rtc",
  96                .driver_data = IMX21_RTC,
  97        }, {
  98                /* sentinel */
  99        }
 100};
 101MODULE_DEVICE_TABLE(platform, imx_rtc_devtype);
 102
 103#ifdef CONFIG_OF
 104static const struct of_device_id imx_rtc_dt_ids[] = {
 105        { .compatible = "fsl,imx1-rtc", .data = (const void *)IMX1_RTC },
 106        { .compatible = "fsl,imx21-rtc", .data = (const void *)IMX21_RTC },
 107        {}
 108};
 109MODULE_DEVICE_TABLE(of, imx_rtc_dt_ids);
 110#endif
 111
 112static inline int is_imx1_rtc(struct rtc_plat_data *data)
 113{
 114        return data->devtype == IMX1_RTC;
 115}
 116
 117/*
 118 * This function is used to obtain the RTC time or the alarm value in
 119 * second.
 120 */
 121static time64_t get_alarm_or_time(struct device *dev, int time_alarm)
 122{
 123        struct platform_device *pdev = to_platform_device(dev);
 124        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 125        void __iomem *ioaddr = pdata->ioaddr;
 126        u32 day = 0, hr = 0, min = 0, sec = 0, hr_min = 0;
 127
 128        switch (time_alarm) {
 129        case MXC_RTC_TIME:
 130                day = readw(ioaddr + RTC_DAYR);
 131                hr_min = readw(ioaddr + RTC_HOURMIN);
 132                sec = readw(ioaddr + RTC_SECOND);
 133                break;
 134        case MXC_RTC_ALARM:
 135                day = readw(ioaddr + RTC_DAYALARM);
 136                hr_min = readw(ioaddr + RTC_ALRM_HM) & 0xffff;
 137                sec = readw(ioaddr + RTC_ALRM_SEC);
 138                break;
 139        }
 140
 141        hr = hr_min >> 8;
 142        min = hr_min & 0xff;
 143
 144        return ((((time64_t)day * 24 + hr) * 60) + min) * 60 + sec;
 145}
 146
 147/*
 148 * This function sets the RTC alarm value or the time value.
 149 */
 150static void set_alarm_or_time(struct device *dev, int time_alarm, time64_t time)
 151{
 152        u32 tod, day, hr, min, sec, temp;
 153        struct platform_device *pdev = to_platform_device(dev);
 154        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 155        void __iomem *ioaddr = pdata->ioaddr;
 156
 157        day = div_s64_rem(time, 86400, &tod);
 158
 159        /* time is within a day now */
 160        hr = tod / 3600;
 161        tod -= hr * 3600;
 162
 163        /* time is within an hour now */
 164        min = tod / 60;
 165        sec = tod - min * 60;
 166
 167        temp = (hr << 8) + min;
 168
 169        switch (time_alarm) {
 170        case MXC_RTC_TIME:
 171                writew(day, ioaddr + RTC_DAYR);
 172                writew(sec, ioaddr + RTC_SECOND);
 173                writew(temp, ioaddr + RTC_HOURMIN);
 174                break;
 175        case MXC_RTC_ALARM:
 176                writew(day, ioaddr + RTC_DAYALARM);
 177                writew(sec, ioaddr + RTC_ALRM_SEC);
 178                writew(temp, ioaddr + RTC_ALRM_HM);
 179                break;
 180        }
 181}
 182
 183/*
 184 * This function updates the RTC alarm registers and then clears all the
 185 * interrupt status bits.
 186 */
 187static void rtc_update_alarm(struct device *dev, struct rtc_time *alrm)
 188{
 189        time64_t time;
 190        struct platform_device *pdev = to_platform_device(dev);
 191        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 192        void __iomem *ioaddr = pdata->ioaddr;
 193
 194        time = rtc_tm_to_time64(alrm);
 195
 196        /* clear all the interrupt status bits */
 197        writew(readw(ioaddr + RTC_RTCISR), ioaddr + RTC_RTCISR);
 198        set_alarm_or_time(dev, MXC_RTC_ALARM, time);
 199}
 200
 201static void mxc_rtc_irq_enable(struct device *dev, unsigned int bit,
 202                                unsigned int enabled)
 203{
 204        struct platform_device *pdev = to_platform_device(dev);
 205        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 206        void __iomem *ioaddr = pdata->ioaddr;
 207        u32 reg;
 208
 209        spin_lock_irq(&pdata->rtc->irq_lock);
 210        reg = readw(ioaddr + RTC_RTCIENR);
 211
 212        if (enabled)
 213                reg |= bit;
 214        else
 215                reg &= ~bit;
 216
 217        writew(reg, ioaddr + RTC_RTCIENR);
 218        spin_unlock_irq(&pdata->rtc->irq_lock);
 219}
 220
 221/* This function is the RTC interrupt service routine. */
 222static irqreturn_t mxc_rtc_interrupt(int irq, void *dev_id)
 223{
 224        struct platform_device *pdev = dev_id;
 225        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 226        void __iomem *ioaddr = pdata->ioaddr;
 227        unsigned long flags;
 228        u32 status;
 229        u32 events = 0;
 230
 231        spin_lock_irqsave(&pdata->rtc->irq_lock, flags);
 232        status = readw(ioaddr + RTC_RTCISR) & readw(ioaddr + RTC_RTCIENR);
 233        /* clear interrupt sources */
 234        writew(status, ioaddr + RTC_RTCISR);
 235
 236        /* update irq data & counter */
 237        if (status & RTC_ALM_BIT) {
 238                events |= (RTC_AF | RTC_IRQF);
 239                /* RTC alarm should be one-shot */
 240                mxc_rtc_irq_enable(&pdev->dev, RTC_ALM_BIT, 0);
 241        }
 242
 243        if (status & PIT_ALL_ON)
 244                events |= (RTC_PF | RTC_IRQF);
 245
 246        rtc_update_irq(pdata->rtc, 1, events);
 247        spin_unlock_irqrestore(&pdata->rtc->irq_lock, flags);
 248
 249        return IRQ_HANDLED;
 250}
 251
 252/*
 253 * Clear all interrupts and release the IRQ
 254 */
 255static void mxc_rtc_release(struct device *dev)
 256{
 257        struct platform_device *pdev = to_platform_device(dev);
 258        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 259        void __iomem *ioaddr = pdata->ioaddr;
 260
 261        spin_lock_irq(&pdata->rtc->irq_lock);
 262
 263        /* Disable all rtc interrupts */
 264        writew(0, ioaddr + RTC_RTCIENR);
 265
 266        /* Clear all interrupt status */
 267        writew(0xffffffff, ioaddr + RTC_RTCISR);
 268
 269        spin_unlock_irq(&pdata->rtc->irq_lock);
 270}
 271
 272static int mxc_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
 273{
 274        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, enabled);
 275        return 0;
 276}
 277
 278/*
 279 * This function reads the current RTC time into tm in Gregorian date.
 280 */
 281static int mxc_rtc_read_time(struct device *dev, struct rtc_time *tm)
 282{
 283        time64_t val;
 284
 285        /* Avoid roll-over from reading the different registers */
 286        do {
 287                val = get_alarm_or_time(dev, MXC_RTC_TIME);
 288        } while (val != get_alarm_or_time(dev, MXC_RTC_TIME));
 289
 290        rtc_time64_to_tm(val, tm);
 291
 292        return 0;
 293}
 294
 295/*
 296 * This function sets the internal RTC time based on tm in Gregorian date.
 297 */
 298static int mxc_rtc_set_mmss(struct device *dev, time64_t time)
 299{
 300        struct platform_device *pdev = to_platform_device(dev);
 301        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 302
 303        /*
 304         * TTC_DAYR register is 9-bit in MX1 SoC, save time and day of year only
 305         */
 306        if (is_imx1_rtc(pdata)) {
 307                struct rtc_time tm;
 308
 309                rtc_time64_to_tm(time, &tm);
 310                tm.tm_year = 70;
 311                time = rtc_tm_to_time64(&tm);
 312        }
 313
 314        /* Avoid roll-over from reading the different registers */
 315        do {
 316                set_alarm_or_time(dev, MXC_RTC_TIME, time);
 317        } while (time != get_alarm_or_time(dev, MXC_RTC_TIME));
 318
 319        return 0;
 320}
 321
 322/*
 323 * This function reads the current alarm value into the passed in 'alrm'
 324 * argument. It updates the alrm's pending field value based on the whether
 325 * an alarm interrupt occurs or not.
 326 */
 327static int mxc_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 328{
 329        struct platform_device *pdev = to_platform_device(dev);
 330        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 331        void __iomem *ioaddr = pdata->ioaddr;
 332
 333        rtc_time64_to_tm(get_alarm_or_time(dev, MXC_RTC_ALARM), &alrm->time);
 334        alrm->pending = ((readw(ioaddr + RTC_RTCISR) & RTC_ALM_BIT)) ? 1 : 0;
 335
 336        return 0;
 337}
 338
 339/*
 340 * This function sets the RTC alarm based on passed in alrm.
 341 */
 342static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
 343{
 344        struct platform_device *pdev = to_platform_device(dev);
 345        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 346
 347        rtc_update_alarm(dev, &alrm->time);
 348
 349        memcpy(&pdata->g_rtc_alarm, &alrm->time, sizeof(struct rtc_time));
 350        mxc_rtc_irq_enable(dev, RTC_ALM_BIT, alrm->enabled);
 351
 352        return 0;
 353}
 354
 355/* RTC layer */
 356static struct rtc_class_ops mxc_rtc_ops = {
 357        .release                = mxc_rtc_release,
 358        .read_time              = mxc_rtc_read_time,
 359        .set_mmss64             = mxc_rtc_set_mmss,
 360        .read_alarm             = mxc_rtc_read_alarm,
 361        .set_alarm              = mxc_rtc_set_alarm,
 362        .alarm_irq_enable       = mxc_rtc_alarm_irq_enable,
 363};
 364
 365static int mxc_rtc_probe(struct platform_device *pdev)
 366{
 367        struct resource *res;
 368        struct rtc_device *rtc;
 369        struct rtc_plat_data *pdata = NULL;
 370        u32 reg;
 371        unsigned long rate;
 372        int ret;
 373        const struct of_device_id *of_id;
 374
 375        pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
 376        if (!pdata)
 377                return -ENOMEM;
 378
 379        of_id = of_match_device(imx_rtc_dt_ids, &pdev->dev);
 380        if (of_id)
 381                pdata->devtype = (enum imx_rtc_type)of_id->data;
 382        else
 383                pdata->devtype = pdev->id_entry->driver_data;
 384
 385        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 386        pdata->ioaddr = devm_ioremap_resource(&pdev->dev, res);
 387        if (IS_ERR(pdata->ioaddr))
 388                return PTR_ERR(pdata->ioaddr);
 389
 390        pdata->clk_ipg = devm_clk_get(&pdev->dev, "ipg");
 391        if (IS_ERR(pdata->clk_ipg)) {
 392                dev_err(&pdev->dev, "unable to get ipg clock!\n");
 393                return PTR_ERR(pdata->clk_ipg);
 394        }
 395
 396        ret = clk_prepare_enable(pdata->clk_ipg);
 397        if (ret)
 398                return ret;
 399
 400        pdata->clk_ref = devm_clk_get(&pdev->dev, "ref");
 401        if (IS_ERR(pdata->clk_ref)) {
 402                dev_err(&pdev->dev, "unable to get ref clock!\n");
 403                ret = PTR_ERR(pdata->clk_ref);
 404                goto exit_put_clk_ipg;
 405        }
 406
 407        ret = clk_prepare_enable(pdata->clk_ref);
 408        if (ret)
 409                goto exit_put_clk_ipg;
 410
 411        rate = clk_get_rate(pdata->clk_ref);
 412
 413        if (rate == 32768)
 414                reg = RTC_INPUT_CLK_32768HZ;
 415        else if (rate == 32000)
 416                reg = RTC_INPUT_CLK_32000HZ;
 417        else if (rate == 38400)
 418                reg = RTC_INPUT_CLK_38400HZ;
 419        else {
 420                dev_err(&pdev->dev, "rtc clock is not valid (%lu)\n", rate);
 421                ret = -EINVAL;
 422                goto exit_put_clk_ref;
 423        }
 424
 425        reg |= RTC_ENABLE_BIT;
 426        writew(reg, (pdata->ioaddr + RTC_RTCCTL));
 427        if (((readw(pdata->ioaddr + RTC_RTCCTL)) & RTC_ENABLE_BIT) == 0) {
 428                dev_err(&pdev->dev, "hardware module can't be enabled!\n");
 429                ret = -EIO;
 430                goto exit_put_clk_ref;
 431        }
 432
 433        platform_set_drvdata(pdev, pdata);
 434
 435        /* Configure and enable the RTC */
 436        pdata->irq = platform_get_irq(pdev, 0);
 437
 438        if (pdata->irq >= 0 &&
 439            devm_request_irq(&pdev->dev, pdata->irq, mxc_rtc_interrupt,
 440                             IRQF_SHARED, pdev->name, pdev) < 0) {
 441                dev_warn(&pdev->dev, "interrupt not available.\n");
 442                pdata->irq = -1;
 443        }
 444
 445        if (pdata->irq >= 0)
 446                device_init_wakeup(&pdev->dev, 1);
 447
 448        rtc = devm_rtc_device_register(&pdev->dev, pdev->name, &mxc_rtc_ops,
 449                                  THIS_MODULE);
 450        if (IS_ERR(rtc)) {
 451                ret = PTR_ERR(rtc);
 452                goto exit_put_clk_ref;
 453        }
 454
 455        pdata->rtc = rtc;
 456
 457        return 0;
 458
 459exit_put_clk_ref:
 460        clk_disable_unprepare(pdata->clk_ref);
 461exit_put_clk_ipg:
 462        clk_disable_unprepare(pdata->clk_ipg);
 463
 464        return ret;
 465}
 466
 467static int mxc_rtc_remove(struct platform_device *pdev)
 468{
 469        struct rtc_plat_data *pdata = platform_get_drvdata(pdev);
 470
 471        clk_disable_unprepare(pdata->clk_ref);
 472        clk_disable_unprepare(pdata->clk_ipg);
 473
 474        return 0;
 475}
 476
 477#ifdef CONFIG_PM_SLEEP
 478static int mxc_rtc_suspend(struct device *dev)
 479{
 480        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 481
 482        if (device_may_wakeup(dev))
 483                enable_irq_wake(pdata->irq);
 484
 485        return 0;
 486}
 487
 488static int mxc_rtc_resume(struct device *dev)
 489{
 490        struct rtc_plat_data *pdata = dev_get_drvdata(dev);
 491
 492        if (device_may_wakeup(dev))
 493                disable_irq_wake(pdata->irq);
 494
 495        return 0;
 496}
 497#endif
 498
 499static SIMPLE_DEV_PM_OPS(mxc_rtc_pm_ops, mxc_rtc_suspend, mxc_rtc_resume);
 500
 501static struct platform_driver mxc_rtc_driver = {
 502        .driver = {
 503                   .name        = "mxc_rtc",
 504                   .of_match_table = of_match_ptr(imx_rtc_dt_ids),
 505                   .pm          = &mxc_rtc_pm_ops,
 506        },
 507        .id_table = imx_rtc_devtype,
 508        .probe = mxc_rtc_probe,
 509        .remove = mxc_rtc_remove,
 510};
 511
 512module_platform_driver(mxc_rtc_driver)
 513
 514MODULE_AUTHOR("Daniel Mack <daniel@caiaq.de>");
 515MODULE_DESCRIPTION("RTC driver for Freescale MXC");
 516MODULE_LICENSE("GPL");
 517
 518