linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1/*
   2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   3 *
   4 * Copyright (C) 2008-2012 ST-Ericsson AB
   5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   6 *
   7 * Author: Linus Walleij <linus.walleij@stericsson.com>
   8 *
   9 * Initial version inspired by:
  10 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11 * Initial adoption to PL022 by:
  12 *      Sachin Verma <sachin.verma@st.com>
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/device.h>
  28#include <linux/ioport.h>
  29#include <linux/errno.h>
  30#include <linux/interrupt.h>
  31#include <linux/spi/spi.h>
  32#include <linux/delay.h>
  33#include <linux/clk.h>
  34#include <linux/err.h>
  35#include <linux/amba/bus.h>
  36#include <linux/amba/pl022.h>
  37#include <linux/io.h>
  38#include <linux/slab.h>
  39#include <linux/dmaengine.h>
  40#include <linux/dma-mapping.h>
  41#include <linux/scatterlist.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/gpio.h>
  44#include <linux/of_gpio.h>
  45#include <linux/pinctrl/consumer.h>
  46
  47/*
  48 * This macro is used to define some register default values.
  49 * reg is masked with mask, the OR:ed with an (again masked)
  50 * val shifted sb steps to the left.
  51 */
  52#define SSP_WRITE_BITS(reg, val, mask, sb) \
  53 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  54
  55/*
  56 * This macro is also used to define some default values.
  57 * It will just shift val by sb steps to the left and mask
  58 * the result with mask.
  59 */
  60#define GEN_MASK_BITS(val, mask, sb) \
  61 (((val)<<(sb)) & (mask))
  62
  63#define DRIVE_TX                0
  64#define DO_NOT_DRIVE_TX         1
  65
  66#define DO_NOT_QUEUE_DMA        0
  67#define QUEUE_DMA               1
  68
  69#define RX_TRANSFER             1
  70#define TX_TRANSFER             2
  71
  72/*
  73 * Macros to access SSP Registers with their offsets
  74 */
  75#define SSP_CR0(r)      (r + 0x000)
  76#define SSP_CR1(r)      (r + 0x004)
  77#define SSP_DR(r)       (r + 0x008)
  78#define SSP_SR(r)       (r + 0x00C)
  79#define SSP_CPSR(r)     (r + 0x010)
  80#define SSP_IMSC(r)     (r + 0x014)
  81#define SSP_RIS(r)      (r + 0x018)
  82#define SSP_MIS(r)      (r + 0x01C)
  83#define SSP_ICR(r)      (r + 0x020)
  84#define SSP_DMACR(r)    (r + 0x024)
  85#define SSP_CSR(r)      (r + 0x030) /* vendor extension */
  86#define SSP_ITCR(r)     (r + 0x080)
  87#define SSP_ITIP(r)     (r + 0x084)
  88#define SSP_ITOP(r)     (r + 0x088)
  89#define SSP_TDR(r)      (r + 0x08C)
  90
  91#define SSP_PID0(r)     (r + 0xFE0)
  92#define SSP_PID1(r)     (r + 0xFE4)
  93#define SSP_PID2(r)     (r + 0xFE8)
  94#define SSP_PID3(r)     (r + 0xFEC)
  95
  96#define SSP_CID0(r)     (r + 0xFF0)
  97#define SSP_CID1(r)     (r + 0xFF4)
  98#define SSP_CID2(r)     (r + 0xFF8)
  99#define SSP_CID3(r)     (r + 0xFFC)
 100
 101/*
 102 * SSP Control Register 0  - SSP_CR0
 103 */
 104#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
 105#define SSP_CR0_MASK_FRF        (0x3UL << 4)
 106#define SSP_CR0_MASK_SPO        (0x1UL << 6)
 107#define SSP_CR0_MASK_SPH        (0x1UL << 7)
 108#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 109
 110/*
 111 * The ST version of this block moves som bits
 112 * in SSP_CR0 and extends it to 32 bits
 113 */
 114#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 115#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 116#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 117#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 118
 119/*
 120 * SSP Control Register 0  - SSP_CR1
 121 */
 122#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 123#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 124#define SSP_CR1_MASK_MS         (0x1UL << 2)
 125#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 126
 127/*
 128 * The ST version of this block adds some bits
 129 * in SSP_CR1
 130 */
 131#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 132#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 133#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 134#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 135#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 136/* This one is only in the PL023 variant */
 137#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 138
 139/*
 140 * SSP Status Register - SSP_SR
 141 */
 142#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 143#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 144#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 145#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 146#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 147
 148/*
 149 * SSP Clock Prescale Register  - SSP_CPSR
 150 */
 151#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 152
 153/*
 154 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 155 */
 156#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 157#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 158#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 159#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 160
 161/*
 162 * SSP Raw Interrupt Status Register - SSP_RIS
 163 */
 164/* Receive Overrun Raw Interrupt status */
 165#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 166/* Receive Timeout Raw Interrupt status */
 167#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 168/* Receive FIFO Raw Interrupt status */
 169#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 170/* Transmit FIFO Raw Interrupt status */
 171#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 172
 173/*
 174 * SSP Masked Interrupt Status Register - SSP_MIS
 175 */
 176/* Receive Overrun Masked Interrupt status */
 177#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 178/* Receive Timeout Masked Interrupt status */
 179#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 180/* Receive FIFO Masked Interrupt status */
 181#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 182/* Transmit FIFO Masked Interrupt status */
 183#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 184
 185/*
 186 * SSP Interrupt Clear Register - SSP_ICR
 187 */
 188/* Receive Overrun Raw Clear Interrupt bit */
 189#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 190/* Receive Timeout Clear Interrupt bit */
 191#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 192
 193/*
 194 * SSP DMA Control Register - SSP_DMACR
 195 */
 196/* Receive DMA Enable bit */
 197#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 198/* Transmit DMA Enable bit */
 199#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 200
 201/*
 202 * SSP Chip Select Control Register - SSP_CSR
 203 * (vendor extension)
 204 */
 205#define SSP_CSR_CSVALUE_MASK            (0x1FUL << 0)
 206
 207/*
 208 * SSP Integration Test control Register - SSP_ITCR
 209 */
 210#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 211#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 212
 213/*
 214 * SSP Integration Test Input Register - SSP_ITIP
 215 */
 216#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 217#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 218#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 219#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 220#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 221#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 222
 223/*
 224 * SSP Integration Test output Register - SSP_ITOP
 225 */
 226#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 227#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 228#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 229#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 230#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 231#define ITOP_MASK_RORINTR                (0x1UL << 5)
 232#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 233#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 234#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 235#define ITOP_MASK_INTR                   (0x1UL << 9)
 236#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 237#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 238#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 239#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 240
 241/*
 242 * SSP Test Data Register - SSP_TDR
 243 */
 244#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 245
 246/*
 247 * Message State
 248 * we use the spi_message.state (void *) pointer to
 249 * hold a single state value, that's why all this
 250 * (void *) casting is done here.
 251 */
 252#define STATE_START                     ((void *) 0)
 253#define STATE_RUNNING                   ((void *) 1)
 254#define STATE_DONE                      ((void *) 2)
 255#define STATE_ERROR                     ((void *) -1)
 256
 257/*
 258 * SSP State - Whether Enabled or Disabled
 259 */
 260#define SSP_DISABLED                    (0)
 261#define SSP_ENABLED                     (1)
 262
 263/*
 264 * SSP DMA State - Whether DMA Enabled or Disabled
 265 */
 266#define SSP_DMA_DISABLED                (0)
 267#define SSP_DMA_ENABLED                 (1)
 268
 269/*
 270 * SSP Clock Defaults
 271 */
 272#define SSP_DEFAULT_CLKRATE 0x2
 273#define SSP_DEFAULT_PRESCALE 0x40
 274
 275/*
 276 * SSP Clock Parameter ranges
 277 */
 278#define CPSDVR_MIN 0x02
 279#define CPSDVR_MAX 0xFE
 280#define SCR_MIN 0x00
 281#define SCR_MAX 0xFF
 282
 283/*
 284 * SSP Interrupt related Macros
 285 */
 286#define DEFAULT_SSP_REG_IMSC  0x0UL
 287#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 288#define ENABLE_ALL_INTERRUPTS ( \
 289        SSP_IMSC_MASK_RORIM | \
 290        SSP_IMSC_MASK_RTIM | \
 291        SSP_IMSC_MASK_RXIM | \
 292        SSP_IMSC_MASK_TXIM \
 293)
 294
 295#define CLEAR_ALL_INTERRUPTS  0x3
 296
 297#define SPI_POLLING_TIMEOUT 1000
 298
 299/*
 300 * The type of reading going on on this chip
 301 */
 302enum ssp_reading {
 303        READING_NULL,
 304        READING_U8,
 305        READING_U16,
 306        READING_U32
 307};
 308
 309/**
 310 * The type of writing going on on this chip
 311 */
 312enum ssp_writing {
 313        WRITING_NULL,
 314        WRITING_U8,
 315        WRITING_U16,
 316        WRITING_U32
 317};
 318
 319/**
 320 * struct vendor_data - vendor-specific config parameters
 321 * for PL022 derivates
 322 * @fifodepth: depth of FIFOs (both)
 323 * @max_bpw: maximum number of bits per word
 324 * @unidir: supports unidirection transfers
 325 * @extended_cr: 32 bit wide control register 0 with extra
 326 * features and extra features in CR1 as found in the ST variants
 327 * @pl023: supports a subset of the ST extensions called "PL023"
 328 * @internal_cs_ctrl: supports chip select control register
 329 */
 330struct vendor_data {
 331        int fifodepth;
 332        int max_bpw;
 333        bool unidir;
 334        bool extended_cr;
 335        bool pl023;
 336        bool loopback;
 337        bool internal_cs_ctrl;
 338};
 339
 340/**
 341 * struct pl022 - This is the private SSP driver data structure
 342 * @adev: AMBA device model hookup
 343 * @vendor: vendor data for the IP block
 344 * @phybase: the physical memory where the SSP device resides
 345 * @virtbase: the virtual memory where the SSP is mapped
 346 * @clk: outgoing clock "SPICLK" for the SPI bus
 347 * @master: SPI framework hookup
 348 * @master_info: controller-specific data from machine setup
 349 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 350 * @cur_msg: Pointer to current spi_message being processed
 351 * @cur_transfer: Pointer to current spi_transfer
 352 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 353 * @next_msg_cs_active: the next message in the queue has been examined
 354 *  and it was found that it uses the same chip select as the previous
 355 *  message, so we left it active after the previous transfer, and it's
 356 *  active already.
 357 * @tx: current position in TX buffer to be read
 358 * @tx_end: end position in TX buffer to be read
 359 * @rx: current position in RX buffer to be written
 360 * @rx_end: end position in RX buffer to be written
 361 * @read: the type of read currently going on
 362 * @write: the type of write currently going on
 363 * @exp_fifo_level: expected FIFO level
 364 * @dma_rx_channel: optional channel for RX DMA
 365 * @dma_tx_channel: optional channel for TX DMA
 366 * @sgt_rx: scattertable for the RX transfer
 367 * @sgt_tx: scattertable for the TX transfer
 368 * @dummypage: a dummy page used for driving data on the bus with DMA
 369 * @cur_cs: current chip select (gpio)
 370 * @chipselects: list of chipselects (gpios)
 371 */
 372struct pl022 {
 373        struct amba_device              *adev;
 374        struct vendor_data              *vendor;
 375        resource_size_t                 phybase;
 376        void __iomem                    *virtbase;
 377        struct clk                      *clk;
 378        struct spi_master               *master;
 379        struct pl022_ssp_controller     *master_info;
 380        /* Message per-transfer pump */
 381        struct tasklet_struct           pump_transfers;
 382        struct spi_message              *cur_msg;
 383        struct spi_transfer             *cur_transfer;
 384        struct chip_data                *cur_chip;
 385        bool                            next_msg_cs_active;
 386        void                            *tx;
 387        void                            *tx_end;
 388        void                            *rx;
 389        void                            *rx_end;
 390        enum ssp_reading                read;
 391        enum ssp_writing                write;
 392        u32                             exp_fifo_level;
 393        enum ssp_rx_level_trig          rx_lev_trig;
 394        enum ssp_tx_level_trig          tx_lev_trig;
 395        /* DMA settings */
 396#ifdef CONFIG_DMA_ENGINE
 397        struct dma_chan                 *dma_rx_channel;
 398        struct dma_chan                 *dma_tx_channel;
 399        struct sg_table                 sgt_rx;
 400        struct sg_table                 sgt_tx;
 401        char                            *dummypage;
 402        bool                            dma_running;
 403#endif
 404        int cur_cs;
 405        int *chipselects;
 406};
 407
 408/**
 409 * struct chip_data - To maintain runtime state of SSP for each client chip
 410 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 411 *       register is 32 bits wide rather than just 16
 412 * @cr1: Value of control register CR1 of SSP
 413 * @dmacr: Value of DMA control Register of SSP
 414 * @cpsr: Value of Clock prescale register
 415 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 416 * @enable_dma: Whether to enable DMA or not
 417 * @read: function ptr to be used to read when doing xfer for this chip
 418 * @write: function ptr to be used to write when doing xfer for this chip
 419 * @cs_control: chip select callback provided by chip
 420 * @xfer_type: polling/interrupt/DMA
 421 *
 422 * Runtime state of the SSP controller, maintained per chip,
 423 * This would be set according to the current message that would be served
 424 */
 425struct chip_data {
 426        u32 cr0;
 427        u16 cr1;
 428        u16 dmacr;
 429        u16 cpsr;
 430        u8 n_bytes;
 431        bool enable_dma;
 432        enum ssp_reading read;
 433        enum ssp_writing write;
 434        void (*cs_control) (u32 command);
 435        int xfer_type;
 436};
 437
 438/**
 439 * null_cs_control - Dummy chip select function
 440 * @command: select/delect the chip
 441 *
 442 * If no chip select function is provided by client this is used as dummy
 443 * chip select
 444 */
 445static void null_cs_control(u32 command)
 446{
 447        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 448}
 449
 450/**
 451 * internal_cs_control - Control chip select signals via SSP_CSR.
 452 * @pl022: SSP driver private data structure
 453 * @command: select/delect the chip
 454 *
 455 * Used on controller with internal chip select control via SSP_CSR register
 456 * (vendor extension). Each of the 5 LSB in the register controls one chip
 457 * select signal.
 458 */
 459static void internal_cs_control(struct pl022 *pl022, u32 command)
 460{
 461        u32 tmp;
 462
 463        tmp = readw(SSP_CSR(pl022->virtbase));
 464        if (command == SSP_CHIP_SELECT)
 465                tmp &= ~BIT(pl022->cur_cs);
 466        else
 467                tmp |= BIT(pl022->cur_cs);
 468        writew(tmp, SSP_CSR(pl022->virtbase));
 469}
 470
 471static void pl022_cs_control(struct pl022 *pl022, u32 command)
 472{
 473        if (pl022->vendor->internal_cs_ctrl)
 474                internal_cs_control(pl022, command);
 475        else if (gpio_is_valid(pl022->cur_cs))
 476                gpio_set_value(pl022->cur_cs, command);
 477        else
 478                pl022->cur_chip->cs_control(command);
 479}
 480
 481/**
 482 * giveback - current spi_message is over, schedule next message and call
 483 * callback of this message. Assumes that caller already
 484 * set message->status; dma and pio irqs are blocked
 485 * @pl022: SSP driver private data structure
 486 */
 487static void giveback(struct pl022 *pl022)
 488{
 489        struct spi_transfer *last_transfer;
 490        pl022->next_msg_cs_active = false;
 491
 492        last_transfer = list_last_entry(&pl022->cur_msg->transfers,
 493                                        struct spi_transfer, transfer_list);
 494
 495        /* Delay if requested before any change in chip select */
 496        if (last_transfer->delay_usecs)
 497                /*
 498                 * FIXME: This runs in interrupt context.
 499                 * Is this really smart?
 500                 */
 501                udelay(last_transfer->delay_usecs);
 502
 503        if (!last_transfer->cs_change) {
 504                struct spi_message *next_msg;
 505
 506                /*
 507                 * cs_change was not set. We can keep the chip select
 508                 * enabled if there is message in the queue and it is
 509                 * for the same spi device.
 510                 *
 511                 * We cannot postpone this until pump_messages, because
 512                 * after calling msg->complete (below) the driver that
 513                 * sent the current message could be unloaded, which
 514                 * could invalidate the cs_control() callback...
 515                 */
 516                /* get a pointer to the next message, if any */
 517                next_msg = spi_get_next_queued_message(pl022->master);
 518
 519                /*
 520                 * see if the next and current messages point
 521                 * to the same spi device.
 522                 */
 523                if (next_msg && next_msg->spi != pl022->cur_msg->spi)
 524                        next_msg = NULL;
 525                if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
 526                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 527                else
 528                        pl022->next_msg_cs_active = true;
 529
 530        }
 531
 532        pl022->cur_msg = NULL;
 533        pl022->cur_transfer = NULL;
 534        pl022->cur_chip = NULL;
 535
 536        /* disable the SPI/SSP operation */
 537        writew((readw(SSP_CR1(pl022->virtbase)) &
 538                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
 539
 540        spi_finalize_current_message(pl022->master);
 541}
 542
 543/**
 544 * flush - flush the FIFO to reach a clean state
 545 * @pl022: SSP driver private data structure
 546 */
 547static int flush(struct pl022 *pl022)
 548{
 549        unsigned long limit = loops_per_jiffy << 1;
 550
 551        dev_dbg(&pl022->adev->dev, "flush\n");
 552        do {
 553                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 554                        readw(SSP_DR(pl022->virtbase));
 555        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 556
 557        pl022->exp_fifo_level = 0;
 558
 559        return limit;
 560}
 561
 562/**
 563 * restore_state - Load configuration of current chip
 564 * @pl022: SSP driver private data structure
 565 */
 566static void restore_state(struct pl022 *pl022)
 567{
 568        struct chip_data *chip = pl022->cur_chip;
 569
 570        if (pl022->vendor->extended_cr)
 571                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 572        else
 573                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 574        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 575        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 576        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 577        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 578        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 579}
 580
 581/*
 582 * Default SSP Register Values
 583 */
 584#define DEFAULT_SSP_REG_CR0 ( \
 585        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 586        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 587        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 588        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 589        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 590)
 591
 592/* ST versions have slightly different bit layout */
 593#define DEFAULT_SSP_REG_CR0_ST ( \
 594        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 595        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 596        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 597        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 598        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 599        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 600        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 601)
 602
 603/* The PL023 version is slightly different again */
 604#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 605        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 606        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 607        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 608        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 609)
 610
 611#define DEFAULT_SSP_REG_CR1 ( \
 612        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 613        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 614        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 615        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 616)
 617
 618/* ST versions extend this register to use all 16 bits */
 619#define DEFAULT_SSP_REG_CR1_ST ( \
 620        DEFAULT_SSP_REG_CR1 | \
 621        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 622        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 623        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 624        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 625        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 626)
 627
 628/*
 629 * The PL023 variant has further differences: no loopback mode, no microwire
 630 * support, and a new clock feedback delay setting.
 631 */
 632#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 633        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 634        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 635        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 636        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 637        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 638        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 639        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 640        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 641)
 642
 643#define DEFAULT_SSP_REG_CPSR ( \
 644        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 645)
 646
 647#define DEFAULT_SSP_REG_DMACR (\
 648        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 649        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 650)
 651
 652/**
 653 * load_ssp_default_config - Load default configuration for SSP
 654 * @pl022: SSP driver private data structure
 655 */
 656static void load_ssp_default_config(struct pl022 *pl022)
 657{
 658        if (pl022->vendor->pl023) {
 659                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 660                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 661        } else if (pl022->vendor->extended_cr) {
 662                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 663                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 664        } else {
 665                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 666                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 667        }
 668        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 669        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 670        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 671        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 672}
 673
 674/**
 675 * This will write to TX and read from RX according to the parameters
 676 * set in pl022.
 677 */
 678static void readwriter(struct pl022 *pl022)
 679{
 680
 681        /*
 682         * The FIFO depth is different between primecell variants.
 683         * I believe filling in too much in the FIFO might cause
 684         * errons in 8bit wide transfers on ARM variants (just 8 words
 685         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 686         *
 687         * To prevent this issue, the TX FIFO is only filled to the
 688         * unused RX FIFO fill length, regardless of what the TX
 689         * FIFO status flag indicates.
 690         */
 691        dev_dbg(&pl022->adev->dev,
 692                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 693                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 694
 695        /* Read as much as you can */
 696        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 697               && (pl022->rx < pl022->rx_end)) {
 698                switch (pl022->read) {
 699                case READING_NULL:
 700                        readw(SSP_DR(pl022->virtbase));
 701                        break;
 702                case READING_U8:
 703                        *(u8 *) (pl022->rx) =
 704                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 705                        break;
 706                case READING_U16:
 707                        *(u16 *) (pl022->rx) =
 708                                (u16) readw(SSP_DR(pl022->virtbase));
 709                        break;
 710                case READING_U32:
 711                        *(u32 *) (pl022->rx) =
 712                                readl(SSP_DR(pl022->virtbase));
 713                        break;
 714                }
 715                pl022->rx += (pl022->cur_chip->n_bytes);
 716                pl022->exp_fifo_level--;
 717        }
 718        /*
 719         * Write as much as possible up to the RX FIFO size
 720         */
 721        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 722               && (pl022->tx < pl022->tx_end)) {
 723                switch (pl022->write) {
 724                case WRITING_NULL:
 725                        writew(0x0, SSP_DR(pl022->virtbase));
 726                        break;
 727                case WRITING_U8:
 728                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 729                        break;
 730                case WRITING_U16:
 731                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 732                        break;
 733                case WRITING_U32:
 734                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 735                        break;
 736                }
 737                pl022->tx += (pl022->cur_chip->n_bytes);
 738                pl022->exp_fifo_level++;
 739                /*
 740                 * This inner reader takes care of things appearing in the RX
 741                 * FIFO as we're transmitting. This will happen a lot since the
 742                 * clock starts running when you put things into the TX FIFO,
 743                 * and then things are continuously clocked into the RX FIFO.
 744                 */
 745                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 746                       && (pl022->rx < pl022->rx_end)) {
 747                        switch (pl022->read) {
 748                        case READING_NULL:
 749                                readw(SSP_DR(pl022->virtbase));
 750                                break;
 751                        case READING_U8:
 752                                *(u8 *) (pl022->rx) =
 753                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 754                                break;
 755                        case READING_U16:
 756                                *(u16 *) (pl022->rx) =
 757                                        (u16) readw(SSP_DR(pl022->virtbase));
 758                                break;
 759                        case READING_U32:
 760                                *(u32 *) (pl022->rx) =
 761                                        readl(SSP_DR(pl022->virtbase));
 762                                break;
 763                        }
 764                        pl022->rx += (pl022->cur_chip->n_bytes);
 765                        pl022->exp_fifo_level--;
 766                }
 767        }
 768        /*
 769         * When we exit here the TX FIFO should be full and the RX FIFO
 770         * should be empty
 771         */
 772}
 773
 774/**
 775 * next_transfer - Move to the Next transfer in the current spi message
 776 * @pl022: SSP driver private data structure
 777 *
 778 * This function moves though the linked list of spi transfers in the
 779 * current spi message and returns with the state of current spi
 780 * message i.e whether its last transfer is done(STATE_DONE) or
 781 * Next transfer is ready(STATE_RUNNING)
 782 */
 783static void *next_transfer(struct pl022 *pl022)
 784{
 785        struct spi_message *msg = pl022->cur_msg;
 786        struct spi_transfer *trans = pl022->cur_transfer;
 787
 788        /* Move to next transfer */
 789        if (trans->transfer_list.next != &msg->transfers) {
 790                pl022->cur_transfer =
 791                    list_entry(trans->transfer_list.next,
 792                               struct spi_transfer, transfer_list);
 793                return STATE_RUNNING;
 794        }
 795        return STATE_DONE;
 796}
 797
 798/*
 799 * This DMA functionality is only compiled in if we have
 800 * access to the generic DMA devices/DMA engine.
 801 */
 802#ifdef CONFIG_DMA_ENGINE
 803static void unmap_free_dma_scatter(struct pl022 *pl022)
 804{
 805        /* Unmap and free the SG tables */
 806        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 807                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 808        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 809                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 810        sg_free_table(&pl022->sgt_rx);
 811        sg_free_table(&pl022->sgt_tx);
 812}
 813
 814static void dma_callback(void *data)
 815{
 816        struct pl022 *pl022 = data;
 817        struct spi_message *msg = pl022->cur_msg;
 818
 819        BUG_ON(!pl022->sgt_rx.sgl);
 820
 821#ifdef VERBOSE_DEBUG
 822        /*
 823         * Optionally dump out buffers to inspect contents, this is
 824         * good if you want to convince yourself that the loopback
 825         * read/write contents are the same, when adopting to a new
 826         * DMA engine.
 827         */
 828        {
 829                struct scatterlist *sg;
 830                unsigned int i;
 831
 832                dma_sync_sg_for_cpu(&pl022->adev->dev,
 833                                    pl022->sgt_rx.sgl,
 834                                    pl022->sgt_rx.nents,
 835                                    DMA_FROM_DEVICE);
 836
 837                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 838                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 839                        print_hex_dump(KERN_ERR, "SPI RX: ",
 840                                       DUMP_PREFIX_OFFSET,
 841                                       16,
 842                                       1,
 843                                       sg_virt(sg),
 844                                       sg_dma_len(sg),
 845                                       1);
 846                }
 847                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 848                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 849                        print_hex_dump(KERN_ERR, "SPI TX: ",
 850                                       DUMP_PREFIX_OFFSET,
 851                                       16,
 852                                       1,
 853                                       sg_virt(sg),
 854                                       sg_dma_len(sg),
 855                                       1);
 856                }
 857        }
 858#endif
 859
 860        unmap_free_dma_scatter(pl022);
 861
 862        /* Update total bytes transferred */
 863        msg->actual_length += pl022->cur_transfer->len;
 864        if (pl022->cur_transfer->cs_change)
 865                pl022_cs_control(pl022, SSP_CHIP_DESELECT);
 866
 867        /* Move to next transfer */
 868        msg->state = next_transfer(pl022);
 869        tasklet_schedule(&pl022->pump_transfers);
 870}
 871
 872static void setup_dma_scatter(struct pl022 *pl022,
 873                              void *buffer,
 874                              unsigned int length,
 875                              struct sg_table *sgtab)
 876{
 877        struct scatterlist *sg;
 878        int bytesleft = length;
 879        void *bufp = buffer;
 880        int mapbytes;
 881        int i;
 882
 883        if (buffer) {
 884                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 885                        /*
 886                         * If there are less bytes left than what fits
 887                         * in the current page (plus page alignment offset)
 888                         * we just feed in this, else we stuff in as much
 889                         * as we can.
 890                         */
 891                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 892                                mapbytes = bytesleft;
 893                        else
 894                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 895                        sg_set_page(sg, virt_to_page(bufp),
 896                                    mapbytes, offset_in_page(bufp));
 897                        bufp += mapbytes;
 898                        bytesleft -= mapbytes;
 899                        dev_dbg(&pl022->adev->dev,
 900                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 901                                bufp, mapbytes, bytesleft);
 902                }
 903        } else {
 904                /* Map the dummy buffer on every page */
 905                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 906                        if (bytesleft < PAGE_SIZE)
 907                                mapbytes = bytesleft;
 908                        else
 909                                mapbytes = PAGE_SIZE;
 910                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 911                                    mapbytes, 0);
 912                        bytesleft -= mapbytes;
 913                        dev_dbg(&pl022->adev->dev,
 914                                "set RX/TX to dummy page %d bytes, %d left\n",
 915                                mapbytes, bytesleft);
 916
 917                }
 918        }
 919        BUG_ON(bytesleft);
 920}
 921
 922/**
 923 * configure_dma - configures the channels for the next transfer
 924 * @pl022: SSP driver's private data structure
 925 */
 926static int configure_dma(struct pl022 *pl022)
 927{
 928        struct dma_slave_config rx_conf = {
 929                .src_addr = SSP_DR(pl022->phybase),
 930                .direction = DMA_DEV_TO_MEM,
 931                .device_fc = false,
 932        };
 933        struct dma_slave_config tx_conf = {
 934                .dst_addr = SSP_DR(pl022->phybase),
 935                .direction = DMA_MEM_TO_DEV,
 936                .device_fc = false,
 937        };
 938        unsigned int pages;
 939        int ret;
 940        int rx_sglen, tx_sglen;
 941        struct dma_chan *rxchan = pl022->dma_rx_channel;
 942        struct dma_chan *txchan = pl022->dma_tx_channel;
 943        struct dma_async_tx_descriptor *rxdesc;
 944        struct dma_async_tx_descriptor *txdesc;
 945
 946        /* Check that the channels are available */
 947        if (!rxchan || !txchan)
 948                return -ENODEV;
 949
 950        /*
 951         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 952         * Notice that the DMA engine uses one-to-one mapping. Since we can
 953         * not trigger on 2 elements this needs explicit mapping rather than
 954         * calculation.
 955         */
 956        switch (pl022->rx_lev_trig) {
 957        case SSP_RX_1_OR_MORE_ELEM:
 958                rx_conf.src_maxburst = 1;
 959                break;
 960        case SSP_RX_4_OR_MORE_ELEM:
 961                rx_conf.src_maxburst = 4;
 962                break;
 963        case SSP_RX_8_OR_MORE_ELEM:
 964                rx_conf.src_maxburst = 8;
 965                break;
 966        case SSP_RX_16_OR_MORE_ELEM:
 967                rx_conf.src_maxburst = 16;
 968                break;
 969        case SSP_RX_32_OR_MORE_ELEM:
 970                rx_conf.src_maxburst = 32;
 971                break;
 972        default:
 973                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 974                break;
 975        }
 976
 977        switch (pl022->tx_lev_trig) {
 978        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 979                tx_conf.dst_maxburst = 1;
 980                break;
 981        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 982                tx_conf.dst_maxburst = 4;
 983                break;
 984        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 985                tx_conf.dst_maxburst = 8;
 986                break;
 987        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 988                tx_conf.dst_maxburst = 16;
 989                break;
 990        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 991                tx_conf.dst_maxburst = 32;
 992                break;
 993        default:
 994                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 995                break;
 996        }
 997
 998        switch (pl022->read) {
 999        case READING_NULL:
1000                /* Use the same as for writing */
1001                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1002                break;
1003        case READING_U8:
1004                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1005                break;
1006        case READING_U16:
1007                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1008                break;
1009        case READING_U32:
1010                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1011                break;
1012        }
1013
1014        switch (pl022->write) {
1015        case WRITING_NULL:
1016                /* Use the same as for reading */
1017                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1018                break;
1019        case WRITING_U8:
1020                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1021                break;
1022        case WRITING_U16:
1023                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1024                break;
1025        case WRITING_U32:
1026                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1027                break;
1028        }
1029
1030        /* SPI pecularity: we need to read and write the same width */
1031        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1032                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1033        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1034                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1035        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1036
1037        dmaengine_slave_config(rxchan, &rx_conf);
1038        dmaengine_slave_config(txchan, &tx_conf);
1039
1040        /* Create sglists for the transfers */
1041        pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1042        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1043
1044        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1045        if (ret)
1046                goto err_alloc_rx_sg;
1047
1048        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1049        if (ret)
1050                goto err_alloc_tx_sg;
1051
1052        /* Fill in the scatterlists for the RX+TX buffers */
1053        setup_dma_scatter(pl022, pl022->rx,
1054                          pl022->cur_transfer->len, &pl022->sgt_rx);
1055        setup_dma_scatter(pl022, pl022->tx,
1056                          pl022->cur_transfer->len, &pl022->sgt_tx);
1057
1058        /* Map DMA buffers */
1059        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1060                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1061        if (!rx_sglen)
1062                goto err_rx_sgmap;
1063
1064        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1065                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1066        if (!tx_sglen)
1067                goto err_tx_sgmap;
1068
1069        /* Send both scatterlists */
1070        rxdesc = dmaengine_prep_slave_sg(rxchan,
1071                                      pl022->sgt_rx.sgl,
1072                                      rx_sglen,
1073                                      DMA_DEV_TO_MEM,
1074                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1075        if (!rxdesc)
1076                goto err_rxdesc;
1077
1078        txdesc = dmaengine_prep_slave_sg(txchan,
1079                                      pl022->sgt_tx.sgl,
1080                                      tx_sglen,
1081                                      DMA_MEM_TO_DEV,
1082                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1083        if (!txdesc)
1084                goto err_txdesc;
1085
1086        /* Put the callback on the RX transfer only, that should finish last */
1087        rxdesc->callback = dma_callback;
1088        rxdesc->callback_param = pl022;
1089
1090        /* Submit and fire RX and TX with TX last so we're ready to read! */
1091        dmaengine_submit(rxdesc);
1092        dmaengine_submit(txdesc);
1093        dma_async_issue_pending(rxchan);
1094        dma_async_issue_pending(txchan);
1095        pl022->dma_running = true;
1096
1097        return 0;
1098
1099err_txdesc:
1100        dmaengine_terminate_all(txchan);
1101err_rxdesc:
1102        dmaengine_terminate_all(rxchan);
1103        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1104                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1105err_tx_sgmap:
1106        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1107                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1108err_rx_sgmap:
1109        sg_free_table(&pl022->sgt_tx);
1110err_alloc_tx_sg:
1111        sg_free_table(&pl022->sgt_rx);
1112err_alloc_rx_sg:
1113        return -ENOMEM;
1114}
1115
1116static int pl022_dma_probe(struct pl022 *pl022)
1117{
1118        dma_cap_mask_t mask;
1119
1120        /* Try to acquire a generic DMA engine slave channel */
1121        dma_cap_zero(mask);
1122        dma_cap_set(DMA_SLAVE, mask);
1123        /*
1124         * We need both RX and TX channels to do DMA, else do none
1125         * of them.
1126         */
1127        pl022->dma_rx_channel = dma_request_channel(mask,
1128                                            pl022->master_info->dma_filter,
1129                                            pl022->master_info->dma_rx_param);
1130        if (!pl022->dma_rx_channel) {
1131                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1132                goto err_no_rxchan;
1133        }
1134
1135        pl022->dma_tx_channel = dma_request_channel(mask,
1136                                            pl022->master_info->dma_filter,
1137                                            pl022->master_info->dma_tx_param);
1138        if (!pl022->dma_tx_channel) {
1139                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1140                goto err_no_txchan;
1141        }
1142
1143        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1144        if (!pl022->dummypage)
1145                goto err_no_dummypage;
1146
1147        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1148                 dma_chan_name(pl022->dma_rx_channel),
1149                 dma_chan_name(pl022->dma_tx_channel));
1150
1151        return 0;
1152
1153err_no_dummypage:
1154        dma_release_channel(pl022->dma_tx_channel);
1155err_no_txchan:
1156        dma_release_channel(pl022->dma_rx_channel);
1157        pl022->dma_rx_channel = NULL;
1158err_no_rxchan:
1159        dev_err(&pl022->adev->dev,
1160                        "Failed to work in dma mode, work without dma!\n");
1161        return -ENODEV;
1162}
1163
1164static int pl022_dma_autoprobe(struct pl022 *pl022)
1165{
1166        struct device *dev = &pl022->adev->dev;
1167        struct dma_chan *chan;
1168        int err;
1169
1170        /* automatically configure DMA channels from platform, normally using DT */
1171        chan = dma_request_slave_channel_reason(dev, "rx");
1172        if (IS_ERR(chan)) {
1173                err = PTR_ERR(chan);
1174                goto err_no_rxchan;
1175        }
1176
1177        pl022->dma_rx_channel = chan;
1178
1179        chan = dma_request_slave_channel_reason(dev, "tx");
1180        if (IS_ERR(chan)) {
1181                err = PTR_ERR(chan);
1182                goto err_no_txchan;
1183        }
1184
1185        pl022->dma_tx_channel = chan;
1186
1187        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1188        if (!pl022->dummypage) {
1189                err = -ENOMEM;
1190                goto err_no_dummypage;
1191        }
1192
1193        return 0;
1194
1195err_no_dummypage:
1196        dma_release_channel(pl022->dma_tx_channel);
1197        pl022->dma_tx_channel = NULL;
1198err_no_txchan:
1199        dma_release_channel(pl022->dma_rx_channel);
1200        pl022->dma_rx_channel = NULL;
1201err_no_rxchan:
1202        return err;
1203}
1204                
1205static void terminate_dma(struct pl022 *pl022)
1206{
1207        struct dma_chan *rxchan = pl022->dma_rx_channel;
1208        struct dma_chan *txchan = pl022->dma_tx_channel;
1209
1210        dmaengine_terminate_all(rxchan);
1211        dmaengine_terminate_all(txchan);
1212        unmap_free_dma_scatter(pl022);
1213        pl022->dma_running = false;
1214}
1215
1216static void pl022_dma_remove(struct pl022 *pl022)
1217{
1218        if (pl022->dma_running)
1219                terminate_dma(pl022);
1220        if (pl022->dma_tx_channel)
1221                dma_release_channel(pl022->dma_tx_channel);
1222        if (pl022->dma_rx_channel)
1223                dma_release_channel(pl022->dma_rx_channel);
1224        kfree(pl022->dummypage);
1225}
1226
1227#else
1228static inline int configure_dma(struct pl022 *pl022)
1229{
1230        return -ENODEV;
1231}
1232
1233static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1234{
1235        return 0;
1236}
1237
1238static inline int pl022_dma_probe(struct pl022 *pl022)
1239{
1240        return 0;
1241}
1242
1243static inline void pl022_dma_remove(struct pl022 *pl022)
1244{
1245}
1246#endif
1247
1248/**
1249 * pl022_interrupt_handler - Interrupt handler for SSP controller
1250 *
1251 * This function handles interrupts generated for an interrupt based transfer.
1252 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1253 * current message's state as STATE_ERROR and schedule the tasklet
1254 * pump_transfers which will do the postprocessing of the current message by
1255 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1256 * more data, and writes data in TX FIFO till it is not full. If we complete
1257 * the transfer we move to the next transfer and schedule the tasklet.
1258 */
1259static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1260{
1261        struct pl022 *pl022 = dev_id;
1262        struct spi_message *msg = pl022->cur_msg;
1263        u16 irq_status = 0;
1264
1265        if (unlikely(!msg)) {
1266                dev_err(&pl022->adev->dev,
1267                        "bad message state in interrupt handler");
1268                /* Never fail */
1269                return IRQ_HANDLED;
1270        }
1271
1272        /* Read the Interrupt Status Register */
1273        irq_status = readw(SSP_MIS(pl022->virtbase));
1274
1275        if (unlikely(!irq_status))
1276                return IRQ_NONE;
1277
1278        /*
1279         * This handles the FIFO interrupts, the timeout
1280         * interrupts are flatly ignored, they cannot be
1281         * trusted.
1282         */
1283        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1284                /*
1285                 * Overrun interrupt - bail out since our Data has been
1286                 * corrupted
1287                 */
1288                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1289                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1290                        dev_err(&pl022->adev->dev,
1291                                "RXFIFO is full\n");
1292
1293                /*
1294                 * Disable and clear interrupts, disable SSP,
1295                 * mark message with bad status so it can be
1296                 * retried.
1297                 */
1298                writew(DISABLE_ALL_INTERRUPTS,
1299                       SSP_IMSC(pl022->virtbase));
1300                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1301                writew((readw(SSP_CR1(pl022->virtbase)) &
1302                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1303                msg->state = STATE_ERROR;
1304
1305                /* Schedule message queue handler */
1306                tasklet_schedule(&pl022->pump_transfers);
1307                return IRQ_HANDLED;
1308        }
1309
1310        readwriter(pl022);
1311
1312        if (pl022->tx == pl022->tx_end) {
1313                /* Disable Transmit interrupt, enable receive interrupt */
1314                writew((readw(SSP_IMSC(pl022->virtbase)) &
1315                       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1316                       SSP_IMSC(pl022->virtbase));
1317        }
1318
1319        /*
1320         * Since all transactions must write as much as shall be read,
1321         * we can conclude the entire transaction once RX is complete.
1322         * At this point, all TX will always be finished.
1323         */
1324        if (pl022->rx >= pl022->rx_end) {
1325                writew(DISABLE_ALL_INTERRUPTS,
1326                       SSP_IMSC(pl022->virtbase));
1327                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1328                if (unlikely(pl022->rx > pl022->rx_end)) {
1329                        dev_warn(&pl022->adev->dev, "read %u surplus "
1330                                 "bytes (did you request an odd "
1331                                 "number of bytes on a 16bit bus?)\n",
1332                                 (u32) (pl022->rx - pl022->rx_end));
1333                }
1334                /* Update total bytes transferred */
1335                msg->actual_length += pl022->cur_transfer->len;
1336                if (pl022->cur_transfer->cs_change)
1337                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1338                /* Move to next transfer */
1339                msg->state = next_transfer(pl022);
1340                tasklet_schedule(&pl022->pump_transfers);
1341                return IRQ_HANDLED;
1342        }
1343
1344        return IRQ_HANDLED;
1345}
1346
1347/**
1348 * This sets up the pointers to memory for the next message to
1349 * send out on the SPI bus.
1350 */
1351static int set_up_next_transfer(struct pl022 *pl022,
1352                                struct spi_transfer *transfer)
1353{
1354        int residue;
1355
1356        /* Sanity check the message for this bus width */
1357        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1358        if (unlikely(residue != 0)) {
1359                dev_err(&pl022->adev->dev,
1360                        "message of %u bytes to transmit but the current "
1361                        "chip bus has a data width of %u bytes!\n",
1362                        pl022->cur_transfer->len,
1363                        pl022->cur_chip->n_bytes);
1364                dev_err(&pl022->adev->dev, "skipping this message\n");
1365                return -EIO;
1366        }
1367        pl022->tx = (void *)transfer->tx_buf;
1368        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1369        pl022->rx = (void *)transfer->rx_buf;
1370        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1371        pl022->write =
1372            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1373        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1374        return 0;
1375}
1376
1377/**
1378 * pump_transfers - Tasklet function which schedules next transfer
1379 * when running in interrupt or DMA transfer mode.
1380 * @data: SSP driver private data structure
1381 *
1382 */
1383static void pump_transfers(unsigned long data)
1384{
1385        struct pl022 *pl022 = (struct pl022 *) data;
1386        struct spi_message *message = NULL;
1387        struct spi_transfer *transfer = NULL;
1388        struct spi_transfer *previous = NULL;
1389
1390        /* Get current state information */
1391        message = pl022->cur_msg;
1392        transfer = pl022->cur_transfer;
1393
1394        /* Handle for abort */
1395        if (message->state == STATE_ERROR) {
1396                message->status = -EIO;
1397                giveback(pl022);
1398                return;
1399        }
1400
1401        /* Handle end of message */
1402        if (message->state == STATE_DONE) {
1403                message->status = 0;
1404                giveback(pl022);
1405                return;
1406        }
1407
1408        /* Delay if requested at end of transfer before CS change */
1409        if (message->state == STATE_RUNNING) {
1410                previous = list_entry(transfer->transfer_list.prev,
1411                                        struct spi_transfer,
1412                                        transfer_list);
1413                if (previous->delay_usecs)
1414                        /*
1415                         * FIXME: This runs in interrupt context.
1416                         * Is this really smart?
1417                         */
1418                        udelay(previous->delay_usecs);
1419
1420                /* Reselect chip select only if cs_change was requested */
1421                if (previous->cs_change)
1422                        pl022_cs_control(pl022, SSP_CHIP_SELECT);
1423        } else {
1424                /* STATE_START */
1425                message->state = STATE_RUNNING;
1426        }
1427
1428        if (set_up_next_transfer(pl022, transfer)) {
1429                message->state = STATE_ERROR;
1430                message->status = -EIO;
1431                giveback(pl022);
1432                return;
1433        }
1434        /* Flush the FIFOs and let's go! */
1435        flush(pl022);
1436
1437        if (pl022->cur_chip->enable_dma) {
1438                if (configure_dma(pl022)) {
1439                        dev_dbg(&pl022->adev->dev,
1440                                "configuration of DMA failed, fall back to interrupt mode\n");
1441                        goto err_config_dma;
1442                }
1443                return;
1444        }
1445
1446err_config_dma:
1447        /* enable all interrupts except RX */
1448        writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1449}
1450
1451static void do_interrupt_dma_transfer(struct pl022 *pl022)
1452{
1453        /*
1454         * Default is to enable all interrupts except RX -
1455         * this will be enabled once TX is complete
1456         */
1457        u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1458
1459        /* Enable target chip, if not already active */
1460        if (!pl022->next_msg_cs_active)
1461                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1462
1463        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1464                /* Error path */
1465                pl022->cur_msg->state = STATE_ERROR;
1466                pl022->cur_msg->status = -EIO;
1467                giveback(pl022);
1468                return;
1469        }
1470        /* If we're using DMA, set up DMA here */
1471        if (pl022->cur_chip->enable_dma) {
1472                /* Configure DMA transfer */
1473                if (configure_dma(pl022)) {
1474                        dev_dbg(&pl022->adev->dev,
1475                                "configuration of DMA failed, fall back to interrupt mode\n");
1476                        goto err_config_dma;
1477                }
1478                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1479                irqflags = DISABLE_ALL_INTERRUPTS;
1480        }
1481err_config_dma:
1482        /* Enable SSP, turn on interrupts */
1483        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1484               SSP_CR1(pl022->virtbase));
1485        writew(irqflags, SSP_IMSC(pl022->virtbase));
1486}
1487
1488static void do_polling_transfer(struct pl022 *pl022)
1489{
1490        struct spi_message *message = NULL;
1491        struct spi_transfer *transfer = NULL;
1492        struct spi_transfer *previous = NULL;
1493        struct chip_data *chip;
1494        unsigned long time, timeout;
1495
1496        chip = pl022->cur_chip;
1497        message = pl022->cur_msg;
1498
1499        while (message->state != STATE_DONE) {
1500                /* Handle for abort */
1501                if (message->state == STATE_ERROR)
1502                        break;
1503                transfer = pl022->cur_transfer;
1504
1505                /* Delay if requested at end of transfer */
1506                if (message->state == STATE_RUNNING) {
1507                        previous =
1508                            list_entry(transfer->transfer_list.prev,
1509                                       struct spi_transfer, transfer_list);
1510                        if (previous->delay_usecs)
1511                                udelay(previous->delay_usecs);
1512                        if (previous->cs_change)
1513                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1514                } else {
1515                        /* STATE_START */
1516                        message->state = STATE_RUNNING;
1517                        if (!pl022->next_msg_cs_active)
1518                                pl022_cs_control(pl022, SSP_CHIP_SELECT);
1519                }
1520
1521                /* Configuration Changing Per Transfer */
1522                if (set_up_next_transfer(pl022, transfer)) {
1523                        /* Error path */
1524                        message->state = STATE_ERROR;
1525                        break;
1526                }
1527                /* Flush FIFOs and enable SSP */
1528                flush(pl022);
1529                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1530                       SSP_CR1(pl022->virtbase));
1531
1532                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1533
1534                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1535                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1536                        time = jiffies;
1537                        readwriter(pl022);
1538                        if (time_after(time, timeout)) {
1539                                dev_warn(&pl022->adev->dev,
1540                                "%s: timeout!\n", __func__);
1541                                message->state = STATE_ERROR;
1542                                goto out;
1543                        }
1544                        cpu_relax();
1545                }
1546
1547                /* Update total byte transferred */
1548                message->actual_length += pl022->cur_transfer->len;
1549                if (pl022->cur_transfer->cs_change)
1550                        pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1551                /* Move to next transfer */
1552                message->state = next_transfer(pl022);
1553        }
1554out:
1555        /* Handle end of message */
1556        if (message->state == STATE_DONE)
1557                message->status = 0;
1558        else
1559                message->status = -EIO;
1560
1561        giveback(pl022);
1562        return;
1563}
1564
1565static int pl022_transfer_one_message(struct spi_master *master,
1566                                      struct spi_message *msg)
1567{
1568        struct pl022 *pl022 = spi_master_get_devdata(master);
1569
1570        /* Initial message state */
1571        pl022->cur_msg = msg;
1572        msg->state = STATE_START;
1573
1574        pl022->cur_transfer = list_entry(msg->transfers.next,
1575                                         struct spi_transfer, transfer_list);
1576
1577        /* Setup the SPI using the per chip configuration */
1578        pl022->cur_chip = spi_get_ctldata(msg->spi);
1579        pl022->cur_cs = pl022->chipselects[msg->spi->chip_select];
1580
1581        restore_state(pl022);
1582        flush(pl022);
1583
1584        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1585                do_polling_transfer(pl022);
1586        else
1587                do_interrupt_dma_transfer(pl022);
1588
1589        return 0;
1590}
1591
1592static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1593{
1594        struct pl022 *pl022 = spi_master_get_devdata(master);
1595
1596        /* nothing more to do - disable spi/ssp and power off */
1597        writew((readw(SSP_CR1(pl022->virtbase)) &
1598                (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1599
1600        return 0;
1601}
1602
1603static int verify_controller_parameters(struct pl022 *pl022,
1604                                struct pl022_config_chip const *chip_info)
1605{
1606        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1607            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1608                dev_err(&pl022->adev->dev,
1609                        "interface is configured incorrectly\n");
1610                return -EINVAL;
1611        }
1612        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1613            (!pl022->vendor->unidir)) {
1614                dev_err(&pl022->adev->dev,
1615                        "unidirectional mode not supported in this "
1616                        "hardware version\n");
1617                return -EINVAL;
1618        }
1619        if ((chip_info->hierarchy != SSP_MASTER)
1620            && (chip_info->hierarchy != SSP_SLAVE)) {
1621                dev_err(&pl022->adev->dev,
1622                        "hierarchy is configured incorrectly\n");
1623                return -EINVAL;
1624        }
1625        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1626            && (chip_info->com_mode != DMA_TRANSFER)
1627            && (chip_info->com_mode != POLLING_TRANSFER)) {
1628                dev_err(&pl022->adev->dev,
1629                        "Communication mode is configured incorrectly\n");
1630                return -EINVAL;
1631        }
1632        switch (chip_info->rx_lev_trig) {
1633        case SSP_RX_1_OR_MORE_ELEM:
1634        case SSP_RX_4_OR_MORE_ELEM:
1635        case SSP_RX_8_OR_MORE_ELEM:
1636                /* These are always OK, all variants can handle this */
1637                break;
1638        case SSP_RX_16_OR_MORE_ELEM:
1639                if (pl022->vendor->fifodepth < 16) {
1640                        dev_err(&pl022->adev->dev,
1641                        "RX FIFO Trigger Level is configured incorrectly\n");
1642                        return -EINVAL;
1643                }
1644                break;
1645        case SSP_RX_32_OR_MORE_ELEM:
1646                if (pl022->vendor->fifodepth < 32) {
1647                        dev_err(&pl022->adev->dev,
1648                        "RX FIFO Trigger Level is configured incorrectly\n");
1649                        return -EINVAL;
1650                }
1651                break;
1652        default:
1653                dev_err(&pl022->adev->dev,
1654                        "RX FIFO Trigger Level is configured incorrectly\n");
1655                return -EINVAL;
1656        }
1657        switch (chip_info->tx_lev_trig) {
1658        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1659        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1660        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1661                /* These are always OK, all variants can handle this */
1662                break;
1663        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1664                if (pl022->vendor->fifodepth < 16) {
1665                        dev_err(&pl022->adev->dev,
1666                        "TX FIFO Trigger Level is configured incorrectly\n");
1667                        return -EINVAL;
1668                }
1669                break;
1670        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1671                if (pl022->vendor->fifodepth < 32) {
1672                        dev_err(&pl022->adev->dev,
1673                        "TX FIFO Trigger Level is configured incorrectly\n");
1674                        return -EINVAL;
1675                }
1676                break;
1677        default:
1678                dev_err(&pl022->adev->dev,
1679                        "TX FIFO Trigger Level is configured incorrectly\n");
1680                return -EINVAL;
1681        }
1682        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1683                if ((chip_info->ctrl_len < SSP_BITS_4)
1684                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1685                        dev_err(&pl022->adev->dev,
1686                                "CTRL LEN is configured incorrectly\n");
1687                        return -EINVAL;
1688                }
1689                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1690                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1691                        dev_err(&pl022->adev->dev,
1692                                "Wait State is configured incorrectly\n");
1693                        return -EINVAL;
1694                }
1695                /* Half duplex is only available in the ST Micro version */
1696                if (pl022->vendor->extended_cr) {
1697                        if ((chip_info->duplex !=
1698                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1699                            && (chip_info->duplex !=
1700                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1701                                dev_err(&pl022->adev->dev,
1702                                        "Microwire duplex mode is configured incorrectly\n");
1703                                return -EINVAL;
1704                        }
1705                } else {
1706                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1707                                dev_err(&pl022->adev->dev,
1708                                        "Microwire half duplex mode requested,"
1709                                        " but this is only available in the"
1710                                        " ST version of PL022\n");
1711                        return -EINVAL;
1712                }
1713        }
1714        return 0;
1715}
1716
1717static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1718{
1719        return rate / (cpsdvsr * (1 + scr));
1720}
1721
1722static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1723                                    ssp_clock_params * clk_freq)
1724{
1725        /* Lets calculate the frequency parameters */
1726        u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1727        u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1728                best_scr = 0, tmp, found = 0;
1729
1730        rate = clk_get_rate(pl022->clk);
1731        /* cpsdvscr = 2 & scr 0 */
1732        max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1733        /* cpsdvsr = 254 & scr = 255 */
1734        min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1735
1736        if (freq > max_tclk)
1737                dev_warn(&pl022->adev->dev,
1738                        "Max speed that can be programmed is %d Hz, you requested %d\n",
1739                        max_tclk, freq);
1740
1741        if (freq < min_tclk) {
1742                dev_err(&pl022->adev->dev,
1743                        "Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1744                        freq, min_tclk);
1745                return -EINVAL;
1746        }
1747
1748        /*
1749         * best_freq will give closest possible available rate (<= requested
1750         * freq) for all values of scr & cpsdvsr.
1751         */
1752        while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1753                while (scr <= SCR_MAX) {
1754                        tmp = spi_rate(rate, cpsdvsr, scr);
1755
1756                        if (tmp > freq) {
1757                                /* we need lower freq */
1758                                scr++;
1759                                continue;
1760                        }
1761
1762                        /*
1763                         * If found exact value, mark found and break.
1764                         * If found more closer value, update and break.
1765                         */
1766                        if (tmp > best_freq) {
1767                                best_freq = tmp;
1768                                best_cpsdvsr = cpsdvsr;
1769                                best_scr = scr;
1770
1771                                if (tmp == freq)
1772                                        found = 1;
1773                        }
1774                        /*
1775                         * increased scr will give lower rates, which are not
1776                         * required
1777                         */
1778                        break;
1779                }
1780                cpsdvsr += 2;
1781                scr = SCR_MIN;
1782        }
1783
1784        WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1785                        freq);
1786
1787        clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1788        clk_freq->scr = (u8) (best_scr & 0xFF);
1789        dev_dbg(&pl022->adev->dev,
1790                "SSP Target Frequency is: %u, Effective Frequency is %u\n",
1791                freq, best_freq);
1792        dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1793                clk_freq->cpsdvsr, clk_freq->scr);
1794
1795        return 0;
1796}
1797
1798/*
1799 * A piece of default chip info unless the platform
1800 * supplies it.
1801 */
1802static const struct pl022_config_chip pl022_default_chip_info = {
1803        .com_mode = POLLING_TRANSFER,
1804        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1805        .hierarchy = SSP_SLAVE,
1806        .slave_tx_disable = DO_NOT_DRIVE_TX,
1807        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1808        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1809        .ctrl_len = SSP_BITS_8,
1810        .wait_state = SSP_MWIRE_WAIT_ZERO,
1811        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1812        .cs_control = null_cs_control,
1813};
1814
1815/**
1816 * pl022_setup - setup function registered to SPI master framework
1817 * @spi: spi device which is requesting setup
1818 *
1819 * This function is registered to the SPI framework for this SPI master
1820 * controller. If it is the first time when setup is called by this device,
1821 * this function will initialize the runtime state for this chip and save
1822 * the same in the device structure. Else it will update the runtime info
1823 * with the updated chip info. Nothing is really being written to the
1824 * controller hardware here, that is not done until the actual transfer
1825 * commence.
1826 */
1827static int pl022_setup(struct spi_device *spi)
1828{
1829        struct pl022_config_chip const *chip_info;
1830        struct pl022_config_chip chip_info_dt;
1831        struct chip_data *chip;
1832        struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1833        int status = 0;
1834        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1835        unsigned int bits = spi->bits_per_word;
1836        u32 tmp;
1837        struct device_node *np = spi->dev.of_node;
1838
1839        if (!spi->max_speed_hz)
1840                return -EINVAL;
1841
1842        /* Get controller_state if one is supplied */
1843        chip = spi_get_ctldata(spi);
1844
1845        if (chip == NULL) {
1846                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1847                if (!chip)
1848                        return -ENOMEM;
1849                dev_dbg(&spi->dev,
1850                        "allocated memory for controller's runtime state\n");
1851        }
1852
1853        /* Get controller data if one is supplied */
1854        chip_info = spi->controller_data;
1855
1856        if (chip_info == NULL) {
1857                if (np) {
1858                        chip_info_dt = pl022_default_chip_info;
1859
1860                        chip_info_dt.hierarchy = SSP_MASTER;
1861                        of_property_read_u32(np, "pl022,interface",
1862                                &chip_info_dt.iface);
1863                        of_property_read_u32(np, "pl022,com-mode",
1864                                &chip_info_dt.com_mode);
1865                        of_property_read_u32(np, "pl022,rx-level-trig",
1866                                &chip_info_dt.rx_lev_trig);
1867                        of_property_read_u32(np, "pl022,tx-level-trig",
1868                                &chip_info_dt.tx_lev_trig);
1869                        of_property_read_u32(np, "pl022,ctrl-len",
1870                                &chip_info_dt.ctrl_len);
1871                        of_property_read_u32(np, "pl022,wait-state",
1872                                &chip_info_dt.wait_state);
1873                        of_property_read_u32(np, "pl022,duplex",
1874                                &chip_info_dt.duplex);
1875
1876                        chip_info = &chip_info_dt;
1877                } else {
1878                        chip_info = &pl022_default_chip_info;
1879                        /* spi_board_info.controller_data not is supplied */
1880                        dev_dbg(&spi->dev,
1881                                "using default controller_data settings\n");
1882                }
1883        } else
1884                dev_dbg(&spi->dev,
1885                        "using user supplied controller_data settings\n");
1886
1887        /*
1888         * We can override with custom divisors, else we use the board
1889         * frequency setting
1890         */
1891        if ((0 == chip_info->clk_freq.cpsdvsr)
1892            && (0 == chip_info->clk_freq.scr)) {
1893                status = calculate_effective_freq(pl022,
1894                                                  spi->max_speed_hz,
1895                                                  &clk_freq);
1896                if (status < 0)
1897                        goto err_config_params;
1898        } else {
1899                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1900                if ((clk_freq.cpsdvsr % 2) != 0)
1901                        clk_freq.cpsdvsr =
1902                                clk_freq.cpsdvsr - 1;
1903        }
1904        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1905            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1906                status = -EINVAL;
1907                dev_err(&spi->dev,
1908                        "cpsdvsr is configured incorrectly\n");
1909                goto err_config_params;
1910        }
1911
1912        status = verify_controller_parameters(pl022, chip_info);
1913        if (status) {
1914                dev_err(&spi->dev, "controller data is incorrect");
1915                goto err_config_params;
1916        }
1917
1918        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1919        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1920
1921        /* Now set controller state based on controller data */
1922        chip->xfer_type = chip_info->com_mode;
1923        if (!chip_info->cs_control) {
1924                chip->cs_control = null_cs_control;
1925                if (!gpio_is_valid(pl022->chipselects[spi->chip_select]))
1926                        dev_warn(&spi->dev,
1927                                 "invalid chip select\n");
1928        } else
1929                chip->cs_control = chip_info->cs_control;
1930
1931        /* Check bits per word with vendor specific range */
1932        if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1933                status = -ENOTSUPP;
1934                dev_err(&spi->dev, "illegal data size for this controller!\n");
1935                dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1936                                pl022->vendor->max_bpw);
1937                goto err_config_params;
1938        } else if (bits <= 8) {
1939                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1940                chip->n_bytes = 1;
1941                chip->read = READING_U8;
1942                chip->write = WRITING_U8;
1943        } else if (bits <= 16) {
1944                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1945                chip->n_bytes = 2;
1946                chip->read = READING_U16;
1947                chip->write = WRITING_U16;
1948        } else {
1949                dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1950                chip->n_bytes = 4;
1951                chip->read = READING_U32;
1952                chip->write = WRITING_U32;
1953        }
1954
1955        /* Now Initialize all register settings required for this chip */
1956        chip->cr0 = 0;
1957        chip->cr1 = 0;
1958        chip->dmacr = 0;
1959        chip->cpsr = 0;
1960        if ((chip_info->com_mode == DMA_TRANSFER)
1961            && ((pl022->master_info)->enable_dma)) {
1962                chip->enable_dma = true;
1963                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1964                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1965                               SSP_DMACR_MASK_RXDMAE, 0);
1966                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1967                               SSP_DMACR_MASK_TXDMAE, 1);
1968        } else {
1969                chip->enable_dma = false;
1970                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1971                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1972                               SSP_DMACR_MASK_RXDMAE, 0);
1973                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1974                               SSP_DMACR_MASK_TXDMAE, 1);
1975        }
1976
1977        chip->cpsr = clk_freq.cpsdvsr;
1978
1979        /* Special setup for the ST micro extended control registers */
1980        if (pl022->vendor->extended_cr) {
1981                u32 etx;
1982
1983                if (pl022->vendor->pl023) {
1984                        /* These bits are only in the PL023 */
1985                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1986                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1987                } else {
1988                        /* These bits are in the PL022 but not PL023 */
1989                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1990                                       SSP_CR0_MASK_HALFDUP_ST, 5);
1991                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1992                                       SSP_CR0_MASK_CSS_ST, 16);
1993                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1994                                       SSP_CR0_MASK_FRF_ST, 21);
1995                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1996                                       SSP_CR1_MASK_MWAIT_ST, 6);
1997                }
1998                SSP_WRITE_BITS(chip->cr0, bits - 1,
1999                               SSP_CR0_MASK_DSS_ST, 0);
2000
2001                if (spi->mode & SPI_LSB_FIRST) {
2002                        tmp = SSP_RX_LSB;
2003                        etx = SSP_TX_LSB;
2004                } else {
2005                        tmp = SSP_RX_MSB;
2006                        etx = SSP_TX_MSB;
2007                }
2008                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2009                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2010                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2011                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2012                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2013                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2014        } else {
2015                SSP_WRITE_BITS(chip->cr0, bits - 1,
2016                               SSP_CR0_MASK_DSS, 0);
2017                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2018                               SSP_CR0_MASK_FRF, 4);
2019        }
2020
2021        /* Stuff that is common for all versions */
2022        if (spi->mode & SPI_CPOL)
2023                tmp = SSP_CLK_POL_IDLE_HIGH;
2024        else
2025                tmp = SSP_CLK_POL_IDLE_LOW;
2026        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2027
2028        if (spi->mode & SPI_CPHA)
2029                tmp = SSP_CLK_SECOND_EDGE;
2030        else
2031                tmp = SSP_CLK_FIRST_EDGE;
2032        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2033
2034        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2035        /* Loopback is available on all versions except PL023 */
2036        if (pl022->vendor->loopback) {
2037                if (spi->mode & SPI_LOOP)
2038                        tmp = LOOPBACK_ENABLED;
2039                else
2040                        tmp = LOOPBACK_DISABLED;
2041                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2042        }
2043        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2044        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2045        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2046                3);
2047
2048        /* Save controller_state */
2049        spi_set_ctldata(spi, chip);
2050        return status;
2051 err_config_params:
2052        spi_set_ctldata(spi, NULL);
2053        kfree(chip);
2054        return status;
2055}
2056
2057/**
2058 * pl022_cleanup - cleanup function registered to SPI master framework
2059 * @spi: spi device which is requesting cleanup
2060 *
2061 * This function is registered to the SPI framework for this SPI master
2062 * controller. It will free the runtime state of chip.
2063 */
2064static void pl022_cleanup(struct spi_device *spi)
2065{
2066        struct chip_data *chip = spi_get_ctldata(spi);
2067
2068        spi_set_ctldata(spi, NULL);
2069        kfree(chip);
2070}
2071
2072static struct pl022_ssp_controller *
2073pl022_platform_data_dt_get(struct device *dev)
2074{
2075        struct device_node *np = dev->of_node;
2076        struct pl022_ssp_controller *pd;
2077        u32 tmp;
2078
2079        if (!np) {
2080                dev_err(dev, "no dt node defined\n");
2081                return NULL;
2082        }
2083
2084        pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2085        if (!pd)
2086                return NULL;
2087
2088        pd->bus_id = -1;
2089        pd->enable_dma = 1;
2090        of_property_read_u32(np, "num-cs", &tmp);
2091        pd->num_chipselect = tmp;
2092        of_property_read_u32(np, "pl022,autosuspend-delay",
2093                             &pd->autosuspend_delay);
2094        pd->rt = of_property_read_bool(np, "pl022,rt");
2095
2096        return pd;
2097}
2098
2099static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2100{
2101        struct device *dev = &adev->dev;
2102        struct pl022_ssp_controller *platform_info =
2103                        dev_get_platdata(&adev->dev);
2104        struct spi_master *master;
2105        struct pl022 *pl022 = NULL;     /*Data for this driver */
2106        struct device_node *np = adev->dev.of_node;
2107        int status = 0, i, num_cs;
2108
2109        dev_info(&adev->dev,
2110                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2111        if (!platform_info && IS_ENABLED(CONFIG_OF))
2112                platform_info = pl022_platform_data_dt_get(dev);
2113
2114        if (!platform_info) {
2115                dev_err(dev, "probe: no platform data defined\n");
2116                return -ENODEV;
2117        }
2118
2119        if (platform_info->num_chipselect) {
2120                num_cs = platform_info->num_chipselect;
2121        } else {
2122                dev_err(dev, "probe: no chip select defined\n");
2123                return -ENODEV;
2124        }
2125
2126        /* Allocate master with space for data */
2127        master = spi_alloc_master(dev, sizeof(struct pl022));
2128        if (master == NULL) {
2129                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2130                return -ENOMEM;
2131        }
2132
2133        pl022 = spi_master_get_devdata(master);
2134        pl022->master = master;
2135        pl022->master_info = platform_info;
2136        pl022->adev = adev;
2137        pl022->vendor = id->data;
2138        pl022->chipselects = devm_kzalloc(dev, num_cs * sizeof(int),
2139                                          GFP_KERNEL);
2140        if (!pl022->chipselects) {
2141                status = -ENOMEM;
2142                goto err_no_mem;
2143        }
2144
2145        /*
2146         * Bus Number Which has been Assigned to this SSP controller
2147         * on this board
2148         */
2149        master->bus_num = platform_info->bus_id;
2150        master->num_chipselect = num_cs;
2151        master->cleanup = pl022_cleanup;
2152        master->setup = pl022_setup;
2153        master->auto_runtime_pm = true;
2154        master->transfer_one_message = pl022_transfer_one_message;
2155        master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2156        master->rt = platform_info->rt;
2157        master->dev.of_node = dev->of_node;
2158
2159        if (platform_info->num_chipselect && platform_info->chipselects) {
2160                for (i = 0; i < num_cs; i++)
2161                        pl022->chipselects[i] = platform_info->chipselects[i];
2162        } else if (pl022->vendor->internal_cs_ctrl) {
2163                for (i = 0; i < num_cs; i++)
2164                        pl022->chipselects[i] = i;
2165        } else if (IS_ENABLED(CONFIG_OF)) {
2166                for (i = 0; i < num_cs; i++) {
2167                        int cs_gpio = of_get_named_gpio(np, "cs-gpios", i);
2168
2169                        if (cs_gpio == -EPROBE_DEFER) {
2170                                status = -EPROBE_DEFER;
2171                                goto err_no_gpio;
2172                        }
2173
2174                        pl022->chipselects[i] = cs_gpio;
2175
2176                        if (gpio_is_valid(cs_gpio)) {
2177                                if (devm_gpio_request(dev, cs_gpio, "ssp-pl022"))
2178                                        dev_err(&adev->dev,
2179                                                "could not request %d gpio\n",
2180                                                cs_gpio);
2181                                else if (gpio_direction_output(cs_gpio, 1))
2182                                        dev_err(&adev->dev,
2183                                                "could not set gpio %d as output\n",
2184                                                cs_gpio);
2185                        }
2186                }
2187        }
2188
2189        /*
2190         * Supports mode 0-3, loopback, and active low CS. Transfers are
2191         * always MS bit first on the original pl022.
2192         */
2193        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2194        if (pl022->vendor->extended_cr)
2195                master->mode_bits |= SPI_LSB_FIRST;
2196
2197        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2198
2199        status = amba_request_regions(adev, NULL);
2200        if (status)
2201                goto err_no_ioregion;
2202
2203        pl022->phybase = adev->res.start;
2204        pl022->virtbase = devm_ioremap(dev, adev->res.start,
2205                                       resource_size(&adev->res));
2206        if (pl022->virtbase == NULL) {
2207                status = -ENOMEM;
2208                goto err_no_ioremap;
2209        }
2210        dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2211                &adev->res.start, pl022->virtbase);
2212
2213        pl022->clk = devm_clk_get(&adev->dev, NULL);
2214        if (IS_ERR(pl022->clk)) {
2215                status = PTR_ERR(pl022->clk);
2216                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2217                goto err_no_clk;
2218        }
2219
2220        status = clk_prepare_enable(pl022->clk);
2221        if (status) {
2222                dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2223                goto err_no_clk_en;
2224        }
2225
2226        /* Initialize transfer pump */
2227        tasklet_init(&pl022->pump_transfers, pump_transfers,
2228                     (unsigned long)pl022);
2229
2230        /* Disable SSP */
2231        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2232               SSP_CR1(pl022->virtbase));
2233        load_ssp_default_config(pl022);
2234
2235        status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2236                                  0, "pl022", pl022);
2237        if (status < 0) {
2238                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2239                goto err_no_irq;
2240        }
2241
2242        /* Get DMA channels, try autoconfiguration first */
2243        status = pl022_dma_autoprobe(pl022);
2244        if (status == -EPROBE_DEFER) {
2245                dev_dbg(dev, "deferring probe to get DMA channel\n");
2246                goto err_no_irq;
2247        }
2248
2249        /* If that failed, use channels from platform_info */
2250        if (status == 0)
2251                platform_info->enable_dma = 1;
2252        else if (platform_info->enable_dma) {
2253                status = pl022_dma_probe(pl022);
2254                if (status != 0)
2255                        platform_info->enable_dma = 0;
2256        }
2257
2258        /* Register with the SPI framework */
2259        amba_set_drvdata(adev, pl022);
2260        status = devm_spi_register_master(&adev->dev, master);
2261        if (status != 0) {
2262                dev_err(&adev->dev,
2263                        "probe - problem registering spi master\n");
2264                goto err_spi_register;
2265        }
2266        dev_dbg(dev, "probe succeeded\n");
2267
2268        /* let runtime pm put suspend */
2269        if (platform_info->autosuspend_delay > 0) {
2270                dev_info(&adev->dev,
2271                        "will use autosuspend for runtime pm, delay %dms\n",
2272                        platform_info->autosuspend_delay);
2273                pm_runtime_set_autosuspend_delay(dev,
2274                        platform_info->autosuspend_delay);
2275                pm_runtime_use_autosuspend(dev);
2276        }
2277        pm_runtime_put(dev);
2278
2279        return 0;
2280
2281 err_spi_register:
2282        if (platform_info->enable_dma)
2283                pl022_dma_remove(pl022);
2284 err_no_irq:
2285        clk_disable_unprepare(pl022->clk);
2286 err_no_clk_en:
2287 err_no_clk:
2288 err_no_ioremap:
2289        amba_release_regions(adev);
2290 err_no_ioregion:
2291 err_no_gpio:
2292 err_no_mem:
2293        spi_master_put(master);
2294        return status;
2295}
2296
2297static int
2298pl022_remove(struct amba_device *adev)
2299{
2300        struct pl022 *pl022 = amba_get_drvdata(adev);
2301
2302        if (!pl022)
2303                return 0;
2304
2305        /*
2306         * undo pm_runtime_put() in probe.  I assume that we're not
2307         * accessing the primecell here.
2308         */
2309        pm_runtime_get_noresume(&adev->dev);
2310
2311        load_ssp_default_config(pl022);
2312        if (pl022->master_info->enable_dma)
2313                pl022_dma_remove(pl022);
2314
2315        clk_disable_unprepare(pl022->clk);
2316        amba_release_regions(adev);
2317        tasklet_disable(&pl022->pump_transfers);
2318        return 0;
2319}
2320
2321#ifdef CONFIG_PM_SLEEP
2322static int pl022_suspend(struct device *dev)
2323{
2324        struct pl022 *pl022 = dev_get_drvdata(dev);
2325        int ret;
2326
2327        ret = spi_master_suspend(pl022->master);
2328        if (ret) {
2329                dev_warn(dev, "cannot suspend master\n");
2330                return ret;
2331        }
2332
2333        ret = pm_runtime_force_suspend(dev);
2334        if (ret) {
2335                spi_master_resume(pl022->master);
2336                return ret;
2337        }
2338
2339        pinctrl_pm_select_sleep_state(dev);
2340
2341        dev_dbg(dev, "suspended\n");
2342        return 0;
2343}
2344
2345static int pl022_resume(struct device *dev)
2346{
2347        struct pl022 *pl022 = dev_get_drvdata(dev);
2348        int ret;
2349
2350        ret = pm_runtime_force_resume(dev);
2351        if (ret)
2352                dev_err(dev, "problem resuming\n");
2353
2354        /* Start the queue running */
2355        ret = spi_master_resume(pl022->master);
2356        if (ret)
2357                dev_err(dev, "problem starting queue (%d)\n", ret);
2358        else
2359                dev_dbg(dev, "resumed\n");
2360
2361        return ret;
2362}
2363#endif
2364
2365#ifdef CONFIG_PM
2366static int pl022_runtime_suspend(struct device *dev)
2367{
2368        struct pl022 *pl022 = dev_get_drvdata(dev);
2369
2370        clk_disable_unprepare(pl022->clk);
2371        pinctrl_pm_select_idle_state(dev);
2372
2373        return 0;
2374}
2375
2376static int pl022_runtime_resume(struct device *dev)
2377{
2378        struct pl022 *pl022 = dev_get_drvdata(dev);
2379
2380        pinctrl_pm_select_default_state(dev);
2381        clk_prepare_enable(pl022->clk);
2382
2383        return 0;
2384}
2385#endif
2386
2387static const struct dev_pm_ops pl022_dev_pm_ops = {
2388        SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2389        SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2390};
2391
2392static struct vendor_data vendor_arm = {
2393        .fifodepth = 8,
2394        .max_bpw = 16,
2395        .unidir = false,
2396        .extended_cr = false,
2397        .pl023 = false,
2398        .loopback = true,
2399        .internal_cs_ctrl = false,
2400};
2401
2402static struct vendor_data vendor_st = {
2403        .fifodepth = 32,
2404        .max_bpw = 32,
2405        .unidir = false,
2406        .extended_cr = true,
2407        .pl023 = false,
2408        .loopback = true,
2409        .internal_cs_ctrl = false,
2410};
2411
2412static struct vendor_data vendor_st_pl023 = {
2413        .fifodepth = 32,
2414        .max_bpw = 32,
2415        .unidir = false,
2416        .extended_cr = true,
2417        .pl023 = true,
2418        .loopback = false,
2419        .internal_cs_ctrl = false,
2420};
2421
2422static struct vendor_data vendor_lsi = {
2423        .fifodepth = 8,
2424        .max_bpw = 16,
2425        .unidir = false,
2426        .extended_cr = false,
2427        .pl023 = false,
2428        .loopback = true,
2429        .internal_cs_ctrl = true,
2430};
2431
2432static struct amba_id pl022_ids[] = {
2433        {
2434                /*
2435                 * ARM PL022 variant, this has a 16bit wide
2436                 * and 8 locations deep TX/RX FIFO
2437                 */
2438                .id     = 0x00041022,
2439                .mask   = 0x000fffff,
2440                .data   = &vendor_arm,
2441        },
2442        {
2443                /*
2444                 * ST Micro derivative, this has 32bit wide
2445                 * and 32 locations deep TX/RX FIFO
2446                 */
2447                .id     = 0x01080022,
2448                .mask   = 0xffffffff,
2449                .data   = &vendor_st,
2450        },
2451        {
2452                /*
2453                 * ST-Ericsson derivative "PL023" (this is not
2454                 * an official ARM number), this is a PL022 SSP block
2455                 * stripped to SPI mode only, it has 32bit wide
2456                 * and 32 locations deep TX/RX FIFO but no extended
2457                 * CR0/CR1 register
2458                 */
2459                .id     = 0x00080023,
2460                .mask   = 0xffffffff,
2461                .data   = &vendor_st_pl023,
2462        },
2463        {
2464                /*
2465                 * PL022 variant that has a chip select control register whih
2466                 * allows control of 5 output signals nCS[0:4].
2467                 */
2468                .id     = 0x000b6022,
2469                .mask   = 0x000fffff,
2470                .data   = &vendor_lsi,
2471        },
2472        { 0, 0 },
2473};
2474
2475MODULE_DEVICE_TABLE(amba, pl022_ids);
2476
2477static struct amba_driver pl022_driver = {
2478        .drv = {
2479                .name   = "ssp-pl022",
2480                .pm     = &pl022_dev_pm_ops,
2481        },
2482        .id_table       = pl022_ids,
2483        .probe          = pl022_probe,
2484        .remove         = pl022_remove,
2485};
2486
2487static int __init pl022_init(void)
2488{
2489        return amba_driver_register(&pl022_driver);
2490}
2491subsys_initcall(pl022_init);
2492
2493static void __exit pl022_exit(void)
2494{
2495        amba_driver_unregister(&pl022_driver);
2496}
2497module_exit(pl022_exit);
2498
2499MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2500MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2501MODULE_LICENSE("GPL");
2502