linux/drivers/usb/dwc2/core.h
<<
>>
Prefs
   1/*
   2 * core.h - DesignWare HS OTG Controller common declarations
   3 *
   4 * Copyright (C) 2004-2013 Synopsys, Inc.
   5 *
   6 * Redistribution and use in source and binary forms, with or without
   7 * modification, are permitted provided that the following conditions
   8 * are met:
   9 * 1. Redistributions of source code must retain the above copyright
  10 *    notice, this list of conditions, and the following disclaimer,
  11 *    without modification.
  12 * 2. Redistributions in binary form must reproduce the above copyright
  13 *    notice, this list of conditions and the following disclaimer in the
  14 *    documentation and/or other materials provided with the distribution.
  15 * 3. The names of the above-listed copyright holders may not be used
  16 *    to endorse or promote products derived from this software without
  17 *    specific prior written permission.
  18 *
  19 * ALTERNATIVELY, this software may be distributed under the terms of the
  20 * GNU General Public License ("GPL") as published by the Free Software
  21 * Foundation; either version 2 of the License, or (at your option) any
  22 * later version.
  23 *
  24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
  25 * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
  26 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
  28 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  29 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  30 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  31 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  32 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  33 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  34 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35 */
  36
  37#ifndef __DWC2_CORE_H__
  38#define __DWC2_CORE_H__
  39
  40#include <linux/phy/phy.h>
  41#include <linux/regulator/consumer.h>
  42#include <linux/usb/gadget.h>
  43#include <linux/usb/otg.h>
  44#include <linux/usb/phy.h>
  45#include "hw.h"
  46
  47/*
  48 * Suggested defines for tracers:
  49 * - no_printk:    Disable tracing
  50 * - pr_info:      Print this info to the console
  51 * - trace_printk: Print this info to trace buffer (good for verbose logging)
  52 */
  53
  54#define DWC2_TRACE_SCHEDULER            no_printk
  55#define DWC2_TRACE_SCHEDULER_VB         no_printk
  56
  57/* Detailed scheduler tracing, but won't overwhelm console */
  58#define dwc2_sch_dbg(hsotg, fmt, ...)                                   \
  59        DWC2_TRACE_SCHEDULER(pr_fmt("%s: SCH: " fmt),                   \
  60                             dev_name(hsotg->dev), ##__VA_ARGS__)
  61
  62/* Verbose scheduler tracing */
  63#define dwc2_sch_vdbg(hsotg, fmt, ...)                                  \
  64        DWC2_TRACE_SCHEDULER_VB(pr_fmt("%s: SCH: " fmt),                \
  65                                dev_name(hsotg->dev), ##__VA_ARGS__)
  66
  67#ifdef CONFIG_MIPS
  68/*
  69 * There are some MIPS machines that can run in either big-endian
  70 * or little-endian mode and that use the dwc2 register without
  71 * a byteswap in both ways.
  72 * Unlike other architectures, MIPS apparently does not require a
  73 * barrier before the __raw_writel() to synchronize with DMA but does
  74 * require the barrier after the __raw_writel() to serialize a set of
  75 * writes. This set of operations was added specifically for MIPS and
  76 * should only be used there.
  77 */
  78static inline u32 dwc2_readl(const void __iomem *addr)
  79{
  80        u32 value = __raw_readl(addr);
  81
  82        /* In order to preserve endianness __raw_* operation is used. Therefore
  83         * a barrier is needed to ensure IO access is not re-ordered across
  84         * reads or writes
  85         */
  86        mb();
  87        return value;
  88}
  89
  90static inline void dwc2_writel(u32 value, void __iomem *addr)
  91{
  92        __raw_writel(value, addr);
  93
  94        /*
  95         * In order to preserve endianness __raw_* operation is used. Therefore
  96         * a barrier is needed to ensure IO access is not re-ordered across
  97         * reads or writes
  98         */
  99        mb();
 100#ifdef DWC2_LOG_WRITES
 101        pr_info("INFO:: wrote %08x to %p\n", value, addr);
 102#endif
 103}
 104#else
 105/* Normal architectures just use readl/write */
 106static inline u32 dwc2_readl(const void __iomem *addr)
 107{
 108        return readl(addr);
 109}
 110
 111static inline void dwc2_writel(u32 value, void __iomem *addr)
 112{
 113        writel(value, addr);
 114
 115#ifdef DWC2_LOG_WRITES
 116        pr_info("info:: wrote %08x to %p\n", value, addr);
 117#endif
 118}
 119#endif
 120
 121/* Maximum number of Endpoints/HostChannels */
 122#define MAX_EPS_CHANNELS        16
 123
 124/* dwc2-hsotg declarations */
 125static const char * const dwc2_hsotg_supply_names[] = {
 126        "vusb_d",               /* digital USB supply, 1.2V */
 127        "vusb_a",               /* analog USB supply, 1.1V */
 128};
 129
 130/*
 131 * EP0_MPS_LIMIT
 132 *
 133 * Unfortunately there seems to be a limit of the amount of data that can
 134 * be transferred by IN transactions on EP0. This is either 127 bytes or 3
 135 * packets (which practically means 1 packet and 63 bytes of data) when the
 136 * MPS is set to 64.
 137 *
 138 * This means if we are wanting to move >127 bytes of data, we need to
 139 * split the transactions up, but just doing one packet at a time does
 140 * not work (this may be an implicit DATA0 PID on first packet of the
 141 * transaction) and doing 2 packets is outside the controller's limits.
 142 *
 143 * If we try to lower the MPS size for EP0, then no transfers work properly
 144 * for EP0, and the system will fail basic enumeration. As no cause for this
 145 * has currently been found, we cannot support any large IN transfers for
 146 * EP0.
 147 */
 148#define EP0_MPS_LIMIT   64
 149
 150struct dwc2_hsotg;
 151struct dwc2_hsotg_req;
 152
 153/**
 154 * struct dwc2_hsotg_ep - driver endpoint definition.
 155 * @ep: The gadget layer representation of the endpoint.
 156 * @name: The driver generated name for the endpoint.
 157 * @queue: Queue of requests for this endpoint.
 158 * @parent: Reference back to the parent device structure.
 159 * @req: The current request that the endpoint is processing. This is
 160 *       used to indicate an request has been loaded onto the endpoint
 161 *       and has yet to be completed (maybe due to data move, or simply
 162 *       awaiting an ack from the core all the data has been completed).
 163 * @debugfs: File entry for debugfs file for this endpoint.
 164 * @lock: State lock to protect contents of endpoint.
 165 * @dir_in: Set to true if this endpoint is of the IN direction, which
 166 *          means that it is sending data to the Host.
 167 * @index: The index for the endpoint registers.
 168 * @mc: Multi Count - number of transactions per microframe
 169 * @interval - Interval for periodic endpoints, in frames or microframes.
 170 * @name: The name array passed to the USB core.
 171 * @halted: Set if the endpoint has been halted.
 172 * @periodic: Set if this is a periodic ep, such as Interrupt
 173 * @isochronous: Set if this is a isochronous ep
 174 * @send_zlp: Set if we need to send a zero-length packet.
 175 * @total_data: The total number of data bytes done.
 176 * @fifo_size: The size of the FIFO (for periodic IN endpoints)
 177 * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
 178 * @last_load: The offset of data for the last start of request.
 179 * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
 180 * @target_frame: Targeted frame num to setup next ISOC transfer
 181 * @frame_overrun: Indicates SOF number overrun in DSTS
 182 *
 183 * This is the driver's state for each registered enpoint, allowing it
 184 * to keep track of transactions that need doing. Each endpoint has a
 185 * lock to protect the state, to try and avoid using an overall lock
 186 * for the host controller as much as possible.
 187 *
 188 * For periodic IN endpoints, we have fifo_size and fifo_load to try
 189 * and keep track of the amount of data in the periodic FIFO for each
 190 * of these as we don't have a status register that tells us how much
 191 * is in each of them. (note, this may actually be useless information
 192 * as in shared-fifo mode periodic in acts like a single-frame packet
 193 * buffer than a fifo)
 194 */
 195struct dwc2_hsotg_ep {
 196        struct usb_ep           ep;
 197        struct list_head        queue;
 198        struct dwc2_hsotg       *parent;
 199        struct dwc2_hsotg_req    *req;
 200        struct dentry           *debugfs;
 201
 202        unsigned long           total_data;
 203        unsigned int            size_loaded;
 204        unsigned int            last_load;
 205        unsigned int            fifo_load;
 206        unsigned short          fifo_size;
 207        unsigned short          fifo_index;
 208
 209        unsigned char           dir_in;
 210        unsigned char           index;
 211        unsigned char           mc;
 212        unsigned char           interval;
 213
 214        unsigned int            halted:1;
 215        unsigned int            periodic:1;
 216        unsigned int            isochronous:1;
 217        unsigned int            send_zlp:1;
 218        unsigned int            target_frame;
 219#define TARGET_FRAME_INITIAL   0xFFFFFFFF
 220        bool                    frame_overrun;
 221
 222        char                    name[10];
 223};
 224
 225/**
 226 * struct dwc2_hsotg_req - data transfer request
 227 * @req: The USB gadget request
 228 * @queue: The list of requests for the endpoint this is queued for.
 229 * @saved_req_buf: variable to save req.buf when bounce buffers are used.
 230 */
 231struct dwc2_hsotg_req {
 232        struct usb_request      req;
 233        struct list_head        queue;
 234        void *saved_req_buf;
 235};
 236
 237#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 238#define call_gadget(_hs, _entry) \
 239do { \
 240        if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
 241                (_hs)->driver && (_hs)->driver->_entry) { \
 242                spin_unlock(&_hs->lock); \
 243                (_hs)->driver->_entry(&(_hs)->gadget); \
 244                spin_lock(&_hs->lock); \
 245        } \
 246} while (0)
 247#else
 248#define call_gadget(_hs, _entry)        do {} while (0)
 249#endif
 250
 251struct dwc2_hsotg;
 252struct dwc2_host_chan;
 253
 254/* Device States */
 255enum dwc2_lx_state {
 256        DWC2_L0,        /* On state */
 257        DWC2_L1,        /* LPM sleep state */
 258        DWC2_L2,        /* USB suspend state */
 259        DWC2_L3,        /* Off state */
 260};
 261
 262/*
 263 * Gadget periodic tx fifo sizes as used by legacy driver
 264 * EP0 is not included
 265 */
 266#define DWC2_G_P_LEGACY_TX_FIFO_SIZE {256, 256, 256, 256, 768, 768, 768, \
 267                                           768, 0, 0, 0, 0, 0, 0, 0}
 268
 269/* Gadget ep0 states */
 270enum dwc2_ep0_state {
 271        DWC2_EP0_SETUP,
 272        DWC2_EP0_DATA_IN,
 273        DWC2_EP0_DATA_OUT,
 274        DWC2_EP0_STATUS_IN,
 275        DWC2_EP0_STATUS_OUT,
 276};
 277
 278/**
 279 * struct dwc2_core_params - Parameters for configuring the core
 280 *
 281 * @otg_cap:            Specifies the OTG capabilities.
 282 *                       0 - HNP and SRP capable
 283 *                       1 - SRP Only capable
 284 *                       2 - No HNP/SRP capable (always available)
 285 *                      Defaults to best available option (0, 1, then 2)
 286 * @otg_ver:            OTG version supported
 287 *                       0 - 1.3 (default)
 288 *                       1 - 2.0
 289 * @dma_enable:         Specifies whether to use slave or DMA mode for accessing
 290 *                      the data FIFOs. The driver will automatically detect the
 291 *                      value for this parameter if none is specified.
 292 *                       0 - Slave (always available)
 293 *                       1 - DMA (default, if available)
 294 * @dma_desc_enable:    When DMA mode is enabled, specifies whether to use
 295 *                      address DMA mode or descriptor DMA mode for accessing
 296 *                      the data FIFOs. The driver will automatically detect the
 297 *                      value for this if none is specified.
 298 *                       0 - Address DMA
 299 *                       1 - Descriptor DMA (default, if available)
 300 * @dma_desc_fs_enable: When DMA mode is enabled, specifies whether to use
 301 *                      address DMA mode or descriptor DMA mode for accessing
 302 *                      the data FIFOs in Full Speed mode only. The driver
 303 *                      will automatically detect the value for this if none is
 304 *                      specified.
 305 *                       0 - Address DMA
 306 *                       1 - Descriptor DMA in FS (default, if available)
 307 * @speed:              Specifies the maximum speed of operation in host and
 308 *                      device mode. The actual speed depends on the speed of
 309 *                      the attached device and the value of phy_type.
 310 *                       0 - High Speed
 311 *                           (default when phy_type is UTMI+ or ULPI)
 312 *                       1 - Full Speed
 313 *                           (default when phy_type is Full Speed)
 314 * @enable_dynamic_fifo: 0 - Use coreConsultant-specified FIFO size parameters
 315 *                       1 - Allow dynamic FIFO sizing (default, if available)
 316 * @en_multiple_tx_fifo: Specifies whether dedicated per-endpoint transmit FIFOs
 317 *                      are enabled
 318 * @host_rx_fifo_size:  Number of 4-byte words in the Rx FIFO in host mode when
 319 *                      dynamic FIFO sizing is enabled
 320 *                       16 to 32768
 321 *                      Actual maximum value is autodetected and also
 322 *                      the default.
 323 * @host_nperio_tx_fifo_size: Number of 4-byte words in the non-periodic Tx FIFO
 324 *                      in host mode when dynamic FIFO sizing is enabled
 325 *                       16 to 32768
 326 *                      Actual maximum value is autodetected and also
 327 *                      the default.
 328 * @host_perio_tx_fifo_size: Number of 4-byte words in the periodic Tx FIFO in
 329 *                      host mode when dynamic FIFO sizing is enabled
 330 *                       16 to 32768
 331 *                      Actual maximum value is autodetected and also
 332 *                      the default.
 333 * @max_transfer_size:  The maximum transfer size supported, in bytes
 334 *                       2047 to 65,535
 335 *                      Actual maximum value is autodetected and also
 336 *                      the default.
 337 * @max_packet_count:   The maximum number of packets in a transfer
 338 *                       15 to 511
 339 *                      Actual maximum value is autodetected and also
 340 *                      the default.
 341 * @host_channels:      The number of host channel registers to use
 342 *                       1 to 16
 343 *                      Actual maximum value is autodetected and also
 344 *                      the default.
 345 * @phy_type:           Specifies the type of PHY interface to use. By default,
 346 *                      the driver will automatically detect the phy_type.
 347 *                       0 - Full Speed Phy
 348 *                       1 - UTMI+ Phy
 349 *                       2 - ULPI Phy
 350 *                      Defaults to best available option (2, 1, then 0)
 351 * @phy_utmi_width:     Specifies the UTMI+ Data Width (in bits). This parameter
 352 *                      is applicable for a phy_type of UTMI+ or ULPI. (For a
 353 *                      ULPI phy_type, this parameter indicates the data width
 354 *                      between the MAC and the ULPI Wrapper.) Also, this
 355 *                      parameter is applicable only if the OTG_HSPHY_WIDTH cC
 356 *                      parameter was set to "8 and 16 bits", meaning that the
 357 *                      core has been configured to work at either data path
 358 *                      width.
 359 *                       8 or 16 (default 16 if available)
 360 * @phy_ulpi_ddr:       Specifies whether the ULPI operates at double or single
 361 *                      data rate. This parameter is only applicable if phy_type
 362 *                      is ULPI.
 363 *                       0 - single data rate ULPI interface with 8 bit wide
 364 *                           data bus (default)
 365 *                       1 - double data rate ULPI interface with 4 bit wide
 366 *                           data bus
 367 * @phy_ulpi_ext_vbus:  For a ULPI phy, specifies whether to use the internal or
 368 *                      external supply to drive the VBus
 369 *                       0 - Internal supply (default)
 370 *                       1 - External supply
 371 * @i2c_enable:         Specifies whether to use the I2Cinterface for a full
 372 *                      speed PHY. This parameter is only applicable if phy_type
 373 *                      is FS.
 374 *                       0 - No (default)
 375 *                       1 - Yes
 376 * @ulpi_fs_ls:         Make ULPI phy operate in FS/LS mode only
 377 *                       0 - No (default)
 378 *                       1 - Yes
 379 * @host_support_fs_ls_low_power: Specifies whether low power mode is supported
 380 *                      when attached to a Full Speed or Low Speed device in
 381 *                      host mode.
 382 *                       0 - Don't support low power mode (default)
 383 *                       1 - Support low power mode
 384 * @host_ls_low_power_phy_clk: Specifies the PHY clock rate in low power mode
 385 *                      when connected to a Low Speed device in host
 386 *                      mode. This parameter is applicable only if
 387 *                      host_support_fs_ls_low_power is enabled.
 388 *                       0 - 48 MHz
 389 *                           (default when phy_type is UTMI+ or ULPI)
 390 *                       1 - 6 MHz
 391 *                           (default when phy_type is Full Speed)
 392 * @ts_dline:           Enable Term Select Dline pulsing
 393 *                       0 - No (default)
 394 *                       1 - Yes
 395 * @reload_ctl:         Allow dynamic reloading of HFIR register during runtime
 396 *                       0 - No (default for core < 2.92a)
 397 *                       1 - Yes (default for core >= 2.92a)
 398 * @ahbcfg:             This field allows the default value of the GAHBCFG
 399 *                      register to be overridden
 400 *                       -1         - GAHBCFG value will be set to 0x06
 401 *                                    (INCR4, default)
 402 *                       all others - GAHBCFG value will be overridden with
 403 *                                    this value
 404 *                      Not all bits can be controlled like this, the
 405 *                      bits defined by GAHBCFG_CTRL_MASK are controlled
 406 *                      by the driver and are ignored in this
 407 *                      configuration value.
 408 * @uframe_sched:       True to enable the microframe scheduler
 409 * @external_id_pin_ctl: Specifies whether ID pin is handled externally.
 410 *                      Disable CONIDSTSCHNG controller interrupt in such
 411 *                      case.
 412 *                      0 - No (default)
 413 *                      1 - Yes
 414 * @hibernation:        Specifies whether the controller support hibernation.
 415 *                      If hibernation is enabled, the controller will enter
 416 *                      hibernation in both peripheral and host mode when
 417 *                      needed.
 418 *                      0 - No (default)
 419 *                      1 - Yes
 420 *
 421 * The following parameters may be specified when starting the module. These
 422 * parameters define how the DWC_otg controller should be configured. A
 423 * value of -1 (or any other out of range value) for any parameter means
 424 * to read the value from hardware (if possible) or use the builtin
 425 * default described above.
 426 */
 427struct dwc2_core_params {
 428        /*
 429         * Don't add any non-int members here, this will break
 430         * dwc2_set_all_params!
 431         */
 432        int otg_cap;
 433        int otg_ver;
 434        int dma_enable;
 435        int dma_desc_enable;
 436        int dma_desc_fs_enable;
 437        int speed;
 438        int enable_dynamic_fifo;
 439        int en_multiple_tx_fifo;
 440        int host_rx_fifo_size;
 441        int host_nperio_tx_fifo_size;
 442        int host_perio_tx_fifo_size;
 443        int max_transfer_size;
 444        int max_packet_count;
 445        int host_channels;
 446        int phy_type;
 447        int phy_utmi_width;
 448        int phy_ulpi_ddr;
 449        int phy_ulpi_ext_vbus;
 450        int i2c_enable;
 451        int ulpi_fs_ls;
 452        int host_support_fs_ls_low_power;
 453        int host_ls_low_power_phy_clk;
 454        int ts_dline;
 455        int reload_ctl;
 456        int ahbcfg;
 457        int uframe_sched;
 458        int external_id_pin_ctl;
 459        int hibernation;
 460};
 461
 462/**
 463 * struct dwc2_hw_params - Autodetected parameters.
 464 *
 465 * These parameters are the various parameters read from hardware
 466 * registers during initialization. They typically contain the best
 467 * supported or maximum value that can be configured in the
 468 * corresponding dwc2_core_params value.
 469 *
 470 * The values that are not in dwc2_core_params are documented below.
 471 *
 472 * @op_mode             Mode of Operation
 473 *                       0 - HNP- and SRP-Capable OTG (Host & Device)
 474 *                       1 - SRP-Capable OTG (Host & Device)
 475 *                       2 - Non-HNP and Non-SRP Capable OTG (Host & Device)
 476 *                       3 - SRP-Capable Device
 477 *                       4 - Non-OTG Device
 478 *                       5 - SRP-Capable Host
 479 *                       6 - Non-OTG Host
 480 * @arch                Architecture
 481 *                       0 - Slave only
 482 *                       1 - External DMA
 483 *                       2 - Internal DMA
 484 * @power_optimized     Are power optimizations enabled?
 485 * @num_dev_ep          Number of device endpoints available
 486 * @num_dev_perio_in_ep Number of device periodic IN endpoints
 487 *                      available
 488 * @dev_token_q_depth   Device Mode IN Token Sequence Learning Queue
 489 *                      Depth
 490 *                       0 to 30
 491 * @host_perio_tx_q_depth
 492 *                      Host Mode Periodic Request Queue Depth
 493 *                       2, 4 or 8
 494 * @nperio_tx_q_depth
 495 *                      Non-Periodic Request Queue Depth
 496 *                       2, 4 or 8
 497 * @hs_phy_type         High-speed PHY interface type
 498 *                       0 - High-speed interface not supported
 499 *                       1 - UTMI+
 500 *                       2 - ULPI
 501 *                       3 - UTMI+ and ULPI
 502 * @fs_phy_type         Full-speed PHY interface type
 503 *                       0 - Full speed interface not supported
 504 *                       1 - Dedicated full speed interface
 505 *                       2 - FS pins shared with UTMI+ pins
 506 *                       3 - FS pins shared with ULPI pins
 507 * @total_fifo_size:    Total internal RAM for FIFOs (bytes)
 508 * @utmi_phy_data_width UTMI+ PHY data width
 509 *                       0 - 8 bits
 510 *                       1 - 16 bits
 511 *                       2 - 8 or 16 bits
 512 * @snpsid:             Value from SNPSID register
 513 * @dev_ep_dirs:        Direction of device endpoints (GHWCFG1)
 514 */
 515struct dwc2_hw_params {
 516        unsigned op_mode:3;
 517        unsigned arch:2;
 518        unsigned dma_desc_enable:1;
 519        unsigned dma_desc_fs_enable:1;
 520        unsigned enable_dynamic_fifo:1;
 521        unsigned en_multiple_tx_fifo:1;
 522        unsigned host_rx_fifo_size:16;
 523        unsigned host_nperio_tx_fifo_size:16;
 524        unsigned dev_nperio_tx_fifo_size:16;
 525        unsigned host_perio_tx_fifo_size:16;
 526        unsigned nperio_tx_q_depth:3;
 527        unsigned host_perio_tx_q_depth:3;
 528        unsigned dev_token_q_depth:5;
 529        unsigned max_transfer_size:26;
 530        unsigned max_packet_count:11;
 531        unsigned host_channels:5;
 532        unsigned hs_phy_type:2;
 533        unsigned fs_phy_type:2;
 534        unsigned i2c_enable:1;
 535        unsigned num_dev_ep:4;
 536        unsigned num_dev_perio_in_ep:4;
 537        unsigned total_fifo_size:16;
 538        unsigned power_optimized:1;
 539        unsigned utmi_phy_data_width:2;
 540        u32 snpsid;
 541        u32 dev_ep_dirs;
 542};
 543
 544/* Size of control and EP0 buffers */
 545#define DWC2_CTRL_BUFF_SIZE 8
 546
 547/**
 548 * struct dwc2_gregs_backup - Holds global registers state before entering partial
 549 * power down
 550 * @gotgctl:            Backup of GOTGCTL register
 551 * @gintmsk:            Backup of GINTMSK register
 552 * @gahbcfg:            Backup of GAHBCFG register
 553 * @gusbcfg:            Backup of GUSBCFG register
 554 * @grxfsiz:            Backup of GRXFSIZ register
 555 * @gnptxfsiz:          Backup of GNPTXFSIZ register
 556 * @gi2cctl:            Backup of GI2CCTL register
 557 * @hptxfsiz:           Backup of HPTXFSIZ register
 558 * @gdfifocfg:          Backup of GDFIFOCFG register
 559 * @dtxfsiz:            Backup of DTXFSIZ registers for each endpoint
 560 * @gpwrdn:             Backup of GPWRDN register
 561 */
 562struct dwc2_gregs_backup {
 563        u32 gotgctl;
 564        u32 gintmsk;
 565        u32 gahbcfg;
 566        u32 gusbcfg;
 567        u32 grxfsiz;
 568        u32 gnptxfsiz;
 569        u32 gi2cctl;
 570        u32 hptxfsiz;
 571        u32 pcgcctl;
 572        u32 gdfifocfg;
 573        u32 dtxfsiz[MAX_EPS_CHANNELS];
 574        u32 gpwrdn;
 575        bool valid;
 576};
 577
 578/**
 579 * struct  dwc2_dregs_backup - Holds device registers state before entering partial
 580 * power down
 581 * @dcfg:               Backup of DCFG register
 582 * @dctl:               Backup of DCTL register
 583 * @daintmsk:           Backup of DAINTMSK register
 584 * @diepmsk:            Backup of DIEPMSK register
 585 * @doepmsk:            Backup of DOEPMSK register
 586 * @diepctl:            Backup of DIEPCTL register
 587 * @dieptsiz:           Backup of DIEPTSIZ register
 588 * @diepdma:            Backup of DIEPDMA register
 589 * @doepctl:            Backup of DOEPCTL register
 590 * @doeptsiz:           Backup of DOEPTSIZ register
 591 * @doepdma:            Backup of DOEPDMA register
 592 */
 593struct dwc2_dregs_backup {
 594        u32 dcfg;
 595        u32 dctl;
 596        u32 daintmsk;
 597        u32 diepmsk;
 598        u32 doepmsk;
 599        u32 diepctl[MAX_EPS_CHANNELS];
 600        u32 dieptsiz[MAX_EPS_CHANNELS];
 601        u32 diepdma[MAX_EPS_CHANNELS];
 602        u32 doepctl[MAX_EPS_CHANNELS];
 603        u32 doeptsiz[MAX_EPS_CHANNELS];
 604        u32 doepdma[MAX_EPS_CHANNELS];
 605        bool valid;
 606};
 607
 608/**
 609 * struct  dwc2_hregs_backup - Holds host registers state before entering partial
 610 * power down
 611 * @hcfg:               Backup of HCFG register
 612 * @haintmsk:           Backup of HAINTMSK register
 613 * @hcintmsk:           Backup of HCINTMSK register
 614 * @hptr0:              Backup of HPTR0 register
 615 * @hfir:               Backup of HFIR register
 616 */
 617struct dwc2_hregs_backup {
 618        u32 hcfg;
 619        u32 haintmsk;
 620        u32 hcintmsk[MAX_EPS_CHANNELS];
 621        u32 hprt0;
 622        u32 hfir;
 623        bool valid;
 624};
 625
 626/*
 627 * Constants related to high speed periodic scheduling
 628 *
 629 * We have a periodic schedule that is DWC2_HS_SCHEDULE_UFRAMES long.  From a
 630 * reservation point of view it's assumed that the schedule goes right back to
 631 * the beginning after the end of the schedule.
 632 *
 633 * What does that mean for scheduling things with a long interval?  It means
 634 * we'll reserve time for them in every possible microframe that they could
 635 * ever be scheduled in.  ...but we'll still only actually schedule them as
 636 * often as they were requested.
 637 *
 638 * We keep our schedule in a "bitmap" structure.  This simplifies having
 639 * to keep track of and merge intervals: we just let the bitmap code do most
 640 * of the heavy lifting.  In a way scheduling is much like memory allocation.
 641 *
 642 * We schedule 100us per uframe or 80% of 125us (the maximum amount you're
 643 * supposed to schedule for periodic transfers).  That's according to spec.
 644 *
 645 * Note that though we only schedule 80% of each microframe, the bitmap that we
 646 * keep the schedule in is tightly packed (AKA it doesn't have 100us worth of
 647 * space for each uFrame).
 648 *
 649 * Requirements:
 650 * - DWC2_HS_SCHEDULE_UFRAMES must even divide 0x4000 (HFNUM_MAX_FRNUM + 1)
 651 * - DWC2_HS_SCHEDULE_UFRAMES must be 8 times DWC2_LS_SCHEDULE_FRAMES (probably
 652 *   could be any multiple of 8 times DWC2_LS_SCHEDULE_FRAMES, but there might
 653 *   be bugs).  The 8 comes from the USB spec: number of microframes per frame.
 654 */
 655#define DWC2_US_PER_UFRAME              125
 656#define DWC2_HS_PERIODIC_US_PER_UFRAME  100
 657
 658#define DWC2_HS_SCHEDULE_UFRAMES        8
 659#define DWC2_HS_SCHEDULE_US             (DWC2_HS_SCHEDULE_UFRAMES * \
 660                                         DWC2_HS_PERIODIC_US_PER_UFRAME)
 661
 662/*
 663 * Constants related to low speed scheduling
 664 *
 665 * For high speed we schedule every 1us.  For low speed that's a bit overkill,
 666 * so we make up a unit called a "slice" that's worth 25us.  There are 40
 667 * slices in a full frame and we can schedule 36 of those (90%) for periodic
 668 * transfers.
 669 *
 670 * Our low speed schedule can be as short as 1 frame or could be longer.  When
 671 * we only schedule 1 frame it means that we'll need to reserve a time every
 672 * frame even for things that only transfer very rarely, so something that runs
 673 * every 2048 frames will get time reserved in every frame.  Our low speed
 674 * schedule can be longer and we'll be able to handle more overlap, but that
 675 * will come at increased memory cost and increased time to schedule.
 676 *
 677 * Note: one other advantage of a short low speed schedule is that if we mess
 678 * up and miss scheduling we can jump in and use any of the slots that we
 679 * happened to reserve.
 680 *
 681 * With 25 us per slice and 1 frame in the schedule, we only need 4 bytes for
 682 * the schedule.  There will be one schedule per TT.
 683 *
 684 * Requirements:
 685 * - DWC2_US_PER_SLICE must evenly divide DWC2_LS_PERIODIC_US_PER_FRAME.
 686 */
 687#define DWC2_US_PER_SLICE       25
 688#define DWC2_SLICES_PER_UFRAME  (DWC2_US_PER_UFRAME / DWC2_US_PER_SLICE)
 689
 690#define DWC2_ROUND_US_TO_SLICE(us) \
 691                                (DIV_ROUND_UP((us), DWC2_US_PER_SLICE) * \
 692                                 DWC2_US_PER_SLICE)
 693
 694#define DWC2_LS_PERIODIC_US_PER_FRAME \
 695                                900
 696#define DWC2_LS_PERIODIC_SLICES_PER_FRAME \
 697                                (DWC2_LS_PERIODIC_US_PER_FRAME / \
 698                                 DWC2_US_PER_SLICE)
 699
 700#define DWC2_LS_SCHEDULE_FRAMES 1
 701#define DWC2_LS_SCHEDULE_SLICES (DWC2_LS_SCHEDULE_FRAMES * \
 702                                 DWC2_LS_PERIODIC_SLICES_PER_FRAME)
 703
 704/**
 705 * struct dwc2_hsotg - Holds the state of the driver, including the non-periodic
 706 * and periodic schedules
 707 *
 708 * These are common for both host and peripheral modes:
 709 *
 710 * @dev:                The struct device pointer
 711 * @regs:               Pointer to controller regs
 712 * @hw_params:          Parameters that were autodetected from the
 713 *                      hardware registers
 714 * @core_params:        Parameters that define how the core should be configured
 715 * @op_state:           The operational State, during transitions (a_host=>
 716 *                      a_peripheral and b_device=>b_host) this may not match
 717 *                      the core, but allows the software to determine
 718 *                      transitions
 719 * @dr_mode:            Requested mode of operation, one of following:
 720 *                      - USB_DR_MODE_PERIPHERAL
 721 *                      - USB_DR_MODE_HOST
 722 *                      - USB_DR_MODE_OTG
 723 * @hcd_enabled         Host mode sub-driver initialization indicator.
 724 * @gadget_enabled      Peripheral mode sub-driver initialization indicator.
 725 * @ll_hw_enabled       Status of low-level hardware resources.
 726 * @phy:                The otg phy transceiver structure for phy control.
 727 * @uphy:               The otg phy transceiver structure for old USB phy control.
 728 * @plat:               The platform specific configuration data. This can be removed once
 729 *                      all SoCs support usb transceiver.
 730 * @supplies:           Definition of USB power supplies
 731 * @phyif:              PHY interface width
 732 * @lock:               Spinlock that protects all the driver data structures
 733 * @priv:               Stores a pointer to the struct usb_hcd
 734 * @queuing_high_bandwidth: True if multiple packets of a high-bandwidth
 735 *                      transfer are in process of being queued
 736 * @srp_success:        Stores status of SRP request in the case of a FS PHY
 737 *                      with an I2C interface
 738 * @wq_otg:             Workqueue object used for handling of some interrupts
 739 * @wf_otg:             Work object for handling Connector ID Status Change
 740 *                      interrupt
 741 * @wkp_timer:          Timer object for handling Wakeup Detected interrupt
 742 * @lx_state:           Lx state of connected device
 743 * @gregs_backup: Backup of global registers during suspend
 744 * @dregs_backup: Backup of device registers during suspend
 745 * @hregs_backup: Backup of host registers during suspend
 746 *
 747 * These are for host mode:
 748 *
 749 * @flags:              Flags for handling root port state changes
 750 * @non_periodic_sched_inactive: Inactive QHs in the non-periodic schedule.
 751 *                      Transfers associated with these QHs are not currently
 752 *                      assigned to a host channel.
 753 * @non_periodic_sched_active: Active QHs in the non-periodic schedule.
 754 *                      Transfers associated with these QHs are currently
 755 *                      assigned to a host channel.
 756 * @non_periodic_qh_ptr: Pointer to next QH to process in the active
 757 *                      non-periodic schedule
 758 * @periodic_sched_inactive: Inactive QHs in the periodic schedule. This is a
 759 *                      list of QHs for periodic transfers that are _not_
 760 *                      scheduled for the next frame. Each QH in the list has an
 761 *                      interval counter that determines when it needs to be
 762 *                      scheduled for execution. This scheduling mechanism
 763 *                      allows only a simple calculation for periodic bandwidth
 764 *                      used (i.e. must assume that all periodic transfers may
 765 *                      need to execute in the same frame). However, it greatly
 766 *                      simplifies scheduling and should be sufficient for the
 767 *                      vast majority of OTG hosts, which need to connect to a
 768 *                      small number of peripherals at one time. Items move from
 769 *                      this list to periodic_sched_ready when the QH interval
 770 *                      counter is 0 at SOF.
 771 * @periodic_sched_ready:  List of periodic QHs that are ready for execution in
 772 *                      the next frame, but have not yet been assigned to host
 773 *                      channels. Items move from this list to
 774 *                      periodic_sched_assigned as host channels become
 775 *                      available during the current frame.
 776 * @periodic_sched_assigned: List of periodic QHs to be executed in the next
 777 *                      frame that are assigned to host channels. Items move
 778 *                      from this list to periodic_sched_queued as the
 779 *                      transactions for the QH are queued to the DWC_otg
 780 *                      controller.
 781 * @periodic_sched_queued: List of periodic QHs that have been queued for
 782 *                      execution. Items move from this list to either
 783 *                      periodic_sched_inactive or periodic_sched_ready when the
 784 *                      channel associated with the transfer is released. If the
 785 *                      interval for the QH is 1, the item moves to
 786 *                      periodic_sched_ready because it must be rescheduled for
 787 *                      the next frame. Otherwise, the item moves to
 788 *                      periodic_sched_inactive.
 789 * @split_order:        List keeping track of channels doing splits, in order.
 790 * @periodic_usecs:     Total bandwidth claimed so far for periodic transfers.
 791 *                      This value is in microseconds per (micro)frame. The
 792 *                      assumption is that all periodic transfers may occur in
 793 *                      the same (micro)frame.
 794 * @hs_periodic_bitmap: Bitmap used by the microframe scheduler any time the
 795 *                      host is in high speed mode; low speed schedules are
 796 *                      stored elsewhere since we need one per TT.
 797 * @frame_number:       Frame number read from the core at SOF. The value ranges
 798 *                      from 0 to HFNUM_MAX_FRNUM.
 799 * @periodic_qh_count:  Count of periodic QHs, if using several eps. Used for
 800 *                      SOF enable/disable.
 801 * @free_hc_list:       Free host channels in the controller. This is a list of
 802 *                      struct dwc2_host_chan items.
 803 * @periodic_channels:  Number of host channels assigned to periodic transfers.
 804 *                      Currently assuming that there is a dedicated host
 805 *                      channel for each periodic transaction and at least one
 806 *                      host channel is available for non-periodic transactions.
 807 * @non_periodic_channels: Number of host channels assigned to non-periodic
 808 *                      transfers
 809 * @available_host_channels Number of host channels available for the microframe
 810 *                      scheduler to use
 811 * @hc_ptr_array:       Array of pointers to the host channel descriptors.
 812 *                      Allows accessing a host channel descriptor given the
 813 *                      host channel number. This is useful in interrupt
 814 *                      handlers.
 815 * @status_buf:         Buffer used for data received during the status phase of
 816 *                      a control transfer.
 817 * @status_buf_dma:     DMA address for status_buf
 818 * @start_work:         Delayed work for handling host A-cable connection
 819 * @reset_work:         Delayed work for handling a port reset
 820 * @otg_port:           OTG port number
 821 * @frame_list:         Frame list
 822 * @frame_list_dma:     Frame list DMA address
 823 * @frame_list_sz:      Frame list size
 824 * @desc_gen_cache:     Kmem cache for generic descriptors
 825 * @desc_hsisoc_cache:  Kmem cache for hs isochronous descriptors
 826 *
 827 * These are for peripheral mode:
 828 *
 829 * @driver:             USB gadget driver
 830 * @dedicated_fifos:    Set if the hardware has dedicated IN-EP fifos.
 831 * @num_of_eps:         Number of available EPs (excluding EP0)
 832 * @debug_root:         Root directrory for debugfs.
 833 * @debug_file:         Main status file for debugfs.
 834 * @debug_testmode:     Testmode status file for debugfs.
 835 * @debug_fifo:         FIFO status file for debugfs.
 836 * @ep0_reply:          Request used for ep0 reply.
 837 * @ep0_buff:           Buffer for EP0 reply data, if needed.
 838 * @ctrl_buff:          Buffer for EP0 control requests.
 839 * @ctrl_req:           Request for EP0 control packets.
 840 * @ep0_state:          EP0 control transfers state
 841 * @test_mode:          USB test mode requested by the host
 842 * @eps:                The endpoints being supplied to the gadget framework
 843 * @g_using_dma:          Indicate if dma usage is enabled
 844 * @g_rx_fifo_sz:         Contains rx fifo size value
 845 * @g_np_g_tx_fifo_sz:      Contains Non-Periodic tx fifo size value
 846 * @g_tx_fifo_sz:         Contains tx fifo size value per endpoints
 847 */
 848struct dwc2_hsotg {
 849        struct device *dev;
 850        void __iomem *regs;
 851        /** Params detected from hardware */
 852        struct dwc2_hw_params hw_params;
 853        /** Params to actually use */
 854        struct dwc2_core_params *core_params;
 855        enum usb_otg_state op_state;
 856        enum usb_dr_mode dr_mode;
 857        unsigned int hcd_enabled:1;
 858        unsigned int gadget_enabled:1;
 859        unsigned int ll_hw_enabled:1;
 860
 861        struct phy *phy;
 862        struct usb_phy *uphy;
 863        struct dwc2_hsotg_plat *plat;
 864        struct regulator_bulk_data supplies[ARRAY_SIZE(dwc2_hsotg_supply_names)];
 865        u32 phyif;
 866
 867        spinlock_t lock;
 868        void *priv;
 869        int     irq;
 870        struct clk *clk;
 871        struct reset_control *reset;
 872
 873        unsigned int queuing_high_bandwidth:1;
 874        unsigned int srp_success:1;
 875
 876        struct workqueue_struct *wq_otg;
 877        struct work_struct wf_otg;
 878        struct timer_list wkp_timer;
 879        enum dwc2_lx_state lx_state;
 880        struct dwc2_gregs_backup gr_backup;
 881        struct dwc2_dregs_backup dr_backup;
 882        struct dwc2_hregs_backup hr_backup;
 883
 884        struct dentry *debug_root;
 885        struct debugfs_regset32 *regset;
 886
 887        /* DWC OTG HW Release versions */
 888#define DWC2_CORE_REV_2_71a     0x4f54271a
 889#define DWC2_CORE_REV_2_90a     0x4f54290a
 890#define DWC2_CORE_REV_2_92a     0x4f54292a
 891#define DWC2_CORE_REV_2_94a     0x4f54294a
 892#define DWC2_CORE_REV_3_00a     0x4f54300a
 893
 894#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 895        union dwc2_hcd_internal_flags {
 896                u32 d32;
 897                struct {
 898                        unsigned port_connect_status_change:1;
 899                        unsigned port_connect_status:1;
 900                        unsigned port_reset_change:1;
 901                        unsigned port_enable_change:1;
 902                        unsigned port_suspend_change:1;
 903                        unsigned port_over_current_change:1;
 904                        unsigned port_l1_change:1;
 905                        unsigned reserved:25;
 906                } b;
 907        } flags;
 908
 909        struct list_head non_periodic_sched_inactive;
 910        struct list_head non_periodic_sched_active;
 911        struct list_head *non_periodic_qh_ptr;
 912        struct list_head periodic_sched_inactive;
 913        struct list_head periodic_sched_ready;
 914        struct list_head periodic_sched_assigned;
 915        struct list_head periodic_sched_queued;
 916        struct list_head split_order;
 917        u16 periodic_usecs;
 918        unsigned long hs_periodic_bitmap[
 919                DIV_ROUND_UP(DWC2_HS_SCHEDULE_US, BITS_PER_LONG)];
 920        u16 frame_number;
 921        u16 periodic_qh_count;
 922        bool bus_suspended;
 923        bool new_connection;
 924
 925        u16 last_frame_num;
 926
 927#ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
 928#define FRAME_NUM_ARRAY_SIZE 1000
 929        u16 *frame_num_array;
 930        u16 *last_frame_num_array;
 931        int frame_num_idx;
 932        int dumped_frame_num_array;
 933#endif
 934
 935        struct list_head free_hc_list;
 936        int periodic_channels;
 937        int non_periodic_channels;
 938        int available_host_channels;
 939        struct dwc2_host_chan *hc_ptr_array[MAX_EPS_CHANNELS];
 940        u8 *status_buf;
 941        dma_addr_t status_buf_dma;
 942#define DWC2_HCD_STATUS_BUF_SIZE 64
 943
 944        struct delayed_work start_work;
 945        struct delayed_work reset_work;
 946        u8 otg_port;
 947        u32 *frame_list;
 948        dma_addr_t frame_list_dma;
 949        u32 frame_list_sz;
 950        struct kmem_cache *desc_gen_cache;
 951        struct kmem_cache *desc_hsisoc_cache;
 952
 953#ifdef DEBUG
 954        u32 frrem_samples;
 955        u64 frrem_accum;
 956
 957        u32 hfnum_7_samples_a;
 958        u64 hfnum_7_frrem_accum_a;
 959        u32 hfnum_0_samples_a;
 960        u64 hfnum_0_frrem_accum_a;
 961        u32 hfnum_other_samples_a;
 962        u64 hfnum_other_frrem_accum_a;
 963
 964        u32 hfnum_7_samples_b;
 965        u64 hfnum_7_frrem_accum_b;
 966        u32 hfnum_0_samples_b;
 967        u64 hfnum_0_frrem_accum_b;
 968        u32 hfnum_other_samples_b;
 969        u64 hfnum_other_frrem_accum_b;
 970#endif
 971#endif /* CONFIG_USB_DWC2_HOST || CONFIG_USB_DWC2_DUAL_ROLE */
 972
 973#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
 974        /* Gadget structures */
 975        struct usb_gadget_driver *driver;
 976        int fifo_mem;
 977        unsigned int dedicated_fifos:1;
 978        unsigned char num_of_eps;
 979        u32 fifo_map;
 980
 981        struct usb_request *ep0_reply;
 982        struct usb_request *ctrl_req;
 983        void *ep0_buff;
 984        void *ctrl_buff;
 985        enum dwc2_ep0_state ep0_state;
 986        u8 test_mode;
 987
 988        struct usb_gadget gadget;
 989        unsigned int enabled:1;
 990        unsigned int connected:1;
 991        struct dwc2_hsotg_ep *eps_in[MAX_EPS_CHANNELS];
 992        struct dwc2_hsotg_ep *eps_out[MAX_EPS_CHANNELS];
 993        u32 g_using_dma;
 994        u32 g_rx_fifo_sz;
 995        u32 g_np_g_tx_fifo_sz;
 996        u32 g_tx_fifo_sz[MAX_EPS_CHANNELS];
 997#endif /* CONFIG_USB_DWC2_PERIPHERAL || CONFIG_USB_DWC2_DUAL_ROLE */
 998};
 999
1000/* Reasons for halting a host channel */
1001enum dwc2_halt_status {
1002        DWC2_HC_XFER_NO_HALT_STATUS,
1003        DWC2_HC_XFER_COMPLETE,
1004        DWC2_HC_XFER_URB_COMPLETE,
1005        DWC2_HC_XFER_ACK,
1006        DWC2_HC_XFER_NAK,
1007        DWC2_HC_XFER_NYET,
1008        DWC2_HC_XFER_STALL,
1009        DWC2_HC_XFER_XACT_ERR,
1010        DWC2_HC_XFER_FRAME_OVERRUN,
1011        DWC2_HC_XFER_BABBLE_ERR,
1012        DWC2_HC_XFER_DATA_TOGGLE_ERR,
1013        DWC2_HC_XFER_AHB_ERR,
1014        DWC2_HC_XFER_PERIODIC_INCOMPLETE,
1015        DWC2_HC_XFER_URB_DEQUEUE,
1016};
1017
1018/*
1019 * The following functions support initialization of the core driver component
1020 * and the DWC_otg controller
1021 */
1022extern int dwc2_core_reset(struct dwc2_hsotg *hsotg);
1023extern int dwc2_core_reset_and_force_dr_mode(struct dwc2_hsotg *hsotg);
1024extern int dwc2_enter_hibernation(struct dwc2_hsotg *hsotg);
1025extern int dwc2_exit_hibernation(struct dwc2_hsotg *hsotg, bool restore);
1026
1027void dwc2_force_dr_mode(struct dwc2_hsotg *hsotg);
1028
1029extern bool dwc2_is_controller_alive(struct dwc2_hsotg *hsotg);
1030
1031/*
1032 * Common core Functions.
1033 * The following functions support managing the DWC_otg controller in either
1034 * device or host mode.
1035 */
1036extern void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes);
1037extern void dwc2_flush_tx_fifo(struct dwc2_hsotg *hsotg, const int num);
1038extern void dwc2_flush_rx_fifo(struct dwc2_hsotg *hsotg);
1039
1040extern void dwc2_enable_global_interrupts(struct dwc2_hsotg *hcd);
1041extern void dwc2_disable_global_interrupts(struct dwc2_hsotg *hcd);
1042
1043/* This function should be called on every hardware interrupt. */
1044extern irqreturn_t dwc2_handle_common_intr(int irq, void *dev);
1045
1046/* OTG Core Parameters */
1047
1048/*
1049 * Specifies the OTG capabilities. The driver will automatically
1050 * detect the value for this parameter if none is specified.
1051 * 0 - HNP and SRP capable (default)
1052 * 1 - SRP Only capable
1053 * 2 - No HNP/SRP capable
1054 */
1055extern void dwc2_set_param_otg_cap(struct dwc2_hsotg *hsotg, int val);
1056#define DWC2_CAP_PARAM_HNP_SRP_CAPABLE          0
1057#define DWC2_CAP_PARAM_SRP_ONLY_CAPABLE         1
1058#define DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE       2
1059
1060/*
1061 * Specifies whether to use slave or DMA mode for accessing the data
1062 * FIFOs. The driver will automatically detect the value for this
1063 * parameter if none is specified.
1064 * 0 - Slave
1065 * 1 - DMA (default, if available)
1066 */
1067extern void dwc2_set_param_dma_enable(struct dwc2_hsotg *hsotg, int val);
1068
1069/*
1070 * When DMA mode is enabled specifies whether to use
1071 * address DMA or DMA Descritor mode for accessing the data
1072 * FIFOs in device mode. The driver will automatically detect
1073 * the value for this parameter if none is specified.
1074 * 0 - address DMA
1075 * 1 - DMA Descriptor(default, if available)
1076 */
1077extern void dwc2_set_param_dma_desc_enable(struct dwc2_hsotg *hsotg, int val);
1078
1079/*
1080 * When DMA mode is enabled specifies whether to use
1081 * address DMA or DMA Descritor mode with full speed devices
1082 * for accessing the data FIFOs in host mode.
1083 * 0 - address DMA
1084 * 1 - FS DMA Descriptor(default, if available)
1085 */
1086extern void dwc2_set_param_dma_desc_fs_enable(struct dwc2_hsotg *hsotg,
1087                                              int val);
1088
1089/*
1090 * Specifies the maximum speed of operation in host and device mode.
1091 * The actual speed depends on the speed of the attached device and
1092 * the value of phy_type. The actual speed depends on the speed of the
1093 * attached device.
1094 * 0 - High Speed (default)
1095 * 1 - Full Speed
1096 */
1097extern void dwc2_set_param_speed(struct dwc2_hsotg *hsotg, int val);
1098#define DWC2_SPEED_PARAM_HIGH   0
1099#define DWC2_SPEED_PARAM_FULL   1
1100
1101/*
1102 * Specifies whether low power mode is supported when attached
1103 * to a Full Speed or Low Speed device in host mode.
1104 *
1105 * 0 - Don't support low power mode (default)
1106 * 1 - Support low power mode
1107 */
1108extern void dwc2_set_param_host_support_fs_ls_low_power(
1109                struct dwc2_hsotg *hsotg, int val);
1110
1111/*
1112 * Specifies the PHY clock rate in low power mode when connected to a
1113 * Low Speed device in host mode. This parameter is applicable only if
1114 * HOST_SUPPORT_FS_LS_LOW_POWER is enabled. If PHY_TYPE is set to FS
1115 * then defaults to 6 MHZ otherwise 48 MHZ.
1116 *
1117 * 0 - 48 MHz
1118 * 1 - 6 MHz
1119 */
1120extern void dwc2_set_param_host_ls_low_power_phy_clk(struct dwc2_hsotg *hsotg,
1121                                                     int val);
1122#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_48MHZ      0
1123#define DWC2_HOST_LS_LOW_POWER_PHY_CLK_PARAM_6MHZ       1
1124
1125/*
1126 * 0 - Use cC FIFO size parameters
1127 * 1 - Allow dynamic FIFO sizing (default)
1128 */
1129extern void dwc2_set_param_enable_dynamic_fifo(struct dwc2_hsotg *hsotg,
1130                                               int val);
1131
1132/*
1133 * Number of 4-byte words in the Rx FIFO in host mode when dynamic
1134 * FIFO sizing is enabled.
1135 * 16 to 32768 (default 1024)
1136 */
1137extern void dwc2_set_param_host_rx_fifo_size(struct dwc2_hsotg *hsotg, int val);
1138
1139/*
1140 * Number of 4-byte words in the non-periodic Tx FIFO in host mode
1141 * when Dynamic FIFO sizing is enabled in the core.
1142 * 16 to 32768 (default 256)
1143 */
1144extern void dwc2_set_param_host_nperio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1145                                                    int val);
1146
1147/*
1148 * Number of 4-byte words in the host periodic Tx FIFO when dynamic
1149 * FIFO sizing is enabled.
1150 * 16 to 32768 (default 256)
1151 */
1152extern void dwc2_set_param_host_perio_tx_fifo_size(struct dwc2_hsotg *hsotg,
1153                                                   int val);
1154
1155/*
1156 * The maximum transfer size supported in bytes.
1157 * 2047 to 65,535  (default 65,535)
1158 */
1159extern void dwc2_set_param_max_transfer_size(struct dwc2_hsotg *hsotg, int val);
1160
1161/*
1162 * The maximum number of packets in a transfer.
1163 * 15 to 511  (default 511)
1164 */
1165extern void dwc2_set_param_max_packet_count(struct dwc2_hsotg *hsotg, int val);
1166
1167/*
1168 * The number of host channel registers to use.
1169 * 1 to 16 (default 11)
1170 * Note: The FPGA configuration supports a maximum of 11 host channels.
1171 */
1172extern void dwc2_set_param_host_channels(struct dwc2_hsotg *hsotg, int val);
1173
1174/*
1175 * Specifies the type of PHY interface to use. By default, the driver
1176 * will automatically detect the phy_type.
1177 *
1178 * 0 - Full Speed PHY
1179 * 1 - UTMI+ (default)
1180 * 2 - ULPI
1181 */
1182extern void dwc2_set_param_phy_type(struct dwc2_hsotg *hsotg, int val);
1183#define DWC2_PHY_TYPE_PARAM_FS          0
1184#define DWC2_PHY_TYPE_PARAM_UTMI        1
1185#define DWC2_PHY_TYPE_PARAM_ULPI        2
1186
1187/*
1188 * Specifies the UTMI+ Data Width. This parameter is
1189 * applicable for a PHY_TYPE of UTMI+ or ULPI. (For a ULPI
1190 * PHY_TYPE, this parameter indicates the data width between
1191 * the MAC and the ULPI Wrapper.) Also, this parameter is
1192 * applicable only if the OTG_HSPHY_WIDTH cC parameter was set
1193 * to "8 and 16 bits", meaning that the core has been
1194 * configured to work at either data path width.
1195 *
1196 * 8 or 16 bits (default 16)
1197 */
1198extern void dwc2_set_param_phy_utmi_width(struct dwc2_hsotg *hsotg, int val);
1199
1200/*
1201 * Specifies whether the ULPI operates at double or single
1202 * data rate. This parameter is only applicable if PHY_TYPE is
1203 * ULPI.
1204 *
1205 * 0 - single data rate ULPI interface with 8 bit wide data
1206 * bus (default)
1207 * 1 - double data rate ULPI interface with 4 bit wide data
1208 * bus
1209 */
1210extern void dwc2_set_param_phy_ulpi_ddr(struct dwc2_hsotg *hsotg, int val);
1211
1212/*
1213 * Specifies whether to use the internal or external supply to
1214 * drive the vbus with a ULPI phy.
1215 */
1216extern void dwc2_set_param_phy_ulpi_ext_vbus(struct dwc2_hsotg *hsotg, int val);
1217#define DWC2_PHY_ULPI_INTERNAL_VBUS     0
1218#define DWC2_PHY_ULPI_EXTERNAL_VBUS     1
1219
1220/*
1221 * Specifies whether to use the I2Cinterface for full speed PHY. This
1222 * parameter is only applicable if PHY_TYPE is FS.
1223 * 0 - No (default)
1224 * 1 - Yes
1225 */
1226extern void dwc2_set_param_i2c_enable(struct dwc2_hsotg *hsotg, int val);
1227
1228extern void dwc2_set_param_ulpi_fs_ls(struct dwc2_hsotg *hsotg, int val);
1229
1230extern void dwc2_set_param_ts_dline(struct dwc2_hsotg *hsotg, int val);
1231
1232/*
1233 * Specifies whether dedicated transmit FIFOs are
1234 * enabled for non periodic IN endpoints in device mode
1235 * 0 - No
1236 * 1 - Yes
1237 */
1238extern void dwc2_set_param_en_multiple_tx_fifo(struct dwc2_hsotg *hsotg,
1239                                               int val);
1240
1241extern void dwc2_set_param_reload_ctl(struct dwc2_hsotg *hsotg, int val);
1242
1243extern void dwc2_set_param_ahbcfg(struct dwc2_hsotg *hsotg, int val);
1244
1245extern void dwc2_set_param_otg_ver(struct dwc2_hsotg *hsotg, int val);
1246
1247extern void dwc2_set_parameters(struct dwc2_hsotg *hsotg,
1248                                const struct dwc2_core_params *params);
1249
1250extern void dwc2_set_all_params(struct dwc2_core_params *params, int value);
1251
1252extern int dwc2_get_hwparams(struct dwc2_hsotg *hsotg);
1253
1254extern int dwc2_lowlevel_hw_enable(struct dwc2_hsotg *hsotg);
1255extern int dwc2_lowlevel_hw_disable(struct dwc2_hsotg *hsotg);
1256
1257/*
1258 * The following functions check the controller's OTG operation mode
1259 * capability (GHWCFG2.OTG_MODE).
1260 *
1261 * These functions can be used before the internal hsotg->hw_params
1262 * are read in and cached so they always read directly from the
1263 * GHWCFG2 register.
1264 */
1265unsigned dwc2_op_mode(struct dwc2_hsotg *hsotg);
1266bool dwc2_hw_is_otg(struct dwc2_hsotg *hsotg);
1267bool dwc2_hw_is_host(struct dwc2_hsotg *hsotg);
1268bool dwc2_hw_is_device(struct dwc2_hsotg *hsotg);
1269
1270/*
1271 * Returns the mode of operation, host or device
1272 */
1273static inline int dwc2_is_host_mode(struct dwc2_hsotg *hsotg)
1274{
1275        return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) != 0;
1276}
1277static inline int dwc2_is_device_mode(struct dwc2_hsotg *hsotg)
1278{
1279        return (dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_CURMODE_HOST) == 0;
1280}
1281
1282/*
1283 * Dump core registers and SPRAM
1284 */
1285extern void dwc2_dump_dev_registers(struct dwc2_hsotg *hsotg);
1286extern void dwc2_dump_host_registers(struct dwc2_hsotg *hsotg);
1287extern void dwc2_dump_global_registers(struct dwc2_hsotg *hsotg);
1288
1289/*
1290 * Return OTG version - either 1.3 or 2.0
1291 */
1292extern u16 dwc2_get_otg_version(struct dwc2_hsotg *hsotg);
1293
1294/* Gadget defines */
1295#if IS_ENABLED(CONFIG_USB_DWC2_PERIPHERAL) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1296extern int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg);
1297extern int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2);
1298extern int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2);
1299extern int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq);
1300extern void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1301                bool reset);
1302extern void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg);
1303extern void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2);
1304extern int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode);
1305#define dwc2_is_device_connected(hsotg) (hsotg->connected)
1306int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg);
1307int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg);
1308#else
1309static inline int dwc2_hsotg_remove(struct dwc2_hsotg *dwc2)
1310{ return 0; }
1311static inline int dwc2_hsotg_suspend(struct dwc2_hsotg *dwc2)
1312{ return 0; }
1313static inline int dwc2_hsotg_resume(struct dwc2_hsotg *dwc2)
1314{ return 0; }
1315static inline int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
1316{ return 0; }
1317static inline void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *dwc2,
1318                bool reset) {}
1319static inline void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) {}
1320static inline void dwc2_hsotg_disconnect(struct dwc2_hsotg *dwc2) {}
1321static inline int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg,
1322                                                        int testmode)
1323{ return 0; }
1324#define dwc2_is_device_connected(hsotg) (0)
1325static inline int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
1326{ return 0; }
1327static inline int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
1328{ return 0; }
1329#endif
1330
1331#if IS_ENABLED(CONFIG_USB_DWC2_HOST) || IS_ENABLED(CONFIG_USB_DWC2_DUAL_ROLE)
1332extern int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg);
1333extern int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us);
1334extern void dwc2_hcd_connect(struct dwc2_hsotg *hsotg);
1335extern void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force);
1336extern void dwc2_hcd_start(struct dwc2_hsotg *hsotg);
1337int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg);
1338int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg);
1339#else
1340static inline int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
1341{ return 0; }
1342static inline int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg,
1343                                                   int us)
1344{ return 0; }
1345static inline void dwc2_hcd_connect(struct dwc2_hsotg *hsotg) {}
1346static inline void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force) {}
1347static inline void dwc2_hcd_start(struct dwc2_hsotg *hsotg) {}
1348static inline void dwc2_hcd_remove(struct dwc2_hsotg *hsotg) {}
1349static inline int dwc2_hcd_init(struct dwc2_hsotg *hsotg, int irq)
1350{ return 0; }
1351static inline int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
1352{ return 0; }
1353static inline int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
1354{ return 0; }
1355
1356#endif
1357
1358#endif /* __DWC2_CORE_H__ */
1359