linux/drivers/usb/gadget/function/f_fs.c
<<
>>
Prefs
   1/*
   2 * f_fs.c -- user mode file system API for USB composite function controllers
   3 *
   4 * Copyright (C) 2010 Samsung Electronics
   5 * Author: Michal Nazarewicz <mina86@mina86.com>
   6 *
   7 * Based on inode.c (GadgetFS) which was:
   8 * Copyright (C) 2003-2004 David Brownell
   9 * Copyright (C) 2003 Agilent Technologies
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 */
  16
  17
  18/* #define DEBUG */
  19/* #define VERBOSE_DEBUG */
  20
  21#include <linux/blkdev.h>
  22#include <linux/pagemap.h>
  23#include <linux/export.h>
  24#include <linux/hid.h>
  25#include <linux/module.h>
  26#include <linux/uio.h>
  27#include <asm/unaligned.h>
  28
  29#include <linux/usb/composite.h>
  30#include <linux/usb/functionfs.h>
  31
  32#include <linux/aio.h>
  33#include <linux/mmu_context.h>
  34#include <linux/poll.h>
  35#include <linux/eventfd.h>
  36
  37#include "u_fs.h"
  38#include "u_f.h"
  39#include "u_os_desc.h"
  40#include "configfs.h"
  41
  42#define FUNCTIONFS_MAGIC        0xa647361 /* Chosen by a honest dice roll ;) */
  43
  44/* Reference counter handling */
  45static void ffs_data_get(struct ffs_data *ffs);
  46static void ffs_data_put(struct ffs_data *ffs);
  47/* Creates new ffs_data object. */
  48static struct ffs_data *__must_check ffs_data_new(void) __attribute__((malloc));
  49
  50/* Opened counter handling. */
  51static void ffs_data_opened(struct ffs_data *ffs);
  52static void ffs_data_closed(struct ffs_data *ffs);
  53
  54/* Called with ffs->mutex held; take over ownership of data. */
  55static int __must_check
  56__ffs_data_got_descs(struct ffs_data *ffs, char *data, size_t len);
  57static int __must_check
  58__ffs_data_got_strings(struct ffs_data *ffs, char *data, size_t len);
  59
  60
  61/* The function structure ***************************************************/
  62
  63struct ffs_ep;
  64
  65struct ffs_function {
  66        struct usb_configuration        *conf;
  67        struct usb_gadget               *gadget;
  68        struct ffs_data                 *ffs;
  69
  70        struct ffs_ep                   *eps;
  71        u8                              eps_revmap[16];
  72        short                           *interfaces_nums;
  73
  74        struct usb_function             function;
  75};
  76
  77
  78static struct ffs_function *ffs_func_from_usb(struct usb_function *f)
  79{
  80        return container_of(f, struct ffs_function, function);
  81}
  82
  83
  84static inline enum ffs_setup_state
  85ffs_setup_state_clear_cancelled(struct ffs_data *ffs)
  86{
  87        return (enum ffs_setup_state)
  88                cmpxchg(&ffs->setup_state, FFS_SETUP_CANCELLED, FFS_NO_SETUP);
  89}
  90
  91
  92static void ffs_func_eps_disable(struct ffs_function *func);
  93static int __must_check ffs_func_eps_enable(struct ffs_function *func);
  94
  95static int ffs_func_bind(struct usb_configuration *,
  96                         struct usb_function *);
  97static int ffs_func_set_alt(struct usb_function *, unsigned, unsigned);
  98static void ffs_func_disable(struct usb_function *);
  99static int ffs_func_setup(struct usb_function *,
 100                          const struct usb_ctrlrequest *);
 101static void ffs_func_suspend(struct usb_function *);
 102static void ffs_func_resume(struct usb_function *);
 103
 104
 105static int ffs_func_revmap_ep(struct ffs_function *func, u8 num);
 106static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf);
 107
 108
 109/* The endpoints structures *************************************************/
 110
 111struct ffs_ep {
 112        struct usb_ep                   *ep;    /* P: ffs->eps_lock */
 113        struct usb_request              *req;   /* P: epfile->mutex */
 114
 115        /* [0]: full speed, [1]: high speed, [2]: super speed */
 116        struct usb_endpoint_descriptor  *descs[3];
 117
 118        u8                              num;
 119
 120        int                             status; /* P: epfile->mutex */
 121};
 122
 123struct ffs_epfile {
 124        /* Protects ep->ep and ep->req. */
 125        struct mutex                    mutex;
 126        wait_queue_head_t               wait;
 127
 128        struct ffs_data                 *ffs;
 129        struct ffs_ep                   *ep;    /* P: ffs->eps_lock */
 130
 131        struct dentry                   *dentry;
 132
 133        /*
 134         * Buffer for holding data from partial reads which may happen since
 135         * we’re rounding user read requests to a multiple of a max packet size.
 136         */
 137        struct ffs_buffer               *read_buffer;   /* P: epfile->mutex */
 138
 139        char                            name[5];
 140
 141        unsigned char                   in;     /* P: ffs->eps_lock */
 142        unsigned char                   isoc;   /* P: ffs->eps_lock */
 143
 144        unsigned char                   _pad;
 145};
 146
 147struct ffs_buffer {
 148        size_t length;
 149        char *data;
 150        char storage[];
 151};
 152
 153/*  ffs_io_data structure ***************************************************/
 154
 155struct ffs_io_data {
 156        bool aio;
 157        bool read;
 158
 159        struct kiocb *kiocb;
 160        struct iov_iter data;
 161        const void *to_free;
 162        char *buf;
 163
 164        struct mm_struct *mm;
 165        struct work_struct work;
 166
 167        struct usb_ep *ep;
 168        struct usb_request *req;
 169
 170        struct ffs_data *ffs;
 171};
 172
 173struct ffs_desc_helper {
 174        struct ffs_data *ffs;
 175        unsigned interfaces_count;
 176        unsigned eps_count;
 177};
 178
 179static int  __must_check ffs_epfiles_create(struct ffs_data *ffs);
 180static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count);
 181
 182static struct dentry *
 183ffs_sb_create_file(struct super_block *sb, const char *name, void *data,
 184                   const struct file_operations *fops);
 185
 186/* Devices management *******************************************************/
 187
 188DEFINE_MUTEX(ffs_lock);
 189EXPORT_SYMBOL_GPL(ffs_lock);
 190
 191static struct ffs_dev *_ffs_find_dev(const char *name);
 192static struct ffs_dev *_ffs_alloc_dev(void);
 193static int _ffs_name_dev(struct ffs_dev *dev, const char *name);
 194static void _ffs_free_dev(struct ffs_dev *dev);
 195static void *ffs_acquire_dev(const char *dev_name);
 196static void ffs_release_dev(struct ffs_data *ffs_data);
 197static int ffs_ready(struct ffs_data *ffs);
 198static void ffs_closed(struct ffs_data *ffs);
 199
 200/* Misc helper functions ****************************************************/
 201
 202static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
 203        __attribute__((warn_unused_result, nonnull));
 204static char *ffs_prepare_buffer(const char __user *buf, size_t len)
 205        __attribute__((warn_unused_result, nonnull));
 206
 207
 208/* Control file aka ep0 *****************************************************/
 209
 210static void ffs_ep0_complete(struct usb_ep *ep, struct usb_request *req)
 211{
 212        struct ffs_data *ffs = req->context;
 213
 214        complete_all(&ffs->ep0req_completion);
 215}
 216
 217static int __ffs_ep0_queue_wait(struct ffs_data *ffs, char *data, size_t len)
 218{
 219        struct usb_request *req = ffs->ep0req;
 220        int ret;
 221
 222        req->zero     = len < le16_to_cpu(ffs->ev.setup.wLength);
 223
 224        spin_unlock_irq(&ffs->ev.waitq.lock);
 225
 226        req->buf      = data;
 227        req->length   = len;
 228
 229        /*
 230         * UDC layer requires to provide a buffer even for ZLP, but should
 231         * not use it at all. Let's provide some poisoned pointer to catch
 232         * possible bug in the driver.
 233         */
 234        if (req->buf == NULL)
 235                req->buf = (void *)0xDEADBABE;
 236
 237        reinit_completion(&ffs->ep0req_completion);
 238
 239        ret = usb_ep_queue(ffs->gadget->ep0, req, GFP_ATOMIC);
 240        if (unlikely(ret < 0))
 241                return ret;
 242
 243        ret = wait_for_completion_interruptible(&ffs->ep0req_completion);
 244        if (unlikely(ret)) {
 245                usb_ep_dequeue(ffs->gadget->ep0, req);
 246                return -EINTR;
 247        }
 248
 249        ffs->setup_state = FFS_NO_SETUP;
 250        return req->status ? req->status : req->actual;
 251}
 252
 253static int __ffs_ep0_stall(struct ffs_data *ffs)
 254{
 255        if (ffs->ev.can_stall) {
 256                pr_vdebug("ep0 stall\n");
 257                usb_ep_set_halt(ffs->gadget->ep0);
 258                ffs->setup_state = FFS_NO_SETUP;
 259                return -EL2HLT;
 260        } else {
 261                pr_debug("bogus ep0 stall!\n");
 262                return -ESRCH;
 263        }
 264}
 265
 266static ssize_t ffs_ep0_write(struct file *file, const char __user *buf,
 267                             size_t len, loff_t *ptr)
 268{
 269        struct ffs_data *ffs = file->private_data;
 270        ssize_t ret;
 271        char *data;
 272
 273        ENTER();
 274
 275        /* Fast check if setup was canceled */
 276        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 277                return -EIDRM;
 278
 279        /* Acquire mutex */
 280        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 281        if (unlikely(ret < 0))
 282                return ret;
 283
 284        /* Check state */
 285        switch (ffs->state) {
 286        case FFS_READ_DESCRIPTORS:
 287        case FFS_READ_STRINGS:
 288                /* Copy data */
 289                if (unlikely(len < 16)) {
 290                        ret = -EINVAL;
 291                        break;
 292                }
 293
 294                data = ffs_prepare_buffer(buf, len);
 295                if (IS_ERR(data)) {
 296                        ret = PTR_ERR(data);
 297                        break;
 298                }
 299
 300                /* Handle data */
 301                if (ffs->state == FFS_READ_DESCRIPTORS) {
 302                        pr_info("read descriptors\n");
 303                        ret = __ffs_data_got_descs(ffs, data, len);
 304                        if (unlikely(ret < 0))
 305                                break;
 306
 307                        ffs->state = FFS_READ_STRINGS;
 308                        ret = len;
 309                } else {
 310                        pr_info("read strings\n");
 311                        ret = __ffs_data_got_strings(ffs, data, len);
 312                        if (unlikely(ret < 0))
 313                                break;
 314
 315                        ret = ffs_epfiles_create(ffs);
 316                        if (unlikely(ret)) {
 317                                ffs->state = FFS_CLOSING;
 318                                break;
 319                        }
 320
 321                        ffs->state = FFS_ACTIVE;
 322                        mutex_unlock(&ffs->mutex);
 323
 324                        ret = ffs_ready(ffs);
 325                        if (unlikely(ret < 0)) {
 326                                ffs->state = FFS_CLOSING;
 327                                return ret;
 328                        }
 329
 330                        return len;
 331                }
 332                break;
 333
 334        case FFS_ACTIVE:
 335                data = NULL;
 336                /*
 337                 * We're called from user space, we can use _irq
 338                 * rather then _irqsave
 339                 */
 340                spin_lock_irq(&ffs->ev.waitq.lock);
 341                switch (ffs_setup_state_clear_cancelled(ffs)) {
 342                case FFS_SETUP_CANCELLED:
 343                        ret = -EIDRM;
 344                        goto done_spin;
 345
 346                case FFS_NO_SETUP:
 347                        ret = -ESRCH;
 348                        goto done_spin;
 349
 350                case FFS_SETUP_PENDING:
 351                        break;
 352                }
 353
 354                /* FFS_SETUP_PENDING */
 355                if (!(ffs->ev.setup.bRequestType & USB_DIR_IN)) {
 356                        spin_unlock_irq(&ffs->ev.waitq.lock);
 357                        ret = __ffs_ep0_stall(ffs);
 358                        break;
 359                }
 360
 361                /* FFS_SETUP_PENDING and not stall */
 362                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 363
 364                spin_unlock_irq(&ffs->ev.waitq.lock);
 365
 366                data = ffs_prepare_buffer(buf, len);
 367                if (IS_ERR(data)) {
 368                        ret = PTR_ERR(data);
 369                        break;
 370                }
 371
 372                spin_lock_irq(&ffs->ev.waitq.lock);
 373
 374                /*
 375                 * We are guaranteed to be still in FFS_ACTIVE state
 376                 * but the state of setup could have changed from
 377                 * FFS_SETUP_PENDING to FFS_SETUP_CANCELLED so we need
 378                 * to check for that.  If that happened we copied data
 379                 * from user space in vain but it's unlikely.
 380                 *
 381                 * For sure we are not in FFS_NO_SETUP since this is
 382                 * the only place FFS_SETUP_PENDING -> FFS_NO_SETUP
 383                 * transition can be performed and it's protected by
 384                 * mutex.
 385                 */
 386                if (ffs_setup_state_clear_cancelled(ffs) ==
 387                    FFS_SETUP_CANCELLED) {
 388                        ret = -EIDRM;
 389done_spin:
 390                        spin_unlock_irq(&ffs->ev.waitq.lock);
 391                } else {
 392                        /* unlocks spinlock */
 393                        ret = __ffs_ep0_queue_wait(ffs, data, len);
 394                }
 395                kfree(data);
 396                break;
 397
 398        default:
 399                ret = -EBADFD;
 400                break;
 401        }
 402
 403        mutex_unlock(&ffs->mutex);
 404        return ret;
 405}
 406
 407/* Called with ffs->ev.waitq.lock and ffs->mutex held, both released on exit. */
 408static ssize_t __ffs_ep0_read_events(struct ffs_data *ffs, char __user *buf,
 409                                     size_t n)
 410{
 411        /*
 412         * n cannot be bigger than ffs->ev.count, which cannot be bigger than
 413         * size of ffs->ev.types array (which is four) so that's how much space
 414         * we reserve.
 415         */
 416        struct usb_functionfs_event events[ARRAY_SIZE(ffs->ev.types)];
 417        const size_t size = n * sizeof *events;
 418        unsigned i = 0;
 419
 420        memset(events, 0, size);
 421
 422        do {
 423                events[i].type = ffs->ev.types[i];
 424                if (events[i].type == FUNCTIONFS_SETUP) {
 425                        events[i].u.setup = ffs->ev.setup;
 426                        ffs->setup_state = FFS_SETUP_PENDING;
 427                }
 428        } while (++i < n);
 429
 430        ffs->ev.count -= n;
 431        if (ffs->ev.count)
 432                memmove(ffs->ev.types, ffs->ev.types + n,
 433                        ffs->ev.count * sizeof *ffs->ev.types);
 434
 435        spin_unlock_irq(&ffs->ev.waitq.lock);
 436        mutex_unlock(&ffs->mutex);
 437
 438        return unlikely(copy_to_user(buf, events, size)) ? -EFAULT : size;
 439}
 440
 441static ssize_t ffs_ep0_read(struct file *file, char __user *buf,
 442                            size_t len, loff_t *ptr)
 443{
 444        struct ffs_data *ffs = file->private_data;
 445        char *data = NULL;
 446        size_t n;
 447        int ret;
 448
 449        ENTER();
 450
 451        /* Fast check if setup was canceled */
 452        if (ffs_setup_state_clear_cancelled(ffs) == FFS_SETUP_CANCELLED)
 453                return -EIDRM;
 454
 455        /* Acquire mutex */
 456        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 457        if (unlikely(ret < 0))
 458                return ret;
 459
 460        /* Check state */
 461        if (ffs->state != FFS_ACTIVE) {
 462                ret = -EBADFD;
 463                goto done_mutex;
 464        }
 465
 466        /*
 467         * We're called from user space, we can use _irq rather then
 468         * _irqsave
 469         */
 470        spin_lock_irq(&ffs->ev.waitq.lock);
 471
 472        switch (ffs_setup_state_clear_cancelled(ffs)) {
 473        case FFS_SETUP_CANCELLED:
 474                ret = -EIDRM;
 475                break;
 476
 477        case FFS_NO_SETUP:
 478                n = len / sizeof(struct usb_functionfs_event);
 479                if (unlikely(!n)) {
 480                        ret = -EINVAL;
 481                        break;
 482                }
 483
 484                if ((file->f_flags & O_NONBLOCK) && !ffs->ev.count) {
 485                        ret = -EAGAIN;
 486                        break;
 487                }
 488
 489                if (wait_event_interruptible_exclusive_locked_irq(ffs->ev.waitq,
 490                                                        ffs->ev.count)) {
 491                        ret = -EINTR;
 492                        break;
 493                }
 494
 495                return __ffs_ep0_read_events(ffs, buf,
 496                                             min(n, (size_t)ffs->ev.count));
 497
 498        case FFS_SETUP_PENDING:
 499                if (ffs->ev.setup.bRequestType & USB_DIR_IN) {
 500                        spin_unlock_irq(&ffs->ev.waitq.lock);
 501                        ret = __ffs_ep0_stall(ffs);
 502                        goto done_mutex;
 503                }
 504
 505                len = min(len, (size_t)le16_to_cpu(ffs->ev.setup.wLength));
 506
 507                spin_unlock_irq(&ffs->ev.waitq.lock);
 508
 509                if (likely(len)) {
 510                        data = kmalloc(len, GFP_KERNEL);
 511                        if (unlikely(!data)) {
 512                                ret = -ENOMEM;
 513                                goto done_mutex;
 514                        }
 515                }
 516
 517                spin_lock_irq(&ffs->ev.waitq.lock);
 518
 519                /* See ffs_ep0_write() */
 520                if (ffs_setup_state_clear_cancelled(ffs) ==
 521                    FFS_SETUP_CANCELLED) {
 522                        ret = -EIDRM;
 523                        break;
 524                }
 525
 526                /* unlocks spinlock */
 527                ret = __ffs_ep0_queue_wait(ffs, data, len);
 528                if (likely(ret > 0) && unlikely(copy_to_user(buf, data, len)))
 529                        ret = -EFAULT;
 530                goto done_mutex;
 531
 532        default:
 533                ret = -EBADFD;
 534                break;
 535        }
 536
 537        spin_unlock_irq(&ffs->ev.waitq.lock);
 538done_mutex:
 539        mutex_unlock(&ffs->mutex);
 540        kfree(data);
 541        return ret;
 542}
 543
 544static int ffs_ep0_open(struct inode *inode, struct file *file)
 545{
 546        struct ffs_data *ffs = inode->i_private;
 547
 548        ENTER();
 549
 550        if (unlikely(ffs->state == FFS_CLOSING))
 551                return -EBUSY;
 552
 553        file->private_data = ffs;
 554        ffs_data_opened(ffs);
 555
 556        return 0;
 557}
 558
 559static int ffs_ep0_release(struct inode *inode, struct file *file)
 560{
 561        struct ffs_data *ffs = file->private_data;
 562
 563        ENTER();
 564
 565        ffs_data_closed(ffs);
 566
 567        return 0;
 568}
 569
 570static long ffs_ep0_ioctl(struct file *file, unsigned code, unsigned long value)
 571{
 572        struct ffs_data *ffs = file->private_data;
 573        struct usb_gadget *gadget = ffs->gadget;
 574        long ret;
 575
 576        ENTER();
 577
 578        if (code == FUNCTIONFS_INTERFACE_REVMAP) {
 579                struct ffs_function *func = ffs->func;
 580                ret = func ? ffs_func_revmap_intf(func, value) : -ENODEV;
 581        } else if (gadget && gadget->ops->ioctl) {
 582                ret = gadget->ops->ioctl(gadget, code, value);
 583        } else {
 584                ret = -ENOTTY;
 585        }
 586
 587        return ret;
 588}
 589
 590static unsigned int ffs_ep0_poll(struct file *file, poll_table *wait)
 591{
 592        struct ffs_data *ffs = file->private_data;
 593        unsigned int mask = POLLWRNORM;
 594        int ret;
 595
 596        poll_wait(file, &ffs->ev.waitq, wait);
 597
 598        ret = ffs_mutex_lock(&ffs->mutex, file->f_flags & O_NONBLOCK);
 599        if (unlikely(ret < 0))
 600                return mask;
 601
 602        switch (ffs->state) {
 603        case FFS_READ_DESCRIPTORS:
 604        case FFS_READ_STRINGS:
 605                mask |= POLLOUT;
 606                break;
 607
 608        case FFS_ACTIVE:
 609                switch (ffs->setup_state) {
 610                case FFS_NO_SETUP:
 611                        if (ffs->ev.count)
 612                                mask |= POLLIN;
 613                        break;
 614
 615                case FFS_SETUP_PENDING:
 616                case FFS_SETUP_CANCELLED:
 617                        mask |= (POLLIN | POLLOUT);
 618                        break;
 619                }
 620        case FFS_CLOSING:
 621                break;
 622        case FFS_DEACTIVATED:
 623                break;
 624        }
 625
 626        mutex_unlock(&ffs->mutex);
 627
 628        return mask;
 629}
 630
 631static const struct file_operations ffs_ep0_operations = {
 632        .llseek =       no_llseek,
 633
 634        .open =         ffs_ep0_open,
 635        .write =        ffs_ep0_write,
 636        .read =         ffs_ep0_read,
 637        .release =      ffs_ep0_release,
 638        .unlocked_ioctl =       ffs_ep0_ioctl,
 639        .poll =         ffs_ep0_poll,
 640};
 641
 642
 643/* "Normal" endpoints operations ********************************************/
 644
 645static void ffs_epfile_io_complete(struct usb_ep *_ep, struct usb_request *req)
 646{
 647        ENTER();
 648        if (likely(req->context)) {
 649                struct ffs_ep *ep = _ep->driver_data;
 650                ep->status = req->status ? req->status : req->actual;
 651                complete(req->context);
 652        }
 653}
 654
 655static ssize_t ffs_copy_to_iter(void *data, int data_len, struct iov_iter *iter)
 656{
 657        ssize_t ret = copy_to_iter(data, data_len, iter);
 658        if (likely(ret == data_len))
 659                return ret;
 660
 661        if (unlikely(iov_iter_count(iter)))
 662                return -EFAULT;
 663
 664        /*
 665         * Dear user space developer!
 666         *
 667         * TL;DR: To stop getting below error message in your kernel log, change
 668         * user space code using functionfs to align read buffers to a max
 669         * packet size.
 670         *
 671         * Some UDCs (e.g. dwc3) require request sizes to be a multiple of a max
 672         * packet size.  When unaligned buffer is passed to functionfs, it
 673         * internally uses a larger, aligned buffer so that such UDCs are happy.
 674         *
 675         * Unfortunately, this means that host may send more data than was
 676         * requested in read(2) system call.  f_fs doesn’t know what to do with
 677         * that excess data so it simply drops it.
 678         *
 679         * Was the buffer aligned in the first place, no such problem would
 680         * happen.
 681         *
 682         * Data may be dropped only in AIO reads.  Synchronous reads are handled
 683         * by splitting a request into multiple parts.  This splitting may still
 684         * be a problem though so it’s likely best to align the buffer
 685         * regardless of it being AIO or not..
 686         *
 687         * This only affects OUT endpoints, i.e. reading data with a read(2),
 688         * aio_read(2) etc. system calls.  Writing data to an IN endpoint is not
 689         * affected.
 690         */
 691        pr_err("functionfs read size %d > requested size %zd, dropping excess data. "
 692               "Align read buffer size to max packet size to avoid the problem.\n",
 693               data_len, ret);
 694
 695        return ret;
 696}
 697
 698static void ffs_user_copy_worker(struct work_struct *work)
 699{
 700        struct ffs_io_data *io_data = container_of(work, struct ffs_io_data,
 701                                                   work);
 702        int ret = io_data->req->status ? io_data->req->status :
 703                                         io_data->req->actual;
 704        bool kiocb_has_eventfd = io_data->kiocb->ki_flags & IOCB_EVENTFD;
 705
 706        if (io_data->read && ret > 0) {
 707                use_mm(io_data->mm);
 708                ret = ffs_copy_to_iter(io_data->buf, ret, &io_data->data);
 709                unuse_mm(io_data->mm);
 710        }
 711
 712        io_data->kiocb->ki_complete(io_data->kiocb, ret, ret);
 713
 714        if (io_data->ffs->ffs_eventfd && !kiocb_has_eventfd)
 715                eventfd_signal(io_data->ffs->ffs_eventfd, 1);
 716
 717        usb_ep_free_request(io_data->ep, io_data->req);
 718
 719        if (io_data->read)
 720                kfree(io_data->to_free);
 721        kfree(io_data->buf);
 722        kfree(io_data);
 723}
 724
 725static void ffs_epfile_async_io_complete(struct usb_ep *_ep,
 726                                         struct usb_request *req)
 727{
 728        struct ffs_io_data *io_data = req->context;
 729
 730        ENTER();
 731
 732        INIT_WORK(&io_data->work, ffs_user_copy_worker);
 733        schedule_work(&io_data->work);
 734}
 735
 736/* Assumes epfile->mutex is held. */
 737static ssize_t __ffs_epfile_read_buffered(struct ffs_epfile *epfile,
 738                                          struct iov_iter *iter)
 739{
 740        struct ffs_buffer *buf = epfile->read_buffer;
 741        ssize_t ret;
 742        if (!buf)
 743                return 0;
 744
 745        ret = copy_to_iter(buf->data, buf->length, iter);
 746        if (buf->length == ret) {
 747                kfree(buf);
 748                epfile->read_buffer = NULL;
 749        } else if (unlikely(iov_iter_count(iter))) {
 750                ret = -EFAULT;
 751        } else {
 752                buf->length -= ret;
 753                buf->data += ret;
 754        }
 755        return ret;
 756}
 757
 758/* Assumes epfile->mutex is held. */
 759static ssize_t __ffs_epfile_read_data(struct ffs_epfile *epfile,
 760                                      void *data, int data_len,
 761                                      struct iov_iter *iter)
 762{
 763        struct ffs_buffer *buf;
 764
 765        ssize_t ret = copy_to_iter(data, data_len, iter);
 766        if (likely(data_len == ret))
 767                return ret;
 768
 769        if (unlikely(iov_iter_count(iter)))
 770                return -EFAULT;
 771
 772        /* See ffs_copy_to_iter for more context. */
 773        pr_warn("functionfs read size %d > requested size %zd, splitting request into multiple reads.",
 774                data_len, ret);
 775
 776        data_len -= ret;
 777        buf = kmalloc(sizeof(*buf) + data_len, GFP_KERNEL);
 778        if (!buf)
 779                return -ENOMEM;
 780        buf->length = data_len;
 781        buf->data = buf->storage;
 782        memcpy(buf->storage, data + ret, data_len);
 783        epfile->read_buffer = buf;
 784
 785        return ret;
 786}
 787
 788static ssize_t ffs_epfile_io(struct file *file, struct ffs_io_data *io_data)
 789{
 790        struct ffs_epfile *epfile = file->private_data;
 791        struct usb_request *req;
 792        struct ffs_ep *ep;
 793        char *data = NULL;
 794        ssize_t ret, data_len = -EINVAL;
 795        int halt;
 796
 797        /* Are we still active? */
 798        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 799                return -ENODEV;
 800
 801        /* Wait for endpoint to be enabled */
 802        ep = epfile->ep;
 803        if (!ep) {
 804                if (file->f_flags & O_NONBLOCK)
 805                        return -EAGAIN;
 806
 807                ret = wait_event_interruptible(epfile->wait, (ep = epfile->ep));
 808                if (ret)
 809                        return -EINTR;
 810        }
 811
 812        /* Do we halt? */
 813        halt = (!io_data->read == !epfile->in);
 814        if (halt && epfile->isoc)
 815                return -EINVAL;
 816
 817        /* We will be using request and read_buffer */
 818        ret = ffs_mutex_lock(&epfile->mutex, file->f_flags & O_NONBLOCK);
 819        if (unlikely(ret))
 820                goto error;
 821
 822        /* Allocate & copy */
 823        if (!halt) {
 824                struct usb_gadget *gadget;
 825
 826                /*
 827                 * Do we have buffered data from previous partial read?  Check
 828                 * that for synchronous case only because we do not have
 829                 * facility to ‘wake up’ a pending asynchronous read and push
 830                 * buffered data to it which we would need to make things behave
 831                 * consistently.
 832                 */
 833                if (!io_data->aio && io_data->read) {
 834                        ret = __ffs_epfile_read_buffered(epfile, &io_data->data);
 835                        if (ret)
 836                                goto error_mutex;
 837                }
 838
 839                /*
 840                 * if we _do_ wait above, the epfile->ffs->gadget might be NULL
 841                 * before the waiting completes, so do not assign to 'gadget'
 842                 * earlier
 843                 */
 844                gadget = epfile->ffs->gadget;
 845
 846                spin_lock_irq(&epfile->ffs->eps_lock);
 847                /* In the meantime, endpoint got disabled or changed. */
 848                if (epfile->ep != ep) {
 849                        ret = -ESHUTDOWN;
 850                        goto error_lock;
 851                }
 852                data_len = iov_iter_count(&io_data->data);
 853                /*
 854                 * Controller may require buffer size to be aligned to
 855                 * maxpacketsize of an out endpoint.
 856                 */
 857                if (io_data->read)
 858                        data_len = usb_ep_align_maybe(gadget, ep->ep, data_len);
 859                spin_unlock_irq(&epfile->ffs->eps_lock);
 860
 861                data = kmalloc(data_len, GFP_KERNEL);
 862                if (unlikely(!data)) {
 863                        ret = -ENOMEM;
 864                        goto error_mutex;
 865                }
 866                if (!io_data->read &&
 867                    copy_from_iter(data, data_len, &io_data->data) != data_len) {
 868                        ret = -EFAULT;
 869                        goto error_mutex;
 870                }
 871        }
 872
 873        spin_lock_irq(&epfile->ffs->eps_lock);
 874
 875        if (epfile->ep != ep) {
 876                /* In the meantime, endpoint got disabled or changed. */
 877                ret = -ESHUTDOWN;
 878        } else if (halt) {
 879                /* Halt */
 880                if (likely(epfile->ep == ep) && !WARN_ON(!ep->ep))
 881                        usb_ep_set_halt(ep->ep);
 882                ret = -EBADMSG;
 883        } else if (unlikely(data_len == -EINVAL)) {
 884                /*
 885                 * Sanity Check: even though data_len can't be used
 886                 * uninitialized at the time I write this comment, some
 887                 * compilers complain about this situation.
 888                 * In order to keep the code clean from warnings, data_len is
 889                 * being initialized to -EINVAL during its declaration, which
 890                 * means we can't rely on compiler anymore to warn no future
 891                 * changes won't result in data_len being used uninitialized.
 892                 * For such reason, we're adding this redundant sanity check
 893                 * here.
 894                 */
 895                WARN(1, "%s: data_len == -EINVAL\n", __func__);
 896                ret = -EINVAL;
 897        } else if (!io_data->aio) {
 898                DECLARE_COMPLETION_ONSTACK(done);
 899                bool interrupted = false;
 900
 901                req = ep->req;
 902                req->buf      = data;
 903                req->length   = data_len;
 904
 905                req->context  = &done;
 906                req->complete = ffs_epfile_io_complete;
 907
 908                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 909                if (unlikely(ret < 0))
 910                        goto error_lock;
 911
 912                spin_unlock_irq(&epfile->ffs->eps_lock);
 913
 914                if (unlikely(wait_for_completion_interruptible(&done))) {
 915                        /*
 916                         * To avoid race condition with ffs_epfile_io_complete,
 917                         * dequeue the request first then check
 918                         * status. usb_ep_dequeue API should guarantee no race
 919                         * condition with req->complete callback.
 920                         */
 921                        usb_ep_dequeue(ep->ep, req);
 922                        interrupted = ep->status < 0;
 923                }
 924
 925                if (interrupted)
 926                        ret = -EINTR;
 927                else if (io_data->read && ep->status > 0)
 928                        ret = __ffs_epfile_read_data(epfile, data, ep->status,
 929                                                     &io_data->data);
 930                else
 931                        ret = ep->status;
 932                goto error_mutex;
 933        } else if (!(req = usb_ep_alloc_request(ep->ep, GFP_KERNEL))) {
 934                ret = -ENOMEM;
 935        } else {
 936                req->buf      = data;
 937                req->length   = data_len;
 938
 939                io_data->buf = data;
 940                io_data->ep = ep->ep;
 941                io_data->req = req;
 942                io_data->ffs = epfile->ffs;
 943
 944                req->context  = io_data;
 945                req->complete = ffs_epfile_async_io_complete;
 946
 947                ret = usb_ep_queue(ep->ep, req, GFP_ATOMIC);
 948                if (unlikely(ret)) {
 949                        usb_ep_free_request(ep->ep, req);
 950                        goto error_lock;
 951                }
 952
 953                ret = -EIOCBQUEUED;
 954                /*
 955                 * Do not kfree the buffer in this function.  It will be freed
 956                 * by ffs_user_copy_worker.
 957                 */
 958                data = NULL;
 959        }
 960
 961error_lock:
 962        spin_unlock_irq(&epfile->ffs->eps_lock);
 963error_mutex:
 964        mutex_unlock(&epfile->mutex);
 965error:
 966        kfree(data);
 967        return ret;
 968}
 969
 970static int
 971ffs_epfile_open(struct inode *inode, struct file *file)
 972{
 973        struct ffs_epfile *epfile = inode->i_private;
 974
 975        ENTER();
 976
 977        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
 978                return -ENODEV;
 979
 980        file->private_data = epfile;
 981        ffs_data_opened(epfile->ffs);
 982
 983        return 0;
 984}
 985
 986static int ffs_aio_cancel(struct kiocb *kiocb)
 987{
 988        struct ffs_io_data *io_data = kiocb->private;
 989        struct ffs_epfile *epfile = kiocb->ki_filp->private_data;
 990        int value;
 991
 992        ENTER();
 993
 994        spin_lock_irq(&epfile->ffs->eps_lock);
 995
 996        if (likely(io_data && io_data->ep && io_data->req))
 997                value = usb_ep_dequeue(io_data->ep, io_data->req);
 998        else
 999                value = -EINVAL;
1000
1001        spin_unlock_irq(&epfile->ffs->eps_lock);
1002
1003        return value;
1004}
1005
1006static ssize_t ffs_epfile_write_iter(struct kiocb *kiocb, struct iov_iter *from)
1007{
1008        struct ffs_io_data io_data, *p = &io_data;
1009        ssize_t res;
1010
1011        ENTER();
1012
1013        if (!is_sync_kiocb(kiocb)) {
1014                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1015                if (unlikely(!p))
1016                        return -ENOMEM;
1017                p->aio = true;
1018        } else {
1019                p->aio = false;
1020        }
1021
1022        p->read = false;
1023        p->kiocb = kiocb;
1024        p->data = *from;
1025        p->mm = current->mm;
1026
1027        kiocb->private = p;
1028
1029        if (p->aio)
1030                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1031
1032        res = ffs_epfile_io(kiocb->ki_filp, p);
1033        if (res == -EIOCBQUEUED)
1034                return res;
1035        if (p->aio)
1036                kfree(p);
1037        else
1038                *from = p->data;
1039        return res;
1040}
1041
1042static ssize_t ffs_epfile_read_iter(struct kiocb *kiocb, struct iov_iter *to)
1043{
1044        struct ffs_io_data io_data, *p = &io_data;
1045        ssize_t res;
1046
1047        ENTER();
1048
1049        if (!is_sync_kiocb(kiocb)) {
1050                p = kmalloc(sizeof(io_data), GFP_KERNEL);
1051                if (unlikely(!p))
1052                        return -ENOMEM;
1053                p->aio = true;
1054        } else {
1055                p->aio = false;
1056        }
1057
1058        p->read = true;
1059        p->kiocb = kiocb;
1060        if (p->aio) {
1061                p->to_free = dup_iter(&p->data, to, GFP_KERNEL);
1062                if (!p->to_free) {
1063                        kfree(p);
1064                        return -ENOMEM;
1065                }
1066        } else {
1067                p->data = *to;
1068                p->to_free = NULL;
1069        }
1070        p->mm = current->mm;
1071
1072        kiocb->private = p;
1073
1074        if (p->aio)
1075                kiocb_set_cancel_fn(kiocb, ffs_aio_cancel);
1076
1077        res = ffs_epfile_io(kiocb->ki_filp, p);
1078        if (res == -EIOCBQUEUED)
1079                return res;
1080
1081        if (p->aio) {
1082                kfree(p->to_free);
1083                kfree(p);
1084        } else {
1085                *to = p->data;
1086        }
1087        return res;
1088}
1089
1090static int
1091ffs_epfile_release(struct inode *inode, struct file *file)
1092{
1093        struct ffs_epfile *epfile = inode->i_private;
1094
1095        ENTER();
1096
1097        kfree(epfile->read_buffer);
1098        epfile->read_buffer = NULL;
1099        ffs_data_closed(epfile->ffs);
1100
1101        return 0;
1102}
1103
1104static long ffs_epfile_ioctl(struct file *file, unsigned code,
1105                             unsigned long value)
1106{
1107        struct ffs_epfile *epfile = file->private_data;
1108        int ret;
1109
1110        ENTER();
1111
1112        if (WARN_ON(epfile->ffs->state != FFS_ACTIVE))
1113                return -ENODEV;
1114
1115        spin_lock_irq(&epfile->ffs->eps_lock);
1116        if (likely(epfile->ep)) {
1117                switch (code) {
1118                case FUNCTIONFS_FIFO_STATUS:
1119                        ret = usb_ep_fifo_status(epfile->ep->ep);
1120                        break;
1121                case FUNCTIONFS_FIFO_FLUSH:
1122                        usb_ep_fifo_flush(epfile->ep->ep);
1123                        ret = 0;
1124                        break;
1125                case FUNCTIONFS_CLEAR_HALT:
1126                        ret = usb_ep_clear_halt(epfile->ep->ep);
1127                        break;
1128                case FUNCTIONFS_ENDPOINT_REVMAP:
1129                        ret = epfile->ep->num;
1130                        break;
1131                case FUNCTIONFS_ENDPOINT_DESC:
1132                {
1133                        int desc_idx;
1134                        struct usb_endpoint_descriptor *desc;
1135
1136                        switch (epfile->ffs->gadget->speed) {
1137                        case USB_SPEED_SUPER:
1138                                desc_idx = 2;
1139                                break;
1140                        case USB_SPEED_HIGH:
1141                                desc_idx = 1;
1142                                break;
1143                        default:
1144                                desc_idx = 0;
1145                        }
1146                        desc = epfile->ep->descs[desc_idx];
1147
1148                        spin_unlock_irq(&epfile->ffs->eps_lock);
1149                        ret = copy_to_user((void *)value, desc, sizeof(*desc));
1150                        if (ret)
1151                                ret = -EFAULT;
1152                        return ret;
1153                }
1154                default:
1155                        ret = -ENOTTY;
1156                }
1157        } else {
1158                ret = -ENODEV;
1159        }
1160        spin_unlock_irq(&epfile->ffs->eps_lock);
1161
1162        return ret;
1163}
1164
1165static const struct file_operations ffs_epfile_operations = {
1166        .llseek =       no_llseek,
1167
1168        .open =         ffs_epfile_open,
1169        .write_iter =   ffs_epfile_write_iter,
1170        .read_iter =    ffs_epfile_read_iter,
1171        .release =      ffs_epfile_release,
1172        .unlocked_ioctl =       ffs_epfile_ioctl,
1173};
1174
1175
1176/* File system and super block operations ***********************************/
1177
1178/*
1179 * Mounting the file system creates a controller file, used first for
1180 * function configuration then later for event monitoring.
1181 */
1182
1183static struct inode *__must_check
1184ffs_sb_make_inode(struct super_block *sb, void *data,
1185                  const struct file_operations *fops,
1186                  const struct inode_operations *iops,
1187                  struct ffs_file_perms *perms)
1188{
1189        struct inode *inode;
1190
1191        ENTER();
1192
1193        inode = new_inode(sb);
1194
1195        if (likely(inode)) {
1196                struct timespec current_time = CURRENT_TIME;
1197
1198                inode->i_ino     = get_next_ino();
1199                inode->i_mode    = perms->mode;
1200                inode->i_uid     = perms->uid;
1201                inode->i_gid     = perms->gid;
1202                inode->i_atime   = current_time;
1203                inode->i_mtime   = current_time;
1204                inode->i_ctime   = current_time;
1205                inode->i_private = data;
1206                if (fops)
1207                        inode->i_fop = fops;
1208                if (iops)
1209                        inode->i_op  = iops;
1210        }
1211
1212        return inode;
1213}
1214
1215/* Create "regular" file */
1216static struct dentry *ffs_sb_create_file(struct super_block *sb,
1217                                        const char *name, void *data,
1218                                        const struct file_operations *fops)
1219{
1220        struct ffs_data *ffs = sb->s_fs_info;
1221        struct dentry   *dentry;
1222        struct inode    *inode;
1223
1224        ENTER();
1225
1226        dentry = d_alloc_name(sb->s_root, name);
1227        if (unlikely(!dentry))
1228                return NULL;
1229
1230        inode = ffs_sb_make_inode(sb, data, fops, NULL, &ffs->file_perms);
1231        if (unlikely(!inode)) {
1232                dput(dentry);
1233                return NULL;
1234        }
1235
1236        d_add(dentry, inode);
1237        return dentry;
1238}
1239
1240/* Super block */
1241static const struct super_operations ffs_sb_operations = {
1242        .statfs =       simple_statfs,
1243        .drop_inode =   generic_delete_inode,
1244};
1245
1246struct ffs_sb_fill_data {
1247        struct ffs_file_perms perms;
1248        umode_t root_mode;
1249        const char *dev_name;
1250        bool no_disconnect;
1251        struct ffs_data *ffs_data;
1252};
1253
1254static int ffs_sb_fill(struct super_block *sb, void *_data, int silent)
1255{
1256        struct ffs_sb_fill_data *data = _data;
1257        struct inode    *inode;
1258        struct ffs_data *ffs = data->ffs_data;
1259
1260        ENTER();
1261
1262        ffs->sb              = sb;
1263        data->ffs_data       = NULL;
1264        sb->s_fs_info        = ffs;
1265        sb->s_blocksize      = PAGE_SIZE;
1266        sb->s_blocksize_bits = PAGE_SHIFT;
1267        sb->s_magic          = FUNCTIONFS_MAGIC;
1268        sb->s_op             = &ffs_sb_operations;
1269        sb->s_time_gran      = 1;
1270
1271        /* Root inode */
1272        data->perms.mode = data->root_mode;
1273        inode = ffs_sb_make_inode(sb, NULL,
1274                                  &simple_dir_operations,
1275                                  &simple_dir_inode_operations,
1276                                  &data->perms);
1277        sb->s_root = d_make_root(inode);
1278        if (unlikely(!sb->s_root))
1279                return -ENOMEM;
1280
1281        /* EP0 file */
1282        if (unlikely(!ffs_sb_create_file(sb, "ep0", ffs,
1283                                         &ffs_ep0_operations)))
1284                return -ENOMEM;
1285
1286        return 0;
1287}
1288
1289static int ffs_fs_parse_opts(struct ffs_sb_fill_data *data, char *opts)
1290{
1291        ENTER();
1292
1293        if (!opts || !*opts)
1294                return 0;
1295
1296        for (;;) {
1297                unsigned long value;
1298                char *eq, *comma;
1299
1300                /* Option limit */
1301                comma = strchr(opts, ',');
1302                if (comma)
1303                        *comma = 0;
1304
1305                /* Value limit */
1306                eq = strchr(opts, '=');
1307                if (unlikely(!eq)) {
1308                        pr_err("'=' missing in %s\n", opts);
1309                        return -EINVAL;
1310                }
1311                *eq = 0;
1312
1313                /* Parse value */
1314                if (kstrtoul(eq + 1, 0, &value)) {
1315                        pr_err("%s: invalid value: %s\n", opts, eq + 1);
1316                        return -EINVAL;
1317                }
1318
1319                /* Interpret option */
1320                switch (eq - opts) {
1321                case 13:
1322                        if (!memcmp(opts, "no_disconnect", 13))
1323                                data->no_disconnect = !!value;
1324                        else
1325                                goto invalid;
1326                        break;
1327                case 5:
1328                        if (!memcmp(opts, "rmode", 5))
1329                                data->root_mode  = (value & 0555) | S_IFDIR;
1330                        else if (!memcmp(opts, "fmode", 5))
1331                                data->perms.mode = (value & 0666) | S_IFREG;
1332                        else
1333                                goto invalid;
1334                        break;
1335
1336                case 4:
1337                        if (!memcmp(opts, "mode", 4)) {
1338                                data->root_mode  = (value & 0555) | S_IFDIR;
1339                                data->perms.mode = (value & 0666) | S_IFREG;
1340                        } else {
1341                                goto invalid;
1342                        }
1343                        break;
1344
1345                case 3:
1346                        if (!memcmp(opts, "uid", 3)) {
1347                                data->perms.uid = make_kuid(current_user_ns(), value);
1348                                if (!uid_valid(data->perms.uid)) {
1349                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1350                                        return -EINVAL;
1351                                }
1352                        } else if (!memcmp(opts, "gid", 3)) {
1353                                data->perms.gid = make_kgid(current_user_ns(), value);
1354                                if (!gid_valid(data->perms.gid)) {
1355                                        pr_err("%s: unmapped value: %lu\n", opts, value);
1356                                        return -EINVAL;
1357                                }
1358                        } else {
1359                                goto invalid;
1360                        }
1361                        break;
1362
1363                default:
1364invalid:
1365                        pr_err("%s: invalid option\n", opts);
1366                        return -EINVAL;
1367                }
1368
1369                /* Next iteration */
1370                if (!comma)
1371                        break;
1372                opts = comma + 1;
1373        }
1374
1375        return 0;
1376}
1377
1378/* "mount -t functionfs dev_name /dev/function" ends up here */
1379
1380static struct dentry *
1381ffs_fs_mount(struct file_system_type *t, int flags,
1382              const char *dev_name, void *opts)
1383{
1384        struct ffs_sb_fill_data data = {
1385                .perms = {
1386                        .mode = S_IFREG | 0600,
1387                        .uid = GLOBAL_ROOT_UID,
1388                        .gid = GLOBAL_ROOT_GID,
1389                },
1390                .root_mode = S_IFDIR | 0500,
1391                .no_disconnect = false,
1392        };
1393        struct dentry *rv;
1394        int ret;
1395        void *ffs_dev;
1396        struct ffs_data *ffs;
1397
1398        ENTER();
1399
1400        ret = ffs_fs_parse_opts(&data, opts);
1401        if (unlikely(ret < 0))
1402                return ERR_PTR(ret);
1403
1404        ffs = ffs_data_new();
1405        if (unlikely(!ffs))
1406                return ERR_PTR(-ENOMEM);
1407        ffs->file_perms = data.perms;
1408        ffs->no_disconnect = data.no_disconnect;
1409
1410        ffs->dev_name = kstrdup(dev_name, GFP_KERNEL);
1411        if (unlikely(!ffs->dev_name)) {
1412                ffs_data_put(ffs);
1413                return ERR_PTR(-ENOMEM);
1414        }
1415
1416        ffs_dev = ffs_acquire_dev(dev_name);
1417        if (IS_ERR(ffs_dev)) {
1418                ffs_data_put(ffs);
1419                return ERR_CAST(ffs_dev);
1420        }
1421        ffs->private_data = ffs_dev;
1422        data.ffs_data = ffs;
1423
1424        rv = mount_nodev(t, flags, &data, ffs_sb_fill);
1425        if (IS_ERR(rv) && data.ffs_data) {
1426                ffs_release_dev(data.ffs_data);
1427                ffs_data_put(data.ffs_data);
1428        }
1429        return rv;
1430}
1431
1432static void
1433ffs_fs_kill_sb(struct super_block *sb)
1434{
1435        ENTER();
1436
1437        kill_litter_super(sb);
1438        if (sb->s_fs_info) {
1439                ffs_release_dev(sb->s_fs_info);
1440                ffs_data_closed(sb->s_fs_info);
1441                ffs_data_put(sb->s_fs_info);
1442        }
1443}
1444
1445static struct file_system_type ffs_fs_type = {
1446        .owner          = THIS_MODULE,
1447        .name           = "functionfs",
1448        .mount          = ffs_fs_mount,
1449        .kill_sb        = ffs_fs_kill_sb,
1450};
1451MODULE_ALIAS_FS("functionfs");
1452
1453
1454/* Driver's main init/cleanup functions *************************************/
1455
1456static int functionfs_init(void)
1457{
1458        int ret;
1459
1460        ENTER();
1461
1462        ret = register_filesystem(&ffs_fs_type);
1463        if (likely(!ret))
1464                pr_info("file system registered\n");
1465        else
1466                pr_err("failed registering file system (%d)\n", ret);
1467
1468        return ret;
1469}
1470
1471static void functionfs_cleanup(void)
1472{
1473        ENTER();
1474
1475        pr_info("unloading\n");
1476        unregister_filesystem(&ffs_fs_type);
1477}
1478
1479
1480/* ffs_data and ffs_function construction and destruction code **************/
1481
1482static void ffs_data_clear(struct ffs_data *ffs);
1483static void ffs_data_reset(struct ffs_data *ffs);
1484
1485static void ffs_data_get(struct ffs_data *ffs)
1486{
1487        ENTER();
1488
1489        atomic_inc(&ffs->ref);
1490}
1491
1492static void ffs_data_opened(struct ffs_data *ffs)
1493{
1494        ENTER();
1495
1496        atomic_inc(&ffs->ref);
1497        if (atomic_add_return(1, &ffs->opened) == 1 &&
1498                        ffs->state == FFS_DEACTIVATED) {
1499                ffs->state = FFS_CLOSING;
1500                ffs_data_reset(ffs);
1501        }
1502}
1503
1504static void ffs_data_put(struct ffs_data *ffs)
1505{
1506        ENTER();
1507
1508        if (unlikely(atomic_dec_and_test(&ffs->ref))) {
1509                pr_info("%s(): freeing\n", __func__);
1510                ffs_data_clear(ffs);
1511                BUG_ON(waitqueue_active(&ffs->ev.waitq) ||
1512                       waitqueue_active(&ffs->ep0req_completion.wait));
1513                kfree(ffs->dev_name);
1514                kfree(ffs);
1515        }
1516}
1517
1518static void ffs_data_closed(struct ffs_data *ffs)
1519{
1520        ENTER();
1521
1522        if (atomic_dec_and_test(&ffs->opened)) {
1523                if (ffs->no_disconnect) {
1524                        ffs->state = FFS_DEACTIVATED;
1525                        if (ffs->epfiles) {
1526                                ffs_epfiles_destroy(ffs->epfiles,
1527                                                   ffs->eps_count);
1528                                ffs->epfiles = NULL;
1529                        }
1530                        if (ffs->setup_state == FFS_SETUP_PENDING)
1531                                __ffs_ep0_stall(ffs);
1532                } else {
1533                        ffs->state = FFS_CLOSING;
1534                        ffs_data_reset(ffs);
1535                }
1536        }
1537        if (atomic_read(&ffs->opened) < 0) {
1538                ffs->state = FFS_CLOSING;
1539                ffs_data_reset(ffs);
1540        }
1541
1542        ffs_data_put(ffs);
1543}
1544
1545static struct ffs_data *ffs_data_new(void)
1546{
1547        struct ffs_data *ffs = kzalloc(sizeof *ffs, GFP_KERNEL);
1548        if (unlikely(!ffs))
1549                return NULL;
1550
1551        ENTER();
1552
1553        atomic_set(&ffs->ref, 1);
1554        atomic_set(&ffs->opened, 0);
1555        ffs->state = FFS_READ_DESCRIPTORS;
1556        mutex_init(&ffs->mutex);
1557        spin_lock_init(&ffs->eps_lock);
1558        init_waitqueue_head(&ffs->ev.waitq);
1559        init_completion(&ffs->ep0req_completion);
1560
1561        /* XXX REVISIT need to update it in some places, or do we? */
1562        ffs->ev.can_stall = 1;
1563
1564        return ffs;
1565}
1566
1567static void ffs_data_clear(struct ffs_data *ffs)
1568{
1569        ENTER();
1570
1571        ffs_closed(ffs);
1572
1573        BUG_ON(ffs->gadget);
1574
1575        if (ffs->epfiles)
1576                ffs_epfiles_destroy(ffs->epfiles, ffs->eps_count);
1577
1578        if (ffs->ffs_eventfd)
1579                eventfd_ctx_put(ffs->ffs_eventfd);
1580
1581        kfree(ffs->raw_descs_data);
1582        kfree(ffs->raw_strings);
1583        kfree(ffs->stringtabs);
1584}
1585
1586static void ffs_data_reset(struct ffs_data *ffs)
1587{
1588        ENTER();
1589
1590        ffs_data_clear(ffs);
1591
1592        ffs->epfiles = NULL;
1593        ffs->raw_descs_data = NULL;
1594        ffs->raw_descs = NULL;
1595        ffs->raw_strings = NULL;
1596        ffs->stringtabs = NULL;
1597
1598        ffs->raw_descs_length = 0;
1599        ffs->fs_descs_count = 0;
1600        ffs->hs_descs_count = 0;
1601        ffs->ss_descs_count = 0;
1602
1603        ffs->strings_count = 0;
1604        ffs->interfaces_count = 0;
1605        ffs->eps_count = 0;
1606
1607        ffs->ev.count = 0;
1608
1609        ffs->state = FFS_READ_DESCRIPTORS;
1610        ffs->setup_state = FFS_NO_SETUP;
1611        ffs->flags = 0;
1612}
1613
1614
1615static int functionfs_bind(struct ffs_data *ffs, struct usb_composite_dev *cdev)
1616{
1617        struct usb_gadget_strings **lang;
1618        int first_id;
1619
1620        ENTER();
1621
1622        if (WARN_ON(ffs->state != FFS_ACTIVE
1623                 || test_and_set_bit(FFS_FL_BOUND, &ffs->flags)))
1624                return -EBADFD;
1625
1626        first_id = usb_string_ids_n(cdev, ffs->strings_count);
1627        if (unlikely(first_id < 0))
1628                return first_id;
1629
1630        ffs->ep0req = usb_ep_alloc_request(cdev->gadget->ep0, GFP_KERNEL);
1631        if (unlikely(!ffs->ep0req))
1632                return -ENOMEM;
1633        ffs->ep0req->complete = ffs_ep0_complete;
1634        ffs->ep0req->context = ffs;
1635
1636        lang = ffs->stringtabs;
1637        if (lang) {
1638                for (; *lang; ++lang) {
1639                        struct usb_string *str = (*lang)->strings;
1640                        int id = first_id;
1641                        for (; str->s; ++id, ++str)
1642                                str->id = id;
1643                }
1644        }
1645
1646        ffs->gadget = cdev->gadget;
1647        ffs_data_get(ffs);
1648        return 0;
1649}
1650
1651static void functionfs_unbind(struct ffs_data *ffs)
1652{
1653        ENTER();
1654
1655        if (!WARN_ON(!ffs->gadget)) {
1656                usb_ep_free_request(ffs->gadget->ep0, ffs->ep0req);
1657                ffs->ep0req = NULL;
1658                ffs->gadget = NULL;
1659                clear_bit(FFS_FL_BOUND, &ffs->flags);
1660                ffs_data_put(ffs);
1661        }
1662}
1663
1664static int ffs_epfiles_create(struct ffs_data *ffs)
1665{
1666        struct ffs_epfile *epfile, *epfiles;
1667        unsigned i, count;
1668
1669        ENTER();
1670
1671        count = ffs->eps_count;
1672        epfiles = kcalloc(count, sizeof(*epfiles), GFP_KERNEL);
1673        if (!epfiles)
1674                return -ENOMEM;
1675
1676        epfile = epfiles;
1677        for (i = 1; i <= count; ++i, ++epfile) {
1678                epfile->ffs = ffs;
1679                mutex_init(&epfile->mutex);
1680                init_waitqueue_head(&epfile->wait);
1681                if (ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
1682                        sprintf(epfile->name, "ep%02x", ffs->eps_addrmap[i]);
1683                else
1684                        sprintf(epfile->name, "ep%u", i);
1685                epfile->dentry = ffs_sb_create_file(ffs->sb, epfile->name,
1686                                                 epfile,
1687                                                 &ffs_epfile_operations);
1688                if (unlikely(!epfile->dentry)) {
1689                        ffs_epfiles_destroy(epfiles, i - 1);
1690                        return -ENOMEM;
1691                }
1692        }
1693
1694        ffs->epfiles = epfiles;
1695        return 0;
1696}
1697
1698static void ffs_epfiles_destroy(struct ffs_epfile *epfiles, unsigned count)
1699{
1700        struct ffs_epfile *epfile = epfiles;
1701
1702        ENTER();
1703
1704        for (; count; --count, ++epfile) {
1705                BUG_ON(mutex_is_locked(&epfile->mutex) ||
1706                       waitqueue_active(&epfile->wait));
1707                if (epfile->dentry) {
1708                        d_delete(epfile->dentry);
1709                        dput(epfile->dentry);
1710                        epfile->dentry = NULL;
1711                }
1712        }
1713
1714        kfree(epfiles);
1715}
1716
1717static void ffs_func_eps_disable(struct ffs_function *func)
1718{
1719        struct ffs_ep *ep         = func->eps;
1720        struct ffs_epfile *epfile = func->ffs->epfiles;
1721        unsigned count            = func->ffs->eps_count;
1722        unsigned long flags;
1723
1724        do {
1725                if (epfile)
1726                        mutex_lock(&epfile->mutex);
1727                spin_lock_irqsave(&func->ffs->eps_lock, flags);
1728                /* pending requests get nuked */
1729                if (likely(ep->ep))
1730                        usb_ep_disable(ep->ep);
1731                ++ep;
1732                spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1733
1734                if (epfile) {
1735                        epfile->ep = NULL;
1736                        kfree(epfile->read_buffer);
1737                        epfile->read_buffer = NULL;
1738                        mutex_unlock(&epfile->mutex);
1739                        ++epfile;
1740                }
1741        } while (--count);
1742}
1743
1744static int ffs_func_eps_enable(struct ffs_function *func)
1745{
1746        struct ffs_data *ffs      = func->ffs;
1747        struct ffs_ep *ep         = func->eps;
1748        struct ffs_epfile *epfile = ffs->epfiles;
1749        unsigned count            = ffs->eps_count;
1750        unsigned long flags;
1751        int ret = 0;
1752
1753        spin_lock_irqsave(&func->ffs->eps_lock, flags);
1754        do {
1755                struct usb_endpoint_descriptor *ds;
1756                int desc_idx;
1757
1758                if (ffs->gadget->speed == USB_SPEED_SUPER)
1759                        desc_idx = 2;
1760                else if (ffs->gadget->speed == USB_SPEED_HIGH)
1761                        desc_idx = 1;
1762                else
1763                        desc_idx = 0;
1764
1765                /* fall-back to lower speed if desc missing for current speed */
1766                do {
1767                        ds = ep->descs[desc_idx];
1768                } while (!ds && --desc_idx >= 0);
1769
1770                if (!ds) {
1771                        ret = -EINVAL;
1772                        break;
1773                }
1774
1775                ep->ep->driver_data = ep;
1776                ep->ep->desc = ds;
1777                ret = usb_ep_enable(ep->ep);
1778                if (likely(!ret)) {
1779                        epfile->ep = ep;
1780                        epfile->in = usb_endpoint_dir_in(ds);
1781                        epfile->isoc = usb_endpoint_xfer_isoc(ds);
1782                } else {
1783                        break;
1784                }
1785
1786                wake_up(&epfile->wait);
1787
1788                ++ep;
1789                ++epfile;
1790        } while (--count);
1791        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
1792
1793        return ret;
1794}
1795
1796
1797/* Parsing and building descriptors and strings *****************************/
1798
1799/*
1800 * This validates if data pointed by data is a valid USB descriptor as
1801 * well as record how many interfaces, endpoints and strings are
1802 * required by given configuration.  Returns address after the
1803 * descriptor or NULL if data is invalid.
1804 */
1805
1806enum ffs_entity_type {
1807        FFS_DESCRIPTOR, FFS_INTERFACE, FFS_STRING, FFS_ENDPOINT
1808};
1809
1810enum ffs_os_desc_type {
1811        FFS_OS_DESC, FFS_OS_DESC_EXT_COMPAT, FFS_OS_DESC_EXT_PROP
1812};
1813
1814typedef int (*ffs_entity_callback)(enum ffs_entity_type entity,
1815                                   u8 *valuep,
1816                                   struct usb_descriptor_header *desc,
1817                                   void *priv);
1818
1819typedef int (*ffs_os_desc_callback)(enum ffs_os_desc_type entity,
1820                                    struct usb_os_desc_header *h, void *data,
1821                                    unsigned len, void *priv);
1822
1823static int __must_check ffs_do_single_desc(char *data, unsigned len,
1824                                           ffs_entity_callback entity,
1825                                           void *priv)
1826{
1827        struct usb_descriptor_header *_ds = (void *)data;
1828        u8 length;
1829        int ret;
1830
1831        ENTER();
1832
1833        /* At least two bytes are required: length and type */
1834        if (len < 2) {
1835                pr_vdebug("descriptor too short\n");
1836                return -EINVAL;
1837        }
1838
1839        /* If we have at least as many bytes as the descriptor takes? */
1840        length = _ds->bLength;
1841        if (len < length) {
1842                pr_vdebug("descriptor longer then available data\n");
1843                return -EINVAL;
1844        }
1845
1846#define __entity_check_INTERFACE(val)  1
1847#define __entity_check_STRING(val)     (val)
1848#define __entity_check_ENDPOINT(val)   ((val) & USB_ENDPOINT_NUMBER_MASK)
1849#define __entity(type, val) do {                                        \
1850                pr_vdebug("entity " #type "(%02x)\n", (val));           \
1851                if (unlikely(!__entity_check_ ##type(val))) {           \
1852                        pr_vdebug("invalid entity's value\n");          \
1853                        return -EINVAL;                                 \
1854                }                                                       \
1855                ret = entity(FFS_ ##type, &val, _ds, priv);             \
1856                if (unlikely(ret < 0)) {                                \
1857                        pr_debug("entity " #type "(%02x); ret = %d\n",  \
1858                                 (val), ret);                           \
1859                        return ret;                                     \
1860                }                                                       \
1861        } while (0)
1862
1863        /* Parse descriptor depending on type. */
1864        switch (_ds->bDescriptorType) {
1865        case USB_DT_DEVICE:
1866        case USB_DT_CONFIG:
1867        case USB_DT_STRING:
1868        case USB_DT_DEVICE_QUALIFIER:
1869                /* function can't have any of those */
1870                pr_vdebug("descriptor reserved for gadget: %d\n",
1871                      _ds->bDescriptorType);
1872                return -EINVAL;
1873
1874        case USB_DT_INTERFACE: {
1875                struct usb_interface_descriptor *ds = (void *)_ds;
1876                pr_vdebug("interface descriptor\n");
1877                if (length != sizeof *ds)
1878                        goto inv_length;
1879
1880                __entity(INTERFACE, ds->bInterfaceNumber);
1881                if (ds->iInterface)
1882                        __entity(STRING, ds->iInterface);
1883        }
1884                break;
1885
1886        case USB_DT_ENDPOINT: {
1887                struct usb_endpoint_descriptor *ds = (void *)_ds;
1888                pr_vdebug("endpoint descriptor\n");
1889                if (length != USB_DT_ENDPOINT_SIZE &&
1890                    length != USB_DT_ENDPOINT_AUDIO_SIZE)
1891                        goto inv_length;
1892                __entity(ENDPOINT, ds->bEndpointAddress);
1893        }
1894                break;
1895
1896        case HID_DT_HID:
1897                pr_vdebug("hid descriptor\n");
1898                if (length != sizeof(struct hid_descriptor))
1899                        goto inv_length;
1900                break;
1901
1902        case USB_DT_OTG:
1903                if (length != sizeof(struct usb_otg_descriptor))
1904                        goto inv_length;
1905                break;
1906
1907        case USB_DT_INTERFACE_ASSOCIATION: {
1908                struct usb_interface_assoc_descriptor *ds = (void *)_ds;
1909                pr_vdebug("interface association descriptor\n");
1910                if (length != sizeof *ds)
1911                        goto inv_length;
1912                if (ds->iFunction)
1913                        __entity(STRING, ds->iFunction);
1914        }
1915                break;
1916
1917        case USB_DT_SS_ENDPOINT_COMP:
1918                pr_vdebug("EP SS companion descriptor\n");
1919                if (length != sizeof(struct usb_ss_ep_comp_descriptor))
1920                        goto inv_length;
1921                break;
1922
1923        case USB_DT_OTHER_SPEED_CONFIG:
1924        case USB_DT_INTERFACE_POWER:
1925        case USB_DT_DEBUG:
1926        case USB_DT_SECURITY:
1927        case USB_DT_CS_RADIO_CONTROL:
1928                /* TODO */
1929                pr_vdebug("unimplemented descriptor: %d\n", _ds->bDescriptorType);
1930                return -EINVAL;
1931
1932        default:
1933                /* We should never be here */
1934                pr_vdebug("unknown descriptor: %d\n", _ds->bDescriptorType);
1935                return -EINVAL;
1936
1937inv_length:
1938                pr_vdebug("invalid length: %d (descriptor %d)\n",
1939                          _ds->bLength, _ds->bDescriptorType);
1940                return -EINVAL;
1941        }
1942
1943#undef __entity
1944#undef __entity_check_DESCRIPTOR
1945#undef __entity_check_INTERFACE
1946#undef __entity_check_STRING
1947#undef __entity_check_ENDPOINT
1948
1949        return length;
1950}
1951
1952static int __must_check ffs_do_descs(unsigned count, char *data, unsigned len,
1953                                     ffs_entity_callback entity, void *priv)
1954{
1955        const unsigned _len = len;
1956        unsigned long num = 0;
1957
1958        ENTER();
1959
1960        for (;;) {
1961                int ret;
1962
1963                if (num == count)
1964                        data = NULL;
1965
1966                /* Record "descriptor" entity */
1967                ret = entity(FFS_DESCRIPTOR, (u8 *)num, (void *)data, priv);
1968                if (unlikely(ret < 0)) {
1969                        pr_debug("entity DESCRIPTOR(%02lx); ret = %d\n",
1970                                 num, ret);
1971                        return ret;
1972                }
1973
1974                if (!data)
1975                        return _len - len;
1976
1977                ret = ffs_do_single_desc(data, len, entity, priv);
1978                if (unlikely(ret < 0)) {
1979                        pr_debug("%s returns %d\n", __func__, ret);
1980                        return ret;
1981                }
1982
1983                len -= ret;
1984                data += ret;
1985                ++num;
1986        }
1987}
1988
1989static int __ffs_data_do_entity(enum ffs_entity_type type,
1990                                u8 *valuep, struct usb_descriptor_header *desc,
1991                                void *priv)
1992{
1993        struct ffs_desc_helper *helper = priv;
1994        struct usb_endpoint_descriptor *d;
1995
1996        ENTER();
1997
1998        switch (type) {
1999        case FFS_DESCRIPTOR:
2000                break;
2001
2002        case FFS_INTERFACE:
2003                /*
2004                 * Interfaces are indexed from zero so if we
2005                 * encountered interface "n" then there are at least
2006                 * "n+1" interfaces.
2007                 */
2008                if (*valuep >= helper->interfaces_count)
2009                        helper->interfaces_count = *valuep + 1;
2010                break;
2011
2012        case FFS_STRING:
2013                /*
2014                 * Strings are indexed from 1 (0 is magic ;) reserved
2015                 * for languages list or some such)
2016                 */
2017                if (*valuep > helper->ffs->strings_count)
2018                        helper->ffs->strings_count = *valuep;
2019                break;
2020
2021        case FFS_ENDPOINT:
2022                d = (void *)desc;
2023                helper->eps_count++;
2024                if (helper->eps_count >= 15)
2025                        return -EINVAL;
2026                /* Check if descriptors for any speed were already parsed */
2027                if (!helper->ffs->eps_count && !helper->ffs->interfaces_count)
2028                        helper->ffs->eps_addrmap[helper->eps_count] =
2029                                d->bEndpointAddress;
2030                else if (helper->ffs->eps_addrmap[helper->eps_count] !=
2031                                d->bEndpointAddress)
2032                        return -EINVAL;
2033                break;
2034        }
2035
2036        return 0;
2037}
2038
2039static int __ffs_do_os_desc_header(enum ffs_os_desc_type *next_type,
2040                                   struct usb_os_desc_header *desc)
2041{
2042        u16 bcd_version = le16_to_cpu(desc->bcdVersion);
2043        u16 w_index = le16_to_cpu(desc->wIndex);
2044
2045        if (bcd_version != 1) {
2046                pr_vdebug("unsupported os descriptors version: %d",
2047                          bcd_version);
2048                return -EINVAL;
2049        }
2050        switch (w_index) {
2051        case 0x4:
2052                *next_type = FFS_OS_DESC_EXT_COMPAT;
2053                break;
2054        case 0x5:
2055                *next_type = FFS_OS_DESC_EXT_PROP;
2056                break;
2057        default:
2058                pr_vdebug("unsupported os descriptor type: %d", w_index);
2059                return -EINVAL;
2060        }
2061
2062        return sizeof(*desc);
2063}
2064
2065/*
2066 * Process all extended compatibility/extended property descriptors
2067 * of a feature descriptor
2068 */
2069static int __must_check ffs_do_single_os_desc(char *data, unsigned len,
2070                                              enum ffs_os_desc_type type,
2071                                              u16 feature_count,
2072                                              ffs_os_desc_callback entity,
2073                                              void *priv,
2074                                              struct usb_os_desc_header *h)
2075{
2076        int ret;
2077        const unsigned _len = len;
2078
2079        ENTER();
2080
2081        /* loop over all ext compat/ext prop descriptors */
2082        while (feature_count--) {
2083                ret = entity(type, h, data, len, priv);
2084                if (unlikely(ret < 0)) {
2085                        pr_debug("bad OS descriptor, type: %d\n", type);
2086                        return ret;
2087                }
2088                data += ret;
2089                len -= ret;
2090        }
2091        return _len - len;
2092}
2093
2094/* Process a number of complete Feature Descriptors (Ext Compat or Ext Prop) */
2095static int __must_check ffs_do_os_descs(unsigned count,
2096                                        char *data, unsigned len,
2097                                        ffs_os_desc_callback entity, void *priv)
2098{
2099        const unsigned _len = len;
2100        unsigned long num = 0;
2101
2102        ENTER();
2103
2104        for (num = 0; num < count; ++num) {
2105                int ret;
2106                enum ffs_os_desc_type type;
2107                u16 feature_count;
2108                struct usb_os_desc_header *desc = (void *)data;
2109
2110                if (len < sizeof(*desc))
2111                        return -EINVAL;
2112
2113                /*
2114                 * Record "descriptor" entity.
2115                 * Process dwLength, bcdVersion, wIndex, get b/wCount.
2116                 * Move the data pointer to the beginning of extended
2117                 * compatibilities proper or extended properties proper
2118                 * portions of the data
2119                 */
2120                if (le32_to_cpu(desc->dwLength) > len)
2121                        return -EINVAL;
2122
2123                ret = __ffs_do_os_desc_header(&type, desc);
2124                if (unlikely(ret < 0)) {
2125                        pr_debug("entity OS_DESCRIPTOR(%02lx); ret = %d\n",
2126                                 num, ret);
2127                        return ret;
2128                }
2129                /*
2130                 * 16-bit hex "?? 00" Little Endian looks like 8-bit hex "??"
2131                 */
2132                feature_count = le16_to_cpu(desc->wCount);
2133                if (type == FFS_OS_DESC_EXT_COMPAT &&
2134                    (feature_count > 255 || desc->Reserved))
2135                                return -EINVAL;
2136                len -= ret;
2137                data += ret;
2138
2139                /*
2140                 * Process all function/property descriptors
2141                 * of this Feature Descriptor
2142                 */
2143                ret = ffs_do_single_os_desc(data, len, type,
2144                                            feature_count, entity, priv, desc);
2145                if (unlikely(ret < 0)) {
2146                        pr_debug("%s returns %d\n", __func__, ret);
2147                        return ret;
2148                }
2149
2150                len -= ret;
2151                data += ret;
2152        }
2153        return _len - len;
2154}
2155
2156/**
2157 * Validate contents of the buffer from userspace related to OS descriptors.
2158 */
2159static int __ffs_data_do_os_desc(enum ffs_os_desc_type type,
2160                                 struct usb_os_desc_header *h, void *data,
2161                                 unsigned len, void *priv)
2162{
2163        struct ffs_data *ffs = priv;
2164        u8 length;
2165
2166        ENTER();
2167
2168        switch (type) {
2169        case FFS_OS_DESC_EXT_COMPAT: {
2170                struct usb_ext_compat_desc *d = data;
2171                int i;
2172
2173                if (len < sizeof(*d) ||
2174                    d->bFirstInterfaceNumber >= ffs->interfaces_count ||
2175                    !d->Reserved1)
2176                        return -EINVAL;
2177                for (i = 0; i < ARRAY_SIZE(d->Reserved2); ++i)
2178                        if (d->Reserved2[i])
2179                                return -EINVAL;
2180
2181                length = sizeof(struct usb_ext_compat_desc);
2182        }
2183                break;
2184        case FFS_OS_DESC_EXT_PROP: {
2185                struct usb_ext_prop_desc *d = data;
2186                u32 type, pdl;
2187                u16 pnl;
2188
2189                if (len < sizeof(*d) || h->interface >= ffs->interfaces_count)
2190                        return -EINVAL;
2191                length = le32_to_cpu(d->dwSize);
2192                type = le32_to_cpu(d->dwPropertyDataType);
2193                if (type < USB_EXT_PROP_UNICODE ||
2194                    type > USB_EXT_PROP_UNICODE_MULTI) {
2195                        pr_vdebug("unsupported os descriptor property type: %d",
2196                                  type);
2197                        return -EINVAL;
2198                }
2199                pnl = le16_to_cpu(d->wPropertyNameLength);
2200                pdl = le32_to_cpu(*(u32 *)((u8 *)data + 10 + pnl));
2201                if (length != 14 + pnl + pdl) {
2202                        pr_vdebug("invalid os descriptor length: %d pnl:%d pdl:%d (descriptor %d)\n",
2203                                  length, pnl, pdl, type);
2204                        return -EINVAL;
2205                }
2206                ++ffs->ms_os_descs_ext_prop_count;
2207                /* property name reported to the host as "WCHAR"s */
2208                ffs->ms_os_descs_ext_prop_name_len += pnl * 2;
2209                ffs->ms_os_descs_ext_prop_data_len += pdl;
2210        }
2211                break;
2212        default:
2213                pr_vdebug("unknown descriptor: %d\n", type);
2214                return -EINVAL;
2215        }
2216        return length;
2217}
2218
2219static int __ffs_data_got_descs(struct ffs_data *ffs,
2220                                char *const _data, size_t len)
2221{
2222        char *data = _data, *raw_descs;
2223        unsigned os_descs_count = 0, counts[3], flags;
2224        int ret = -EINVAL, i;
2225        struct ffs_desc_helper helper;
2226
2227        ENTER();
2228
2229        if (get_unaligned_le32(data + 4) != len)
2230                goto error;
2231
2232        switch (get_unaligned_le32(data)) {
2233        case FUNCTIONFS_DESCRIPTORS_MAGIC:
2234                flags = FUNCTIONFS_HAS_FS_DESC | FUNCTIONFS_HAS_HS_DESC;
2235                data += 8;
2236                len  -= 8;
2237                break;
2238        case FUNCTIONFS_DESCRIPTORS_MAGIC_V2:
2239                flags = get_unaligned_le32(data + 8);
2240                ffs->user_flags = flags;
2241                if (flags & ~(FUNCTIONFS_HAS_FS_DESC |
2242                              FUNCTIONFS_HAS_HS_DESC |
2243                              FUNCTIONFS_HAS_SS_DESC |
2244                              FUNCTIONFS_HAS_MS_OS_DESC |
2245                              FUNCTIONFS_VIRTUAL_ADDR |
2246                              FUNCTIONFS_EVENTFD)) {
2247                        ret = -ENOSYS;
2248                        goto error;
2249                }
2250                data += 12;
2251                len  -= 12;
2252                break;
2253        default:
2254                goto error;
2255        }
2256
2257        if (flags & FUNCTIONFS_EVENTFD) {
2258                if (len < 4)
2259                        goto error;
2260                ffs->ffs_eventfd =
2261                        eventfd_ctx_fdget((int)get_unaligned_le32(data));
2262                if (IS_ERR(ffs->ffs_eventfd)) {
2263                        ret = PTR_ERR(ffs->ffs_eventfd);
2264                        ffs->ffs_eventfd = NULL;
2265                        goto error;
2266                }
2267                data += 4;
2268                len  -= 4;
2269        }
2270
2271        /* Read fs_count, hs_count and ss_count (if present) */
2272        for (i = 0; i < 3; ++i) {
2273                if (!(flags & (1 << i))) {
2274                        counts[i] = 0;
2275                } else if (len < 4) {
2276                        goto error;
2277                } else {
2278                        counts[i] = get_unaligned_le32(data);
2279                        data += 4;
2280                        len  -= 4;
2281                }
2282        }
2283        if (flags & (1 << i)) {
2284                os_descs_count = get_unaligned_le32(data);
2285                data += 4;
2286                len -= 4;
2287        };
2288
2289        /* Read descriptors */
2290        raw_descs = data;
2291        helper.ffs = ffs;
2292        for (i = 0; i < 3; ++i) {
2293                if (!counts[i])
2294                        continue;
2295                helper.interfaces_count = 0;
2296                helper.eps_count = 0;
2297                ret = ffs_do_descs(counts[i], data, len,
2298                                   __ffs_data_do_entity, &helper);
2299                if (ret < 0)
2300                        goto error;
2301                if (!ffs->eps_count && !ffs->interfaces_count) {
2302                        ffs->eps_count = helper.eps_count;
2303                        ffs->interfaces_count = helper.interfaces_count;
2304                } else {
2305                        if (ffs->eps_count != helper.eps_count) {
2306                                ret = -EINVAL;
2307                                goto error;
2308                        }
2309                        if (ffs->interfaces_count != helper.interfaces_count) {
2310                                ret = -EINVAL;
2311                                goto error;
2312                        }
2313                }
2314                data += ret;
2315                len  -= ret;
2316        }
2317        if (os_descs_count) {
2318                ret = ffs_do_os_descs(os_descs_count, data, len,
2319                                      __ffs_data_do_os_desc, ffs);
2320                if (ret < 0)
2321                        goto error;
2322                data += ret;
2323                len -= ret;
2324        }
2325
2326        if (raw_descs == data || len) {
2327                ret = -EINVAL;
2328                goto error;
2329        }
2330
2331        ffs->raw_descs_data     = _data;
2332        ffs->raw_descs          = raw_descs;
2333        ffs->raw_descs_length   = data - raw_descs;
2334        ffs->fs_descs_count     = counts[0];
2335        ffs->hs_descs_count     = counts[1];
2336        ffs->ss_descs_count     = counts[2];
2337        ffs->ms_os_descs_count  = os_descs_count;
2338
2339        return 0;
2340
2341error:
2342        kfree(_data);
2343        return ret;
2344}
2345
2346static int __ffs_data_got_strings(struct ffs_data *ffs,
2347                                  char *const _data, size_t len)
2348{
2349        u32 str_count, needed_count, lang_count;
2350        struct usb_gadget_strings **stringtabs, *t;
2351        const char *data = _data;
2352        struct usb_string *s;
2353
2354        ENTER();
2355
2356        if (unlikely(get_unaligned_le32(data) != FUNCTIONFS_STRINGS_MAGIC ||
2357                     get_unaligned_le32(data + 4) != len))
2358                goto error;
2359        str_count  = get_unaligned_le32(data + 8);
2360        lang_count = get_unaligned_le32(data + 12);
2361
2362        /* if one is zero the other must be zero */
2363        if (unlikely(!str_count != !lang_count))
2364                goto error;
2365
2366        /* Do we have at least as many strings as descriptors need? */
2367        needed_count = ffs->strings_count;
2368        if (unlikely(str_count < needed_count))
2369                goto error;
2370
2371        /*
2372         * If we don't need any strings just return and free all
2373         * memory.
2374         */
2375        if (!needed_count) {
2376                kfree(_data);
2377                return 0;
2378        }
2379
2380        /* Allocate everything in one chunk so there's less maintenance. */
2381        {
2382                unsigned i = 0;
2383                vla_group(d);
2384                vla_item(d, struct usb_gadget_strings *, stringtabs,
2385                        lang_count + 1);
2386                vla_item(d, struct usb_gadget_strings, stringtab, lang_count);
2387                vla_item(d, struct usb_string, strings,
2388                        lang_count*(needed_count+1));
2389
2390                char *vlabuf = kmalloc(vla_group_size(d), GFP_KERNEL);
2391
2392                if (unlikely(!vlabuf)) {
2393                        kfree(_data);
2394                        return -ENOMEM;
2395                }
2396
2397                /* Initialize the VLA pointers */
2398                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2399                t = vla_ptr(vlabuf, d, stringtab);
2400                i = lang_count;
2401                do {
2402                        *stringtabs++ = t++;
2403                } while (--i);
2404                *stringtabs = NULL;
2405
2406                /* stringtabs = vlabuf = d_stringtabs for later kfree */
2407                stringtabs = vla_ptr(vlabuf, d, stringtabs);
2408                t = vla_ptr(vlabuf, d, stringtab);
2409                s = vla_ptr(vlabuf, d, strings);
2410        }
2411
2412        /* For each language */
2413        data += 16;
2414        len -= 16;
2415
2416        do { /* lang_count > 0 so we can use do-while */
2417                unsigned needed = needed_count;
2418
2419                if (unlikely(len < 3))
2420                        goto error_free;
2421                t->language = get_unaligned_le16(data);
2422                t->strings  = s;
2423                ++t;
2424
2425                data += 2;
2426                len -= 2;
2427
2428                /* For each string */
2429                do { /* str_count > 0 so we can use do-while */
2430                        size_t length = strnlen(data, len);
2431
2432                        if (unlikely(length == len))
2433                                goto error_free;
2434
2435                        /*
2436                         * User may provide more strings then we need,
2437                         * if that's the case we simply ignore the
2438                         * rest
2439                         */
2440                        if (likely(needed)) {
2441                                /*
2442                                 * s->id will be set while adding
2443                                 * function to configuration so for
2444                                 * now just leave garbage here.
2445                                 */
2446                                s->s = data;
2447                                --needed;
2448                                ++s;
2449                        }
2450
2451                        data += length + 1;
2452                        len -= length + 1;
2453                } while (--str_count);
2454
2455                s->id = 0;   /* terminator */
2456                s->s = NULL;
2457                ++s;
2458
2459        } while (--lang_count);
2460
2461        /* Some garbage left? */
2462        if (unlikely(len))
2463                goto error_free;
2464
2465        /* Done! */
2466        ffs->stringtabs = stringtabs;
2467        ffs->raw_strings = _data;
2468
2469        return 0;
2470
2471error_free:
2472        kfree(stringtabs);
2473error:
2474        kfree(_data);
2475        return -EINVAL;
2476}
2477
2478
2479/* Events handling and management *******************************************/
2480
2481static void __ffs_event_add(struct ffs_data *ffs,
2482                            enum usb_functionfs_event_type type)
2483{
2484        enum usb_functionfs_event_type rem_type1, rem_type2 = type;
2485        int neg = 0;
2486
2487        /*
2488         * Abort any unhandled setup
2489         *
2490         * We do not need to worry about some cmpxchg() changing value
2491         * of ffs->setup_state without holding the lock because when
2492         * state is FFS_SETUP_PENDING cmpxchg() in several places in
2493         * the source does nothing.
2494         */
2495        if (ffs->setup_state == FFS_SETUP_PENDING)
2496                ffs->setup_state = FFS_SETUP_CANCELLED;
2497
2498        /*
2499         * Logic of this function guarantees that there are at most four pending
2500         * evens on ffs->ev.types queue.  This is important because the queue
2501         * has space for four elements only and __ffs_ep0_read_events function
2502         * depends on that limit as well.  If more event types are added, those
2503         * limits have to be revisited or guaranteed to still hold.
2504         */
2505        switch (type) {
2506        case FUNCTIONFS_RESUME:
2507                rem_type2 = FUNCTIONFS_SUSPEND;
2508                /* FALL THROUGH */
2509        case FUNCTIONFS_SUSPEND:
2510        case FUNCTIONFS_SETUP:
2511                rem_type1 = type;
2512                /* Discard all similar events */
2513                break;
2514
2515        case FUNCTIONFS_BIND:
2516        case FUNCTIONFS_UNBIND:
2517        case FUNCTIONFS_DISABLE:
2518        case FUNCTIONFS_ENABLE:
2519                /* Discard everything other then power management. */
2520                rem_type1 = FUNCTIONFS_SUSPEND;
2521                rem_type2 = FUNCTIONFS_RESUME;
2522                neg = 1;
2523                break;
2524
2525        default:
2526                WARN(1, "%d: unknown event, this should not happen\n", type);
2527                return;
2528        }
2529
2530        {
2531                u8 *ev  = ffs->ev.types, *out = ev;
2532                unsigned n = ffs->ev.count;
2533                for (; n; --n, ++ev)
2534                        if ((*ev == rem_type1 || *ev == rem_type2) == neg)
2535                                *out++ = *ev;
2536                        else
2537                                pr_vdebug("purging event %d\n", *ev);
2538                ffs->ev.count = out - ffs->ev.types;
2539        }
2540
2541        pr_vdebug("adding event %d\n", type);
2542        ffs->ev.types[ffs->ev.count++] = type;
2543        wake_up_locked(&ffs->ev.waitq);
2544        if (ffs->ffs_eventfd)
2545                eventfd_signal(ffs->ffs_eventfd, 1);
2546}
2547
2548static void ffs_event_add(struct ffs_data *ffs,
2549                          enum usb_functionfs_event_type type)
2550{
2551        unsigned long flags;
2552        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
2553        __ffs_event_add(ffs, type);
2554        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
2555}
2556
2557/* Bind/unbind USB function hooks *******************************************/
2558
2559static int ffs_ep_addr2idx(struct ffs_data *ffs, u8 endpoint_address)
2560{
2561        int i;
2562
2563        for (i = 1; i < ARRAY_SIZE(ffs->eps_addrmap); ++i)
2564                if (ffs->eps_addrmap[i] == endpoint_address)
2565                        return i;
2566        return -ENOENT;
2567}
2568
2569static int __ffs_func_bind_do_descs(enum ffs_entity_type type, u8 *valuep,
2570                                    struct usb_descriptor_header *desc,
2571                                    void *priv)
2572{
2573        struct usb_endpoint_descriptor *ds = (void *)desc;
2574        struct ffs_function *func = priv;
2575        struct ffs_ep *ffs_ep;
2576        unsigned ep_desc_id;
2577        int idx;
2578        static const char *speed_names[] = { "full", "high", "super" };
2579
2580        if (type != FFS_DESCRIPTOR)
2581                return 0;
2582
2583        /*
2584         * If ss_descriptors is not NULL, we are reading super speed
2585         * descriptors; if hs_descriptors is not NULL, we are reading high
2586         * speed descriptors; otherwise, we are reading full speed
2587         * descriptors.
2588         */
2589        if (func->function.ss_descriptors) {
2590                ep_desc_id = 2;
2591                func->function.ss_descriptors[(long)valuep] = desc;
2592        } else if (func->function.hs_descriptors) {
2593                ep_desc_id = 1;
2594                func->function.hs_descriptors[(long)valuep] = desc;
2595        } else {
2596                ep_desc_id = 0;
2597                func->function.fs_descriptors[(long)valuep]    = desc;
2598        }
2599
2600        if (!desc || desc->bDescriptorType != USB_DT_ENDPOINT)
2601                return 0;
2602
2603        idx = ffs_ep_addr2idx(func->ffs, ds->bEndpointAddress) - 1;
2604        if (idx < 0)
2605                return idx;
2606
2607        ffs_ep = func->eps + idx;
2608
2609        if (unlikely(ffs_ep->descs[ep_desc_id])) {
2610                pr_err("two %sspeed descriptors for EP %d\n",
2611                          speed_names[ep_desc_id],
2612                          ds->bEndpointAddress & USB_ENDPOINT_NUMBER_MASK);
2613                return -EINVAL;
2614        }
2615        ffs_ep->descs[ep_desc_id] = ds;
2616
2617        ffs_dump_mem(": Original  ep desc", ds, ds->bLength);
2618        if (ffs_ep->ep) {
2619                ds->bEndpointAddress = ffs_ep->descs[0]->bEndpointAddress;
2620                if (!ds->wMaxPacketSize)
2621                        ds->wMaxPacketSize = ffs_ep->descs[0]->wMaxPacketSize;
2622        } else {
2623                struct usb_request *req;
2624                struct usb_ep *ep;
2625                u8 bEndpointAddress;
2626
2627                /*
2628                 * We back up bEndpointAddress because autoconfig overwrites
2629                 * it with physical endpoint address.
2630                 */
2631                bEndpointAddress = ds->bEndpointAddress;
2632                pr_vdebug("autoconfig\n");
2633                ep = usb_ep_autoconfig(func->gadget, ds);
2634                if (unlikely(!ep))
2635                        return -ENOTSUPP;
2636                ep->driver_data = func->eps + idx;
2637
2638                req = usb_ep_alloc_request(ep, GFP_KERNEL);
2639                if (unlikely(!req))
2640                        return -ENOMEM;
2641
2642                ffs_ep->ep  = ep;
2643                ffs_ep->req = req;
2644                func->eps_revmap[ds->bEndpointAddress &
2645                                 USB_ENDPOINT_NUMBER_MASK] = idx + 1;
2646                /*
2647                 * If we use virtual address mapping, we restore
2648                 * original bEndpointAddress value.
2649                 */
2650                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
2651                        ds->bEndpointAddress = bEndpointAddress;
2652        }
2653        ffs_dump_mem(": Rewritten ep desc", ds, ds->bLength);
2654
2655        return 0;
2656}
2657
2658static int __ffs_func_bind_do_nums(enum ffs_entity_type type, u8 *valuep,
2659                                   struct usb_descriptor_header *desc,
2660                                   void *priv)
2661{
2662        struct ffs_function *func = priv;
2663        unsigned idx;
2664        u8 newValue;
2665
2666        switch (type) {
2667        default:
2668        case FFS_DESCRIPTOR:
2669                /* Handled in previous pass by __ffs_func_bind_do_descs() */
2670                return 0;
2671
2672        case FFS_INTERFACE:
2673                idx = *valuep;
2674                if (func->interfaces_nums[idx] < 0) {
2675                        int id = usb_interface_id(func->conf, &func->function);
2676                        if (unlikely(id < 0))
2677                                return id;
2678                        func->interfaces_nums[idx] = id;
2679                }
2680                newValue = func->interfaces_nums[idx];
2681                break;
2682
2683        case FFS_STRING:
2684                /* String' IDs are allocated when fsf_data is bound to cdev */
2685                newValue = func->ffs->stringtabs[0]->strings[*valuep - 1].id;
2686                break;
2687
2688        case FFS_ENDPOINT:
2689                /*
2690                 * USB_DT_ENDPOINT are handled in
2691                 * __ffs_func_bind_do_descs().
2692                 */
2693                if (desc->bDescriptorType == USB_DT_ENDPOINT)
2694                        return 0;
2695
2696                idx = (*valuep & USB_ENDPOINT_NUMBER_MASK) - 1;
2697                if (unlikely(!func->eps[idx].ep))
2698                        return -EINVAL;
2699
2700                {
2701                        struct usb_endpoint_descriptor **descs;
2702                        descs = func->eps[idx].descs;
2703                        newValue = descs[descs[0] ? 0 : 1]->bEndpointAddress;
2704                }
2705                break;
2706        }
2707
2708        pr_vdebug("%02x -> %02x\n", *valuep, newValue);
2709        *valuep = newValue;
2710        return 0;
2711}
2712
2713static int __ffs_func_bind_do_os_desc(enum ffs_os_desc_type type,
2714                                      struct usb_os_desc_header *h, void *data,
2715                                      unsigned len, void *priv)
2716{
2717        struct ffs_function *func = priv;
2718        u8 length = 0;
2719
2720        switch (type) {
2721        case FFS_OS_DESC_EXT_COMPAT: {
2722                struct usb_ext_compat_desc *desc = data;
2723                struct usb_os_desc_table *t;
2724
2725                t = &func->function.os_desc_table[desc->bFirstInterfaceNumber];
2726                t->if_id = func->interfaces_nums[desc->bFirstInterfaceNumber];
2727                memcpy(t->os_desc->ext_compat_id, &desc->CompatibleID,
2728                       ARRAY_SIZE(desc->CompatibleID) +
2729                       ARRAY_SIZE(desc->SubCompatibleID));
2730                length = sizeof(*desc);
2731        }
2732                break;
2733        case FFS_OS_DESC_EXT_PROP: {
2734                struct usb_ext_prop_desc *desc = data;
2735                struct usb_os_desc_table *t;
2736                struct usb_os_desc_ext_prop *ext_prop;
2737                char *ext_prop_name;
2738                char *ext_prop_data;
2739
2740                t = &func->function.os_desc_table[h->interface];
2741                t->if_id = func->interfaces_nums[h->interface];
2742
2743                ext_prop = func->ffs->ms_os_descs_ext_prop_avail;
2744                func->ffs->ms_os_descs_ext_prop_avail += sizeof(*ext_prop);
2745
2746                ext_prop->type = le32_to_cpu(desc->dwPropertyDataType);
2747                ext_prop->name_len = le16_to_cpu(desc->wPropertyNameLength);
2748                ext_prop->data_len = le32_to_cpu(*(u32 *)
2749                        usb_ext_prop_data_len_ptr(data, ext_prop->name_len));
2750                length = ext_prop->name_len + ext_prop->data_len + 14;
2751
2752                ext_prop_name = func->ffs->ms_os_descs_ext_prop_name_avail;
2753                func->ffs->ms_os_descs_ext_prop_name_avail +=
2754                        ext_prop->name_len;
2755
2756                ext_prop_data = func->ffs->ms_os_descs_ext_prop_data_avail;
2757                func->ffs->ms_os_descs_ext_prop_data_avail +=
2758                        ext_prop->data_len;
2759                memcpy(ext_prop_data,
2760                       usb_ext_prop_data_ptr(data, ext_prop->name_len),
2761                       ext_prop->data_len);
2762                /* unicode data reported to the host as "WCHAR"s */
2763                switch (ext_prop->type) {
2764                case USB_EXT_PROP_UNICODE:
2765                case USB_EXT_PROP_UNICODE_ENV:
2766                case USB_EXT_PROP_UNICODE_LINK:
2767                case USB_EXT_PROP_UNICODE_MULTI:
2768                        ext_prop->data_len *= 2;
2769                        break;
2770                }
2771                ext_prop->data = ext_prop_data;
2772
2773                memcpy(ext_prop_name, usb_ext_prop_name_ptr(data),
2774                       ext_prop->name_len);
2775                /* property name reported to the host as "WCHAR"s */
2776                ext_prop->name_len *= 2;
2777                ext_prop->name = ext_prop_name;
2778
2779                t->os_desc->ext_prop_len +=
2780                        ext_prop->name_len + ext_prop->data_len + 14;
2781                ++t->os_desc->ext_prop_count;
2782                list_add_tail(&ext_prop->entry, &t->os_desc->ext_prop);
2783        }
2784                break;
2785        default:
2786                pr_vdebug("unknown descriptor: %d\n", type);
2787        }
2788
2789        return length;
2790}
2791
2792static inline struct f_fs_opts *ffs_do_functionfs_bind(struct usb_function *f,
2793                                                struct usb_configuration *c)
2794{
2795        struct ffs_function *func = ffs_func_from_usb(f);
2796        struct f_fs_opts *ffs_opts =
2797                container_of(f->fi, struct f_fs_opts, func_inst);
2798        int ret;
2799
2800        ENTER();
2801
2802        /*
2803         * Legacy gadget triggers binding in functionfs_ready_callback,
2804         * which already uses locking; taking the same lock here would
2805         * cause a deadlock.
2806         *
2807         * Configfs-enabled gadgets however do need ffs_dev_lock.
2808         */
2809        if (!ffs_opts->no_configfs)
2810                ffs_dev_lock();
2811        ret = ffs_opts->dev->desc_ready ? 0 : -ENODEV;
2812        func->ffs = ffs_opts->dev->ffs_data;
2813        if (!ffs_opts->no_configfs)
2814                ffs_dev_unlock();
2815        if (ret)
2816                return ERR_PTR(ret);
2817
2818        func->conf = c;
2819        func->gadget = c->cdev->gadget;
2820
2821        /*
2822         * in drivers/usb/gadget/configfs.c:configfs_composite_bind()
2823         * configurations are bound in sequence with list_for_each_entry,
2824         * in each configuration its functions are bound in sequence
2825         * with list_for_each_entry, so we assume no race condition
2826         * with regard to ffs_opts->bound access
2827         */
2828        if (!ffs_opts->refcnt) {
2829                ret = functionfs_bind(func->ffs, c->cdev);
2830                if (ret)
2831                        return ERR_PTR(ret);
2832        }
2833        ffs_opts->refcnt++;
2834        func->function.strings = func->ffs->stringtabs;
2835
2836        return ffs_opts;
2837}
2838
2839static int _ffs_func_bind(struct usb_configuration *c,
2840                          struct usb_function *f)
2841{
2842        struct ffs_function *func = ffs_func_from_usb(f);
2843        struct ffs_data *ffs = func->ffs;
2844
2845        const int full = !!func->ffs->fs_descs_count;
2846        const int high = gadget_is_dualspeed(func->gadget) &&
2847                func->ffs->hs_descs_count;
2848        const int super = gadget_is_superspeed(func->gadget) &&
2849                func->ffs->ss_descs_count;
2850
2851        int fs_len, hs_len, ss_len, ret, i;
2852        struct ffs_ep *eps_ptr;
2853
2854        /* Make it a single chunk, less management later on */
2855        vla_group(d);
2856        vla_item_with_sz(d, struct ffs_ep, eps, ffs->eps_count);
2857        vla_item_with_sz(d, struct usb_descriptor_header *, fs_descs,
2858                full ? ffs->fs_descs_count + 1 : 0);
2859        vla_item_with_sz(d, struct usb_descriptor_header *, hs_descs,
2860                high ? ffs->hs_descs_count + 1 : 0);
2861        vla_item_with_sz(d, struct usb_descriptor_header *, ss_descs,
2862                super ? ffs->ss_descs_count + 1 : 0);
2863        vla_item_with_sz(d, short, inums, ffs->interfaces_count);
2864        vla_item_with_sz(d, struct usb_os_desc_table, os_desc_table,
2865                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2866        vla_item_with_sz(d, char[16], ext_compat,
2867                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2868        vla_item_with_sz(d, struct usb_os_desc, os_desc,
2869                         c->cdev->use_os_string ? ffs->interfaces_count : 0);
2870        vla_item_with_sz(d, struct usb_os_desc_ext_prop, ext_prop,
2871                         ffs->ms_os_descs_ext_prop_count);
2872        vla_item_with_sz(d, char, ext_prop_name,
2873                         ffs->ms_os_descs_ext_prop_name_len);
2874        vla_item_with_sz(d, char, ext_prop_data,
2875                         ffs->ms_os_descs_ext_prop_data_len);
2876        vla_item_with_sz(d, char, raw_descs, ffs->raw_descs_length);
2877        char *vlabuf;
2878
2879        ENTER();
2880
2881        /* Has descriptors only for speeds gadget does not support */
2882        if (unlikely(!(full | high | super)))
2883                return -ENOTSUPP;
2884
2885        /* Allocate a single chunk, less management later on */
2886        vlabuf = kzalloc(vla_group_size(d), GFP_KERNEL);
2887        if (unlikely(!vlabuf))
2888                return -ENOMEM;
2889
2890        ffs->ms_os_descs_ext_prop_avail = vla_ptr(vlabuf, d, ext_prop);
2891        ffs->ms_os_descs_ext_prop_name_avail =
2892                vla_ptr(vlabuf, d, ext_prop_name);
2893        ffs->ms_os_descs_ext_prop_data_avail =
2894                vla_ptr(vlabuf, d, ext_prop_data);
2895
2896        /* Copy descriptors  */
2897        memcpy(vla_ptr(vlabuf, d, raw_descs), ffs->raw_descs,
2898               ffs->raw_descs_length);
2899
2900        memset(vla_ptr(vlabuf, d, inums), 0xff, d_inums__sz);
2901        eps_ptr = vla_ptr(vlabuf, d, eps);
2902        for (i = 0; i < ffs->eps_count; i++)
2903                eps_ptr[i].num = -1;
2904
2905        /* Save pointers
2906         * d_eps == vlabuf, func->eps used to kfree vlabuf later
2907        */
2908        func->eps             = vla_ptr(vlabuf, d, eps);
2909        func->interfaces_nums = vla_ptr(vlabuf, d, inums);
2910
2911        /*
2912         * Go through all the endpoint descriptors and allocate
2913         * endpoints first, so that later we can rewrite the endpoint
2914         * numbers without worrying that it may be described later on.
2915         */
2916        if (likely(full)) {
2917                func->function.fs_descriptors = vla_ptr(vlabuf, d, fs_descs);
2918                fs_len = ffs_do_descs(ffs->fs_descs_count,
2919                                      vla_ptr(vlabuf, d, raw_descs),
2920                                      d_raw_descs__sz,
2921                                      __ffs_func_bind_do_descs, func);
2922                if (unlikely(fs_len < 0)) {
2923                        ret = fs_len;
2924                        goto error;
2925                }
2926        } else {
2927                fs_len = 0;
2928        }
2929
2930        if (likely(high)) {
2931                func->function.hs_descriptors = vla_ptr(vlabuf, d, hs_descs);
2932                hs_len = ffs_do_descs(ffs->hs_descs_count,
2933                                      vla_ptr(vlabuf, d, raw_descs) + fs_len,
2934                                      d_raw_descs__sz - fs_len,
2935                                      __ffs_func_bind_do_descs, func);
2936                if (unlikely(hs_len < 0)) {
2937                        ret = hs_len;
2938                        goto error;
2939                }
2940        } else {
2941                hs_len = 0;
2942        }
2943
2944        if (likely(super)) {
2945                func->function.ss_descriptors = vla_ptr(vlabuf, d, ss_descs);
2946                ss_len = ffs_do_descs(ffs->ss_descs_count,
2947                                vla_ptr(vlabuf, d, raw_descs) + fs_len + hs_len,
2948                                d_raw_descs__sz - fs_len - hs_len,
2949                                __ffs_func_bind_do_descs, func);
2950                if (unlikely(ss_len < 0)) {
2951                        ret = ss_len;
2952                        goto error;
2953                }
2954        } else {
2955                ss_len = 0;
2956        }
2957
2958        /*
2959         * Now handle interface numbers allocation and interface and
2960         * endpoint numbers rewriting.  We can do that in one go
2961         * now.
2962         */
2963        ret = ffs_do_descs(ffs->fs_descs_count +
2964                           (high ? ffs->hs_descs_count : 0) +
2965                           (super ? ffs->ss_descs_count : 0),
2966                           vla_ptr(vlabuf, d, raw_descs), d_raw_descs__sz,
2967                           __ffs_func_bind_do_nums, func);
2968        if (unlikely(ret < 0))
2969                goto error;
2970
2971        func->function.os_desc_table = vla_ptr(vlabuf, d, os_desc_table);
2972        if (c->cdev->use_os_string) {
2973                for (i = 0; i < ffs->interfaces_count; ++i) {
2974                        struct usb_os_desc *desc;
2975
2976                        desc = func->function.os_desc_table[i].os_desc =
2977                                vla_ptr(vlabuf, d, os_desc) +
2978                                i * sizeof(struct usb_os_desc);
2979                        desc->ext_compat_id =
2980                                vla_ptr(vlabuf, d, ext_compat) + i * 16;
2981                        INIT_LIST_HEAD(&desc->ext_prop);
2982                }
2983                ret = ffs_do_os_descs(ffs->ms_os_descs_count,
2984                                      vla_ptr(vlabuf, d, raw_descs) +
2985                                      fs_len + hs_len + ss_len,
2986                                      d_raw_descs__sz - fs_len - hs_len -
2987                                      ss_len,
2988                                      __ffs_func_bind_do_os_desc, func);
2989                if (unlikely(ret < 0))
2990                        goto error;
2991        }
2992        func->function.os_desc_n =
2993                c->cdev->use_os_string ? ffs->interfaces_count : 0;
2994
2995        /* And we're done */
2996        ffs_event_add(ffs, FUNCTIONFS_BIND);
2997        return 0;
2998
2999error:
3000        /* XXX Do we need to release all claimed endpoints here? */
3001        return ret;
3002}
3003
3004static int ffs_func_bind(struct usb_configuration *c,
3005                         struct usb_function *f)
3006{
3007        struct f_fs_opts *ffs_opts = ffs_do_functionfs_bind(f, c);
3008        struct ffs_function *func = ffs_func_from_usb(f);
3009        int ret;
3010
3011        if (IS_ERR(ffs_opts))
3012                return PTR_ERR(ffs_opts);
3013
3014        ret = _ffs_func_bind(c, f);
3015        if (ret && !--ffs_opts->refcnt)
3016                functionfs_unbind(func->ffs);
3017
3018        return ret;
3019}
3020
3021
3022/* Other USB function hooks *************************************************/
3023
3024static void ffs_reset_work(struct work_struct *work)
3025{
3026        struct ffs_data *ffs = container_of(work,
3027                struct ffs_data, reset_work);
3028        ffs_data_reset(ffs);
3029}
3030
3031static int ffs_func_set_alt(struct usb_function *f,
3032                            unsigned interface, unsigned alt)
3033{
3034        struct ffs_function *func = ffs_func_from_usb(f);
3035        struct ffs_data *ffs = func->ffs;
3036        int ret = 0, intf;
3037
3038        if (alt != (unsigned)-1) {
3039                intf = ffs_func_revmap_intf(func, interface);
3040                if (unlikely(intf < 0))
3041                        return intf;
3042        }
3043
3044        if (ffs->func)
3045                ffs_func_eps_disable(ffs->func);
3046
3047        if (ffs->state == FFS_DEACTIVATED) {
3048                ffs->state = FFS_CLOSING;
3049                INIT_WORK(&ffs->reset_work, ffs_reset_work);
3050                schedule_work(&ffs->reset_work);
3051                return -ENODEV;
3052        }
3053
3054        if (ffs->state != FFS_ACTIVE)
3055                return -ENODEV;
3056
3057        if (alt == (unsigned)-1) {
3058                ffs->func = NULL;
3059                ffs_event_add(ffs, FUNCTIONFS_DISABLE);
3060                return 0;
3061        }
3062
3063        ffs->func = func;
3064        ret = ffs_func_eps_enable(func);
3065        if (likely(ret >= 0))
3066                ffs_event_add(ffs, FUNCTIONFS_ENABLE);
3067        return ret;
3068}
3069
3070static void ffs_func_disable(struct usb_function *f)
3071{
3072        ffs_func_set_alt(f, 0, (unsigned)-1);
3073}
3074
3075static int ffs_func_setup(struct usb_function *f,
3076                          const struct usb_ctrlrequest *creq)
3077{
3078        struct ffs_function *func = ffs_func_from_usb(f);
3079        struct ffs_data *ffs = func->ffs;
3080        unsigned long flags;
3081        int ret;
3082
3083        ENTER();
3084
3085        pr_vdebug("creq->bRequestType = %02x\n", creq->bRequestType);
3086        pr_vdebug("creq->bRequest     = %02x\n", creq->bRequest);
3087        pr_vdebug("creq->wValue       = %04x\n", le16_to_cpu(creq->wValue));
3088        pr_vdebug("creq->wIndex       = %04x\n", le16_to_cpu(creq->wIndex));
3089        pr_vdebug("creq->wLength      = %04x\n", le16_to_cpu(creq->wLength));
3090
3091        /*
3092         * Most requests directed to interface go through here
3093         * (notable exceptions are set/get interface) so we need to
3094         * handle them.  All other either handled by composite or
3095         * passed to usb_configuration->setup() (if one is set).  No
3096         * matter, we will handle requests directed to endpoint here
3097         * as well (as it's straightforward) but what to do with any
3098         * other request?
3099         */
3100        if (ffs->state != FFS_ACTIVE)
3101                return -ENODEV;
3102
3103        switch (creq->bRequestType & USB_RECIP_MASK) {
3104        case USB_RECIP_INTERFACE:
3105                ret = ffs_func_revmap_intf(func, le16_to_cpu(creq->wIndex));
3106                if (unlikely(ret < 0))
3107                        return ret;
3108                break;
3109
3110        case USB_RECIP_ENDPOINT:
3111                ret = ffs_func_revmap_ep(func, le16_to_cpu(creq->wIndex));
3112                if (unlikely(ret < 0))
3113                        return ret;
3114                if (func->ffs->user_flags & FUNCTIONFS_VIRTUAL_ADDR)
3115                        ret = func->ffs->eps_addrmap[ret];
3116                break;
3117
3118        default:
3119                return -EOPNOTSUPP;
3120        }
3121
3122        spin_lock_irqsave(&ffs->ev.waitq.lock, flags);
3123        ffs->ev.setup = *creq;
3124        ffs->ev.setup.wIndex = cpu_to_le16(ret);
3125        __ffs_event_add(ffs, FUNCTIONFS_SETUP);
3126        spin_unlock_irqrestore(&ffs->ev.waitq.lock, flags);
3127
3128        return 0;
3129}
3130
3131static void ffs_func_suspend(struct usb_function *f)
3132{
3133        ENTER();
3134        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_SUSPEND);
3135}
3136
3137static void ffs_func_resume(struct usb_function *f)
3138{
3139        ENTER();
3140        ffs_event_add(ffs_func_from_usb(f)->ffs, FUNCTIONFS_RESUME);
3141}
3142
3143
3144/* Endpoint and interface numbers reverse mapping ***************************/
3145
3146static int ffs_func_revmap_ep(struct ffs_function *func, u8 num)
3147{
3148        num = func->eps_revmap[num & USB_ENDPOINT_NUMBER_MASK];
3149        return num ? num : -EDOM;
3150}
3151
3152static int ffs_func_revmap_intf(struct ffs_function *func, u8 intf)
3153{
3154        short *nums = func->interfaces_nums;
3155        unsigned count = func->ffs->interfaces_count;
3156
3157        for (; count; --count, ++nums) {
3158                if (*nums >= 0 && *nums == intf)
3159                        return nums - func->interfaces_nums;
3160        }
3161
3162        return -EDOM;
3163}
3164
3165
3166/* Devices management *******************************************************/
3167
3168static LIST_HEAD(ffs_devices);
3169
3170static struct ffs_dev *_ffs_do_find_dev(const char *name)
3171{
3172        struct ffs_dev *dev;
3173
3174        list_for_each_entry(dev, &ffs_devices, entry) {
3175                if (!dev->name || !name)
3176                        continue;
3177                if (strcmp(dev->name, name) == 0)
3178                        return dev;
3179        }
3180
3181        return NULL;
3182}
3183
3184/*
3185 * ffs_lock must be taken by the caller of this function
3186 */
3187static struct ffs_dev *_ffs_get_single_dev(void)
3188{
3189        struct ffs_dev *dev;
3190
3191        if (list_is_singular(&ffs_devices)) {
3192                dev = list_first_entry(&ffs_devices, struct ffs_dev, entry);
3193                if (dev->single)
3194                        return dev;
3195        }
3196
3197        return NULL;
3198}
3199
3200/*
3201 * ffs_lock must be taken by the caller of this function
3202 */
3203static struct ffs_dev *_ffs_find_dev(const char *name)
3204{
3205        struct ffs_dev *dev;
3206
3207        dev = _ffs_get_single_dev();
3208        if (dev)
3209                return dev;
3210
3211        return _ffs_do_find_dev(name);
3212}
3213
3214/* Configfs support *********************************************************/
3215
3216static inline struct f_fs_opts *to_ffs_opts(struct config_item *item)
3217{
3218        return container_of(to_config_group(item), struct f_fs_opts,
3219                            func_inst.group);
3220}
3221
3222static void ffs_attr_release(struct config_item *item)
3223{
3224        struct f_fs_opts *opts = to_ffs_opts(item);
3225
3226        usb_put_function_instance(&opts->func_inst);
3227}
3228
3229static struct configfs_item_operations ffs_item_ops = {
3230        .release        = ffs_attr_release,
3231};
3232
3233static struct config_item_type ffs_func_type = {
3234        .ct_item_ops    = &ffs_item_ops,
3235        .ct_owner       = THIS_MODULE,
3236};
3237
3238
3239/* Function registration interface ******************************************/
3240
3241static void ffs_free_inst(struct usb_function_instance *f)
3242{
3243        struct f_fs_opts *opts;
3244
3245        opts = to_f_fs_opts(f);
3246        ffs_dev_lock();
3247        _ffs_free_dev(opts->dev);
3248        ffs_dev_unlock();
3249        kfree(opts);
3250}
3251
3252#define MAX_INST_NAME_LEN       40
3253
3254static int ffs_set_inst_name(struct usb_function_instance *fi, const char *name)
3255{
3256        struct f_fs_opts *opts;
3257        char *ptr;
3258        const char *tmp;
3259        int name_len, ret;
3260
3261        name_len = strlen(name) + 1;
3262        if (name_len > MAX_INST_NAME_LEN)
3263                return -ENAMETOOLONG;
3264
3265        ptr = kstrndup(name, name_len, GFP_KERNEL);
3266        if (!ptr)
3267                return -ENOMEM;
3268
3269        opts = to_f_fs_opts(fi);
3270        tmp = NULL;
3271
3272        ffs_dev_lock();
3273
3274        tmp = opts->dev->name_allocated ? opts->dev->name : NULL;
3275        ret = _ffs_name_dev(opts->dev, ptr);
3276        if (ret) {
3277                kfree(ptr);
3278                ffs_dev_unlock();
3279                return ret;
3280        }
3281        opts->dev->name_allocated = true;
3282
3283        ffs_dev_unlock();
3284
3285        kfree(tmp);
3286
3287        return 0;
3288}
3289
3290static struct usb_function_instance *ffs_alloc_inst(void)
3291{
3292        struct f_fs_opts *opts;
3293        struct ffs_dev *dev;
3294
3295        opts = kzalloc(sizeof(*opts), GFP_KERNEL);
3296        if (!opts)
3297                return ERR_PTR(-ENOMEM);
3298
3299        opts->func_inst.set_inst_name = ffs_set_inst_name;
3300        opts->func_inst.free_func_inst = ffs_free_inst;
3301        ffs_dev_lock();
3302        dev = _ffs_alloc_dev();
3303        ffs_dev_unlock();
3304        if (IS_ERR(dev)) {
3305                kfree(opts);
3306                return ERR_CAST(dev);
3307        }
3308        opts->dev = dev;
3309        dev->opts = opts;
3310
3311        config_group_init_type_name(&opts->func_inst.group, "",
3312                                    &ffs_func_type);
3313        return &opts->func_inst;
3314}
3315
3316static void ffs_free(struct usb_function *f)
3317{
3318        kfree(ffs_func_from_usb(f));
3319}
3320
3321static void ffs_func_unbind(struct usb_configuration *c,
3322                            struct usb_function *f)
3323{
3324        struct ffs_function *func = ffs_func_from_usb(f);
3325        struct ffs_data *ffs = func->ffs;
3326        struct f_fs_opts *opts =
3327                container_of(f->fi, struct f_fs_opts, func_inst);
3328        struct ffs_ep *ep = func->eps;
3329        unsigned count = ffs->eps_count;
3330        unsigned long flags;
3331
3332        ENTER();
3333        if (ffs->func == func) {
3334                ffs_func_eps_disable(func);
3335                ffs->func = NULL;
3336        }
3337
3338        if (!--opts->refcnt)
3339                functionfs_unbind(ffs);
3340
3341        /* cleanup after autoconfig */
3342        spin_lock_irqsave(&func->ffs->eps_lock, flags);
3343        do {
3344                if (ep->ep && ep->req)
3345                        usb_ep_free_request(ep->ep, ep->req);
3346                ep->req = NULL;
3347                ++ep;
3348        } while (--count);
3349        spin_unlock_irqrestore(&func->ffs->eps_lock, flags);
3350        kfree(func->eps);
3351        func->eps = NULL;
3352        /*
3353         * eps, descriptors and interfaces_nums are allocated in the
3354         * same chunk so only one free is required.
3355         */
3356        func->function.fs_descriptors = NULL;
3357        func->function.hs_descriptors = NULL;
3358        func->function.ss_descriptors = NULL;
3359        func->interfaces_nums = NULL;
3360
3361        ffs_event_add(ffs, FUNCTIONFS_UNBIND);
3362}
3363
3364static struct usb_function *ffs_alloc(struct usb_function_instance *fi)
3365{
3366        struct ffs_function *func;
3367
3368        ENTER();
3369
3370        func = kzalloc(sizeof(*func), GFP_KERNEL);
3371        if (unlikely(!func))
3372                return ERR_PTR(-ENOMEM);
3373
3374        func->function.name    = "Function FS Gadget";
3375
3376        func->function.bind    = ffs_func_bind;
3377        func->function.unbind  = ffs_func_unbind;
3378        func->function.set_alt = ffs_func_set_alt;
3379        func->function.disable = ffs_func_disable;
3380        func->function.setup   = ffs_func_setup;
3381        func->function.suspend = ffs_func_suspend;
3382        func->function.resume  = ffs_func_resume;
3383        func->function.free_func = ffs_free;
3384
3385        return &func->function;
3386}
3387
3388/*
3389 * ffs_lock must be taken by the caller of this function
3390 */
3391static struct ffs_dev *_ffs_alloc_dev(void)
3392{
3393        struct ffs_dev *dev;
3394        int ret;
3395
3396        if (_ffs_get_single_dev())
3397                        return ERR_PTR(-EBUSY);
3398
3399        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3400        if (!dev)
3401                return ERR_PTR(-ENOMEM);
3402
3403        if (list_empty(&ffs_devices)) {
3404                ret = functionfs_init();
3405                if (ret) {
3406                        kfree(dev);
3407                        return ERR_PTR(ret);
3408                }
3409        }
3410
3411        list_add(&dev->entry, &ffs_devices);
3412
3413        return dev;
3414}
3415
3416/*
3417 * ffs_lock must be taken by the caller of this function
3418 * The caller is responsible for "name" being available whenever f_fs needs it
3419 */
3420static int _ffs_name_dev(struct ffs_dev *dev, const char *name)
3421{
3422        struct ffs_dev *existing;
3423
3424        existing = _ffs_do_find_dev(name);
3425        if (existing)
3426                return -EBUSY;
3427
3428        dev->name = name;
3429
3430        return 0;
3431}
3432
3433/*
3434 * The caller is responsible for "name" being available whenever f_fs needs it
3435 */
3436int ffs_name_dev(struct ffs_dev *dev, const char *name)
3437{
3438        int ret;
3439
3440        ffs_dev_lock();
3441        ret = _ffs_name_dev(dev, name);
3442        ffs_dev_unlock();
3443
3444        return ret;
3445}
3446EXPORT_SYMBOL_GPL(ffs_name_dev);
3447
3448int ffs_single_dev(struct ffs_dev *dev)
3449{
3450        int ret;
3451
3452        ret = 0;
3453        ffs_dev_lock();
3454
3455        if (!list_is_singular(&ffs_devices))
3456                ret = -EBUSY;
3457        else
3458                dev->single = true;
3459
3460        ffs_dev_unlock();
3461        return ret;
3462}
3463EXPORT_SYMBOL_GPL(ffs_single_dev);
3464
3465/*
3466 * ffs_lock must be taken by the caller of this function
3467 */
3468static void _ffs_free_dev(struct ffs_dev *dev)
3469{
3470        list_del(&dev->entry);
3471        if (dev->name_allocated)
3472                kfree(dev->name);
3473        kfree(dev);
3474        if (list_empty(&ffs_devices))
3475                functionfs_cleanup();
3476}
3477
3478static void *ffs_acquire_dev(const char *dev_name)
3479{
3480        struct ffs_dev *ffs_dev;
3481
3482        ENTER();
3483        ffs_dev_lock();
3484
3485        ffs_dev = _ffs_find_dev(dev_name);
3486        if (!ffs_dev)
3487                ffs_dev = ERR_PTR(-ENOENT);
3488        else if (ffs_dev->mounted)
3489                ffs_dev = ERR_PTR(-EBUSY);
3490        else if (ffs_dev->ffs_acquire_dev_callback &&
3491            ffs_dev->ffs_acquire_dev_callback(ffs_dev))
3492                ffs_dev = ERR_PTR(-ENOENT);
3493        else
3494                ffs_dev->mounted = true;
3495
3496        ffs_dev_unlock();
3497        return ffs_dev;
3498}
3499
3500static void ffs_release_dev(struct ffs_data *ffs_data)
3501{
3502        struct ffs_dev *ffs_dev;
3503
3504        ENTER();
3505        ffs_dev_lock();
3506
3507        ffs_dev = ffs_data->private_data;
3508        if (ffs_dev) {
3509                ffs_dev->mounted = false;
3510
3511                if (ffs_dev->ffs_release_dev_callback)
3512                        ffs_dev->ffs_release_dev_callback(ffs_dev);
3513        }
3514
3515        ffs_dev_unlock();
3516}
3517
3518static int ffs_ready(struct ffs_data *ffs)
3519{
3520        struct ffs_dev *ffs_obj;
3521        int ret = 0;
3522
3523        ENTER();
3524        ffs_dev_lock();
3525
3526        ffs_obj = ffs->private_data;
3527        if (!ffs_obj) {
3528                ret = -EINVAL;
3529                goto done;
3530        }
3531        if (WARN_ON(ffs_obj->desc_ready)) {
3532                ret = -EBUSY;
3533                goto done;
3534        }
3535
3536        ffs_obj->desc_ready = true;
3537        ffs_obj->ffs_data = ffs;
3538
3539        if (ffs_obj->ffs_ready_callback) {
3540                ret = ffs_obj->ffs_ready_callback(ffs);
3541                if (ret)
3542                        goto done;
3543        }
3544
3545        set_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags);
3546done:
3547        ffs_dev_unlock();
3548        return ret;
3549}
3550
3551static void ffs_closed(struct ffs_data *ffs)
3552{
3553        struct ffs_dev *ffs_obj;
3554        struct f_fs_opts *opts;
3555
3556        ENTER();
3557        ffs_dev_lock();
3558
3559        ffs_obj = ffs->private_data;
3560        if (!ffs_obj)
3561                goto done;
3562
3563        ffs_obj->desc_ready = false;
3564
3565        if (test_and_clear_bit(FFS_FL_CALL_CLOSED_CALLBACK, &ffs->flags) &&
3566            ffs_obj->ffs_closed_callback)
3567                ffs_obj->ffs_closed_callback(ffs);
3568
3569        if (ffs_obj->opts)
3570                opts = ffs_obj->opts;
3571        else
3572                goto done;
3573
3574        if (opts->no_configfs || !opts->func_inst.group.cg_item.ci_parent
3575            || !atomic_read(&opts->func_inst.group.cg_item.ci_kref.refcount))
3576                goto done;
3577
3578        unregister_gadget_item(ffs_obj->opts->
3579                               func_inst.group.cg_item.ci_parent->ci_parent);
3580done:
3581        ffs_dev_unlock();
3582}
3583
3584/* Misc helper functions ****************************************************/
3585
3586static int ffs_mutex_lock(struct mutex *mutex, unsigned nonblock)
3587{
3588        return nonblock
3589                ? likely(mutex_trylock(mutex)) ? 0 : -EAGAIN
3590                : mutex_lock_interruptible(mutex);
3591}
3592
3593static char *ffs_prepare_buffer(const char __user *buf, size_t len)
3594{
3595        char *data;
3596
3597        if (unlikely(!len))
3598                return NULL;
3599
3600        data = kmalloc(len, GFP_KERNEL);
3601        if (unlikely(!data))
3602                return ERR_PTR(-ENOMEM);
3603
3604        if (unlikely(copy_from_user(data, buf, len))) {
3605                kfree(data);
3606                return ERR_PTR(-EFAULT);
3607        }
3608
3609        pr_vdebug("Buffer from user space:\n");
3610        ffs_dump_mem("", data, len);
3611
3612        return data;
3613}
3614
3615DECLARE_USB_FUNCTION_INIT(ffs, ffs_alloc_inst, ffs_alloc);
3616MODULE_LICENSE("GPL");
3617MODULE_AUTHOR("Michal Nazarewicz");
3618