linux/fs/aio.c
<<
>>
Prefs
   1/*
   2 *      An async IO implementation for Linux
   3 *      Written by Benjamin LaHaise <bcrl@kvack.org>
   4 *
   5 *      Implements an efficient asynchronous io interface.
   6 *
   7 *      Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
   8 *
   9 *      See ../COPYING for licensing terms.
  10 */
  11#define pr_fmt(fmt) "%s: " fmt, __func__
  12
  13#include <linux/kernel.h>
  14#include <linux/init.h>
  15#include <linux/errno.h>
  16#include <linux/time.h>
  17#include <linux/aio_abi.h>
  18#include <linux/export.h>
  19#include <linux/syscalls.h>
  20#include <linux/backing-dev.h>
  21#include <linux/uio.h>
  22
  23#include <linux/sched.h>
  24#include <linux/fs.h>
  25#include <linux/file.h>
  26#include <linux/mm.h>
  27#include <linux/mman.h>
  28#include <linux/mmu_context.h>
  29#include <linux/percpu.h>
  30#include <linux/slab.h>
  31#include <linux/timer.h>
  32#include <linux/aio.h>
  33#include <linux/highmem.h>
  34#include <linux/workqueue.h>
  35#include <linux/security.h>
  36#include <linux/eventfd.h>
  37#include <linux/blkdev.h>
  38#include <linux/compat.h>
  39#include <linux/migrate.h>
  40#include <linux/ramfs.h>
  41#include <linux/percpu-refcount.h>
  42#include <linux/mount.h>
  43
  44#include <asm/kmap_types.h>
  45#include <asm/uaccess.h>
  46
  47#include "internal.h"
  48
  49#define AIO_RING_MAGIC                  0xa10a10a1
  50#define AIO_RING_COMPAT_FEATURES        1
  51#define AIO_RING_INCOMPAT_FEATURES      0
  52struct aio_ring {
  53        unsigned        id;     /* kernel internal index number */
  54        unsigned        nr;     /* number of io_events */
  55        unsigned        head;   /* Written to by userland or under ring_lock
  56                                 * mutex by aio_read_events_ring(). */
  57        unsigned        tail;
  58
  59        unsigned        magic;
  60        unsigned        compat_features;
  61        unsigned        incompat_features;
  62        unsigned        header_length;  /* size of aio_ring */
  63
  64
  65        struct io_event         io_events[0];
  66}; /* 128 bytes + ring size */
  67
  68#define AIO_RING_PAGES  8
  69
  70struct kioctx_table {
  71        struct rcu_head rcu;
  72        unsigned        nr;
  73        struct kioctx   *table[];
  74};
  75
  76struct kioctx_cpu {
  77        unsigned                reqs_available;
  78};
  79
  80struct ctx_rq_wait {
  81        struct completion comp;
  82        atomic_t count;
  83};
  84
  85struct kioctx {
  86        struct percpu_ref       users;
  87        atomic_t                dead;
  88
  89        struct percpu_ref       reqs;
  90
  91        unsigned long           user_id;
  92
  93        struct __percpu kioctx_cpu *cpu;
  94
  95        /*
  96         * For percpu reqs_available, number of slots we move to/from global
  97         * counter at a time:
  98         */
  99        unsigned                req_batch;
 100        /*
 101         * This is what userspace passed to io_setup(), it's not used for
 102         * anything but counting against the global max_reqs quota.
 103         *
 104         * The real limit is nr_events - 1, which will be larger (see
 105         * aio_setup_ring())
 106         */
 107        unsigned                max_reqs;
 108
 109        /* Size of ringbuffer, in units of struct io_event */
 110        unsigned                nr_events;
 111
 112        unsigned long           mmap_base;
 113        unsigned long           mmap_size;
 114
 115        struct page             **ring_pages;
 116        long                    nr_pages;
 117
 118        struct work_struct      free_work;
 119
 120        /*
 121         * signals when all in-flight requests are done
 122         */
 123        struct ctx_rq_wait      *rq_wait;
 124
 125        struct {
 126                /*
 127                 * This counts the number of available slots in the ringbuffer,
 128                 * so we avoid overflowing it: it's decremented (if positive)
 129                 * when allocating a kiocb and incremented when the resulting
 130                 * io_event is pulled off the ringbuffer.
 131                 *
 132                 * We batch accesses to it with a percpu version.
 133                 */
 134                atomic_t        reqs_available;
 135        } ____cacheline_aligned_in_smp;
 136
 137        struct {
 138                spinlock_t      ctx_lock;
 139                struct list_head active_reqs;   /* used for cancellation */
 140        } ____cacheline_aligned_in_smp;
 141
 142        struct {
 143                struct mutex    ring_lock;
 144                wait_queue_head_t wait;
 145        } ____cacheline_aligned_in_smp;
 146
 147        struct {
 148                unsigned        tail;
 149                unsigned        completed_events;
 150                spinlock_t      completion_lock;
 151        } ____cacheline_aligned_in_smp;
 152
 153        struct page             *internal_pages[AIO_RING_PAGES];
 154        struct file             *aio_ring_file;
 155
 156        unsigned                id;
 157};
 158
 159/*
 160 * We use ki_cancel == KIOCB_CANCELLED to indicate that a kiocb has been either
 161 * cancelled or completed (this makes a certain amount of sense because
 162 * successful cancellation - io_cancel() - does deliver the completion to
 163 * userspace).
 164 *
 165 * And since most things don't implement kiocb cancellation and we'd really like
 166 * kiocb completion to be lockless when possible, we use ki_cancel to
 167 * synchronize cancellation and completion - we only set it to KIOCB_CANCELLED
 168 * with xchg() or cmpxchg(), see batch_complete_aio() and kiocb_cancel().
 169 */
 170#define KIOCB_CANCELLED         ((void *) (~0ULL))
 171
 172struct aio_kiocb {
 173        struct kiocb            common;
 174
 175        struct kioctx           *ki_ctx;
 176        kiocb_cancel_fn         *ki_cancel;
 177
 178        struct iocb __user      *ki_user_iocb;  /* user's aiocb */
 179        __u64                   ki_user_data;   /* user's data for completion */
 180
 181        struct list_head        ki_list;        /* the aio core uses this
 182                                                 * for cancellation */
 183
 184        /*
 185         * If the aio_resfd field of the userspace iocb is not zero,
 186         * this is the underlying eventfd context to deliver events to.
 187         */
 188        struct eventfd_ctx      *ki_eventfd;
 189};
 190
 191/*------ sysctl variables----*/
 192static DEFINE_SPINLOCK(aio_nr_lock);
 193unsigned long aio_nr;           /* current system wide number of aio requests */
 194unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
 195/*----end sysctl variables---*/
 196
 197static struct kmem_cache        *kiocb_cachep;
 198static struct kmem_cache        *kioctx_cachep;
 199
 200static struct vfsmount *aio_mnt;
 201
 202static const struct file_operations aio_ring_fops;
 203static const struct address_space_operations aio_ctx_aops;
 204
 205static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
 206{
 207        struct qstr this = QSTR_INIT("[aio]", 5);
 208        struct file *file;
 209        struct path path;
 210        struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
 211        if (IS_ERR(inode))
 212                return ERR_CAST(inode);
 213
 214        inode->i_mapping->a_ops = &aio_ctx_aops;
 215        inode->i_mapping->private_data = ctx;
 216        inode->i_size = PAGE_SIZE * nr_pages;
 217
 218        path.dentry = d_alloc_pseudo(aio_mnt->mnt_sb, &this);
 219        if (!path.dentry) {
 220                iput(inode);
 221                return ERR_PTR(-ENOMEM);
 222        }
 223        path.mnt = mntget(aio_mnt);
 224
 225        d_instantiate(path.dentry, inode);
 226        file = alloc_file(&path, FMODE_READ | FMODE_WRITE, &aio_ring_fops);
 227        if (IS_ERR(file)) {
 228                path_put(&path);
 229                return file;
 230        }
 231
 232        file->f_flags = O_RDWR;
 233        return file;
 234}
 235
 236static struct dentry *aio_mount(struct file_system_type *fs_type,
 237                                int flags, const char *dev_name, void *data)
 238{
 239        static const struct dentry_operations ops = {
 240                .d_dname        = simple_dname,
 241        };
 242        struct dentry *root = mount_pseudo(fs_type, "aio:", NULL, &ops,
 243                                           AIO_RING_MAGIC);
 244
 245        if (!IS_ERR(root))
 246                root->d_sb->s_iflags |= SB_I_NOEXEC;
 247        return root;
 248}
 249
 250/* aio_setup
 251 *      Creates the slab caches used by the aio routines, panic on
 252 *      failure as this is done early during the boot sequence.
 253 */
 254static int __init aio_setup(void)
 255{
 256        static struct file_system_type aio_fs = {
 257                .name           = "aio",
 258                .mount          = aio_mount,
 259                .kill_sb        = kill_anon_super,
 260        };
 261        aio_mnt = kern_mount(&aio_fs);
 262        if (IS_ERR(aio_mnt))
 263                panic("Failed to create aio fs mount.");
 264
 265        kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 266        kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
 267
 268        pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
 269
 270        return 0;
 271}
 272__initcall(aio_setup);
 273
 274static void put_aio_ring_file(struct kioctx *ctx)
 275{
 276        struct file *aio_ring_file = ctx->aio_ring_file;
 277        if (aio_ring_file) {
 278                truncate_setsize(aio_ring_file->f_inode, 0);
 279
 280                /* Prevent further access to the kioctx from migratepages */
 281                spin_lock(&aio_ring_file->f_inode->i_mapping->private_lock);
 282                aio_ring_file->f_inode->i_mapping->private_data = NULL;
 283                ctx->aio_ring_file = NULL;
 284                spin_unlock(&aio_ring_file->f_inode->i_mapping->private_lock);
 285
 286                fput(aio_ring_file);
 287        }
 288}
 289
 290static void aio_free_ring(struct kioctx *ctx)
 291{
 292        int i;
 293
 294        /* Disconnect the kiotx from the ring file.  This prevents future
 295         * accesses to the kioctx from page migration.
 296         */
 297        put_aio_ring_file(ctx);
 298
 299        for (i = 0; i < ctx->nr_pages; i++) {
 300                struct page *page;
 301                pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
 302                                page_count(ctx->ring_pages[i]));
 303                page = ctx->ring_pages[i];
 304                if (!page)
 305                        continue;
 306                ctx->ring_pages[i] = NULL;
 307                put_page(page);
 308        }
 309
 310        if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
 311                kfree(ctx->ring_pages);
 312                ctx->ring_pages = NULL;
 313        }
 314}
 315
 316static int aio_ring_mremap(struct vm_area_struct *vma)
 317{
 318        struct file *file = vma->vm_file;
 319        struct mm_struct *mm = vma->vm_mm;
 320        struct kioctx_table *table;
 321        int i, res = -EINVAL;
 322
 323        spin_lock(&mm->ioctx_lock);
 324        rcu_read_lock();
 325        table = rcu_dereference(mm->ioctx_table);
 326        for (i = 0; i < table->nr; i++) {
 327                struct kioctx *ctx;
 328
 329                ctx = table->table[i];
 330                if (ctx && ctx->aio_ring_file == file) {
 331                        if (!atomic_read(&ctx->dead)) {
 332                                ctx->user_id = ctx->mmap_base = vma->vm_start;
 333                                res = 0;
 334                        }
 335                        break;
 336                }
 337        }
 338
 339        rcu_read_unlock();
 340        spin_unlock(&mm->ioctx_lock);
 341        return res;
 342}
 343
 344static const struct vm_operations_struct aio_ring_vm_ops = {
 345        .mremap         = aio_ring_mremap,
 346#if IS_ENABLED(CONFIG_MMU)
 347        .fault          = filemap_fault,
 348        .map_pages      = filemap_map_pages,
 349        .page_mkwrite   = filemap_page_mkwrite,
 350#endif
 351};
 352
 353static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
 354{
 355        vma->vm_flags |= VM_DONTEXPAND;
 356        vma->vm_ops = &aio_ring_vm_ops;
 357        return 0;
 358}
 359
 360static const struct file_operations aio_ring_fops = {
 361        .mmap = aio_ring_mmap,
 362};
 363
 364#if IS_ENABLED(CONFIG_MIGRATION)
 365static int aio_migratepage(struct address_space *mapping, struct page *new,
 366                        struct page *old, enum migrate_mode mode)
 367{
 368        struct kioctx *ctx;
 369        unsigned long flags;
 370        pgoff_t idx;
 371        int rc;
 372
 373        rc = 0;
 374
 375        /* mapping->private_lock here protects against the kioctx teardown.  */
 376        spin_lock(&mapping->private_lock);
 377        ctx = mapping->private_data;
 378        if (!ctx) {
 379                rc = -EINVAL;
 380                goto out;
 381        }
 382
 383        /* The ring_lock mutex.  The prevents aio_read_events() from writing
 384         * to the ring's head, and prevents page migration from mucking in
 385         * a partially initialized kiotx.
 386         */
 387        if (!mutex_trylock(&ctx->ring_lock)) {
 388                rc = -EAGAIN;
 389                goto out;
 390        }
 391
 392        idx = old->index;
 393        if (idx < (pgoff_t)ctx->nr_pages) {
 394                /* Make sure the old page hasn't already been changed */
 395                if (ctx->ring_pages[idx] != old)
 396                        rc = -EAGAIN;
 397        } else
 398                rc = -EINVAL;
 399
 400        if (rc != 0)
 401                goto out_unlock;
 402
 403        /* Writeback must be complete */
 404        BUG_ON(PageWriteback(old));
 405        get_page(new);
 406
 407        rc = migrate_page_move_mapping(mapping, new, old, NULL, mode, 1);
 408        if (rc != MIGRATEPAGE_SUCCESS) {
 409                put_page(new);
 410                goto out_unlock;
 411        }
 412
 413        /* Take completion_lock to prevent other writes to the ring buffer
 414         * while the old page is copied to the new.  This prevents new
 415         * events from being lost.
 416         */
 417        spin_lock_irqsave(&ctx->completion_lock, flags);
 418        migrate_page_copy(new, old);
 419        BUG_ON(ctx->ring_pages[idx] != old);
 420        ctx->ring_pages[idx] = new;
 421        spin_unlock_irqrestore(&ctx->completion_lock, flags);
 422
 423        /* The old page is no longer accessible. */
 424        put_page(old);
 425
 426out_unlock:
 427        mutex_unlock(&ctx->ring_lock);
 428out:
 429        spin_unlock(&mapping->private_lock);
 430        return rc;
 431}
 432#endif
 433
 434static const struct address_space_operations aio_ctx_aops = {
 435        .set_page_dirty = __set_page_dirty_no_writeback,
 436#if IS_ENABLED(CONFIG_MIGRATION)
 437        .migratepage    = aio_migratepage,
 438#endif
 439};
 440
 441static int aio_setup_ring(struct kioctx *ctx)
 442{
 443        struct aio_ring *ring;
 444        unsigned nr_events = ctx->max_reqs;
 445        struct mm_struct *mm = current->mm;
 446        unsigned long size, unused;
 447        int nr_pages;
 448        int i;
 449        struct file *file;
 450
 451        /* Compensate for the ring buffer's head/tail overlap entry */
 452        nr_events += 2; /* 1 is required, 2 for good luck */
 453
 454        size = sizeof(struct aio_ring);
 455        size += sizeof(struct io_event) * nr_events;
 456
 457        nr_pages = PFN_UP(size);
 458        if (nr_pages < 0)
 459                return -EINVAL;
 460
 461        file = aio_private_file(ctx, nr_pages);
 462        if (IS_ERR(file)) {
 463                ctx->aio_ring_file = NULL;
 464                return -ENOMEM;
 465        }
 466
 467        ctx->aio_ring_file = file;
 468        nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
 469                        / sizeof(struct io_event);
 470
 471        ctx->ring_pages = ctx->internal_pages;
 472        if (nr_pages > AIO_RING_PAGES) {
 473                ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
 474                                          GFP_KERNEL);
 475                if (!ctx->ring_pages) {
 476                        put_aio_ring_file(ctx);
 477                        return -ENOMEM;
 478                }
 479        }
 480
 481        for (i = 0; i < nr_pages; i++) {
 482                struct page *page;
 483                page = find_or_create_page(file->f_inode->i_mapping,
 484                                           i, GFP_HIGHUSER | __GFP_ZERO);
 485                if (!page)
 486                        break;
 487                pr_debug("pid(%d) page[%d]->count=%d\n",
 488                         current->pid, i, page_count(page));
 489                SetPageUptodate(page);
 490                unlock_page(page);
 491
 492                ctx->ring_pages[i] = page;
 493        }
 494        ctx->nr_pages = i;
 495
 496        if (unlikely(i != nr_pages)) {
 497                aio_free_ring(ctx);
 498                return -ENOMEM;
 499        }
 500
 501        ctx->mmap_size = nr_pages * PAGE_SIZE;
 502        pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
 503
 504        if (down_write_killable(&mm->mmap_sem)) {
 505                ctx->mmap_size = 0;
 506                aio_free_ring(ctx);
 507                return -EINTR;
 508        }
 509
 510        ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
 511                                       PROT_READ | PROT_WRITE,
 512                                       MAP_SHARED, 0, &unused);
 513        up_write(&mm->mmap_sem);
 514        if (IS_ERR((void *)ctx->mmap_base)) {
 515                ctx->mmap_size = 0;
 516                aio_free_ring(ctx);
 517                return -ENOMEM;
 518        }
 519
 520        pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
 521
 522        ctx->user_id = ctx->mmap_base;
 523        ctx->nr_events = nr_events; /* trusted copy */
 524
 525        ring = kmap_atomic(ctx->ring_pages[0]);
 526        ring->nr = nr_events;   /* user copy */
 527        ring->id = ~0U;
 528        ring->head = ring->tail = 0;
 529        ring->magic = AIO_RING_MAGIC;
 530        ring->compat_features = AIO_RING_COMPAT_FEATURES;
 531        ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
 532        ring->header_length = sizeof(struct aio_ring);
 533        kunmap_atomic(ring);
 534        flush_dcache_page(ctx->ring_pages[0]);
 535
 536        return 0;
 537}
 538
 539#define AIO_EVENTS_PER_PAGE     (PAGE_SIZE / sizeof(struct io_event))
 540#define AIO_EVENTS_FIRST_PAGE   ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
 541#define AIO_EVENTS_OFFSET       (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
 542
 543void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
 544{
 545        struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, common);
 546        struct kioctx *ctx = req->ki_ctx;
 547        unsigned long flags;
 548
 549        spin_lock_irqsave(&ctx->ctx_lock, flags);
 550
 551        if (!req->ki_list.next)
 552                list_add(&req->ki_list, &ctx->active_reqs);
 553
 554        req->ki_cancel = cancel;
 555
 556        spin_unlock_irqrestore(&ctx->ctx_lock, flags);
 557}
 558EXPORT_SYMBOL(kiocb_set_cancel_fn);
 559
 560static int kiocb_cancel(struct aio_kiocb *kiocb)
 561{
 562        kiocb_cancel_fn *old, *cancel;
 563
 564        /*
 565         * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
 566         * actually has a cancel function, hence the cmpxchg()
 567         */
 568
 569        cancel = ACCESS_ONCE(kiocb->ki_cancel);
 570        do {
 571                if (!cancel || cancel == KIOCB_CANCELLED)
 572                        return -EINVAL;
 573
 574                old = cancel;
 575                cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
 576        } while (cancel != old);
 577
 578        return cancel(&kiocb->common);
 579}
 580
 581static void free_ioctx(struct work_struct *work)
 582{
 583        struct kioctx *ctx = container_of(work, struct kioctx, free_work);
 584
 585        pr_debug("freeing %p\n", ctx);
 586
 587        aio_free_ring(ctx);
 588        free_percpu(ctx->cpu);
 589        percpu_ref_exit(&ctx->reqs);
 590        percpu_ref_exit(&ctx->users);
 591        kmem_cache_free(kioctx_cachep, ctx);
 592}
 593
 594static void free_ioctx_reqs(struct percpu_ref *ref)
 595{
 596        struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
 597
 598        /* At this point we know that there are no any in-flight requests */
 599        if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
 600                complete(&ctx->rq_wait->comp);
 601
 602        INIT_WORK(&ctx->free_work, free_ioctx);
 603        schedule_work(&ctx->free_work);
 604}
 605
 606/*
 607 * When this function runs, the kioctx has been removed from the "hash table"
 608 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
 609 * now it's safe to cancel any that need to be.
 610 */
 611static void free_ioctx_users(struct percpu_ref *ref)
 612{
 613        struct kioctx *ctx = container_of(ref, struct kioctx, users);
 614        struct aio_kiocb *req;
 615
 616        spin_lock_irq(&ctx->ctx_lock);
 617
 618        while (!list_empty(&ctx->active_reqs)) {
 619                req = list_first_entry(&ctx->active_reqs,
 620                                       struct aio_kiocb, ki_list);
 621
 622                list_del_init(&req->ki_list);
 623                kiocb_cancel(req);
 624        }
 625
 626        spin_unlock_irq(&ctx->ctx_lock);
 627
 628        percpu_ref_kill(&ctx->reqs);
 629        percpu_ref_put(&ctx->reqs);
 630}
 631
 632static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
 633{
 634        unsigned i, new_nr;
 635        struct kioctx_table *table, *old;
 636        struct aio_ring *ring;
 637
 638        spin_lock(&mm->ioctx_lock);
 639        table = rcu_dereference_raw(mm->ioctx_table);
 640
 641        while (1) {
 642                if (table)
 643                        for (i = 0; i < table->nr; i++)
 644                                if (!table->table[i]) {
 645                                        ctx->id = i;
 646                                        table->table[i] = ctx;
 647                                        spin_unlock(&mm->ioctx_lock);
 648
 649                                        /* While kioctx setup is in progress,
 650                                         * we are protected from page migration
 651                                         * changes ring_pages by ->ring_lock.
 652                                         */
 653                                        ring = kmap_atomic(ctx->ring_pages[0]);
 654                                        ring->id = ctx->id;
 655                                        kunmap_atomic(ring);
 656                                        return 0;
 657                                }
 658
 659                new_nr = (table ? table->nr : 1) * 4;
 660                spin_unlock(&mm->ioctx_lock);
 661
 662                table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
 663                                new_nr, GFP_KERNEL);
 664                if (!table)
 665                        return -ENOMEM;
 666
 667                table->nr = new_nr;
 668
 669                spin_lock(&mm->ioctx_lock);
 670                old = rcu_dereference_raw(mm->ioctx_table);
 671
 672                if (!old) {
 673                        rcu_assign_pointer(mm->ioctx_table, table);
 674                } else if (table->nr > old->nr) {
 675                        memcpy(table->table, old->table,
 676                               old->nr * sizeof(struct kioctx *));
 677
 678                        rcu_assign_pointer(mm->ioctx_table, table);
 679                        kfree_rcu(old, rcu);
 680                } else {
 681                        kfree(table);
 682                        table = old;
 683                }
 684        }
 685}
 686
 687static void aio_nr_sub(unsigned nr)
 688{
 689        spin_lock(&aio_nr_lock);
 690        if (WARN_ON(aio_nr - nr > aio_nr))
 691                aio_nr = 0;
 692        else
 693                aio_nr -= nr;
 694        spin_unlock(&aio_nr_lock);
 695}
 696
 697/* ioctx_alloc
 698 *      Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
 699 */
 700static struct kioctx *ioctx_alloc(unsigned nr_events)
 701{
 702        struct mm_struct *mm = current->mm;
 703        struct kioctx *ctx;
 704        int err = -ENOMEM;
 705
 706        /*
 707         * We keep track of the number of available ringbuffer slots, to prevent
 708         * overflow (reqs_available), and we also use percpu counters for this.
 709         *
 710         * So since up to half the slots might be on other cpu's percpu counters
 711         * and unavailable, double nr_events so userspace sees what they
 712         * expected: additionally, we move req_batch slots to/from percpu
 713         * counters at a time, so make sure that isn't 0:
 714         */
 715        nr_events = max(nr_events, num_possible_cpus() * 4);
 716        nr_events *= 2;
 717
 718        /* Prevent overflows */
 719        if (nr_events > (0x10000000U / sizeof(struct io_event))) {
 720                pr_debug("ENOMEM: nr_events too high\n");
 721                return ERR_PTR(-EINVAL);
 722        }
 723
 724        if (!nr_events || (unsigned long)nr_events > (aio_max_nr * 2UL))
 725                return ERR_PTR(-EAGAIN);
 726
 727        ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
 728        if (!ctx)
 729                return ERR_PTR(-ENOMEM);
 730
 731        ctx->max_reqs = nr_events;
 732
 733        spin_lock_init(&ctx->ctx_lock);
 734        spin_lock_init(&ctx->completion_lock);
 735        mutex_init(&ctx->ring_lock);
 736        /* Protect against page migration throughout kiotx setup by keeping
 737         * the ring_lock mutex held until setup is complete. */
 738        mutex_lock(&ctx->ring_lock);
 739        init_waitqueue_head(&ctx->wait);
 740
 741        INIT_LIST_HEAD(&ctx->active_reqs);
 742
 743        if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
 744                goto err;
 745
 746        if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
 747                goto err;
 748
 749        ctx->cpu = alloc_percpu(struct kioctx_cpu);
 750        if (!ctx->cpu)
 751                goto err;
 752
 753        err = aio_setup_ring(ctx);
 754        if (err < 0)
 755                goto err;
 756
 757        atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
 758        ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
 759        if (ctx->req_batch < 1)
 760                ctx->req_batch = 1;
 761
 762        /* limit the number of system wide aios */
 763        spin_lock(&aio_nr_lock);
 764        if (aio_nr + nr_events > (aio_max_nr * 2UL) ||
 765            aio_nr + nr_events < aio_nr) {
 766                spin_unlock(&aio_nr_lock);
 767                err = -EAGAIN;
 768                goto err_ctx;
 769        }
 770        aio_nr += ctx->max_reqs;
 771        spin_unlock(&aio_nr_lock);
 772
 773        percpu_ref_get(&ctx->users);    /* io_setup() will drop this ref */
 774        percpu_ref_get(&ctx->reqs);     /* free_ioctx_users() will drop this */
 775
 776        err = ioctx_add_table(ctx, mm);
 777        if (err)
 778                goto err_cleanup;
 779
 780        /* Release the ring_lock mutex now that all setup is complete. */
 781        mutex_unlock(&ctx->ring_lock);
 782
 783        pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
 784                 ctx, ctx->user_id, mm, ctx->nr_events);
 785        return ctx;
 786
 787err_cleanup:
 788        aio_nr_sub(ctx->max_reqs);
 789err_ctx:
 790        atomic_set(&ctx->dead, 1);
 791        if (ctx->mmap_size)
 792                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 793        aio_free_ring(ctx);
 794err:
 795        mutex_unlock(&ctx->ring_lock);
 796        free_percpu(ctx->cpu);
 797        percpu_ref_exit(&ctx->reqs);
 798        percpu_ref_exit(&ctx->users);
 799        kmem_cache_free(kioctx_cachep, ctx);
 800        pr_debug("error allocating ioctx %d\n", err);
 801        return ERR_PTR(err);
 802}
 803
 804/* kill_ioctx
 805 *      Cancels all outstanding aio requests on an aio context.  Used
 806 *      when the processes owning a context have all exited to encourage
 807 *      the rapid destruction of the kioctx.
 808 */
 809static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
 810                      struct ctx_rq_wait *wait)
 811{
 812        struct kioctx_table *table;
 813
 814        spin_lock(&mm->ioctx_lock);
 815        if (atomic_xchg(&ctx->dead, 1)) {
 816                spin_unlock(&mm->ioctx_lock);
 817                return -EINVAL;
 818        }
 819
 820        table = rcu_dereference_raw(mm->ioctx_table);
 821        WARN_ON(ctx != table->table[ctx->id]);
 822        table->table[ctx->id] = NULL;
 823        spin_unlock(&mm->ioctx_lock);
 824
 825        /* percpu_ref_kill() will do the necessary call_rcu() */
 826        wake_up_all(&ctx->wait);
 827
 828        /*
 829         * It'd be more correct to do this in free_ioctx(), after all
 830         * the outstanding kiocbs have finished - but by then io_destroy
 831         * has already returned, so io_setup() could potentially return
 832         * -EAGAIN with no ioctxs actually in use (as far as userspace
 833         *  could tell).
 834         */
 835        aio_nr_sub(ctx->max_reqs);
 836
 837        if (ctx->mmap_size)
 838                vm_munmap(ctx->mmap_base, ctx->mmap_size);
 839
 840        ctx->rq_wait = wait;
 841        percpu_ref_kill(&ctx->users);
 842        return 0;
 843}
 844
 845/*
 846 * exit_aio: called when the last user of mm goes away.  At this point, there is
 847 * no way for any new requests to be submited or any of the io_* syscalls to be
 848 * called on the context.
 849 *
 850 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
 851 * them.
 852 */
 853void exit_aio(struct mm_struct *mm)
 854{
 855        struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
 856        struct ctx_rq_wait wait;
 857        int i, skipped;
 858
 859        if (!table)
 860                return;
 861
 862        atomic_set(&wait.count, table->nr);
 863        init_completion(&wait.comp);
 864
 865        skipped = 0;
 866        for (i = 0; i < table->nr; ++i) {
 867                struct kioctx *ctx = table->table[i];
 868
 869                if (!ctx) {
 870                        skipped++;
 871                        continue;
 872                }
 873
 874                /*
 875                 * We don't need to bother with munmap() here - exit_mmap(mm)
 876                 * is coming and it'll unmap everything. And we simply can't,
 877                 * this is not necessarily our ->mm.
 878                 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
 879                 * that it needs to unmap the area, just set it to 0.
 880                 */
 881                ctx->mmap_size = 0;
 882                kill_ioctx(mm, ctx, &wait);
 883        }
 884
 885        if (!atomic_sub_and_test(skipped, &wait.count)) {
 886                /* Wait until all IO for the context are done. */
 887                wait_for_completion(&wait.comp);
 888        }
 889
 890        RCU_INIT_POINTER(mm->ioctx_table, NULL);
 891        kfree(table);
 892}
 893
 894static void put_reqs_available(struct kioctx *ctx, unsigned nr)
 895{
 896        struct kioctx_cpu *kcpu;
 897        unsigned long flags;
 898
 899        local_irq_save(flags);
 900        kcpu = this_cpu_ptr(ctx->cpu);
 901        kcpu->reqs_available += nr;
 902
 903        while (kcpu->reqs_available >= ctx->req_batch * 2) {
 904                kcpu->reqs_available -= ctx->req_batch;
 905                atomic_add(ctx->req_batch, &ctx->reqs_available);
 906        }
 907
 908        local_irq_restore(flags);
 909}
 910
 911static bool get_reqs_available(struct kioctx *ctx)
 912{
 913        struct kioctx_cpu *kcpu;
 914        bool ret = false;
 915        unsigned long flags;
 916
 917        local_irq_save(flags);
 918        kcpu = this_cpu_ptr(ctx->cpu);
 919        if (!kcpu->reqs_available) {
 920                int old, avail = atomic_read(&ctx->reqs_available);
 921
 922                do {
 923                        if (avail < ctx->req_batch)
 924                                goto out;
 925
 926                        old = avail;
 927                        avail = atomic_cmpxchg(&ctx->reqs_available,
 928                                               avail, avail - ctx->req_batch);
 929                } while (avail != old);
 930
 931                kcpu->reqs_available += ctx->req_batch;
 932        }
 933
 934        ret = true;
 935        kcpu->reqs_available--;
 936out:
 937        local_irq_restore(flags);
 938        return ret;
 939}
 940
 941/* refill_reqs_available
 942 *      Updates the reqs_available reference counts used for tracking the
 943 *      number of free slots in the completion ring.  This can be called
 944 *      from aio_complete() (to optimistically update reqs_available) or
 945 *      from aio_get_req() (the we're out of events case).  It must be
 946 *      called holding ctx->completion_lock.
 947 */
 948static void refill_reqs_available(struct kioctx *ctx, unsigned head,
 949                                  unsigned tail)
 950{
 951        unsigned events_in_ring, completed;
 952
 953        /* Clamp head since userland can write to it. */
 954        head %= ctx->nr_events;
 955        if (head <= tail)
 956                events_in_ring = tail - head;
 957        else
 958                events_in_ring = ctx->nr_events - (head - tail);
 959
 960        completed = ctx->completed_events;
 961        if (events_in_ring < completed)
 962                completed -= events_in_ring;
 963        else
 964                completed = 0;
 965
 966        if (!completed)
 967                return;
 968
 969        ctx->completed_events -= completed;
 970        put_reqs_available(ctx, completed);
 971}
 972
 973/* user_refill_reqs_available
 974 *      Called to refill reqs_available when aio_get_req() encounters an
 975 *      out of space in the completion ring.
 976 */
 977static void user_refill_reqs_available(struct kioctx *ctx)
 978{
 979        spin_lock_irq(&ctx->completion_lock);
 980        if (ctx->completed_events) {
 981                struct aio_ring *ring;
 982                unsigned head;
 983
 984                /* Access of ring->head may race with aio_read_events_ring()
 985                 * here, but that's okay since whether we read the old version
 986                 * or the new version, and either will be valid.  The important
 987                 * part is that head cannot pass tail since we prevent
 988                 * aio_complete() from updating tail by holding
 989                 * ctx->completion_lock.  Even if head is invalid, the check
 990                 * against ctx->completed_events below will make sure we do the
 991                 * safe/right thing.
 992                 */
 993                ring = kmap_atomic(ctx->ring_pages[0]);
 994                head = ring->head;
 995                kunmap_atomic(ring);
 996
 997                refill_reqs_available(ctx, head, ctx->tail);
 998        }
 999
1000        spin_unlock_irq(&ctx->completion_lock);
1001}
1002
1003/* aio_get_req
1004 *      Allocate a slot for an aio request.
1005 * Returns NULL if no requests are free.
1006 */
1007static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1008{
1009        struct aio_kiocb *req;
1010
1011        if (!get_reqs_available(ctx)) {
1012                user_refill_reqs_available(ctx);
1013                if (!get_reqs_available(ctx))
1014                        return NULL;
1015        }
1016
1017        req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
1018        if (unlikely(!req))
1019                goto out_put;
1020
1021        percpu_ref_get(&ctx->reqs);
1022
1023        req->ki_ctx = ctx;
1024        return req;
1025out_put:
1026        put_reqs_available(ctx, 1);
1027        return NULL;
1028}
1029
1030static void kiocb_free(struct aio_kiocb *req)
1031{
1032        if (req->common.ki_filp)
1033                fput(req->common.ki_filp);
1034        if (req->ki_eventfd != NULL)
1035                eventfd_ctx_put(req->ki_eventfd);
1036        kmem_cache_free(kiocb_cachep, req);
1037}
1038
1039static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1040{
1041        struct aio_ring __user *ring  = (void __user *)ctx_id;
1042        struct mm_struct *mm = current->mm;
1043        struct kioctx *ctx, *ret = NULL;
1044        struct kioctx_table *table;
1045        unsigned id;
1046
1047        if (get_user(id, &ring->id))
1048                return NULL;
1049
1050        rcu_read_lock();
1051        table = rcu_dereference(mm->ioctx_table);
1052
1053        if (!table || id >= table->nr)
1054                goto out;
1055
1056        ctx = table->table[id];
1057        if (ctx && ctx->user_id == ctx_id) {
1058                percpu_ref_get(&ctx->users);
1059                ret = ctx;
1060        }
1061out:
1062        rcu_read_unlock();
1063        return ret;
1064}
1065
1066/* aio_complete
1067 *      Called when the io request on the given iocb is complete.
1068 */
1069static void aio_complete(struct kiocb *kiocb, long res, long res2)
1070{
1071        struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, common);
1072        struct kioctx   *ctx = iocb->ki_ctx;
1073        struct aio_ring *ring;
1074        struct io_event *ev_page, *event;
1075        unsigned tail, pos, head;
1076        unsigned long   flags;
1077
1078        /*
1079         * Special case handling for sync iocbs:
1080         *  - events go directly into the iocb for fast handling
1081         *  - the sync task with the iocb in its stack holds the single iocb
1082         *    ref, no other paths have a way to get another ref
1083         *  - the sync task helpfully left a reference to itself in the iocb
1084         */
1085        BUG_ON(is_sync_kiocb(kiocb));
1086
1087        if (iocb->ki_list.next) {
1088                unsigned long flags;
1089
1090                spin_lock_irqsave(&ctx->ctx_lock, flags);
1091                list_del(&iocb->ki_list);
1092                spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1093        }
1094
1095        /*
1096         * Add a completion event to the ring buffer. Must be done holding
1097         * ctx->completion_lock to prevent other code from messing with the tail
1098         * pointer since we might be called from irq context.
1099         */
1100        spin_lock_irqsave(&ctx->completion_lock, flags);
1101
1102        tail = ctx->tail;
1103        pos = tail + AIO_EVENTS_OFFSET;
1104
1105        if (++tail >= ctx->nr_events)
1106                tail = 0;
1107
1108        ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1109        event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1110
1111        event->obj = (u64)(unsigned long)iocb->ki_user_iocb;
1112        event->data = iocb->ki_user_data;
1113        event->res = res;
1114        event->res2 = res2;
1115
1116        kunmap_atomic(ev_page);
1117        flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1118
1119        pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1120                 ctx, tail, iocb, iocb->ki_user_iocb, iocb->ki_user_data,
1121                 res, res2);
1122
1123        /* after flagging the request as done, we
1124         * must never even look at it again
1125         */
1126        smp_wmb();      /* make event visible before updating tail */
1127
1128        ctx->tail = tail;
1129
1130        ring = kmap_atomic(ctx->ring_pages[0]);
1131        head = ring->head;
1132        ring->tail = tail;
1133        kunmap_atomic(ring);
1134        flush_dcache_page(ctx->ring_pages[0]);
1135
1136        ctx->completed_events++;
1137        if (ctx->completed_events > 1)
1138                refill_reqs_available(ctx, head, tail);
1139        spin_unlock_irqrestore(&ctx->completion_lock, flags);
1140
1141        pr_debug("added to ring %p at [%u]\n", iocb, tail);
1142
1143        /*
1144         * Check if the user asked us to deliver the result through an
1145         * eventfd. The eventfd_signal() function is safe to be called
1146         * from IRQ context.
1147         */
1148        if (iocb->ki_eventfd != NULL)
1149                eventfd_signal(iocb->ki_eventfd, 1);
1150
1151        /* everything turned out well, dispose of the aiocb. */
1152        kiocb_free(iocb);
1153
1154        /*
1155         * We have to order our ring_info tail store above and test
1156         * of the wait list below outside the wait lock.  This is
1157         * like in wake_up_bit() where clearing a bit has to be
1158         * ordered with the unlocked test.
1159         */
1160        smp_mb();
1161
1162        if (waitqueue_active(&ctx->wait))
1163                wake_up(&ctx->wait);
1164
1165        percpu_ref_put(&ctx->reqs);
1166}
1167
1168/* aio_read_events_ring
1169 *      Pull an event off of the ioctx's event ring.  Returns the number of
1170 *      events fetched
1171 */
1172static long aio_read_events_ring(struct kioctx *ctx,
1173                                 struct io_event __user *event, long nr)
1174{
1175        struct aio_ring *ring;
1176        unsigned head, tail, pos;
1177        long ret = 0;
1178        int copy_ret;
1179
1180        /*
1181         * The mutex can block and wake us up and that will cause
1182         * wait_event_interruptible_hrtimeout() to schedule without sleeping
1183         * and repeat. This should be rare enough that it doesn't cause
1184         * peformance issues. See the comment in read_events() for more detail.
1185         */
1186        sched_annotate_sleep();
1187        mutex_lock(&ctx->ring_lock);
1188
1189        /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1190        ring = kmap_atomic(ctx->ring_pages[0]);
1191        head = ring->head;
1192        tail = ring->tail;
1193        kunmap_atomic(ring);
1194
1195        /*
1196         * Ensure that once we've read the current tail pointer, that
1197         * we also see the events that were stored up to the tail.
1198         */
1199        smp_rmb();
1200
1201        pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1202
1203        if (head == tail)
1204                goto out;
1205
1206        head %= ctx->nr_events;
1207        tail %= ctx->nr_events;
1208
1209        while (ret < nr) {
1210                long avail;
1211                struct io_event *ev;
1212                struct page *page;
1213
1214                avail = (head <= tail ?  tail : ctx->nr_events) - head;
1215                if (head == tail)
1216                        break;
1217
1218                avail = min(avail, nr - ret);
1219                avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
1220                            ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
1221
1222                pos = head + AIO_EVENTS_OFFSET;
1223                page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1224                pos %= AIO_EVENTS_PER_PAGE;
1225
1226                ev = kmap(page);
1227                copy_ret = copy_to_user(event + ret, ev + pos,
1228                                        sizeof(*ev) * avail);
1229                kunmap(page);
1230
1231                if (unlikely(copy_ret)) {
1232                        ret = -EFAULT;
1233                        goto out;
1234                }
1235
1236                ret += avail;
1237                head += avail;
1238                head %= ctx->nr_events;
1239        }
1240
1241        ring = kmap_atomic(ctx->ring_pages[0]);
1242        ring->head = head;
1243        kunmap_atomic(ring);
1244        flush_dcache_page(ctx->ring_pages[0]);
1245
1246        pr_debug("%li  h%u t%u\n", ret, head, tail);
1247out:
1248        mutex_unlock(&ctx->ring_lock);
1249
1250        return ret;
1251}
1252
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254                            struct io_event __user *event, long *i)
1255{
1256        long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1257
1258        if (ret > 0)
1259                *i += ret;
1260
1261        if (unlikely(atomic_read(&ctx->dead)))
1262                ret = -EINVAL;
1263
1264        if (!*i)
1265                *i = ret;
1266
1267        return ret < 0 || *i >= min_nr;
1268}
1269
1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1271                        struct io_event __user *event,
1272                        struct timespec __user *timeout)
1273{
1274        ktime_t until = { .tv64 = KTIME_MAX };
1275        long ret = 0;
1276
1277        if (timeout) {
1278                struct timespec ts;
1279
1280                if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
1281                        return -EFAULT;
1282
1283                until = timespec_to_ktime(ts);
1284        }
1285
1286        /*
1287         * Note that aio_read_events() is being called as the conditional - i.e.
1288         * we're calling it after prepare_to_wait() has set task state to
1289         * TASK_INTERRUPTIBLE.
1290         *
1291         * But aio_read_events() can block, and if it blocks it's going to flip
1292         * the task state back to TASK_RUNNING.
1293         *
1294         * This should be ok, provided it doesn't flip the state back to
1295         * TASK_RUNNING and return 0 too much - that causes us to spin. That
1296         * will only happen if the mutex_lock() call blocks, and we then find
1297         * the ringbuffer empty. So in practice we should be ok, but it's
1298         * something to be aware of when touching this code.
1299         */
1300        if (until.tv64 == 0)
1301                aio_read_events(ctx, min_nr, nr, event, &ret);
1302        else
1303                wait_event_interruptible_hrtimeout(ctx->wait,
1304                                aio_read_events(ctx, min_nr, nr, event, &ret),
1305                                until);
1306
1307        if (!ret && signal_pending(current))
1308                ret = -EINTR;
1309
1310        return ret;
1311}
1312
1313/* sys_io_setup:
1314 *      Create an aio_context capable of receiving at least nr_events.
1315 *      ctxp must not point to an aio_context that already exists, and
1316 *      must be initialized to 0 prior to the call.  On successful
1317 *      creation of the aio_context, *ctxp is filled in with the resulting 
1318 *      handle.  May fail with -EINVAL if *ctxp is not initialized,
1319 *      if the specified nr_events exceeds internal limits.  May fail 
1320 *      with -EAGAIN if the specified nr_events exceeds the user's limit 
1321 *      of available events.  May fail with -ENOMEM if insufficient kernel
1322 *      resources are available.  May fail with -EFAULT if an invalid
1323 *      pointer is passed for ctxp.  Will fail with -ENOSYS if not
1324 *      implemented.
1325 */
1326SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1327{
1328        struct kioctx *ioctx = NULL;
1329        unsigned long ctx;
1330        long ret;
1331
1332        ret = get_user(ctx, ctxp);
1333        if (unlikely(ret))
1334                goto out;
1335
1336        ret = -EINVAL;
1337        if (unlikely(ctx || nr_events == 0)) {
1338                pr_debug("EINVAL: ctx %lu nr_events %u\n",
1339                         ctx, nr_events);
1340                goto out;
1341        }
1342
1343        ioctx = ioctx_alloc(nr_events);
1344        ret = PTR_ERR(ioctx);
1345        if (!IS_ERR(ioctx)) {
1346                ret = put_user(ioctx->user_id, ctxp);
1347                if (ret)
1348                        kill_ioctx(current->mm, ioctx, NULL);
1349                percpu_ref_put(&ioctx->users);
1350        }
1351
1352out:
1353        return ret;
1354}
1355
1356/* sys_io_destroy:
1357 *      Destroy the aio_context specified.  May cancel any outstanding 
1358 *      AIOs and block on completion.  Will fail with -ENOSYS if not
1359 *      implemented.  May fail with -EINVAL if the context pointed to
1360 *      is invalid.
1361 */
1362SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1363{
1364        struct kioctx *ioctx = lookup_ioctx(ctx);
1365        if (likely(NULL != ioctx)) {
1366                struct ctx_rq_wait wait;
1367                int ret;
1368
1369                init_completion(&wait.comp);
1370                atomic_set(&wait.count, 1);
1371
1372                /* Pass requests_done to kill_ioctx() where it can be set
1373                 * in a thread-safe way. If we try to set it here then we have
1374                 * a race condition if two io_destroy() called simultaneously.
1375                 */
1376                ret = kill_ioctx(current->mm, ioctx, &wait);
1377                percpu_ref_put(&ioctx->users);
1378
1379                /* Wait until all IO for the context are done. Otherwise kernel
1380                 * keep using user-space buffers even if user thinks the context
1381                 * is destroyed.
1382                 */
1383                if (!ret)
1384                        wait_for_completion(&wait.comp);
1385
1386                return ret;
1387        }
1388        pr_debug("EINVAL: invalid context id\n");
1389        return -EINVAL;
1390}
1391
1392typedef ssize_t (rw_iter_op)(struct kiocb *, struct iov_iter *);
1393
1394static int aio_setup_vectored_rw(int rw, char __user *buf, size_t len,
1395                                 struct iovec **iovec,
1396                                 bool compat,
1397                                 struct iov_iter *iter)
1398{
1399#ifdef CONFIG_COMPAT
1400        if (compat)
1401                return compat_import_iovec(rw,
1402                                (struct compat_iovec __user *)buf,
1403                                len, UIO_FASTIOV, iovec, iter);
1404#endif
1405        return import_iovec(rw, (struct iovec __user *)buf,
1406                                len, UIO_FASTIOV, iovec, iter);
1407}
1408
1409/*
1410 * aio_run_iocb:
1411 *      Performs the initial checks and io submission.
1412 */
1413static ssize_t aio_run_iocb(struct kiocb *req, unsigned opcode,
1414                            char __user *buf, size_t len, bool compat)
1415{
1416        struct file *file = req->ki_filp;
1417        ssize_t ret;
1418        int rw;
1419        fmode_t mode;
1420        rw_iter_op *iter_op;
1421        struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1422        struct iov_iter iter;
1423
1424        switch (opcode) {
1425        case IOCB_CMD_PREAD:
1426        case IOCB_CMD_PREADV:
1427                mode    = FMODE_READ;
1428                rw      = READ;
1429                iter_op = file->f_op->read_iter;
1430                goto rw_common;
1431
1432        case IOCB_CMD_PWRITE:
1433        case IOCB_CMD_PWRITEV:
1434                mode    = FMODE_WRITE;
1435                rw      = WRITE;
1436                iter_op = file->f_op->write_iter;
1437                goto rw_common;
1438rw_common:
1439                if (unlikely(!(file->f_mode & mode)))
1440                        return -EBADF;
1441
1442                if (!iter_op)
1443                        return -EINVAL;
1444
1445                if (opcode == IOCB_CMD_PREADV || opcode == IOCB_CMD_PWRITEV)
1446                        ret = aio_setup_vectored_rw(rw, buf, len,
1447                                                &iovec, compat, &iter);
1448                else {
1449                        ret = import_single_range(rw, buf, len, iovec, &iter);
1450                        iovec = NULL;
1451                }
1452                if (!ret)
1453                        ret = rw_verify_area(rw, file, &req->ki_pos,
1454                                             iov_iter_count(&iter));
1455                if (ret < 0) {
1456                        kfree(iovec);
1457                        return ret;
1458                }
1459
1460                if (rw == WRITE)
1461                        file_start_write(file);
1462
1463                ret = iter_op(req, &iter);
1464
1465                if (rw == WRITE)
1466                        file_end_write(file);
1467                kfree(iovec);
1468                break;
1469
1470        case IOCB_CMD_FDSYNC:
1471                if (!file->f_op->aio_fsync)
1472                        return -EINVAL;
1473
1474                ret = file->f_op->aio_fsync(req, 1);
1475                break;
1476
1477        case IOCB_CMD_FSYNC:
1478                if (!file->f_op->aio_fsync)
1479                        return -EINVAL;
1480
1481                ret = file->f_op->aio_fsync(req, 0);
1482                break;
1483
1484        default:
1485                pr_debug("EINVAL: no operation provided\n");
1486                return -EINVAL;
1487        }
1488
1489        if (ret != -EIOCBQUEUED) {
1490                /*
1491                 * There's no easy way to restart the syscall since other AIO's
1492                 * may be already running. Just fail this IO with EINTR.
1493                 */
1494                if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
1495                             ret == -ERESTARTNOHAND ||
1496                             ret == -ERESTART_RESTARTBLOCK))
1497                        ret = -EINTR;
1498                aio_complete(req, ret, 0);
1499        }
1500
1501        return 0;
1502}
1503
1504static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1505                         struct iocb *iocb, bool compat)
1506{
1507        struct aio_kiocb *req;
1508        ssize_t ret;
1509
1510        /* enforce forwards compatibility on users */
1511        if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
1512                pr_debug("EINVAL: reserve field set\n");
1513                return -EINVAL;
1514        }
1515
1516        /* prevent overflows */
1517        if (unlikely(
1518            (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
1519            (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
1520            ((ssize_t)iocb->aio_nbytes < 0)
1521           )) {
1522                pr_debug("EINVAL: overflow check\n");
1523                return -EINVAL;
1524        }
1525
1526        req = aio_get_req(ctx);
1527        if (unlikely(!req))
1528                return -EAGAIN;
1529
1530        req->common.ki_filp = fget(iocb->aio_fildes);
1531        if (unlikely(!req->common.ki_filp)) {
1532                ret = -EBADF;
1533                goto out_put_req;
1534        }
1535        req->common.ki_pos = iocb->aio_offset;
1536        req->common.ki_complete = aio_complete;
1537        req->common.ki_flags = iocb_flags(req->common.ki_filp);
1538
1539        if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1540                /*
1541                 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1542                 * instance of the file* now. The file descriptor must be
1543                 * an eventfd() fd, and will be signaled for each completed
1544                 * event using the eventfd_signal() function.
1545                 */
1546                req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
1547                if (IS_ERR(req->ki_eventfd)) {
1548                        ret = PTR_ERR(req->ki_eventfd);
1549                        req->ki_eventfd = NULL;
1550                        goto out_put_req;
1551                }
1552
1553                req->common.ki_flags |= IOCB_EVENTFD;
1554        }
1555
1556        ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
1557        if (unlikely(ret)) {
1558                pr_debug("EFAULT: aio_key\n");
1559                goto out_put_req;
1560        }
1561
1562        req->ki_user_iocb = user_iocb;
1563        req->ki_user_data = iocb->aio_data;
1564
1565        ret = aio_run_iocb(&req->common, iocb->aio_lio_opcode,
1566                           (char __user *)(unsigned long)iocb->aio_buf,
1567                           iocb->aio_nbytes,
1568                           compat);
1569        if (ret)
1570                goto out_put_req;
1571
1572        return 0;
1573out_put_req:
1574        put_reqs_available(ctx, 1);
1575        percpu_ref_put(&ctx->reqs);
1576        kiocb_free(req);
1577        return ret;
1578}
1579
1580long do_io_submit(aio_context_t ctx_id, long nr,
1581                  struct iocb __user *__user *iocbpp, bool compat)
1582{
1583        struct kioctx *ctx;
1584        long ret = 0;
1585        int i = 0;
1586        struct blk_plug plug;
1587
1588        if (unlikely(nr < 0))
1589                return -EINVAL;
1590
1591        if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
1592                nr = LONG_MAX/sizeof(*iocbpp);
1593
1594        if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
1595                return -EFAULT;
1596
1597        ctx = lookup_ioctx(ctx_id);
1598        if (unlikely(!ctx)) {
1599                pr_debug("EINVAL: invalid context id\n");
1600                return -EINVAL;
1601        }
1602
1603        blk_start_plug(&plug);
1604
1605        /*
1606         * AKPM: should this return a partial result if some of the IOs were
1607         * successfully submitted?
1608         */
1609        for (i=0; i<nr; i++) {
1610                struct iocb __user *user_iocb;
1611                struct iocb tmp;
1612
1613                if (unlikely(__get_user(user_iocb, iocbpp + i))) {
1614                        ret = -EFAULT;
1615                        break;
1616                }
1617
1618                if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
1619                        ret = -EFAULT;
1620                        break;
1621                }
1622
1623                ret = io_submit_one(ctx, user_iocb, &tmp, compat);
1624                if (ret)
1625                        break;
1626        }
1627        blk_finish_plug(&plug);
1628
1629        percpu_ref_put(&ctx->users);
1630        return i ? i : ret;
1631}
1632
1633/* sys_io_submit:
1634 *      Queue the nr iocbs pointed to by iocbpp for processing.  Returns
1635 *      the number of iocbs queued.  May return -EINVAL if the aio_context
1636 *      specified by ctx_id is invalid, if nr is < 0, if the iocb at
1637 *      *iocbpp[0] is not properly initialized, if the operation specified
1638 *      is invalid for the file descriptor in the iocb.  May fail with
1639 *      -EFAULT if any of the data structures point to invalid data.  May
1640 *      fail with -EBADF if the file descriptor specified in the first
1641 *      iocb is invalid.  May fail with -EAGAIN if insufficient resources
1642 *      are available to queue any iocbs.  Will return 0 if nr is 0.  Will
1643 *      fail with -ENOSYS if not implemented.
1644 */
1645SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1646                struct iocb __user * __user *, iocbpp)
1647{
1648        return do_io_submit(ctx_id, nr, iocbpp, 0);
1649}
1650
1651/* lookup_kiocb
1652 *      Finds a given iocb for cancellation.
1653 */
1654static struct aio_kiocb *
1655lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb, u32 key)
1656{
1657        struct aio_kiocb *kiocb;
1658
1659        assert_spin_locked(&ctx->ctx_lock);
1660
1661        if (key != KIOCB_KEY)
1662                return NULL;
1663
1664        /* TODO: use a hash or array, this sucks. */
1665        list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
1666                if (kiocb->ki_user_iocb == iocb)
1667                        return kiocb;
1668        }
1669        return NULL;
1670}
1671
1672/* sys_io_cancel:
1673 *      Attempts to cancel an iocb previously passed to io_submit.  If
1674 *      the operation is successfully cancelled, the resulting event is
1675 *      copied into the memory pointed to by result without being placed
1676 *      into the completion queue and 0 is returned.  May fail with
1677 *      -EFAULT if any of the data structures pointed to are invalid.
1678 *      May fail with -EINVAL if aio_context specified by ctx_id is
1679 *      invalid.  May fail with -EAGAIN if the iocb specified was not
1680 *      cancelled.  Will fail with -ENOSYS if not implemented.
1681 */
1682SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1683                struct io_event __user *, result)
1684{
1685        struct kioctx *ctx;
1686        struct aio_kiocb *kiocb;
1687        u32 key;
1688        int ret;
1689
1690        ret = get_user(key, &iocb->aio_key);
1691        if (unlikely(ret))
1692                return -EFAULT;
1693
1694        ctx = lookup_ioctx(ctx_id);
1695        if (unlikely(!ctx))
1696                return -EINVAL;
1697
1698        spin_lock_irq(&ctx->ctx_lock);
1699
1700        kiocb = lookup_kiocb(ctx, iocb, key);
1701        if (kiocb)
1702                ret = kiocb_cancel(kiocb);
1703        else
1704                ret = -EINVAL;
1705
1706        spin_unlock_irq(&ctx->ctx_lock);
1707
1708        if (!ret) {
1709                /*
1710                 * The result argument is no longer used - the io_event is
1711                 * always delivered via the ring buffer. -EINPROGRESS indicates
1712                 * cancellation is progress:
1713                 */
1714                ret = -EINPROGRESS;
1715        }
1716
1717        percpu_ref_put(&ctx->users);
1718
1719        return ret;
1720}
1721
1722/* io_getevents:
1723 *      Attempts to read at least min_nr events and up to nr events from
1724 *      the completion queue for the aio_context specified by ctx_id. If
1725 *      it succeeds, the number of read events is returned. May fail with
1726 *      -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
1727 *      out of range, if timeout is out of range.  May fail with -EFAULT
1728 *      if any of the memory specified is invalid.  May return 0 or
1729 *      < min_nr if the timeout specified by timeout has elapsed
1730 *      before sufficient events are available, where timeout == NULL
1731 *      specifies an infinite timeout. Note that the timeout pointed to by
1732 *      timeout is relative.  Will fail with -ENOSYS if not implemented.
1733 */
1734SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
1735                long, min_nr,
1736                long, nr,
1737                struct io_event __user *, events,
1738                struct timespec __user *, timeout)
1739{
1740        struct kioctx *ioctx = lookup_ioctx(ctx_id);
1741        long ret = -EINVAL;
1742
1743        if (likely(ioctx)) {
1744                if (likely(min_nr <= nr && min_nr >= 0))
1745                        ret = read_events(ioctx, min_nr, nr, events, timeout);
1746                percpu_ref_put(&ioctx->users);
1747        }
1748        return ret;
1749}
1750