linux/fs/befs/btree.c
<<
>>
Prefs
   1/*
   2 * linux/fs/befs/btree.c
   3 *
   4 * Copyright (C) 2001-2002 Will Dyson <will_dyson@pobox.com>
   5 *
   6 * Licensed under the GNU GPL. See the file COPYING for details.
   7 *
   8 * 2002-02-05: Sergey S. Kostyliov added binary search within
   9 *              btree nodes.
  10 *
  11 * Many thanks to:
  12 *
  13 * Dominic Giampaolo, author of "Practical File System
  14 * Design with the Be File System", for such a helpful book.
  15 * 
  16 * Marcus J. Ranum, author of the b+tree package in 
  17 * comp.sources.misc volume 10. This code is not copied from that
  18 * work, but it is partially based on it.
  19 *
  20 * Makoto Kato, author of the original BeFS for linux filesystem
  21 * driver.
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/string.h>
  26#include <linux/slab.h>
  27#include <linux/mm.h>
  28#include <linux/buffer_head.h>
  29
  30#include "befs.h"
  31#include "btree.h"
  32#include "datastream.h"
  33
  34/*
  35 * The btree functions in this file are built on top of the
  36 * datastream.c interface, which is in turn built on top of the
  37 * io.c interface.
  38 */
  39
  40/* Befs B+tree structure:
  41 * 
  42 * The first thing in the tree is the tree superblock. It tells you
  43 * all kinds of useful things about the tree, like where the rootnode
  44 * is located, and the size of the nodes (always 1024 with current version
  45 * of BeOS).
  46 *
  47 * The rest of the tree consists of a series of nodes. Nodes contain a header
  48 * (struct befs_btree_nodehead), the packed key data, an array of shorts 
  49 * containing the ending offsets for each of the keys, and an array of
  50 * befs_off_t values. In interior nodes, the keys are the ending keys for 
  51 * the childnode they point to, and the values are offsets into the 
  52 * datastream containing the tree. 
  53 */
  54
  55/* Note:
  56 * 
  57 * The book states 2 confusing things about befs b+trees. First, 
  58 * it states that the overflow field of node headers is used by internal nodes
  59 * to point to another node that "effectively continues this one". Here is what
  60 * I believe that means. Each key in internal nodes points to another node that
  61 * contains key values less than itself. Inspection reveals that the last key 
  62 * in the internal node is not the last key in the index. Keys that are 
  63 * greater than the last key in the internal node go into the overflow node. 
  64 * I imagine there is a performance reason for this.
  65 *
  66 * Second, it states that the header of a btree node is sufficient to 
  67 * distinguish internal nodes from leaf nodes. Without saying exactly how. 
  68 * After figuring out the first, it becomes obvious that internal nodes have
  69 * overflow nodes and leafnodes do not.
  70 */
  71
  72/* 
  73 * Currently, this code is only good for directory B+trees.
  74 * In order to be used for other BFS indexes, it needs to be extended to handle
  75 * duplicate keys and non-string keytypes (int32, int64, float, double).
  76 */
  77
  78/*
  79 * In memory structure of each btree node
  80 */
  81struct befs_btree_node {
  82        befs_host_btree_nodehead head;  /* head of node converted to cpu byteorder */
  83        struct buffer_head *bh;
  84        befs_btree_nodehead *od_node;   /* on disk node */
  85};
  86
  87/* local constants */
  88static const befs_off_t befs_bt_inval = 0xffffffffffffffffULL;
  89
  90/* local functions */
  91static int befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
  92                               befs_btree_super * bt_super,
  93                               struct befs_btree_node *this_node,
  94                               befs_off_t * node_off);
  95
  96static int befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
  97                              befs_btree_super * sup);
  98
  99static int befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
 100                             struct befs_btree_node *node,
 101                             befs_off_t node_off);
 102
 103static int befs_leafnode(struct befs_btree_node *node);
 104
 105static fs16 *befs_bt_keylen_index(struct befs_btree_node *node);
 106
 107static fs64 *befs_bt_valarray(struct befs_btree_node *node);
 108
 109static char *befs_bt_keydata(struct befs_btree_node *node);
 110
 111static int befs_find_key(struct super_block *sb,
 112                         struct befs_btree_node *node,
 113                         const char *findkey, befs_off_t * value);
 114
 115static char *befs_bt_get_key(struct super_block *sb,
 116                             struct befs_btree_node *node,
 117                             int index, u16 * keylen);
 118
 119static int befs_compare_strings(const void *key1, int keylen1,
 120                                const void *key2, int keylen2);
 121
 122/**
 123 * befs_bt_read_super - read in btree superblock convert to cpu byteorder
 124 * @sb: Filesystem superblock
 125 * @ds: Datastream to read from
 126 * @sup: Buffer in which to place the btree superblock
 127 *
 128 * Calls befs_read_datastream to read in the btree superblock and
 129 * makes sure it is in cpu byteorder, byteswapping if necessary.
 130 *
 131 * On success, returns BEFS_OK and *@sup contains the btree superblock,
 132 * in cpu byte order.
 133 *
 134 * On failure, BEFS_ERR is returned.
 135 */
 136static int
 137befs_bt_read_super(struct super_block *sb, const befs_data_stream *ds,
 138                   befs_btree_super * sup)
 139{
 140        struct buffer_head *bh;
 141        befs_disk_btree_super *od_sup;
 142
 143        befs_debug(sb, "---> %s", __func__);
 144
 145        bh = befs_read_datastream(sb, ds, 0, NULL);
 146
 147        if (!bh) {
 148                befs_error(sb, "Couldn't read index header.");
 149                goto error;
 150        }
 151        od_sup = (befs_disk_btree_super *) bh->b_data;
 152        befs_dump_index_entry(sb, od_sup);
 153
 154        sup->magic = fs32_to_cpu(sb, od_sup->magic);
 155        sup->node_size = fs32_to_cpu(sb, od_sup->node_size);
 156        sup->max_depth = fs32_to_cpu(sb, od_sup->max_depth);
 157        sup->data_type = fs32_to_cpu(sb, od_sup->data_type);
 158        sup->root_node_ptr = fs64_to_cpu(sb, od_sup->root_node_ptr);
 159        sup->free_node_ptr = fs64_to_cpu(sb, od_sup->free_node_ptr);
 160        sup->max_size = fs64_to_cpu(sb, od_sup->max_size);
 161
 162        brelse(bh);
 163        if (sup->magic != BEFS_BTREE_MAGIC) {
 164                befs_error(sb, "Index header has bad magic.");
 165                goto error;
 166        }
 167
 168        befs_debug(sb, "<--- %s", __func__);
 169        return BEFS_OK;
 170
 171      error:
 172        befs_debug(sb, "<--- %s ERROR", __func__);
 173        return BEFS_ERR;
 174}
 175
 176/**
 177 * befs_bt_read_node - read in btree node and convert to cpu byteorder
 178 * @sb: Filesystem superblock
 179 * @ds: Datastream to read from
 180 * @node: Buffer in which to place the btree node
 181 * @node_off: Starting offset (in bytes) of the node in @ds
 182 *
 183 * Calls befs_read_datastream to read in the indicated btree node and
 184 * makes sure its header fields are in cpu byteorder, byteswapping if
 185 * necessary.
 186 * Note: node->bh must be NULL when this function called first
 187 * time. Don't forget brelse(node->bh) after last call.
 188 *
 189 * On success, returns BEFS_OK and *@node contains the btree node that
 190 * starts at @node_off, with the node->head fields in cpu byte order.
 191 *
 192 * On failure, BEFS_ERR is returned.
 193 */
 194
 195static int
 196befs_bt_read_node(struct super_block *sb, const befs_data_stream *ds,
 197                  struct befs_btree_node *node, befs_off_t node_off)
 198{
 199        uint off = 0;
 200
 201        befs_debug(sb, "---> %s", __func__);
 202
 203        if (node->bh)
 204                brelse(node->bh);
 205
 206        node->bh = befs_read_datastream(sb, ds, node_off, &off);
 207        if (!node->bh) {
 208                befs_error(sb, "%s failed to read "
 209                           "node at %llu", __func__, node_off);
 210                befs_debug(sb, "<--- %s ERROR", __func__);
 211
 212                return BEFS_ERR;
 213        }
 214        node->od_node =
 215            (befs_btree_nodehead *) ((void *) node->bh->b_data + off);
 216
 217        befs_dump_index_node(sb, node->od_node);
 218
 219        node->head.left = fs64_to_cpu(sb, node->od_node->left);
 220        node->head.right = fs64_to_cpu(sb, node->od_node->right);
 221        node->head.overflow = fs64_to_cpu(sb, node->od_node->overflow);
 222        node->head.all_key_count =
 223            fs16_to_cpu(sb, node->od_node->all_key_count);
 224        node->head.all_key_length =
 225            fs16_to_cpu(sb, node->od_node->all_key_length);
 226
 227        befs_debug(sb, "<--- %s", __func__);
 228        return BEFS_OK;
 229}
 230
 231/**
 232 * befs_btree_find - Find a key in a befs B+tree
 233 * @sb: Filesystem superblock
 234 * @ds: Datastream containing btree
 235 * @key: Key string to lookup in btree
 236 * @value: Value stored with @key
 237 *
 238 * On success, returns BEFS_OK and sets *@value to the value stored
 239 * with @key (usually the disk block number of an inode).
 240 *
 241 * On failure, returns BEFS_ERR or BEFS_BT_NOT_FOUND.
 242 * 
 243 * Algorithm: 
 244 *   Read the superblock and rootnode of the b+tree.
 245 *   Drill down through the interior nodes using befs_find_key().
 246 *   Once at the correct leaf node, use befs_find_key() again to get the
 247 *   actuall value stored with the key.
 248 */
 249int
 250befs_btree_find(struct super_block *sb, const befs_data_stream *ds,
 251                const char *key, befs_off_t * value)
 252{
 253        struct befs_btree_node *this_node;
 254        befs_btree_super bt_super;
 255        befs_off_t node_off;
 256        int res;
 257
 258        befs_debug(sb, "---> %s Key: %s", __func__, key);
 259
 260        if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
 261                befs_error(sb,
 262                           "befs_btree_find() failed to read index superblock");
 263                goto error;
 264        }
 265
 266        this_node = kmalloc(sizeof(struct befs_btree_node),
 267                                                GFP_NOFS);
 268        if (!this_node) {
 269                befs_error(sb, "befs_btree_find() failed to allocate %zu "
 270                           "bytes of memory", sizeof(struct befs_btree_node));
 271                goto error;
 272        }
 273
 274        this_node->bh = NULL;
 275
 276        /* read in root node */
 277        node_off = bt_super.root_node_ptr;
 278        if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
 279                befs_error(sb, "befs_btree_find() failed to read "
 280                           "node at %llu", node_off);
 281                goto error_alloc;
 282        }
 283
 284        while (!befs_leafnode(this_node)) {
 285                res = befs_find_key(sb, this_node, key, &node_off);
 286                if (res == BEFS_BT_NOT_FOUND)
 287                        node_off = this_node->head.overflow;
 288                /* if no match, go to overflow node */
 289                if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
 290                        befs_error(sb, "befs_btree_find() failed to read "
 291                                   "node at %llu", node_off);
 292                        goto error_alloc;
 293                }
 294        }
 295
 296        /* at the correct leaf node now */
 297
 298        res = befs_find_key(sb, this_node, key, value);
 299
 300        brelse(this_node->bh);
 301        kfree(this_node);
 302
 303        if (res != BEFS_BT_MATCH) {
 304                befs_debug(sb, "<--- %s Key %s not found", __func__, key);
 305                *value = 0;
 306                return BEFS_BT_NOT_FOUND;
 307        }
 308        befs_debug(sb, "<--- %s Found key %s, value %llu", __func__,
 309                   key, *value);
 310        return BEFS_OK;
 311
 312      error_alloc:
 313        kfree(this_node);
 314      error:
 315        *value = 0;
 316        befs_debug(sb, "<--- %s ERROR", __func__);
 317        return BEFS_ERR;
 318}
 319
 320/**
 321 * befs_find_key - Search for a key within a node
 322 * @sb: Filesystem superblock
 323 * @node: Node to find the key within
 324 * @findkey: Keystring to search for
 325 * @value: If key is found, the value stored with the key is put here
 326 *
 327 * finds exact match if one exists, and returns BEFS_BT_MATCH
 328 * If no exact match, finds first key in node that is greater
 329 * (alphabetically) than the search key and returns BEFS_BT_PARMATCH
 330 * (for partial match, I guess). Can you think of something better to
 331 * call it?
 332 *
 333 * If no key was a match or greater than the search key, return
 334 * BEFS_BT_NOT_FOUND.
 335 *
 336 * Use binary search instead of a linear.
 337 */
 338static int
 339befs_find_key(struct super_block *sb, struct befs_btree_node *node,
 340              const char *findkey, befs_off_t * value)
 341{
 342        int first, last, mid;
 343        int eq;
 344        u16 keylen;
 345        int findkey_len;
 346        char *thiskey;
 347        fs64 *valarray;
 348
 349        befs_debug(sb, "---> %s %s", __func__, findkey);
 350
 351        *value = 0;
 352
 353        findkey_len = strlen(findkey);
 354
 355        /* if node can not contain key, just skeep this node */
 356        last = node->head.all_key_count - 1;
 357        thiskey = befs_bt_get_key(sb, node, last, &keylen);
 358
 359        eq = befs_compare_strings(thiskey, keylen, findkey, findkey_len);
 360        if (eq < 0) {
 361                befs_debug(sb, "<--- %s %s not found", __func__, findkey);
 362                return BEFS_BT_NOT_FOUND;
 363        }
 364
 365        valarray = befs_bt_valarray(node);
 366
 367        /* simple binary search */
 368        first = 0;
 369        mid = 0;
 370        while (last >= first) {
 371                mid = (last + first) / 2;
 372                befs_debug(sb, "first: %d, last: %d, mid: %d", first, last,
 373                           mid);
 374                thiskey = befs_bt_get_key(sb, node, mid, &keylen);
 375                eq = befs_compare_strings(thiskey, keylen, findkey,
 376                                          findkey_len);
 377
 378                if (eq == 0) {
 379                        befs_debug(sb, "<--- %s found %s at %d",
 380                                   __func__, thiskey, mid);
 381
 382                        *value = fs64_to_cpu(sb, valarray[mid]);
 383                        return BEFS_BT_MATCH;
 384                }
 385                if (eq > 0)
 386                        last = mid - 1;
 387                else
 388                        first = mid + 1;
 389        }
 390        if (eq < 0)
 391                *value = fs64_to_cpu(sb, valarray[mid + 1]);
 392        else
 393                *value = fs64_to_cpu(sb, valarray[mid]);
 394        befs_debug(sb, "<--- %s found %s at %d", __func__, thiskey, mid);
 395        return BEFS_BT_PARMATCH;
 396}
 397
 398/**
 399 * befs_btree_read - Traverse leafnodes of a btree
 400 * @sb: Filesystem superblock
 401 * @ds: Datastream containing btree
 402 * @key_no: Key number (alphabetical order) of key to read
 403 * @bufsize: Size of the buffer to return key in
 404 * @keybuf: Pointer to a buffer to put the key in
 405 * @keysize: Length of the returned key
 406 * @value: Value stored with the returned key
 407 *
 408 * Heres how it works: Key_no is the index of the key/value pair to 
 409 * return in keybuf/value.
 410 * Bufsize is the size of keybuf (BEFS_NAME_LEN+1 is a good size). Keysize is 
 411 * the number of characters in the key (just a convenience).
 412 *
 413 * Algorithm:
 414 *   Get the first leafnode of the tree. See if the requested key is in that
 415 *   node. If not, follow the node->right link to the next leafnode. Repeat 
 416 *   until the (key_no)th key is found or the tree is out of keys.
 417 */
 418int
 419befs_btree_read(struct super_block *sb, const befs_data_stream *ds,
 420                loff_t key_no, size_t bufsize, char *keybuf, size_t * keysize,
 421                befs_off_t * value)
 422{
 423        struct befs_btree_node *this_node;
 424        befs_btree_super bt_super;
 425        befs_off_t node_off = 0;
 426        int cur_key;
 427        fs64 *valarray;
 428        char *keystart;
 429        u16 keylen;
 430        int res;
 431
 432        uint key_sum = 0;
 433
 434        befs_debug(sb, "---> %s", __func__);
 435
 436        if (befs_bt_read_super(sb, ds, &bt_super) != BEFS_OK) {
 437                befs_error(sb,
 438                           "befs_btree_read() failed to read index superblock");
 439                goto error;
 440        }
 441
 442        this_node = kmalloc(sizeof(struct befs_btree_node), GFP_NOFS);
 443        if (this_node == NULL) {
 444                befs_error(sb, "befs_btree_read() failed to allocate %zu "
 445                           "bytes of memory", sizeof(struct befs_btree_node));
 446                goto error;
 447        }
 448
 449        node_off = bt_super.root_node_ptr;
 450        this_node->bh = NULL;
 451
 452        /* seeks down to first leafnode, reads it into this_node */
 453        res = befs_btree_seekleaf(sb, ds, &bt_super, this_node, &node_off);
 454        if (res == BEFS_BT_EMPTY) {
 455                brelse(this_node->bh);
 456                kfree(this_node);
 457                *value = 0;
 458                *keysize = 0;
 459                befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
 460                return BEFS_BT_EMPTY;
 461        } else if (res == BEFS_ERR) {
 462                goto error_alloc;
 463        }
 464
 465        /* find the leaf node containing the key_no key */
 466
 467        while (key_sum + this_node->head.all_key_count <= key_no) {
 468
 469                /* no more nodes to look in: key_no is too large */
 470                if (this_node->head.right == befs_bt_inval) {
 471                        *keysize = 0;
 472                        *value = 0;
 473                        befs_debug(sb,
 474                                   "<--- %s END of keys at %llu", __func__,
 475                                   (unsigned long long)
 476                                   key_sum + this_node->head.all_key_count);
 477                        brelse(this_node->bh);
 478                        kfree(this_node);
 479                        return BEFS_BT_END;
 480                }
 481
 482                key_sum += this_node->head.all_key_count;
 483                node_off = this_node->head.right;
 484
 485                if (befs_bt_read_node(sb, ds, this_node, node_off) != BEFS_OK) {
 486                        befs_error(sb, "%s failed to read node at %llu",
 487                                  __func__, (unsigned long long)node_off);
 488                        goto error_alloc;
 489                }
 490        }
 491
 492        /* how many keys into this_node is key_no */
 493        cur_key = key_no - key_sum;
 494
 495        /* get pointers to datastructures within the node body */
 496        valarray = befs_bt_valarray(this_node);
 497
 498        keystart = befs_bt_get_key(sb, this_node, cur_key, &keylen);
 499
 500        befs_debug(sb, "Read [%llu,%d]: keysize %d",
 501                   (long long unsigned int)node_off, (int)cur_key,
 502                   (int)keylen);
 503
 504        if (bufsize < keylen + 1) {
 505                befs_error(sb, "%s keybuf too small (%zu) "
 506                           "for key of size %d", __func__, bufsize, keylen);
 507                brelse(this_node->bh);
 508                goto error_alloc;
 509        }
 510
 511        strlcpy(keybuf, keystart, keylen + 1);
 512        *value = fs64_to_cpu(sb, valarray[cur_key]);
 513        *keysize = keylen;
 514
 515        befs_debug(sb, "Read [%llu,%d]: Key \"%.*s\", Value %llu", node_off,
 516                   cur_key, keylen, keybuf, *value);
 517
 518        brelse(this_node->bh);
 519        kfree(this_node);
 520
 521        befs_debug(sb, "<--- %s", __func__);
 522
 523        return BEFS_OK;
 524
 525      error_alloc:
 526        kfree(this_node);
 527
 528      error:
 529        *keysize = 0;
 530        *value = 0;
 531        befs_debug(sb, "<--- %s ERROR", __func__);
 532        return BEFS_ERR;
 533}
 534
 535/**
 536 * befs_btree_seekleaf - Find the first leafnode in the btree
 537 * @sb: Filesystem superblock
 538 * @ds: Datastream containing btree
 539 * @bt_super: Pointer to the superblock of the btree
 540 * @this_node: Buffer to return the leafnode in
 541 * @node_off: Pointer to offset of current node within datastream. Modified
 542 *              by the function.
 543 *
 544 *
 545 * Helper function for btree traverse. Moves the current position to the 
 546 * start of the first leaf node.
 547 *
 548 * Also checks for an empty tree. If there are no keys, returns BEFS_BT_EMPTY.
 549 */
 550static int
 551befs_btree_seekleaf(struct super_block *sb, const befs_data_stream *ds,
 552                    befs_btree_super *bt_super,
 553                    struct befs_btree_node *this_node,
 554                    befs_off_t * node_off)
 555{
 556
 557        befs_debug(sb, "---> %s", __func__);
 558
 559        if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
 560                befs_error(sb, "%s failed to read "
 561                           "node at %llu", __func__, *node_off);
 562                goto error;
 563        }
 564        befs_debug(sb, "Seekleaf to root node %llu", *node_off);
 565
 566        if (this_node->head.all_key_count == 0 && befs_leafnode(this_node)) {
 567                befs_debug(sb, "<--- %s Tree is EMPTY", __func__);
 568                return BEFS_BT_EMPTY;
 569        }
 570
 571        while (!befs_leafnode(this_node)) {
 572
 573                if (this_node->head.all_key_count == 0) {
 574                        befs_debug(sb, "%s encountered "
 575                                   "an empty interior node: %llu. Using Overflow "
 576                                   "node: %llu", __func__, *node_off,
 577                                   this_node->head.overflow);
 578                        *node_off = this_node->head.overflow;
 579                } else {
 580                        fs64 *valarray = befs_bt_valarray(this_node);
 581                        *node_off = fs64_to_cpu(sb, valarray[0]);
 582                }
 583                if (befs_bt_read_node(sb, ds, this_node, *node_off) != BEFS_OK) {
 584                        befs_error(sb, "%s failed to read "
 585                                   "node at %llu", __func__, *node_off);
 586                        goto error;
 587                }
 588
 589                befs_debug(sb, "Seekleaf to child node %llu", *node_off);
 590        }
 591        befs_debug(sb, "Node %llu is a leaf node", *node_off);
 592
 593        return BEFS_OK;
 594
 595      error:
 596        befs_debug(sb, "<--- %s ERROR", __func__);
 597        return BEFS_ERR;
 598}
 599
 600/**
 601 * befs_leafnode - Determine if the btree node is a leaf node or an 
 602 * interior node
 603 * @node: Pointer to node structure to test
 604 * 
 605 * Return 1 if leaf, 0 if interior
 606 */
 607static int
 608befs_leafnode(struct befs_btree_node *node)
 609{
 610        /* all interior nodes (and only interior nodes) have an overflow node */
 611        if (node->head.overflow == befs_bt_inval)
 612                return 1;
 613        else
 614                return 0;
 615}
 616
 617/**
 618 * befs_bt_keylen_index - Finds start of keylen index in a node
 619 * @node: Pointer to the node structure to find the keylen index within
 620 *
 621 * Returns a pointer to the start of the key length index array
 622 * of the B+tree node *@node
 623 *
 624 * "The length of all the keys in the node is added to the size of the
 625 * header and then rounded up to a multiple of four to get the beginning
 626 * of the key length index" (p.88, practical filesystem design).
 627 *
 628 * Except that rounding up to 8 works, and rounding up to 4 doesn't.
 629 */
 630static fs16 *
 631befs_bt_keylen_index(struct befs_btree_node *node)
 632{
 633        const int keylen_align = 8;
 634        unsigned long int off =
 635            (sizeof (befs_btree_nodehead) + node->head.all_key_length);
 636        ulong tmp = off % keylen_align;
 637
 638        if (tmp)
 639                off += keylen_align - tmp;
 640
 641        return (fs16 *) ((void *) node->od_node + off);
 642}
 643
 644/**
 645 * befs_bt_valarray - Finds the start of value array in a node
 646 * @node: Pointer to the node structure to find the value array within
 647 *
 648 * Returns a pointer to the start of the value array
 649 * of the node pointed to by the node header
 650 */
 651static fs64 *
 652befs_bt_valarray(struct befs_btree_node *node)
 653{
 654        void *keylen_index_start = (void *) befs_bt_keylen_index(node);
 655        size_t keylen_index_size = node->head.all_key_count * sizeof (fs16);
 656
 657        return (fs64 *) (keylen_index_start + keylen_index_size);
 658}
 659
 660/**
 661 * befs_bt_keydata - Finds start of keydata array in a node
 662 * @node: Pointer to the node structure to find the keydata array within
 663 *
 664 * Returns a pointer to the start of the keydata array
 665 * of the node pointed to by the node header 
 666 */
 667static char *
 668befs_bt_keydata(struct befs_btree_node *node)
 669{
 670        return (char *) ((void *) node->od_node + sizeof (befs_btree_nodehead));
 671}
 672
 673/**
 674 * befs_bt_get_key - returns a pointer to the start of a key
 675 * @sb: filesystem superblock
 676 * @node: node in which to look for the key
 677 * @index: the index of the key to get
 678 * @keylen: modified to be the length of the key at @index
 679 *
 680 * Returns a valid pointer into @node on success.
 681 * Returns NULL on failure (bad input) and sets *@keylen = 0
 682 */
 683static char *
 684befs_bt_get_key(struct super_block *sb, struct befs_btree_node *node,
 685                int index, u16 * keylen)
 686{
 687        int prev_key_end;
 688        char *keystart;
 689        fs16 *keylen_index;
 690
 691        if (index < 0 || index > node->head.all_key_count) {
 692                *keylen = 0;
 693                return NULL;
 694        }
 695
 696        keystart = befs_bt_keydata(node);
 697        keylen_index = befs_bt_keylen_index(node);
 698
 699        if (index == 0)
 700                prev_key_end = 0;
 701        else
 702                prev_key_end = fs16_to_cpu(sb, keylen_index[index - 1]);
 703
 704        *keylen = fs16_to_cpu(sb, keylen_index[index]) - prev_key_end;
 705
 706        return keystart + prev_key_end;
 707}
 708
 709/**
 710 * befs_compare_strings - compare two strings
 711 * @key1: pointer to the first key to be compared 
 712 * @keylen1: length in bytes of key1
 713 * @key2: pointer to the second key to be compared
 714 * @keylen2: length in bytes of key2
 715 *
 716 * Returns 0 if @key1 and @key2 are equal.
 717 * Returns >0 if @key1 is greater.
 718 * Returns <0 if @key2 is greater..
 719 */
 720static int
 721befs_compare_strings(const void *key1, int keylen1,
 722                     const void *key2, int keylen2)
 723{
 724        int len = min_t(int, keylen1, keylen2);
 725        int result = strncmp(key1, key2, len);
 726        if (result == 0)
 727                result = keylen1 - keylen2;
 728        return result;
 729}
 730
 731/* These will be used for non-string keyed btrees */
 732#if 0
 733static int
 734btree_compare_int32(cont void *key1, int keylen1, const void *key2, int keylen2)
 735{
 736        return *(int32_t *) key1 - *(int32_t *) key2;
 737}
 738
 739static int
 740btree_compare_uint32(cont void *key1, int keylen1,
 741                     const void *key2, int keylen2)
 742{
 743        if (*(u_int32_t *) key1 == *(u_int32_t *) key2)
 744                return 0;
 745        else if (*(u_int32_t *) key1 > *(u_int32_t *) key2)
 746                return 1;
 747
 748        return -1;
 749}
 750static int
 751btree_compare_int64(cont void *key1, int keylen1, const void *key2, int keylen2)
 752{
 753        if (*(int64_t *) key1 == *(int64_t *) key2)
 754                return 0;
 755        else if (*(int64_t *) key1 > *(int64_t *) key2)
 756                return 1;
 757
 758        return -1;
 759}
 760
 761static int
 762btree_compare_uint64(cont void *key1, int keylen1,
 763                     const void *key2, int keylen2)
 764{
 765        if (*(u_int64_t *) key1 == *(u_int64_t *) key2)
 766                return 0;
 767        else if (*(u_int64_t *) key1 > *(u_int64_t *) key2)
 768                return 1;
 769
 770        return -1;
 771}
 772
 773static int
 774btree_compare_float(cont void *key1, int keylen1, const void *key2, int keylen2)
 775{
 776        float result = *(float *) key1 - *(float *) key2;
 777        if (result == 0.0f)
 778                return 0;
 779
 780        return (result < 0.0f) ? -1 : 1;
 781}
 782
 783static int
 784btree_compare_double(cont void *key1, int keylen1,
 785                     const void *key2, int keylen2)
 786{
 787        double result = *(double *) key1 - *(double *) key2;
 788        if (result == 0.0)
 789                return 0;
 790
 791        return (result < 0.0) ? -1 : 1;
 792}
 793#endif                          //0
 794