linux/fs/binfmt_elf.c
<<
>>
Prefs
   1/*
   2 * linux/fs/binfmt_elf.c
   3 *
   4 * These are the functions used to load ELF format executables as used
   5 * on SVr4 machines.  Information on the format may be found in the book
   6 * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support
   7 * Tools".
   8 *
   9 * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com).
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/fs.h>
  15#include <linux/mm.h>
  16#include <linux/mman.h>
  17#include <linux/errno.h>
  18#include <linux/signal.h>
  19#include <linux/binfmts.h>
  20#include <linux/string.h>
  21#include <linux/file.h>
  22#include <linux/slab.h>
  23#include <linux/personality.h>
  24#include <linux/elfcore.h>
  25#include <linux/init.h>
  26#include <linux/highuid.h>
  27#include <linux/compiler.h>
  28#include <linux/highmem.h>
  29#include <linux/pagemap.h>
  30#include <linux/vmalloc.h>
  31#include <linux/security.h>
  32#include <linux/random.h>
  33#include <linux/elf.h>
  34#include <linux/elf-randomize.h>
  35#include <linux/utsname.h>
  36#include <linux/coredump.h>
  37#include <linux/sched.h>
  38#include <linux/dax.h>
  39#include <asm/uaccess.h>
  40#include <asm/param.h>
  41#include <asm/page.h>
  42
  43#ifndef user_long_t
  44#define user_long_t long
  45#endif
  46#ifndef user_siginfo_t
  47#define user_siginfo_t siginfo_t
  48#endif
  49
  50static int load_elf_binary(struct linux_binprm *bprm);
  51static unsigned long elf_map(struct file *, unsigned long, struct elf_phdr *,
  52                                int, int, unsigned long);
  53
  54#ifdef CONFIG_USELIB
  55static int load_elf_library(struct file *);
  56#else
  57#define load_elf_library NULL
  58#endif
  59
  60/*
  61 * If we don't support core dumping, then supply a NULL so we
  62 * don't even try.
  63 */
  64#ifdef CONFIG_ELF_CORE
  65static int elf_core_dump(struct coredump_params *cprm);
  66#else
  67#define elf_core_dump   NULL
  68#endif
  69
  70#if ELF_EXEC_PAGESIZE > PAGE_SIZE
  71#define ELF_MIN_ALIGN   ELF_EXEC_PAGESIZE
  72#else
  73#define ELF_MIN_ALIGN   PAGE_SIZE
  74#endif
  75
  76#ifndef ELF_CORE_EFLAGS
  77#define ELF_CORE_EFLAGS 0
  78#endif
  79
  80#define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1))
  81#define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1))
  82#define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1))
  83
  84static struct linux_binfmt elf_format = {
  85        .module         = THIS_MODULE,
  86        .load_binary    = load_elf_binary,
  87        .load_shlib     = load_elf_library,
  88        .core_dump      = elf_core_dump,
  89        .min_coredump   = ELF_EXEC_PAGESIZE,
  90};
  91
  92#define BAD_ADDR(x) ((unsigned long)(x) >= TASK_SIZE)
  93
  94static int set_brk(unsigned long start, unsigned long end)
  95{
  96        start = ELF_PAGEALIGN(start);
  97        end = ELF_PAGEALIGN(end);
  98        if (end > start) {
  99                int error = vm_brk(start, end - start);
 100                if (error)
 101                        return error;
 102        }
 103        current->mm->start_brk = current->mm->brk = end;
 104        return 0;
 105}
 106
 107/* We need to explicitly zero any fractional pages
 108   after the data section (i.e. bss).  This would
 109   contain the junk from the file that should not
 110   be in memory
 111 */
 112static int padzero(unsigned long elf_bss)
 113{
 114        unsigned long nbyte;
 115
 116        nbyte = ELF_PAGEOFFSET(elf_bss);
 117        if (nbyte) {
 118                nbyte = ELF_MIN_ALIGN - nbyte;
 119                if (clear_user((void __user *) elf_bss, nbyte))
 120                        return -EFAULT;
 121        }
 122        return 0;
 123}
 124
 125/* Let's use some macros to make this stack manipulation a little clearer */
 126#ifdef CONFIG_STACK_GROWSUP
 127#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items))
 128#define STACK_ROUND(sp, items) \
 129        ((15 + (unsigned long) ((sp) + (items))) &~ 15UL)
 130#define STACK_ALLOC(sp, len) ({ \
 131        elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \
 132        old_sp; })
 133#else
 134#define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items))
 135#define STACK_ROUND(sp, items) \
 136        (((unsigned long) (sp - items)) &~ 15UL)
 137#define STACK_ALLOC(sp, len) ({ sp -= len ; sp; })
 138#endif
 139
 140#ifndef ELF_BASE_PLATFORM
 141/*
 142 * AT_BASE_PLATFORM indicates the "real" hardware/microarchitecture.
 143 * If the arch defines ELF_BASE_PLATFORM (in asm/elf.h), the value
 144 * will be copied to the user stack in the same manner as AT_PLATFORM.
 145 */
 146#define ELF_BASE_PLATFORM NULL
 147#endif
 148
 149static int
 150create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec,
 151                unsigned long load_addr, unsigned long interp_load_addr)
 152{
 153        unsigned long p = bprm->p;
 154        int argc = bprm->argc;
 155        int envc = bprm->envc;
 156        elf_addr_t __user *argv;
 157        elf_addr_t __user *envp;
 158        elf_addr_t __user *sp;
 159        elf_addr_t __user *u_platform;
 160        elf_addr_t __user *u_base_platform;
 161        elf_addr_t __user *u_rand_bytes;
 162        const char *k_platform = ELF_PLATFORM;
 163        const char *k_base_platform = ELF_BASE_PLATFORM;
 164        unsigned char k_rand_bytes[16];
 165        int items;
 166        elf_addr_t *elf_info;
 167        int ei_index = 0;
 168        const struct cred *cred = current_cred();
 169        struct vm_area_struct *vma;
 170
 171        /*
 172         * In some cases (e.g. Hyper-Threading), we want to avoid L1
 173         * evictions by the processes running on the same package. One
 174         * thing we can do is to shuffle the initial stack for them.
 175         */
 176
 177        p = arch_align_stack(p);
 178
 179        /*
 180         * If this architecture has a platform capability string, copy it
 181         * to userspace.  In some cases (Sparc), this info is impossible
 182         * for userspace to get any other way, in others (i386) it is
 183         * merely difficult.
 184         */
 185        u_platform = NULL;
 186        if (k_platform) {
 187                size_t len = strlen(k_platform) + 1;
 188
 189                u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 190                if (__copy_to_user(u_platform, k_platform, len))
 191                        return -EFAULT;
 192        }
 193
 194        /*
 195         * If this architecture has a "base" platform capability
 196         * string, copy it to userspace.
 197         */
 198        u_base_platform = NULL;
 199        if (k_base_platform) {
 200                size_t len = strlen(k_base_platform) + 1;
 201
 202                u_base_platform = (elf_addr_t __user *)STACK_ALLOC(p, len);
 203                if (__copy_to_user(u_base_platform, k_base_platform, len))
 204                        return -EFAULT;
 205        }
 206
 207        /*
 208         * Generate 16 random bytes for userspace PRNG seeding.
 209         */
 210        get_random_bytes(k_rand_bytes, sizeof(k_rand_bytes));
 211        u_rand_bytes = (elf_addr_t __user *)
 212                       STACK_ALLOC(p, sizeof(k_rand_bytes));
 213        if (__copy_to_user(u_rand_bytes, k_rand_bytes, sizeof(k_rand_bytes)))
 214                return -EFAULT;
 215
 216        /* Create the ELF interpreter info */
 217        elf_info = (elf_addr_t *)current->mm->saved_auxv;
 218        /* update AT_VECTOR_SIZE_BASE if the number of NEW_AUX_ENT() changes */
 219#define NEW_AUX_ENT(id, val) \
 220        do { \
 221                elf_info[ei_index++] = id; \
 222                elf_info[ei_index++] = val; \
 223        } while (0)
 224
 225#ifdef ARCH_DLINFO
 226        /* 
 227         * ARCH_DLINFO must come first so PPC can do its special alignment of
 228         * AUXV.
 229         * update AT_VECTOR_SIZE_ARCH if the number of NEW_AUX_ENT() in
 230         * ARCH_DLINFO changes
 231         */
 232        ARCH_DLINFO;
 233#endif
 234        NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP);
 235        NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE);
 236        NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC);
 237        NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff);
 238        NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr));
 239        NEW_AUX_ENT(AT_PHNUM, exec->e_phnum);
 240        NEW_AUX_ENT(AT_BASE, interp_load_addr);
 241        NEW_AUX_ENT(AT_FLAGS, 0);
 242        NEW_AUX_ENT(AT_ENTRY, exec->e_entry);
 243        NEW_AUX_ENT(AT_UID, from_kuid_munged(cred->user_ns, cred->uid));
 244        NEW_AUX_ENT(AT_EUID, from_kuid_munged(cred->user_ns, cred->euid));
 245        NEW_AUX_ENT(AT_GID, from_kgid_munged(cred->user_ns, cred->gid));
 246        NEW_AUX_ENT(AT_EGID, from_kgid_munged(cred->user_ns, cred->egid));
 247        NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm));
 248        NEW_AUX_ENT(AT_RANDOM, (elf_addr_t)(unsigned long)u_rand_bytes);
 249#ifdef ELF_HWCAP2
 250        NEW_AUX_ENT(AT_HWCAP2, ELF_HWCAP2);
 251#endif
 252        NEW_AUX_ENT(AT_EXECFN, bprm->exec);
 253        if (k_platform) {
 254                NEW_AUX_ENT(AT_PLATFORM,
 255                            (elf_addr_t)(unsigned long)u_platform);
 256        }
 257        if (k_base_platform) {
 258                NEW_AUX_ENT(AT_BASE_PLATFORM,
 259                            (elf_addr_t)(unsigned long)u_base_platform);
 260        }
 261        if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) {
 262                NEW_AUX_ENT(AT_EXECFD, bprm->interp_data);
 263        }
 264#undef NEW_AUX_ENT
 265        /* AT_NULL is zero; clear the rest too */
 266        memset(&elf_info[ei_index], 0,
 267               sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]);
 268
 269        /* And advance past the AT_NULL entry.  */
 270        ei_index += 2;
 271
 272        sp = STACK_ADD(p, ei_index);
 273
 274        items = (argc + 1) + (envc + 1) + 1;
 275        bprm->p = STACK_ROUND(sp, items);
 276
 277        /* Point sp at the lowest address on the stack */
 278#ifdef CONFIG_STACK_GROWSUP
 279        sp = (elf_addr_t __user *)bprm->p - items - ei_index;
 280        bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */
 281#else
 282        sp = (elf_addr_t __user *)bprm->p;
 283#endif
 284
 285
 286        /*
 287         * Grow the stack manually; some architectures have a limit on how
 288         * far ahead a user-space access may be in order to grow the stack.
 289         */
 290        vma = find_extend_vma(current->mm, bprm->p);
 291        if (!vma)
 292                return -EFAULT;
 293
 294        /* Now, let's put argc (and argv, envp if appropriate) on the stack */
 295        if (__put_user(argc, sp++))
 296                return -EFAULT;
 297        argv = sp;
 298        envp = argv + argc + 1;
 299
 300        /* Populate argv and envp */
 301        p = current->mm->arg_end = current->mm->arg_start;
 302        while (argc-- > 0) {
 303                size_t len;
 304                if (__put_user((elf_addr_t)p, argv++))
 305                        return -EFAULT;
 306                len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 307                if (!len || len > MAX_ARG_STRLEN)
 308                        return -EINVAL;
 309                p += len;
 310        }
 311        if (__put_user(0, argv))
 312                return -EFAULT;
 313        current->mm->arg_end = current->mm->env_start = p;
 314        while (envc-- > 0) {
 315                size_t len;
 316                if (__put_user((elf_addr_t)p, envp++))
 317                        return -EFAULT;
 318                len = strnlen_user((void __user *)p, MAX_ARG_STRLEN);
 319                if (!len || len > MAX_ARG_STRLEN)
 320                        return -EINVAL;
 321                p += len;
 322        }
 323        if (__put_user(0, envp))
 324                return -EFAULT;
 325        current->mm->env_end = p;
 326
 327        /* Put the elf_info on the stack in the right place.  */
 328        sp = (elf_addr_t __user *)envp + 1;
 329        if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t)))
 330                return -EFAULT;
 331        return 0;
 332}
 333
 334#ifndef elf_map
 335
 336static unsigned long elf_map(struct file *filep, unsigned long addr,
 337                struct elf_phdr *eppnt, int prot, int type,
 338                unsigned long total_size)
 339{
 340        unsigned long map_addr;
 341        unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr);
 342        unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr);
 343        addr = ELF_PAGESTART(addr);
 344        size = ELF_PAGEALIGN(size);
 345
 346        /* mmap() will return -EINVAL if given a zero size, but a
 347         * segment with zero filesize is perfectly valid */
 348        if (!size)
 349                return addr;
 350
 351        /*
 352        * total_size is the size of the ELF (interpreter) image.
 353        * The _first_ mmap needs to know the full size, otherwise
 354        * randomization might put this image into an overlapping
 355        * position with the ELF binary image. (since size < total_size)
 356        * So we first map the 'big' image - and unmap the remainder at
 357        * the end. (which unmap is needed for ELF images with holes.)
 358        */
 359        if (total_size) {
 360                total_size = ELF_PAGEALIGN(total_size);
 361                map_addr = vm_mmap(filep, addr, total_size, prot, type, off);
 362                if (!BAD_ADDR(map_addr))
 363                        vm_munmap(map_addr+size, total_size-size);
 364        } else
 365                map_addr = vm_mmap(filep, addr, size, prot, type, off);
 366
 367        return(map_addr);
 368}
 369
 370#endif /* !elf_map */
 371
 372static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr)
 373{
 374        int i, first_idx = -1, last_idx = -1;
 375
 376        for (i = 0; i < nr; i++) {
 377                if (cmds[i].p_type == PT_LOAD) {
 378                        last_idx = i;
 379                        if (first_idx == -1)
 380                                first_idx = i;
 381                }
 382        }
 383        if (first_idx == -1)
 384                return 0;
 385
 386        return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz -
 387                                ELF_PAGESTART(cmds[first_idx].p_vaddr);
 388}
 389
 390/**
 391 * load_elf_phdrs() - load ELF program headers
 392 * @elf_ex:   ELF header of the binary whose program headers should be loaded
 393 * @elf_file: the opened ELF binary file
 394 *
 395 * Loads ELF program headers from the binary file elf_file, which has the ELF
 396 * header pointed to by elf_ex, into a newly allocated array. The caller is
 397 * responsible for freeing the allocated data. Returns an ERR_PTR upon failure.
 398 */
 399static struct elf_phdr *load_elf_phdrs(struct elfhdr *elf_ex,
 400                                       struct file *elf_file)
 401{
 402        struct elf_phdr *elf_phdata = NULL;
 403        int retval, size, err = -1;
 404
 405        /*
 406         * If the size of this structure has changed, then punt, since
 407         * we will be doing the wrong thing.
 408         */
 409        if (elf_ex->e_phentsize != sizeof(struct elf_phdr))
 410                goto out;
 411
 412        /* Sanity check the number of program headers... */
 413        if (elf_ex->e_phnum < 1 ||
 414                elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr))
 415                goto out;
 416
 417        /* ...and their total size. */
 418        size = sizeof(struct elf_phdr) * elf_ex->e_phnum;
 419        if (size > ELF_MIN_ALIGN)
 420                goto out;
 421
 422        elf_phdata = kmalloc(size, GFP_KERNEL);
 423        if (!elf_phdata)
 424                goto out;
 425
 426        /* Read in the program headers */
 427        retval = kernel_read(elf_file, elf_ex->e_phoff,
 428                             (char *)elf_phdata, size);
 429        if (retval != size) {
 430                err = (retval < 0) ? retval : -EIO;
 431                goto out;
 432        }
 433
 434        /* Success! */
 435        err = 0;
 436out:
 437        if (err) {
 438                kfree(elf_phdata);
 439                elf_phdata = NULL;
 440        }
 441        return elf_phdata;
 442}
 443
 444#ifndef CONFIG_ARCH_BINFMT_ELF_STATE
 445
 446/**
 447 * struct arch_elf_state - arch-specific ELF loading state
 448 *
 449 * This structure is used to preserve architecture specific data during
 450 * the loading of an ELF file, throughout the checking of architecture
 451 * specific ELF headers & through to the point where the ELF load is
 452 * known to be proceeding (ie. SET_PERSONALITY).
 453 *
 454 * This implementation is a dummy for architectures which require no
 455 * specific state.
 456 */
 457struct arch_elf_state {
 458};
 459
 460#define INIT_ARCH_ELF_STATE {}
 461
 462/**
 463 * arch_elf_pt_proc() - check a PT_LOPROC..PT_HIPROC ELF program header
 464 * @ehdr:       The main ELF header
 465 * @phdr:       The program header to check
 466 * @elf:        The open ELF file
 467 * @is_interp:  True if the phdr is from the interpreter of the ELF being
 468 *              loaded, else false.
 469 * @state:      Architecture-specific state preserved throughout the process
 470 *              of loading the ELF.
 471 *
 472 * Inspects the program header phdr to validate its correctness and/or
 473 * suitability for the system. Called once per ELF program header in the
 474 * range PT_LOPROC to PT_HIPROC, for both the ELF being loaded and its
 475 * interpreter.
 476 *
 477 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 478 *         with that return code.
 479 */
 480static inline int arch_elf_pt_proc(struct elfhdr *ehdr,
 481                                   struct elf_phdr *phdr,
 482                                   struct file *elf, bool is_interp,
 483                                   struct arch_elf_state *state)
 484{
 485        /* Dummy implementation, always proceed */
 486        return 0;
 487}
 488
 489/**
 490 * arch_check_elf() - check an ELF executable
 491 * @ehdr:       The main ELF header
 492 * @has_interp: True if the ELF has an interpreter, else false.
 493 * @interp_ehdr: The interpreter's ELF header
 494 * @state:      Architecture-specific state preserved throughout the process
 495 *              of loading the ELF.
 496 *
 497 * Provides a final opportunity for architecture code to reject the loading
 498 * of the ELF & cause an exec syscall to return an error. This is called after
 499 * all program headers to be checked by arch_elf_pt_proc have been.
 500 *
 501 * Return: Zero to proceed with the ELF load, non-zero to fail the ELF load
 502 *         with that return code.
 503 */
 504static inline int arch_check_elf(struct elfhdr *ehdr, bool has_interp,
 505                                 struct elfhdr *interp_ehdr,
 506                                 struct arch_elf_state *state)
 507{
 508        /* Dummy implementation, always proceed */
 509        return 0;
 510}
 511
 512#endif /* !CONFIG_ARCH_BINFMT_ELF_STATE */
 513
 514/* This is much more generalized than the library routine read function,
 515   so we keep this separate.  Technically the library read function
 516   is only provided so that we can read a.out libraries that have
 517   an ELF header */
 518
 519static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex,
 520                struct file *interpreter, unsigned long *interp_map_addr,
 521                unsigned long no_base, struct elf_phdr *interp_elf_phdata)
 522{
 523        struct elf_phdr *eppnt;
 524        unsigned long load_addr = 0;
 525        int load_addr_set = 0;
 526        unsigned long last_bss = 0, elf_bss = 0;
 527        unsigned long error = ~0UL;
 528        unsigned long total_size;
 529        int i;
 530
 531        /* First of all, some simple consistency checks */
 532        if (interp_elf_ex->e_type != ET_EXEC &&
 533            interp_elf_ex->e_type != ET_DYN)
 534                goto out;
 535        if (!elf_check_arch(interp_elf_ex))
 536                goto out;
 537        if (!interpreter->f_op->mmap)
 538                goto out;
 539
 540        total_size = total_mapping_size(interp_elf_phdata,
 541                                        interp_elf_ex->e_phnum);
 542        if (!total_size) {
 543                error = -EINVAL;
 544                goto out;
 545        }
 546
 547        eppnt = interp_elf_phdata;
 548        for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) {
 549                if (eppnt->p_type == PT_LOAD) {
 550                        int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
 551                        int elf_prot = 0;
 552                        unsigned long vaddr = 0;
 553                        unsigned long k, map_addr;
 554
 555                        if (eppnt->p_flags & PF_R)
 556                                elf_prot = PROT_READ;
 557                        if (eppnt->p_flags & PF_W)
 558                                elf_prot |= PROT_WRITE;
 559                        if (eppnt->p_flags & PF_X)
 560                                elf_prot |= PROT_EXEC;
 561                        vaddr = eppnt->p_vaddr;
 562                        if (interp_elf_ex->e_type == ET_EXEC || load_addr_set)
 563                                elf_type |= MAP_FIXED;
 564                        else if (no_base && interp_elf_ex->e_type == ET_DYN)
 565                                load_addr = -vaddr;
 566
 567                        map_addr = elf_map(interpreter, load_addr + vaddr,
 568                                        eppnt, elf_prot, elf_type, total_size);
 569                        total_size = 0;
 570                        if (!*interp_map_addr)
 571                                *interp_map_addr = map_addr;
 572                        error = map_addr;
 573                        if (BAD_ADDR(map_addr))
 574                                goto out;
 575
 576                        if (!load_addr_set &&
 577                            interp_elf_ex->e_type == ET_DYN) {
 578                                load_addr = map_addr - ELF_PAGESTART(vaddr);
 579                                load_addr_set = 1;
 580                        }
 581
 582                        /*
 583                         * Check to see if the section's size will overflow the
 584                         * allowed task size. Note that p_filesz must always be
 585                         * <= p_memsize so it's only necessary to check p_memsz.
 586                         */
 587                        k = load_addr + eppnt->p_vaddr;
 588                        if (BAD_ADDR(k) ||
 589                            eppnt->p_filesz > eppnt->p_memsz ||
 590                            eppnt->p_memsz > TASK_SIZE ||
 591                            TASK_SIZE - eppnt->p_memsz < k) {
 592                                error = -ENOMEM;
 593                                goto out;
 594                        }
 595
 596                        /*
 597                         * Find the end of the file mapping for this phdr, and
 598                         * keep track of the largest address we see for this.
 599                         */
 600                        k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
 601                        if (k > elf_bss)
 602                                elf_bss = k;
 603
 604                        /*
 605                         * Do the same thing for the memory mapping - between
 606                         * elf_bss and last_bss is the bss section.
 607                         */
 608                        k = load_addr + eppnt->p_vaddr + eppnt->p_memsz;
 609                        if (k > last_bss)
 610                                last_bss = k;
 611                }
 612        }
 613
 614        /*
 615         * Now fill out the bss section: first pad the last page from
 616         * the file up to the page boundary, and zero it from elf_bss
 617         * up to the end of the page.
 618         */
 619        if (padzero(elf_bss)) {
 620                error = -EFAULT;
 621                goto out;
 622        }
 623        /*
 624         * Next, align both the file and mem bss up to the page size,
 625         * since this is where elf_bss was just zeroed up to, and where
 626         * last_bss will end after the vm_brk() below.
 627         */
 628        elf_bss = ELF_PAGEALIGN(elf_bss);
 629        last_bss = ELF_PAGEALIGN(last_bss);
 630        /* Finally, if there is still more bss to allocate, do it. */
 631        if (last_bss > elf_bss) {
 632                error = vm_brk(elf_bss, last_bss - elf_bss);
 633                if (error)
 634                        goto out;
 635        }
 636
 637        error = load_addr;
 638out:
 639        return error;
 640}
 641
 642/*
 643 * These are the functions used to load ELF style executables and shared
 644 * libraries.  There is no binary dependent code anywhere else.
 645 */
 646
 647#ifndef STACK_RND_MASK
 648#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))     /* 8MB of VA */
 649#endif
 650
 651static unsigned long randomize_stack_top(unsigned long stack_top)
 652{
 653        unsigned long random_variable = 0;
 654
 655        if ((current->flags & PF_RANDOMIZE) &&
 656                !(current->personality & ADDR_NO_RANDOMIZE)) {
 657                random_variable = get_random_long();
 658                random_variable &= STACK_RND_MASK;
 659                random_variable <<= PAGE_SHIFT;
 660        }
 661#ifdef CONFIG_STACK_GROWSUP
 662        return PAGE_ALIGN(stack_top) + random_variable;
 663#else
 664        return PAGE_ALIGN(stack_top) - random_variable;
 665#endif
 666}
 667
 668static int load_elf_binary(struct linux_binprm *bprm)
 669{
 670        struct file *interpreter = NULL; /* to shut gcc up */
 671        unsigned long load_addr = 0, load_bias = 0;
 672        int load_addr_set = 0;
 673        char * elf_interpreter = NULL;
 674        unsigned long error;
 675        struct elf_phdr *elf_ppnt, *elf_phdata, *interp_elf_phdata = NULL;
 676        unsigned long elf_bss, elf_brk;
 677        int retval, i;
 678        unsigned long elf_entry;
 679        unsigned long interp_load_addr = 0;
 680        unsigned long start_code, end_code, start_data, end_data;
 681        unsigned long reloc_func_desc __maybe_unused = 0;
 682        int executable_stack = EXSTACK_DEFAULT;
 683        struct pt_regs *regs = current_pt_regs();
 684        struct {
 685                struct elfhdr elf_ex;
 686                struct elfhdr interp_elf_ex;
 687        } *loc;
 688        struct arch_elf_state arch_state = INIT_ARCH_ELF_STATE;
 689
 690        loc = kmalloc(sizeof(*loc), GFP_KERNEL);
 691        if (!loc) {
 692                retval = -ENOMEM;
 693                goto out_ret;
 694        }
 695        
 696        /* Get the exec-header */
 697        loc->elf_ex = *((struct elfhdr *)bprm->buf);
 698
 699        retval = -ENOEXEC;
 700        /* First of all, some simple consistency checks */
 701        if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 702                goto out;
 703
 704        if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN)
 705                goto out;
 706        if (!elf_check_arch(&loc->elf_ex))
 707                goto out;
 708        if (!bprm->file->f_op->mmap)
 709                goto out;
 710
 711        elf_phdata = load_elf_phdrs(&loc->elf_ex, bprm->file);
 712        if (!elf_phdata)
 713                goto out;
 714
 715        elf_ppnt = elf_phdata;
 716        elf_bss = 0;
 717        elf_brk = 0;
 718
 719        start_code = ~0UL;
 720        end_code = 0;
 721        start_data = 0;
 722        end_data = 0;
 723
 724        for (i = 0; i < loc->elf_ex.e_phnum; i++) {
 725                if (elf_ppnt->p_type == PT_INTERP) {
 726                        /* This is the program interpreter used for
 727                         * shared libraries - for now assume that this
 728                         * is an a.out format binary
 729                         */
 730                        retval = -ENOEXEC;
 731                        if (elf_ppnt->p_filesz > PATH_MAX || 
 732                            elf_ppnt->p_filesz < 2)
 733                                goto out_free_ph;
 734
 735                        retval = -ENOMEM;
 736                        elf_interpreter = kmalloc(elf_ppnt->p_filesz,
 737                                                  GFP_KERNEL);
 738                        if (!elf_interpreter)
 739                                goto out_free_ph;
 740
 741                        retval = kernel_read(bprm->file, elf_ppnt->p_offset,
 742                                             elf_interpreter,
 743                                             elf_ppnt->p_filesz);
 744                        if (retval != elf_ppnt->p_filesz) {
 745                                if (retval >= 0)
 746                                        retval = -EIO;
 747                                goto out_free_interp;
 748                        }
 749                        /* make sure path is NULL terminated */
 750                        retval = -ENOEXEC;
 751                        if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0')
 752                                goto out_free_interp;
 753
 754                        interpreter = open_exec(elf_interpreter);
 755                        retval = PTR_ERR(interpreter);
 756                        if (IS_ERR(interpreter))
 757                                goto out_free_interp;
 758
 759                        /*
 760                         * If the binary is not readable then enforce
 761                         * mm->dumpable = 0 regardless of the interpreter's
 762                         * permissions.
 763                         */
 764                        would_dump(bprm, interpreter);
 765
 766                        /* Get the exec headers */
 767                        retval = kernel_read(interpreter, 0,
 768                                             (void *)&loc->interp_elf_ex,
 769                                             sizeof(loc->interp_elf_ex));
 770                        if (retval != sizeof(loc->interp_elf_ex)) {
 771                                if (retval >= 0)
 772                                        retval = -EIO;
 773                                goto out_free_dentry;
 774                        }
 775
 776                        break;
 777                }
 778                elf_ppnt++;
 779        }
 780
 781        elf_ppnt = elf_phdata;
 782        for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++)
 783                switch (elf_ppnt->p_type) {
 784                case PT_GNU_STACK:
 785                        if (elf_ppnt->p_flags & PF_X)
 786                                executable_stack = EXSTACK_ENABLE_X;
 787                        else
 788                                executable_stack = EXSTACK_DISABLE_X;
 789                        break;
 790
 791                case PT_LOPROC ... PT_HIPROC:
 792                        retval = arch_elf_pt_proc(&loc->elf_ex, elf_ppnt,
 793                                                  bprm->file, false,
 794                                                  &arch_state);
 795                        if (retval)
 796                                goto out_free_dentry;
 797                        break;
 798                }
 799
 800        /* Some simple consistency checks for the interpreter */
 801        if (elf_interpreter) {
 802                retval = -ELIBBAD;
 803                /* Not an ELF interpreter */
 804                if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
 805                        goto out_free_dentry;
 806                /* Verify the interpreter has a valid arch */
 807                if (!elf_check_arch(&loc->interp_elf_ex))
 808                        goto out_free_dentry;
 809
 810                /* Load the interpreter program headers */
 811                interp_elf_phdata = load_elf_phdrs(&loc->interp_elf_ex,
 812                                                   interpreter);
 813                if (!interp_elf_phdata)
 814                        goto out_free_dentry;
 815
 816                /* Pass PT_LOPROC..PT_HIPROC headers to arch code */
 817                elf_ppnt = interp_elf_phdata;
 818                for (i = 0; i < loc->interp_elf_ex.e_phnum; i++, elf_ppnt++)
 819                        switch (elf_ppnt->p_type) {
 820                        case PT_LOPROC ... PT_HIPROC:
 821                                retval = arch_elf_pt_proc(&loc->interp_elf_ex,
 822                                                          elf_ppnt, interpreter,
 823                                                          true, &arch_state);
 824                                if (retval)
 825                                        goto out_free_dentry;
 826                                break;
 827                        }
 828        }
 829
 830        /*
 831         * Allow arch code to reject the ELF at this point, whilst it's
 832         * still possible to return an error to the code that invoked
 833         * the exec syscall.
 834         */
 835        retval = arch_check_elf(&loc->elf_ex,
 836                                !!interpreter, &loc->interp_elf_ex,
 837                                &arch_state);
 838        if (retval)
 839                goto out_free_dentry;
 840
 841        /* Flush all traces of the currently running executable */
 842        retval = flush_old_exec(bprm);
 843        if (retval)
 844                goto out_free_dentry;
 845
 846        /* Do this immediately, since STACK_TOP as used in setup_arg_pages
 847           may depend on the personality.  */
 848        SET_PERSONALITY2(loc->elf_ex, &arch_state);
 849        if (elf_read_implies_exec(loc->elf_ex, executable_stack))
 850                current->personality |= READ_IMPLIES_EXEC;
 851
 852        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 853                current->flags |= PF_RANDOMIZE;
 854
 855        setup_new_exec(bprm);
 856        install_exec_creds(bprm);
 857
 858        /* Do this so that we can load the interpreter, if need be.  We will
 859           change some of these later */
 860        retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP),
 861                                 executable_stack);
 862        if (retval < 0)
 863                goto out_free_dentry;
 864        
 865        current->mm->start_stack = bprm->p;
 866
 867        /* Now we do a little grungy work by mmapping the ELF image into
 868           the correct location in memory. */
 869        for(i = 0, elf_ppnt = elf_phdata;
 870            i < loc->elf_ex.e_phnum; i++, elf_ppnt++) {
 871                int elf_prot = 0, elf_flags;
 872                unsigned long k, vaddr;
 873                unsigned long total_size = 0;
 874
 875                if (elf_ppnt->p_type != PT_LOAD)
 876                        continue;
 877
 878                if (unlikely (elf_brk > elf_bss)) {
 879                        unsigned long nbyte;
 880                    
 881                        /* There was a PT_LOAD segment with p_memsz > p_filesz
 882                           before this one. Map anonymous pages, if needed,
 883                           and clear the area.  */
 884                        retval = set_brk(elf_bss + load_bias,
 885                                         elf_brk + load_bias);
 886                        if (retval)
 887                                goto out_free_dentry;
 888                        nbyte = ELF_PAGEOFFSET(elf_bss);
 889                        if (nbyte) {
 890                                nbyte = ELF_MIN_ALIGN - nbyte;
 891                                if (nbyte > elf_brk - elf_bss)
 892                                        nbyte = elf_brk - elf_bss;
 893                                if (clear_user((void __user *)elf_bss +
 894                                                        load_bias, nbyte)) {
 895                                        /*
 896                                         * This bss-zeroing can fail if the ELF
 897                                         * file specifies odd protections. So
 898                                         * we don't check the return value
 899                                         */
 900                                }
 901                        }
 902                }
 903
 904                if (elf_ppnt->p_flags & PF_R)
 905                        elf_prot |= PROT_READ;
 906                if (elf_ppnt->p_flags & PF_W)
 907                        elf_prot |= PROT_WRITE;
 908                if (elf_ppnt->p_flags & PF_X)
 909                        elf_prot |= PROT_EXEC;
 910
 911                elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE;
 912
 913                vaddr = elf_ppnt->p_vaddr;
 914                if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) {
 915                        elf_flags |= MAP_FIXED;
 916                } else if (loc->elf_ex.e_type == ET_DYN) {
 917                        /* Try and get dynamic programs out of the way of the
 918                         * default mmap base, as well as whatever program they
 919                         * might try to exec.  This is because the brk will
 920                         * follow the loader, and is not movable.  */
 921                        load_bias = ELF_ET_DYN_BASE - vaddr;
 922                        if (current->flags & PF_RANDOMIZE)
 923                                load_bias += arch_mmap_rnd();
 924                        load_bias = ELF_PAGESTART(load_bias);
 925                        total_size = total_mapping_size(elf_phdata,
 926                                                        loc->elf_ex.e_phnum);
 927                        if (!total_size) {
 928                                retval = -EINVAL;
 929                                goto out_free_dentry;
 930                        }
 931                }
 932
 933                error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt,
 934                                elf_prot, elf_flags, total_size);
 935                if (BAD_ADDR(error)) {
 936                        retval = IS_ERR((void *)error) ?
 937                                PTR_ERR((void*)error) : -EINVAL;
 938                        goto out_free_dentry;
 939                }
 940
 941                if (!load_addr_set) {
 942                        load_addr_set = 1;
 943                        load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset);
 944                        if (loc->elf_ex.e_type == ET_DYN) {
 945                                load_bias += error -
 946                                             ELF_PAGESTART(load_bias + vaddr);
 947                                load_addr += load_bias;
 948                                reloc_func_desc = load_bias;
 949                        }
 950                }
 951                k = elf_ppnt->p_vaddr;
 952                if (k < start_code)
 953                        start_code = k;
 954                if (start_data < k)
 955                        start_data = k;
 956
 957                /*
 958                 * Check to see if the section's size will overflow the
 959                 * allowed task size. Note that p_filesz must always be
 960                 * <= p_memsz so it is only necessary to check p_memsz.
 961                 */
 962                if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz ||
 963                    elf_ppnt->p_memsz > TASK_SIZE ||
 964                    TASK_SIZE - elf_ppnt->p_memsz < k) {
 965                        /* set_brk can never work. Avoid overflows. */
 966                        retval = -EINVAL;
 967                        goto out_free_dentry;
 968                }
 969
 970                k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
 971
 972                if (k > elf_bss)
 973                        elf_bss = k;
 974                if ((elf_ppnt->p_flags & PF_X) && end_code < k)
 975                        end_code = k;
 976                if (end_data < k)
 977                        end_data = k;
 978                k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
 979                if (k > elf_brk)
 980                        elf_brk = k;
 981        }
 982
 983        loc->elf_ex.e_entry += load_bias;
 984        elf_bss += load_bias;
 985        elf_brk += load_bias;
 986        start_code += load_bias;
 987        end_code += load_bias;
 988        start_data += load_bias;
 989        end_data += load_bias;
 990
 991        /* Calling set_brk effectively mmaps the pages that we need
 992         * for the bss and break sections.  We must do this before
 993         * mapping in the interpreter, to make sure it doesn't wind
 994         * up getting placed where the bss needs to go.
 995         */
 996        retval = set_brk(elf_bss, elf_brk);
 997        if (retval)
 998                goto out_free_dentry;
 999        if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) {
1000                retval = -EFAULT; /* Nobody gets to see this, but.. */
1001                goto out_free_dentry;
1002        }
1003
1004        if (elf_interpreter) {
1005                unsigned long interp_map_addr = 0;
1006
1007                elf_entry = load_elf_interp(&loc->interp_elf_ex,
1008                                            interpreter,
1009                                            &interp_map_addr,
1010                                            load_bias, interp_elf_phdata);
1011                if (!IS_ERR((void *)elf_entry)) {
1012                        /*
1013                         * load_elf_interp() returns relocation
1014                         * adjustment
1015                         */
1016                        interp_load_addr = elf_entry;
1017                        elf_entry += loc->interp_elf_ex.e_entry;
1018                }
1019                if (BAD_ADDR(elf_entry)) {
1020                        retval = IS_ERR((void *)elf_entry) ?
1021                                        (int)elf_entry : -EINVAL;
1022                        goto out_free_dentry;
1023                }
1024                reloc_func_desc = interp_load_addr;
1025
1026                allow_write_access(interpreter);
1027                fput(interpreter);
1028                kfree(elf_interpreter);
1029        } else {
1030                elf_entry = loc->elf_ex.e_entry;
1031                if (BAD_ADDR(elf_entry)) {
1032                        retval = -EINVAL;
1033                        goto out_free_dentry;
1034                }
1035        }
1036
1037        kfree(interp_elf_phdata);
1038        kfree(elf_phdata);
1039
1040        set_binfmt(&elf_format);
1041
1042#ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES
1043        retval = arch_setup_additional_pages(bprm, !!elf_interpreter);
1044        if (retval < 0)
1045                goto out;
1046#endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */
1047
1048        retval = create_elf_tables(bprm, &loc->elf_ex,
1049                          load_addr, interp_load_addr);
1050        if (retval < 0)
1051                goto out;
1052        /* N.B. passed_fileno might not be initialized? */
1053        current->mm->end_code = end_code;
1054        current->mm->start_code = start_code;
1055        current->mm->start_data = start_data;
1056        current->mm->end_data = end_data;
1057        current->mm->start_stack = bprm->p;
1058
1059        if ((current->flags & PF_RANDOMIZE) && (randomize_va_space > 1)) {
1060                current->mm->brk = current->mm->start_brk =
1061                        arch_randomize_brk(current->mm);
1062#ifdef compat_brk_randomized
1063                current->brk_randomized = 1;
1064#endif
1065        }
1066
1067        if (current->personality & MMAP_PAGE_ZERO) {
1068                /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
1069                   and some applications "depend" upon this behavior.
1070                   Since we do not have the power to recompile these, we
1071                   emulate the SVr4 behavior. Sigh. */
1072                error = vm_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC,
1073                                MAP_FIXED | MAP_PRIVATE, 0);
1074        }
1075
1076#ifdef ELF_PLAT_INIT
1077        /*
1078         * The ABI may specify that certain registers be set up in special
1079         * ways (on i386 %edx is the address of a DT_FINI function, for
1080         * example.  In addition, it may also specify (eg, PowerPC64 ELF)
1081         * that the e_entry field is the address of the function descriptor
1082         * for the startup routine, rather than the address of the startup
1083         * routine itself.  This macro performs whatever initialization to
1084         * the regs structure is required as well as any relocations to the
1085         * function descriptor entries when executing dynamically links apps.
1086         */
1087        ELF_PLAT_INIT(regs, reloc_func_desc);
1088#endif
1089
1090        start_thread(regs, elf_entry, bprm->p);
1091        retval = 0;
1092out:
1093        kfree(loc);
1094out_ret:
1095        return retval;
1096
1097        /* error cleanup */
1098out_free_dentry:
1099        kfree(interp_elf_phdata);
1100        allow_write_access(interpreter);
1101        if (interpreter)
1102                fput(interpreter);
1103out_free_interp:
1104        kfree(elf_interpreter);
1105out_free_ph:
1106        kfree(elf_phdata);
1107        goto out;
1108}
1109
1110#ifdef CONFIG_USELIB
1111/* This is really simpleminded and specialized - we are loading an
1112   a.out library that is given an ELF header. */
1113static int load_elf_library(struct file *file)
1114{
1115        struct elf_phdr *elf_phdata;
1116        struct elf_phdr *eppnt;
1117        unsigned long elf_bss, bss, len;
1118        int retval, error, i, j;
1119        struct elfhdr elf_ex;
1120
1121        error = -ENOEXEC;
1122        retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex));
1123        if (retval != sizeof(elf_ex))
1124                goto out;
1125
1126        if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0)
1127                goto out;
1128
1129        /* First of all, some simple consistency checks */
1130        if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 ||
1131            !elf_check_arch(&elf_ex) || !file->f_op->mmap)
1132                goto out;
1133
1134        /* Now read in all of the header information */
1135
1136        j = sizeof(struct elf_phdr) * elf_ex.e_phnum;
1137        /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */
1138
1139        error = -ENOMEM;
1140        elf_phdata = kmalloc(j, GFP_KERNEL);
1141        if (!elf_phdata)
1142                goto out;
1143
1144        eppnt = elf_phdata;
1145        error = -ENOEXEC;
1146        retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j);
1147        if (retval != j)
1148                goto out_free_ph;
1149
1150        for (j = 0, i = 0; i<elf_ex.e_phnum; i++)
1151                if ((eppnt + i)->p_type == PT_LOAD)
1152                        j++;
1153        if (j != 1)
1154                goto out_free_ph;
1155
1156        while (eppnt->p_type != PT_LOAD)
1157                eppnt++;
1158
1159        /* Now use mmap to map the library into memory. */
1160        error = vm_mmap(file,
1161                        ELF_PAGESTART(eppnt->p_vaddr),
1162                        (eppnt->p_filesz +
1163                         ELF_PAGEOFFSET(eppnt->p_vaddr)),
1164                        PROT_READ | PROT_WRITE | PROT_EXEC,
1165                        MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE,
1166                        (eppnt->p_offset -
1167                         ELF_PAGEOFFSET(eppnt->p_vaddr)));
1168        if (error != ELF_PAGESTART(eppnt->p_vaddr))
1169                goto out_free_ph;
1170
1171        elf_bss = eppnt->p_vaddr + eppnt->p_filesz;
1172        if (padzero(elf_bss)) {
1173                error = -EFAULT;
1174                goto out_free_ph;
1175        }
1176
1177        len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr +
1178                            ELF_MIN_ALIGN - 1);
1179        bss = eppnt->p_memsz + eppnt->p_vaddr;
1180        if (bss > len) {
1181                error = vm_brk(len, bss - len);
1182                if (error)
1183                        goto out_free_ph;
1184        }
1185        error = 0;
1186
1187out_free_ph:
1188        kfree(elf_phdata);
1189out:
1190        return error;
1191}
1192#endif /* #ifdef CONFIG_USELIB */
1193
1194#ifdef CONFIG_ELF_CORE
1195/*
1196 * ELF core dumper
1197 *
1198 * Modelled on fs/exec.c:aout_core_dump()
1199 * Jeremy Fitzhardinge <jeremy@sw.oz.au>
1200 */
1201
1202/*
1203 * The purpose of always_dump_vma() is to make sure that special kernel mappings
1204 * that are useful for post-mortem analysis are included in every core dump.
1205 * In that way we ensure that the core dump is fully interpretable later
1206 * without matching up the same kernel and hardware config to see what PC values
1207 * meant. These special mappings include - vDSO, vsyscall, and other
1208 * architecture specific mappings
1209 */
1210static bool always_dump_vma(struct vm_area_struct *vma)
1211{
1212        /* Any vsyscall mappings? */
1213        if (vma == get_gate_vma(vma->vm_mm))
1214                return true;
1215
1216        /*
1217         * Assume that all vmas with a .name op should always be dumped.
1218         * If this changes, a new vm_ops field can easily be added.
1219         */
1220        if (vma->vm_ops && vma->vm_ops->name && vma->vm_ops->name(vma))
1221                return true;
1222
1223        /*
1224         * arch_vma_name() returns non-NULL for special architecture mappings,
1225         * such as vDSO sections.
1226         */
1227        if (arch_vma_name(vma))
1228                return true;
1229
1230        return false;
1231}
1232
1233/*
1234 * Decide what to dump of a segment, part, all or none.
1235 */
1236static unsigned long vma_dump_size(struct vm_area_struct *vma,
1237                                   unsigned long mm_flags)
1238{
1239#define FILTER(type)    (mm_flags & (1UL << MMF_DUMP_##type))
1240
1241        /* always dump the vdso and vsyscall sections */
1242        if (always_dump_vma(vma))
1243                goto whole;
1244
1245        if (vma->vm_flags & VM_DONTDUMP)
1246                return 0;
1247
1248        /* support for DAX */
1249        if (vma_is_dax(vma)) {
1250                if ((vma->vm_flags & VM_SHARED) && FILTER(DAX_SHARED))
1251                        goto whole;
1252                if (!(vma->vm_flags & VM_SHARED) && FILTER(DAX_PRIVATE))
1253                        goto whole;
1254                return 0;
1255        }
1256
1257        /* Hugetlb memory check */
1258        if (vma->vm_flags & VM_HUGETLB) {
1259                if ((vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_SHARED))
1260                        goto whole;
1261                if (!(vma->vm_flags & VM_SHARED) && FILTER(HUGETLB_PRIVATE))
1262                        goto whole;
1263                return 0;
1264        }
1265
1266        /* Do not dump I/O mapped devices or special mappings */
1267        if (vma->vm_flags & VM_IO)
1268                return 0;
1269
1270        /* By default, dump shared memory if mapped from an anonymous file. */
1271        if (vma->vm_flags & VM_SHARED) {
1272                if (file_inode(vma->vm_file)->i_nlink == 0 ?
1273                    FILTER(ANON_SHARED) : FILTER(MAPPED_SHARED))
1274                        goto whole;
1275                return 0;
1276        }
1277
1278        /* Dump segments that have been written to.  */
1279        if (vma->anon_vma && FILTER(ANON_PRIVATE))
1280                goto whole;
1281        if (vma->vm_file == NULL)
1282                return 0;
1283
1284        if (FILTER(MAPPED_PRIVATE))
1285                goto whole;
1286
1287        /*
1288         * If this looks like the beginning of a DSO or executable mapping,
1289         * check for an ELF header.  If we find one, dump the first page to
1290         * aid in determining what was mapped here.
1291         */
1292        if (FILTER(ELF_HEADERS) &&
1293            vma->vm_pgoff == 0 && (vma->vm_flags & VM_READ)) {
1294                u32 __user *header = (u32 __user *) vma->vm_start;
1295                u32 word;
1296                mm_segment_t fs = get_fs();
1297                /*
1298                 * Doing it this way gets the constant folded by GCC.
1299                 */
1300                union {
1301                        u32 cmp;
1302                        char elfmag[SELFMAG];
1303                } magic;
1304                BUILD_BUG_ON(SELFMAG != sizeof word);
1305                magic.elfmag[EI_MAG0] = ELFMAG0;
1306                magic.elfmag[EI_MAG1] = ELFMAG1;
1307                magic.elfmag[EI_MAG2] = ELFMAG2;
1308                magic.elfmag[EI_MAG3] = ELFMAG3;
1309                /*
1310                 * Switch to the user "segment" for get_user(),
1311                 * then put back what elf_core_dump() had in place.
1312                 */
1313                set_fs(USER_DS);
1314                if (unlikely(get_user(word, header)))
1315                        word = 0;
1316                set_fs(fs);
1317                if (word == magic.cmp)
1318                        return PAGE_SIZE;
1319        }
1320
1321#undef  FILTER
1322
1323        return 0;
1324
1325whole:
1326        return vma->vm_end - vma->vm_start;
1327}
1328
1329/* An ELF note in memory */
1330struct memelfnote
1331{
1332        const char *name;
1333        int type;
1334        unsigned int datasz;
1335        void *data;
1336};
1337
1338static int notesize(struct memelfnote *en)
1339{
1340        int sz;
1341
1342        sz = sizeof(struct elf_note);
1343        sz += roundup(strlen(en->name) + 1, 4);
1344        sz += roundup(en->datasz, 4);
1345
1346        return sz;
1347}
1348
1349static int writenote(struct memelfnote *men, struct coredump_params *cprm)
1350{
1351        struct elf_note en;
1352        en.n_namesz = strlen(men->name) + 1;
1353        en.n_descsz = men->datasz;
1354        en.n_type = men->type;
1355
1356        return dump_emit(cprm, &en, sizeof(en)) &&
1357            dump_emit(cprm, men->name, en.n_namesz) && dump_align(cprm, 4) &&
1358            dump_emit(cprm, men->data, men->datasz) && dump_align(cprm, 4);
1359}
1360
1361static void fill_elf_header(struct elfhdr *elf, int segs,
1362                            u16 machine, u32 flags)
1363{
1364        memset(elf, 0, sizeof(*elf));
1365
1366        memcpy(elf->e_ident, ELFMAG, SELFMAG);
1367        elf->e_ident[EI_CLASS] = ELF_CLASS;
1368        elf->e_ident[EI_DATA] = ELF_DATA;
1369        elf->e_ident[EI_VERSION] = EV_CURRENT;
1370        elf->e_ident[EI_OSABI] = ELF_OSABI;
1371
1372        elf->e_type = ET_CORE;
1373        elf->e_machine = machine;
1374        elf->e_version = EV_CURRENT;
1375        elf->e_phoff = sizeof(struct elfhdr);
1376        elf->e_flags = flags;
1377        elf->e_ehsize = sizeof(struct elfhdr);
1378        elf->e_phentsize = sizeof(struct elf_phdr);
1379        elf->e_phnum = segs;
1380
1381        return;
1382}
1383
1384static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset)
1385{
1386        phdr->p_type = PT_NOTE;
1387        phdr->p_offset = offset;
1388        phdr->p_vaddr = 0;
1389        phdr->p_paddr = 0;
1390        phdr->p_filesz = sz;
1391        phdr->p_memsz = 0;
1392        phdr->p_flags = 0;
1393        phdr->p_align = 0;
1394        return;
1395}
1396
1397static void fill_note(struct memelfnote *note, const char *name, int type, 
1398                unsigned int sz, void *data)
1399{
1400        note->name = name;
1401        note->type = type;
1402        note->datasz = sz;
1403        note->data = data;
1404        return;
1405}
1406
1407/*
1408 * fill up all the fields in prstatus from the given task struct, except
1409 * registers which need to be filled up separately.
1410 */
1411static void fill_prstatus(struct elf_prstatus *prstatus,
1412                struct task_struct *p, long signr)
1413{
1414        prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
1415        prstatus->pr_sigpend = p->pending.signal.sig[0];
1416        prstatus->pr_sighold = p->blocked.sig[0];
1417        rcu_read_lock();
1418        prstatus->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1419        rcu_read_unlock();
1420        prstatus->pr_pid = task_pid_vnr(p);
1421        prstatus->pr_pgrp = task_pgrp_vnr(p);
1422        prstatus->pr_sid = task_session_vnr(p);
1423        if (thread_group_leader(p)) {
1424                struct task_cputime cputime;
1425
1426                /*
1427                 * This is the record for the group leader.  It shows the
1428                 * group-wide total, not its individual thread total.
1429                 */
1430                thread_group_cputime(p, &cputime);
1431                cputime_to_timeval(cputime.utime, &prstatus->pr_utime);
1432                cputime_to_timeval(cputime.stime, &prstatus->pr_stime);
1433        } else {
1434                cputime_t utime, stime;
1435
1436                task_cputime(p, &utime, &stime);
1437                cputime_to_timeval(utime, &prstatus->pr_utime);
1438                cputime_to_timeval(stime, &prstatus->pr_stime);
1439        }
1440        cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime);
1441        cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime);
1442}
1443
1444static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p,
1445                       struct mm_struct *mm)
1446{
1447        const struct cred *cred;
1448        unsigned int i, len;
1449        
1450        /* first copy the parameters from user space */
1451        memset(psinfo, 0, sizeof(struct elf_prpsinfo));
1452
1453        len = mm->arg_end - mm->arg_start;
1454        if (len >= ELF_PRARGSZ)
1455                len = ELF_PRARGSZ-1;
1456        if (copy_from_user(&psinfo->pr_psargs,
1457                           (const char __user *)mm->arg_start, len))
1458                return -EFAULT;
1459        for(i = 0; i < len; i++)
1460                if (psinfo->pr_psargs[i] == 0)
1461                        psinfo->pr_psargs[i] = ' ';
1462        psinfo->pr_psargs[len] = 0;
1463
1464        rcu_read_lock();
1465        psinfo->pr_ppid = task_pid_vnr(rcu_dereference(p->real_parent));
1466        rcu_read_unlock();
1467        psinfo->pr_pid = task_pid_vnr(p);
1468        psinfo->pr_pgrp = task_pgrp_vnr(p);
1469        psinfo->pr_sid = task_session_vnr(p);
1470
1471        i = p->state ? ffz(~p->state) + 1 : 0;
1472        psinfo->pr_state = i;
1473        psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i];
1474        psinfo->pr_zomb = psinfo->pr_sname == 'Z';
1475        psinfo->pr_nice = task_nice(p);
1476        psinfo->pr_flag = p->flags;
1477        rcu_read_lock();
1478        cred = __task_cred(p);
1479        SET_UID(psinfo->pr_uid, from_kuid_munged(cred->user_ns, cred->uid));
1480        SET_GID(psinfo->pr_gid, from_kgid_munged(cred->user_ns, cred->gid));
1481        rcu_read_unlock();
1482        strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname));
1483        
1484        return 0;
1485}
1486
1487static void fill_auxv_note(struct memelfnote *note, struct mm_struct *mm)
1488{
1489        elf_addr_t *auxv = (elf_addr_t *) mm->saved_auxv;
1490        int i = 0;
1491        do
1492                i += 2;
1493        while (auxv[i - 2] != AT_NULL);
1494        fill_note(note, "CORE", NT_AUXV, i * sizeof(elf_addr_t), auxv);
1495}
1496
1497static void fill_siginfo_note(struct memelfnote *note, user_siginfo_t *csigdata,
1498                const siginfo_t *siginfo)
1499{
1500        mm_segment_t old_fs = get_fs();
1501        set_fs(KERNEL_DS);
1502        copy_siginfo_to_user((user_siginfo_t __user *) csigdata, siginfo);
1503        set_fs(old_fs);
1504        fill_note(note, "CORE", NT_SIGINFO, sizeof(*csigdata), csigdata);
1505}
1506
1507#define MAX_FILE_NOTE_SIZE (4*1024*1024)
1508/*
1509 * Format of NT_FILE note:
1510 *
1511 * long count     -- how many files are mapped
1512 * long page_size -- units for file_ofs
1513 * array of [COUNT] elements of
1514 *   long start
1515 *   long end
1516 *   long file_ofs
1517 * followed by COUNT filenames in ASCII: "FILE1" NUL "FILE2" NUL...
1518 */
1519static int fill_files_note(struct memelfnote *note)
1520{
1521        struct vm_area_struct *vma;
1522        unsigned count, size, names_ofs, remaining, n;
1523        user_long_t *data;
1524        user_long_t *start_end_ofs;
1525        char *name_base, *name_curpos;
1526
1527        /* *Estimated* file count and total data size needed */
1528        count = current->mm->map_count;
1529        size = count * 64;
1530
1531        names_ofs = (2 + 3 * count) * sizeof(data[0]);
1532 alloc:
1533        if (size >= MAX_FILE_NOTE_SIZE) /* paranoia check */
1534                return -EINVAL;
1535        size = round_up(size, PAGE_SIZE);
1536        data = vmalloc(size);
1537        if (!data)
1538                return -ENOMEM;
1539
1540        start_end_ofs = data + 2;
1541        name_base = name_curpos = ((char *)data) + names_ofs;
1542        remaining = size - names_ofs;
1543        count = 0;
1544        for (vma = current->mm->mmap; vma != NULL; vma = vma->vm_next) {
1545                struct file *file;
1546                const char *filename;
1547
1548                file = vma->vm_file;
1549                if (!file)
1550                        continue;
1551                filename = file_path(file, name_curpos, remaining);
1552                if (IS_ERR(filename)) {
1553                        if (PTR_ERR(filename) == -ENAMETOOLONG) {
1554                                vfree(data);
1555                                size = size * 5 / 4;
1556                                goto alloc;
1557                        }
1558                        continue;
1559                }
1560
1561                /* file_path() fills at the end, move name down */
1562                /* n = strlen(filename) + 1: */
1563                n = (name_curpos + remaining) - filename;
1564                remaining = filename - name_curpos;
1565                memmove(name_curpos, filename, n);
1566                name_curpos += n;
1567
1568                *start_end_ofs++ = vma->vm_start;
1569                *start_end_ofs++ = vma->vm_end;
1570                *start_end_ofs++ = vma->vm_pgoff;
1571                count++;
1572        }
1573
1574        /* Now we know exact count of files, can store it */
1575        data[0] = count;
1576        data[1] = PAGE_SIZE;
1577        /*
1578         * Count usually is less than current->mm->map_count,
1579         * we need to move filenames down.
1580         */
1581        n = current->mm->map_count - count;
1582        if (n != 0) {
1583                unsigned shift_bytes = n * 3 * sizeof(data[0]);
1584                memmove(name_base - shift_bytes, name_base,
1585                        name_curpos - name_base);
1586                name_curpos -= shift_bytes;
1587        }
1588
1589        size = name_curpos - (char *)data;
1590        fill_note(note, "CORE", NT_FILE, size, data);
1591        return 0;
1592}
1593
1594#ifdef CORE_DUMP_USE_REGSET
1595#include <linux/regset.h>
1596
1597struct elf_thread_core_info {
1598        struct elf_thread_core_info *next;
1599        struct task_struct *task;
1600        struct elf_prstatus prstatus;
1601        struct memelfnote notes[0];
1602};
1603
1604struct elf_note_info {
1605        struct elf_thread_core_info *thread;
1606        struct memelfnote psinfo;
1607        struct memelfnote signote;
1608        struct memelfnote auxv;
1609        struct memelfnote files;
1610        user_siginfo_t csigdata;
1611        size_t size;
1612        int thread_notes;
1613};
1614
1615/*
1616 * When a regset has a writeback hook, we call it on each thread before
1617 * dumping user memory.  On register window machines, this makes sure the
1618 * user memory backing the register data is up to date before we read it.
1619 */
1620static void do_thread_regset_writeback(struct task_struct *task,
1621                                       const struct user_regset *regset)
1622{
1623        if (regset->writeback)
1624                regset->writeback(task, regset, 1);
1625}
1626
1627#ifndef PR_REG_SIZE
1628#define PR_REG_SIZE(S) sizeof(S)
1629#endif
1630
1631#ifndef PRSTATUS_SIZE
1632#define PRSTATUS_SIZE(S) sizeof(S)
1633#endif
1634
1635#ifndef PR_REG_PTR
1636#define PR_REG_PTR(S) (&((S)->pr_reg))
1637#endif
1638
1639#ifndef SET_PR_FPVALID
1640#define SET_PR_FPVALID(S, V) ((S)->pr_fpvalid = (V))
1641#endif
1642
1643static int fill_thread_core_info(struct elf_thread_core_info *t,
1644                                 const struct user_regset_view *view,
1645                                 long signr, size_t *total)
1646{
1647        unsigned int i;
1648
1649        /*
1650         * NT_PRSTATUS is the one special case, because the regset data
1651         * goes into the pr_reg field inside the note contents, rather
1652         * than being the whole note contents.  We fill the reset in here.
1653         * We assume that regset 0 is NT_PRSTATUS.
1654         */
1655        fill_prstatus(&t->prstatus, t->task, signr);
1656        (void) view->regsets[0].get(t->task, &view->regsets[0],
1657                                    0, PR_REG_SIZE(t->prstatus.pr_reg),
1658                                    PR_REG_PTR(&t->prstatus), NULL);
1659
1660        fill_note(&t->notes[0], "CORE", NT_PRSTATUS,
1661                  PRSTATUS_SIZE(t->prstatus), &t->prstatus);
1662        *total += notesize(&t->notes[0]);
1663
1664        do_thread_regset_writeback(t->task, &view->regsets[0]);
1665
1666        /*
1667         * Each other regset might generate a note too.  For each regset
1668         * that has no core_note_type or is inactive, we leave t->notes[i]
1669         * all zero and we'll know to skip writing it later.
1670         */
1671        for (i = 1; i < view->n; ++i) {
1672                const struct user_regset *regset = &view->regsets[i];
1673                do_thread_regset_writeback(t->task, regset);
1674                if (regset->core_note_type && regset->get &&
1675                    (!regset->active || regset->active(t->task, regset))) {
1676                        int ret;
1677                        size_t size = regset->n * regset->size;
1678                        void *data = kmalloc(size, GFP_KERNEL);
1679                        if (unlikely(!data))
1680                                return 0;
1681                        ret = regset->get(t->task, regset,
1682                                          0, size, data, NULL);
1683                        if (unlikely(ret))
1684                                kfree(data);
1685                        else {
1686                                if (regset->core_note_type != NT_PRFPREG)
1687                                        fill_note(&t->notes[i], "LINUX",
1688                                                  regset->core_note_type,
1689                                                  size, data);
1690                                else {
1691                                        SET_PR_FPVALID(&t->prstatus, 1);
1692                                        fill_note(&t->notes[i], "CORE",
1693                                                  NT_PRFPREG, size, data);
1694                                }
1695                                *total += notesize(&t->notes[i]);
1696                        }
1697                }
1698        }
1699
1700        return 1;
1701}
1702
1703static int fill_note_info(struct elfhdr *elf, int phdrs,
1704                          struct elf_note_info *info,
1705                          const siginfo_t *siginfo, struct pt_regs *regs)
1706{
1707        struct task_struct *dump_task = current;
1708        const struct user_regset_view *view = task_user_regset_view(dump_task);
1709        struct elf_thread_core_info *t;
1710        struct elf_prpsinfo *psinfo;
1711        struct core_thread *ct;
1712        unsigned int i;
1713
1714        info->size = 0;
1715        info->thread = NULL;
1716
1717        psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL);
1718        if (psinfo == NULL) {
1719                info->psinfo.data = NULL; /* So we don't free this wrongly */
1720                return 0;
1721        }
1722
1723        fill_note(&info->psinfo, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo);
1724
1725        /*
1726         * Figure out how many notes we're going to need for each thread.
1727         */
1728        info->thread_notes = 0;
1729        for (i = 0; i < view->n; ++i)
1730                if (view->regsets[i].core_note_type != 0)
1731                        ++info->thread_notes;
1732
1733        /*
1734         * Sanity check.  We rely on regset 0 being in NT_PRSTATUS,
1735         * since it is our one special case.
1736         */
1737        if (unlikely(info->thread_notes == 0) ||
1738            unlikely(view->regsets[0].core_note_type != NT_PRSTATUS)) {
1739                WARN_ON(1);
1740                return 0;
1741        }
1742
1743        /*
1744         * Initialize the ELF file header.
1745         */
1746        fill_elf_header(elf, phdrs,
1747                        view->e_machine, view->e_flags);
1748
1749        /*
1750         * Allocate a structure for each thread.
1751         */
1752        for (ct = &dump_task->mm->core_state->dumper; ct; ct = ct->next) {
1753                t = kzalloc(offsetof(struct elf_thread_core_info,
1754                                     notes[info->thread_notes]),
1755                            GFP_KERNEL);
1756                if (unlikely(!t))
1757                        return 0;
1758
1759                t->task = ct->task;
1760                if (ct->task == dump_task || !info->thread) {
1761                        t->next = info->thread;
1762                        info->thread = t;
1763                } else {
1764                        /*
1765                         * Make sure to keep the original task at
1766                         * the head of the list.
1767                         */
1768                        t->next = info->thread->next;
1769                        info->thread->next = t;
1770                }
1771        }
1772
1773        /*
1774         * Now fill in each thread's information.
1775         */
1776        for (t = info->thread; t != NULL; t = t->next)
1777                if (!fill_thread_core_info(t, view, siginfo->si_signo, &info->size))
1778                        return 0;
1779
1780        /*
1781         * Fill in the two process-wide notes.
1782         */
1783        fill_psinfo(psinfo, dump_task->group_leader, dump_task->mm);
1784        info->size += notesize(&info->psinfo);
1785
1786        fill_siginfo_note(&info->signote, &info->csigdata, siginfo);
1787        info->size += notesize(&info->signote);
1788
1789        fill_auxv_note(&info->auxv, current->mm);
1790        info->size += notesize(&info->auxv);
1791
1792        if (fill_files_note(&info->files) == 0)
1793                info->size += notesize(&info->files);
1794
1795        return 1;
1796}
1797
1798static size_t get_note_info_size(struct elf_note_info *info)
1799{
1800        return info->size;
1801}
1802
1803/*
1804 * Write all the notes for each thread.  When writing the first thread, the
1805 * process-wide notes are interleaved after the first thread-specific note.
1806 */
1807static int write_note_info(struct elf_note_info *info,
1808                           struct coredump_params *cprm)
1809{
1810        bool first = true;
1811        struct elf_thread_core_info *t = info->thread;
1812
1813        do {
1814                int i;
1815
1816                if (!writenote(&t->notes[0], cprm))
1817                        return 0;
1818
1819                if (first && !writenote(&info->psinfo, cprm))
1820                        return 0;
1821                if (first && !writenote(&info->signote, cprm))
1822                        return 0;
1823                if (first && !writenote(&info->auxv, cprm))
1824                        return 0;
1825                if (first && info->files.data &&
1826                                !writenote(&info->files, cprm))
1827                        return 0;
1828
1829                for (i = 1; i < info->thread_notes; ++i)
1830                        if (t->notes[i].data &&
1831                            !writenote(&t->notes[i], cprm))
1832                                return 0;
1833
1834                first = false;
1835                t = t->next;
1836        } while (t);
1837
1838        return 1;
1839}
1840
1841static void free_note_info(struct elf_note_info *info)
1842{
1843        struct elf_thread_core_info *threads = info->thread;
1844        while (threads) {
1845                unsigned int i;
1846                struct elf_thread_core_info *t = threads;
1847                threads = t->next;
1848                WARN_ON(t->notes[0].data && t->notes[0].data != &t->prstatus);
1849                for (i = 1; i < info->thread_notes; ++i)
1850                        kfree(t->notes[i].data);
1851                kfree(t);
1852        }
1853        kfree(info->psinfo.data);
1854        vfree(info->files.data);
1855}
1856
1857#else
1858
1859/* Here is the structure in which status of each thread is captured. */
1860struct elf_thread_status
1861{
1862        struct list_head list;
1863        struct elf_prstatus prstatus;   /* NT_PRSTATUS */
1864        elf_fpregset_t fpu;             /* NT_PRFPREG */
1865        struct task_struct *thread;
1866#ifdef ELF_CORE_COPY_XFPREGS
1867        elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
1868#endif
1869        struct memelfnote notes[3];
1870        int num_notes;
1871};
1872
1873/*
1874 * In order to add the specific thread information for the elf file format,
1875 * we need to keep a linked list of every threads pr_status and then create
1876 * a single section for them in the final core file.
1877 */
1878static int elf_dump_thread_status(long signr, struct elf_thread_status *t)
1879{
1880        int sz = 0;
1881        struct task_struct *p = t->thread;
1882        t->num_notes = 0;
1883
1884        fill_prstatus(&t->prstatus, p, signr);
1885        elf_core_copy_task_regs(p, &t->prstatus.pr_reg);        
1886        
1887        fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus),
1888                  &(t->prstatus));
1889        t->num_notes++;
1890        sz += notesize(&t->notes[0]);
1891
1892        if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL,
1893                                                                &t->fpu))) {
1894                fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu),
1895                          &(t->fpu));
1896                t->num_notes++;
1897                sz += notesize(&t->notes[1]);
1898        }
1899
1900#ifdef ELF_CORE_COPY_XFPREGS
1901        if (elf_core_copy_task_xfpregs(p, &t->xfpu)) {
1902                fill_note(&t->notes[2], "LINUX", ELF_CORE_XFPREG_TYPE,
1903                          sizeof(t->xfpu), &t->xfpu);
1904                t->num_notes++;
1905                sz += notesize(&t->notes[2]);
1906        }
1907#endif  
1908        return sz;
1909}
1910
1911struct elf_note_info {
1912        struct memelfnote *notes;
1913        struct memelfnote *notes_files;
1914        struct elf_prstatus *prstatus;  /* NT_PRSTATUS */
1915        struct elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
1916        struct list_head thread_list;
1917        elf_fpregset_t *fpu;
1918#ifdef ELF_CORE_COPY_XFPREGS
1919        elf_fpxregset_t *xfpu;
1920#endif
1921        user_siginfo_t csigdata;
1922        int thread_status_size;
1923        int numnote;
1924};
1925
1926static int elf_note_info_init(struct elf_note_info *info)
1927{
1928        memset(info, 0, sizeof(*info));
1929        INIT_LIST_HEAD(&info->thread_list);
1930
1931        /* Allocate space for ELF notes */
1932        info->notes = kmalloc(8 * sizeof(struct memelfnote), GFP_KERNEL);
1933        if (!info->notes)
1934                return 0;
1935        info->psinfo = kmalloc(sizeof(*info->psinfo), GFP_KERNEL);
1936        if (!info->psinfo)
1937                return 0;
1938        info->prstatus = kmalloc(sizeof(*info->prstatus), GFP_KERNEL);
1939        if (!info->prstatus)
1940                return 0;
1941        info->fpu = kmalloc(sizeof(*info->fpu), GFP_KERNEL);
1942        if (!info->fpu)
1943                return 0;
1944#ifdef ELF_CORE_COPY_XFPREGS
1945        info->xfpu = kmalloc(sizeof(*info->xfpu), GFP_KERNEL);
1946        if (!info->xfpu)
1947                return 0;
1948#endif
1949        return 1;
1950}
1951
1952static int fill_note_info(struct elfhdr *elf, int phdrs,
1953                          struct elf_note_info *info,
1954                          const siginfo_t *siginfo, struct pt_regs *regs)
1955{
1956        struct list_head *t;
1957        struct core_thread *ct;
1958        struct elf_thread_status *ets;
1959
1960        if (!elf_note_info_init(info))
1961                return 0;
1962
1963        for (ct = current->mm->core_state->dumper.next;
1964                                        ct; ct = ct->next) {
1965                ets = kzalloc(sizeof(*ets), GFP_KERNEL);
1966                if (!ets)
1967                        return 0;
1968
1969                ets->thread = ct->task;
1970                list_add(&ets->list, &info->thread_list);
1971        }
1972
1973        list_for_each(t, &info->thread_list) {
1974                int sz;
1975
1976                ets = list_entry(t, struct elf_thread_status, list);
1977                sz = elf_dump_thread_status(siginfo->si_signo, ets);
1978                info->thread_status_size += sz;
1979        }
1980        /* now collect the dump for the current */
1981        memset(info->prstatus, 0, sizeof(*info->prstatus));
1982        fill_prstatus(info->prstatus, current, siginfo->si_signo);
1983        elf_core_copy_regs(&info->prstatus->pr_reg, regs);
1984
1985        /* Set up header */
1986        fill_elf_header(elf, phdrs, ELF_ARCH, ELF_CORE_EFLAGS);
1987
1988        /*
1989         * Set up the notes in similar form to SVR4 core dumps made
1990         * with info from their /proc.
1991         */
1992
1993        fill_note(info->notes + 0, "CORE", NT_PRSTATUS,
1994                  sizeof(*info->prstatus), info->prstatus);
1995        fill_psinfo(info->psinfo, current->group_leader, current->mm);
1996        fill_note(info->notes + 1, "CORE", NT_PRPSINFO,
1997                  sizeof(*info->psinfo), info->psinfo);
1998
1999        fill_siginfo_note(info->notes + 2, &info->csigdata, siginfo);
2000        fill_auxv_note(info->notes + 3, current->mm);
2001        info->numnote = 4;
2002
2003        if (fill_files_note(info->notes + info->numnote) == 0) {
2004                info->notes_files = info->notes + info->numnote;
2005                info->numnote++;
2006        }
2007
2008        /* Try to dump the FPU. */
2009        info->prstatus->pr_fpvalid = elf_core_copy_task_fpregs(current, regs,
2010                                                               info->fpu);
2011        if (info->prstatus->pr_fpvalid)
2012                fill_note(info->notes + info->numnote++,
2013                          "CORE", NT_PRFPREG, sizeof(*info->fpu), info->fpu);
2014#ifdef ELF_CORE_COPY_XFPREGS
2015        if (elf_core_copy_task_xfpregs(current, info->xfpu))
2016                fill_note(info->notes + info->numnote++,
2017                          "LINUX", ELF_CORE_XFPREG_TYPE,
2018                          sizeof(*info->xfpu), info->xfpu);
2019#endif
2020
2021        return 1;
2022}
2023
2024static size_t get_note_info_size(struct elf_note_info *info)
2025{
2026        int sz = 0;
2027        int i;
2028
2029        for (i = 0; i < info->numnote; i++)
2030                sz += notesize(info->notes + i);
2031
2032        sz += info->thread_status_size;
2033
2034        return sz;
2035}
2036
2037static int write_note_info(struct elf_note_info *info,
2038                           struct coredump_params *cprm)
2039{
2040        int i;
2041        struct list_head *t;
2042
2043        for (i = 0; i < info->numnote; i++)
2044                if (!writenote(info->notes + i, cprm))
2045                        return 0;
2046
2047        /* write out the thread status notes section */
2048        list_for_each(t, &info->thread_list) {
2049                struct elf_thread_status *tmp =
2050                                list_entry(t, struct elf_thread_status, list);
2051
2052                for (i = 0; i < tmp->num_notes; i++)
2053                        if (!writenote(&tmp->notes[i], cprm))
2054                                return 0;
2055        }
2056
2057        return 1;
2058}
2059
2060static void free_note_info(struct elf_note_info *info)
2061{
2062        while (!list_empty(&info->thread_list)) {
2063                struct list_head *tmp = info->thread_list.next;
2064                list_del(tmp);
2065                kfree(list_entry(tmp, struct elf_thread_status, list));
2066        }
2067
2068        /* Free data possibly allocated by fill_files_note(): */
2069        if (info->notes_files)
2070                vfree(info->notes_files->data);
2071
2072        kfree(info->prstatus);
2073        kfree(info->psinfo);
2074        kfree(info->notes);
2075        kfree(info->fpu);
2076#ifdef ELF_CORE_COPY_XFPREGS
2077        kfree(info->xfpu);
2078#endif
2079}
2080
2081#endif
2082
2083static struct vm_area_struct *first_vma(struct task_struct *tsk,
2084                                        struct vm_area_struct *gate_vma)
2085{
2086        struct vm_area_struct *ret = tsk->mm->mmap;
2087
2088        if (ret)
2089                return ret;
2090        return gate_vma;
2091}
2092/*
2093 * Helper function for iterating across a vma list.  It ensures that the caller
2094 * will visit `gate_vma' prior to terminating the search.
2095 */
2096static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma,
2097                                        struct vm_area_struct *gate_vma)
2098{
2099        struct vm_area_struct *ret;
2100
2101        ret = this_vma->vm_next;
2102        if (ret)
2103                return ret;
2104        if (this_vma == gate_vma)
2105                return NULL;
2106        return gate_vma;
2107}
2108
2109static void fill_extnum_info(struct elfhdr *elf, struct elf_shdr *shdr4extnum,
2110                             elf_addr_t e_shoff, int segs)
2111{
2112        elf->e_shoff = e_shoff;
2113        elf->e_shentsize = sizeof(*shdr4extnum);
2114        elf->e_shnum = 1;
2115        elf->e_shstrndx = SHN_UNDEF;
2116
2117        memset(shdr4extnum, 0, sizeof(*shdr4extnum));
2118
2119        shdr4extnum->sh_type = SHT_NULL;
2120        shdr4extnum->sh_size = elf->e_shnum;
2121        shdr4extnum->sh_link = elf->e_shstrndx;
2122        shdr4extnum->sh_info = segs;
2123}
2124
2125/*
2126 * Actual dumper
2127 *
2128 * This is a two-pass process; first we find the offsets of the bits,
2129 * and then they are actually written out.  If we run out of core limit
2130 * we just truncate.
2131 */
2132static int elf_core_dump(struct coredump_params *cprm)
2133{
2134        int has_dumped = 0;
2135        mm_segment_t fs;
2136        int segs, i;
2137        size_t vma_data_size = 0;
2138        struct vm_area_struct *vma, *gate_vma;
2139        struct elfhdr *elf = NULL;
2140        loff_t offset = 0, dataoff;
2141        struct elf_note_info info = { };
2142        struct elf_phdr *phdr4note = NULL;
2143        struct elf_shdr *shdr4extnum = NULL;
2144        Elf_Half e_phnum;
2145        elf_addr_t e_shoff;
2146        elf_addr_t *vma_filesz = NULL;
2147
2148        /*
2149         * We no longer stop all VM operations.
2150         * 
2151         * This is because those proceses that could possibly change map_count
2152         * or the mmap / vma pages are now blocked in do_exit on current
2153         * finishing this core dump.
2154         *
2155         * Only ptrace can touch these memory addresses, but it doesn't change
2156         * the map_count or the pages allocated. So no possibility of crashing
2157         * exists while dumping the mm->vm_next areas to the core file.
2158         */
2159  
2160        /* alloc memory for large data structures: too large to be on stack */
2161        elf = kmalloc(sizeof(*elf), GFP_KERNEL);
2162        if (!elf)
2163                goto out;
2164        /*
2165         * The number of segs are recored into ELF header as 16bit value.
2166         * Please check DEFAULT_MAX_MAP_COUNT definition when you modify here.
2167         */
2168        segs = current->mm->map_count;
2169        segs += elf_core_extra_phdrs();
2170
2171        gate_vma = get_gate_vma(current->mm);
2172        if (gate_vma != NULL)
2173                segs++;
2174
2175        /* for notes section */
2176        segs++;
2177
2178        /* If segs > PN_XNUM(0xffff), then e_phnum overflows. To avoid
2179         * this, kernel supports extended numbering. Have a look at
2180         * include/linux/elf.h for further information. */
2181        e_phnum = segs > PN_XNUM ? PN_XNUM : segs;
2182
2183        /*
2184         * Collect all the non-memory information about the process for the
2185         * notes.  This also sets up the file header.
2186         */
2187        if (!fill_note_info(elf, e_phnum, &info, cprm->siginfo, cprm->regs))
2188                goto cleanup;
2189
2190        has_dumped = 1;
2191
2192        fs = get_fs();
2193        set_fs(KERNEL_DS);
2194
2195        offset += sizeof(*elf);                         /* Elf header */
2196        offset += segs * sizeof(struct elf_phdr);       /* Program headers */
2197
2198        /* Write notes phdr entry */
2199        {
2200                size_t sz = get_note_info_size(&info);
2201
2202                sz += elf_coredump_extra_notes_size();
2203
2204                phdr4note = kmalloc(sizeof(*phdr4note), GFP_KERNEL);
2205                if (!phdr4note)
2206                        goto end_coredump;
2207
2208                fill_elf_note_phdr(phdr4note, sz, offset);
2209                offset += sz;
2210        }
2211
2212        dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2213
2214        vma_filesz = kmalloc_array(segs - 1, sizeof(*vma_filesz), GFP_KERNEL);
2215        if (!vma_filesz)
2216                goto end_coredump;
2217
2218        for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2219                        vma = next_vma(vma, gate_vma)) {
2220                unsigned long dump_size;
2221
2222                dump_size = vma_dump_size(vma, cprm->mm_flags);
2223                vma_filesz[i++] = dump_size;
2224                vma_data_size += dump_size;
2225        }
2226
2227        offset += vma_data_size;
2228        offset += elf_core_extra_data_size();
2229        e_shoff = offset;
2230
2231        if (e_phnum == PN_XNUM) {
2232                shdr4extnum = kmalloc(sizeof(*shdr4extnum), GFP_KERNEL);
2233                if (!shdr4extnum)
2234                        goto end_coredump;
2235                fill_extnum_info(elf, shdr4extnum, e_shoff, segs);
2236        }
2237
2238        offset = dataoff;
2239
2240        if (!dump_emit(cprm, elf, sizeof(*elf)))
2241                goto end_coredump;
2242
2243        if (!dump_emit(cprm, phdr4note, sizeof(*phdr4note)))
2244                goto end_coredump;
2245
2246        /* Write program headers for segments dump */
2247        for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2248                        vma = next_vma(vma, gate_vma)) {
2249                struct elf_phdr phdr;
2250
2251                phdr.p_type = PT_LOAD;
2252                phdr.p_offset = offset;
2253                phdr.p_vaddr = vma->vm_start;
2254                phdr.p_paddr = 0;
2255                phdr.p_filesz = vma_filesz[i++];
2256                phdr.p_memsz = vma->vm_end - vma->vm_start;
2257                offset += phdr.p_filesz;
2258                phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0;
2259                if (vma->vm_flags & VM_WRITE)
2260                        phdr.p_flags |= PF_W;
2261                if (vma->vm_flags & VM_EXEC)
2262                        phdr.p_flags |= PF_X;
2263                phdr.p_align = ELF_EXEC_PAGESIZE;
2264
2265                if (!dump_emit(cprm, &phdr, sizeof(phdr)))
2266                        goto end_coredump;
2267        }
2268
2269        if (!elf_core_write_extra_phdrs(cprm, offset))
2270                goto end_coredump;
2271
2272        /* write out the notes section */
2273        if (!write_note_info(&info, cprm))
2274                goto end_coredump;
2275
2276        if (elf_coredump_extra_notes_write(cprm))
2277                goto end_coredump;
2278
2279        /* Align to page */
2280        if (!dump_skip(cprm, dataoff - cprm->pos))
2281                goto end_coredump;
2282
2283        for (i = 0, vma = first_vma(current, gate_vma); vma != NULL;
2284                        vma = next_vma(vma, gate_vma)) {
2285                unsigned long addr;
2286                unsigned long end;
2287
2288                end = vma->vm_start + vma_filesz[i++];
2289
2290                for (addr = vma->vm_start; addr < end; addr += PAGE_SIZE) {
2291                        struct page *page;
2292                        int stop;
2293
2294                        page = get_dump_page(addr);
2295                        if (page) {
2296                                void *kaddr = kmap(page);
2297                                stop = !dump_emit(cprm, kaddr, PAGE_SIZE);
2298                                kunmap(page);
2299                                put_page(page);
2300                        } else
2301                                stop = !dump_skip(cprm, PAGE_SIZE);
2302                        if (stop)
2303                                goto end_coredump;
2304                }
2305        }
2306
2307        if (!elf_core_write_extra_data(cprm))
2308                goto end_coredump;
2309
2310        if (e_phnum == PN_XNUM) {
2311                if (!dump_emit(cprm, shdr4extnum, sizeof(*shdr4extnum)))
2312                        goto end_coredump;
2313        }
2314
2315end_coredump:
2316        set_fs(fs);
2317
2318cleanup:
2319        free_note_info(&info);
2320        kfree(shdr4extnum);
2321        kfree(vma_filesz);
2322        kfree(phdr4note);
2323        kfree(elf);
2324out:
2325        return has_dumped;
2326}
2327
2328#endif          /* CONFIG_ELF_CORE */
2329
2330static int __init init_elf_binfmt(void)
2331{
2332        register_binfmt(&elf_format);
2333        return 0;
2334}
2335
2336static void __exit exit_elf_binfmt(void)
2337{
2338        /* Remove the COFF and ELF loaders. */
2339        unregister_binfmt(&elf_format);
2340}
2341
2342core_initcall(init_elf_binfmt);
2343module_exit(exit_elf_binfmt);
2344MODULE_LICENSE("GPL");
2345