linux/fs/btrfs/ctree.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007,2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/sched.h>
  20#include <linux/slab.h>
  21#include <linux/rbtree.h>
  22#include <linux/vmalloc.h>
  23#include "ctree.h"
  24#include "disk-io.h"
  25#include "transaction.h"
  26#include "print-tree.h"
  27#include "locking.h"
  28
  29static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
  30                      *root, struct btrfs_path *path, int level);
  31static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
  32                      *root, struct btrfs_key *ins_key,
  33                      struct btrfs_path *path, int data_size, int extend);
  34static int push_node_left(struct btrfs_trans_handle *trans,
  35                          struct btrfs_root *root, struct extent_buffer *dst,
  36                          struct extent_buffer *src, int empty);
  37static int balance_node_right(struct btrfs_trans_handle *trans,
  38                              struct btrfs_root *root,
  39                              struct extent_buffer *dst_buf,
  40                              struct extent_buffer *src_buf);
  41static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
  42                    int level, int slot);
  43static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
  44                                 struct extent_buffer *eb);
  45
  46struct btrfs_path *btrfs_alloc_path(void)
  47{
  48        struct btrfs_path *path;
  49        path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
  50        return path;
  51}
  52
  53/*
  54 * set all locked nodes in the path to blocking locks.  This should
  55 * be done before scheduling
  56 */
  57noinline void btrfs_set_path_blocking(struct btrfs_path *p)
  58{
  59        int i;
  60        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
  61                if (!p->nodes[i] || !p->locks[i])
  62                        continue;
  63                btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
  64                if (p->locks[i] == BTRFS_READ_LOCK)
  65                        p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
  66                else if (p->locks[i] == BTRFS_WRITE_LOCK)
  67                        p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
  68        }
  69}
  70
  71/*
  72 * reset all the locked nodes in the patch to spinning locks.
  73 *
  74 * held is used to keep lockdep happy, when lockdep is enabled
  75 * we set held to a blocking lock before we go around and
  76 * retake all the spinlocks in the path.  You can safely use NULL
  77 * for held
  78 */
  79noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
  80                                        struct extent_buffer *held, int held_rw)
  81{
  82        int i;
  83
  84        if (held) {
  85                btrfs_set_lock_blocking_rw(held, held_rw);
  86                if (held_rw == BTRFS_WRITE_LOCK)
  87                        held_rw = BTRFS_WRITE_LOCK_BLOCKING;
  88                else if (held_rw == BTRFS_READ_LOCK)
  89                        held_rw = BTRFS_READ_LOCK_BLOCKING;
  90        }
  91        btrfs_set_path_blocking(p);
  92
  93        for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
  94                if (p->nodes[i] && p->locks[i]) {
  95                        btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
  96                        if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
  97                                p->locks[i] = BTRFS_WRITE_LOCK;
  98                        else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
  99                                p->locks[i] = BTRFS_READ_LOCK;
 100                }
 101        }
 102
 103        if (held)
 104                btrfs_clear_lock_blocking_rw(held, held_rw);
 105}
 106
 107/* this also releases the path */
 108void btrfs_free_path(struct btrfs_path *p)
 109{
 110        if (!p)
 111                return;
 112        btrfs_release_path(p);
 113        kmem_cache_free(btrfs_path_cachep, p);
 114}
 115
 116/*
 117 * path release drops references on the extent buffers in the path
 118 * and it drops any locks held by this path
 119 *
 120 * It is safe to call this on paths that no locks or extent buffers held.
 121 */
 122noinline void btrfs_release_path(struct btrfs_path *p)
 123{
 124        int i;
 125
 126        for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
 127                p->slots[i] = 0;
 128                if (!p->nodes[i])
 129                        continue;
 130                if (p->locks[i]) {
 131                        btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
 132                        p->locks[i] = 0;
 133                }
 134                free_extent_buffer(p->nodes[i]);
 135                p->nodes[i] = NULL;
 136        }
 137}
 138
 139/*
 140 * safely gets a reference on the root node of a tree.  A lock
 141 * is not taken, so a concurrent writer may put a different node
 142 * at the root of the tree.  See btrfs_lock_root_node for the
 143 * looping required.
 144 *
 145 * The extent buffer returned by this has a reference taken, so
 146 * it won't disappear.  It may stop being the root of the tree
 147 * at any time because there are no locks held.
 148 */
 149struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
 150{
 151        struct extent_buffer *eb;
 152
 153        while (1) {
 154                rcu_read_lock();
 155                eb = rcu_dereference(root->node);
 156
 157                /*
 158                 * RCU really hurts here, we could free up the root node because
 159                 * it was COWed but we may not get the new root node yet so do
 160                 * the inc_not_zero dance and if it doesn't work then
 161                 * synchronize_rcu and try again.
 162                 */
 163                if (atomic_inc_not_zero(&eb->refs)) {
 164                        rcu_read_unlock();
 165                        break;
 166                }
 167                rcu_read_unlock();
 168                synchronize_rcu();
 169        }
 170        return eb;
 171}
 172
 173/* loop around taking references on and locking the root node of the
 174 * tree until you end up with a lock on the root.  A locked buffer
 175 * is returned, with a reference held.
 176 */
 177struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
 178{
 179        struct extent_buffer *eb;
 180
 181        while (1) {
 182                eb = btrfs_root_node(root);
 183                btrfs_tree_lock(eb);
 184                if (eb == root->node)
 185                        break;
 186                btrfs_tree_unlock(eb);
 187                free_extent_buffer(eb);
 188        }
 189        return eb;
 190}
 191
 192/* loop around taking references on and locking the root node of the
 193 * tree until you end up with a lock on the root.  A locked buffer
 194 * is returned, with a reference held.
 195 */
 196static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
 197{
 198        struct extent_buffer *eb;
 199
 200        while (1) {
 201                eb = btrfs_root_node(root);
 202                btrfs_tree_read_lock(eb);
 203                if (eb == root->node)
 204                        break;
 205                btrfs_tree_read_unlock(eb);
 206                free_extent_buffer(eb);
 207        }
 208        return eb;
 209}
 210
 211/* cowonly root (everything not a reference counted cow subvolume), just get
 212 * put onto a simple dirty list.  transaction.c walks this to make sure they
 213 * get properly updated on disk.
 214 */
 215static void add_root_to_dirty_list(struct btrfs_root *root)
 216{
 217        if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
 218            !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
 219                return;
 220
 221        spin_lock(&root->fs_info->trans_lock);
 222        if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
 223                /* Want the extent tree to be the last on the list */
 224                if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
 225                        list_move_tail(&root->dirty_list,
 226                                       &root->fs_info->dirty_cowonly_roots);
 227                else
 228                        list_move(&root->dirty_list,
 229                                  &root->fs_info->dirty_cowonly_roots);
 230        }
 231        spin_unlock(&root->fs_info->trans_lock);
 232}
 233
 234/*
 235 * used by snapshot creation to make a copy of a root for a tree with
 236 * a given objectid.  The buffer with the new root node is returned in
 237 * cow_ret, and this func returns zero on success or a negative error code.
 238 */
 239int btrfs_copy_root(struct btrfs_trans_handle *trans,
 240                      struct btrfs_root *root,
 241                      struct extent_buffer *buf,
 242                      struct extent_buffer **cow_ret, u64 new_root_objectid)
 243{
 244        struct extent_buffer *cow;
 245        int ret = 0;
 246        int level;
 247        struct btrfs_disk_key disk_key;
 248
 249        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 250                trans->transid != root->fs_info->running_transaction->transid);
 251        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 252                trans->transid != root->last_trans);
 253
 254        level = btrfs_header_level(buf);
 255        if (level == 0)
 256                btrfs_item_key(buf, &disk_key, 0);
 257        else
 258                btrfs_node_key(buf, &disk_key, 0);
 259
 260        cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
 261                        &disk_key, level, buf->start, 0);
 262        if (IS_ERR(cow))
 263                return PTR_ERR(cow);
 264
 265        copy_extent_buffer(cow, buf, 0, 0, cow->len);
 266        btrfs_set_header_bytenr(cow, cow->start);
 267        btrfs_set_header_generation(cow, trans->transid);
 268        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
 269        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
 270                                     BTRFS_HEADER_FLAG_RELOC);
 271        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 272                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
 273        else
 274                btrfs_set_header_owner(cow, new_root_objectid);
 275
 276        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
 277                            BTRFS_FSID_SIZE);
 278
 279        WARN_ON(btrfs_header_generation(buf) > trans->transid);
 280        if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
 281                ret = btrfs_inc_ref(trans, root, cow, 1);
 282        else
 283                ret = btrfs_inc_ref(trans, root, cow, 0);
 284
 285        if (ret)
 286                return ret;
 287
 288        btrfs_mark_buffer_dirty(cow);
 289        *cow_ret = cow;
 290        return 0;
 291}
 292
 293enum mod_log_op {
 294        MOD_LOG_KEY_REPLACE,
 295        MOD_LOG_KEY_ADD,
 296        MOD_LOG_KEY_REMOVE,
 297        MOD_LOG_KEY_REMOVE_WHILE_FREEING,
 298        MOD_LOG_KEY_REMOVE_WHILE_MOVING,
 299        MOD_LOG_MOVE_KEYS,
 300        MOD_LOG_ROOT_REPLACE,
 301};
 302
 303struct tree_mod_move {
 304        int dst_slot;
 305        int nr_items;
 306};
 307
 308struct tree_mod_root {
 309        u64 logical;
 310        u8 level;
 311};
 312
 313struct tree_mod_elem {
 314        struct rb_node node;
 315        u64 logical;
 316        u64 seq;
 317        enum mod_log_op op;
 318
 319        /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
 320        int slot;
 321
 322        /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
 323        u64 generation;
 324
 325        /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
 326        struct btrfs_disk_key key;
 327        u64 blockptr;
 328
 329        /* this is used for op == MOD_LOG_MOVE_KEYS */
 330        struct tree_mod_move move;
 331
 332        /* this is used for op == MOD_LOG_ROOT_REPLACE */
 333        struct tree_mod_root old_root;
 334};
 335
 336static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
 337{
 338        read_lock(&fs_info->tree_mod_log_lock);
 339}
 340
 341static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
 342{
 343        read_unlock(&fs_info->tree_mod_log_lock);
 344}
 345
 346static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
 347{
 348        write_lock(&fs_info->tree_mod_log_lock);
 349}
 350
 351static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
 352{
 353        write_unlock(&fs_info->tree_mod_log_lock);
 354}
 355
 356/*
 357 * Pull a new tree mod seq number for our operation.
 358 */
 359static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
 360{
 361        return atomic64_inc_return(&fs_info->tree_mod_seq);
 362}
 363
 364/*
 365 * This adds a new blocker to the tree mod log's blocker list if the @elem
 366 * passed does not already have a sequence number set. So when a caller expects
 367 * to record tree modifications, it should ensure to set elem->seq to zero
 368 * before calling btrfs_get_tree_mod_seq.
 369 * Returns a fresh, unused tree log modification sequence number, even if no new
 370 * blocker was added.
 371 */
 372u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
 373                           struct seq_list *elem)
 374{
 375        tree_mod_log_write_lock(fs_info);
 376        spin_lock(&fs_info->tree_mod_seq_lock);
 377        if (!elem->seq) {
 378                elem->seq = btrfs_inc_tree_mod_seq(fs_info);
 379                list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
 380        }
 381        spin_unlock(&fs_info->tree_mod_seq_lock);
 382        tree_mod_log_write_unlock(fs_info);
 383
 384        return elem->seq;
 385}
 386
 387void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
 388                            struct seq_list *elem)
 389{
 390        struct rb_root *tm_root;
 391        struct rb_node *node;
 392        struct rb_node *next;
 393        struct seq_list *cur_elem;
 394        struct tree_mod_elem *tm;
 395        u64 min_seq = (u64)-1;
 396        u64 seq_putting = elem->seq;
 397
 398        if (!seq_putting)
 399                return;
 400
 401        spin_lock(&fs_info->tree_mod_seq_lock);
 402        list_del(&elem->list);
 403        elem->seq = 0;
 404
 405        list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
 406                if (cur_elem->seq < min_seq) {
 407                        if (seq_putting > cur_elem->seq) {
 408                                /*
 409                                 * blocker with lower sequence number exists, we
 410                                 * cannot remove anything from the log
 411                                 */
 412                                spin_unlock(&fs_info->tree_mod_seq_lock);
 413                                return;
 414                        }
 415                        min_seq = cur_elem->seq;
 416                }
 417        }
 418        spin_unlock(&fs_info->tree_mod_seq_lock);
 419
 420        /*
 421         * anything that's lower than the lowest existing (read: blocked)
 422         * sequence number can be removed from the tree.
 423         */
 424        tree_mod_log_write_lock(fs_info);
 425        tm_root = &fs_info->tree_mod_log;
 426        for (node = rb_first(tm_root); node; node = next) {
 427                next = rb_next(node);
 428                tm = container_of(node, struct tree_mod_elem, node);
 429                if (tm->seq > min_seq)
 430                        continue;
 431                rb_erase(node, tm_root);
 432                kfree(tm);
 433        }
 434        tree_mod_log_write_unlock(fs_info);
 435}
 436
 437/*
 438 * key order of the log:
 439 *       node/leaf start address -> sequence
 440 *
 441 * The 'start address' is the logical address of the *new* root node
 442 * for root replace operations, or the logical address of the affected
 443 * block for all other operations.
 444 *
 445 * Note: must be called with write lock (tree_mod_log_write_lock).
 446 */
 447static noinline int
 448__tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
 449{
 450        struct rb_root *tm_root;
 451        struct rb_node **new;
 452        struct rb_node *parent = NULL;
 453        struct tree_mod_elem *cur;
 454
 455        BUG_ON(!tm);
 456
 457        tm->seq = btrfs_inc_tree_mod_seq(fs_info);
 458
 459        tm_root = &fs_info->tree_mod_log;
 460        new = &tm_root->rb_node;
 461        while (*new) {
 462                cur = container_of(*new, struct tree_mod_elem, node);
 463                parent = *new;
 464                if (cur->logical < tm->logical)
 465                        new = &((*new)->rb_left);
 466                else if (cur->logical > tm->logical)
 467                        new = &((*new)->rb_right);
 468                else if (cur->seq < tm->seq)
 469                        new = &((*new)->rb_left);
 470                else if (cur->seq > tm->seq)
 471                        new = &((*new)->rb_right);
 472                else
 473                        return -EEXIST;
 474        }
 475
 476        rb_link_node(&tm->node, parent, new);
 477        rb_insert_color(&tm->node, tm_root);
 478        return 0;
 479}
 480
 481/*
 482 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
 483 * returns zero with the tree_mod_log_lock acquired. The caller must hold
 484 * this until all tree mod log insertions are recorded in the rb tree and then
 485 * call tree_mod_log_write_unlock() to release.
 486 */
 487static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
 488                                    struct extent_buffer *eb) {
 489        smp_mb();
 490        if (list_empty(&(fs_info)->tree_mod_seq_list))
 491                return 1;
 492        if (eb && btrfs_header_level(eb) == 0)
 493                return 1;
 494
 495        tree_mod_log_write_lock(fs_info);
 496        if (list_empty(&(fs_info)->tree_mod_seq_list)) {
 497                tree_mod_log_write_unlock(fs_info);
 498                return 1;
 499        }
 500
 501        return 0;
 502}
 503
 504/* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
 505static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
 506                                    struct extent_buffer *eb)
 507{
 508        smp_mb();
 509        if (list_empty(&(fs_info)->tree_mod_seq_list))
 510                return 0;
 511        if (eb && btrfs_header_level(eb) == 0)
 512                return 0;
 513
 514        return 1;
 515}
 516
 517static struct tree_mod_elem *
 518alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
 519                    enum mod_log_op op, gfp_t flags)
 520{
 521        struct tree_mod_elem *tm;
 522
 523        tm = kzalloc(sizeof(*tm), flags);
 524        if (!tm)
 525                return NULL;
 526
 527        tm->logical = eb->start;
 528        if (op != MOD_LOG_KEY_ADD) {
 529                btrfs_node_key(eb, &tm->key, slot);
 530                tm->blockptr = btrfs_node_blockptr(eb, slot);
 531        }
 532        tm->op = op;
 533        tm->slot = slot;
 534        tm->generation = btrfs_node_ptr_generation(eb, slot);
 535        RB_CLEAR_NODE(&tm->node);
 536
 537        return tm;
 538}
 539
 540static noinline int
 541tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
 542                        struct extent_buffer *eb, int slot,
 543                        enum mod_log_op op, gfp_t flags)
 544{
 545        struct tree_mod_elem *tm;
 546        int ret;
 547
 548        if (!tree_mod_need_log(fs_info, eb))
 549                return 0;
 550
 551        tm = alloc_tree_mod_elem(eb, slot, op, flags);
 552        if (!tm)
 553                return -ENOMEM;
 554
 555        if (tree_mod_dont_log(fs_info, eb)) {
 556                kfree(tm);
 557                return 0;
 558        }
 559
 560        ret = __tree_mod_log_insert(fs_info, tm);
 561        tree_mod_log_write_unlock(fs_info);
 562        if (ret)
 563                kfree(tm);
 564
 565        return ret;
 566}
 567
 568static noinline int
 569tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
 570                         struct extent_buffer *eb, int dst_slot, int src_slot,
 571                         int nr_items, gfp_t flags)
 572{
 573        struct tree_mod_elem *tm = NULL;
 574        struct tree_mod_elem **tm_list = NULL;
 575        int ret = 0;
 576        int i;
 577        int locked = 0;
 578
 579        if (!tree_mod_need_log(fs_info, eb))
 580                return 0;
 581
 582        tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
 583        if (!tm_list)
 584                return -ENOMEM;
 585
 586        tm = kzalloc(sizeof(*tm), flags);
 587        if (!tm) {
 588                ret = -ENOMEM;
 589                goto free_tms;
 590        }
 591
 592        tm->logical = eb->start;
 593        tm->slot = src_slot;
 594        tm->move.dst_slot = dst_slot;
 595        tm->move.nr_items = nr_items;
 596        tm->op = MOD_LOG_MOVE_KEYS;
 597
 598        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 599                tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
 600                    MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
 601                if (!tm_list[i]) {
 602                        ret = -ENOMEM;
 603                        goto free_tms;
 604                }
 605        }
 606
 607        if (tree_mod_dont_log(fs_info, eb))
 608                goto free_tms;
 609        locked = 1;
 610
 611        /*
 612         * When we override something during the move, we log these removals.
 613         * This can only happen when we move towards the beginning of the
 614         * buffer, i.e. dst_slot < src_slot.
 615         */
 616        for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
 617                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 618                if (ret)
 619                        goto free_tms;
 620        }
 621
 622        ret = __tree_mod_log_insert(fs_info, tm);
 623        if (ret)
 624                goto free_tms;
 625        tree_mod_log_write_unlock(fs_info);
 626        kfree(tm_list);
 627
 628        return 0;
 629free_tms:
 630        for (i = 0; i < nr_items; i++) {
 631                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 632                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 633                kfree(tm_list[i]);
 634        }
 635        if (locked)
 636                tree_mod_log_write_unlock(fs_info);
 637        kfree(tm_list);
 638        kfree(tm);
 639
 640        return ret;
 641}
 642
 643static inline int
 644__tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
 645                       struct tree_mod_elem **tm_list,
 646                       int nritems)
 647{
 648        int i, j;
 649        int ret;
 650
 651        for (i = nritems - 1; i >= 0; i--) {
 652                ret = __tree_mod_log_insert(fs_info, tm_list[i]);
 653                if (ret) {
 654                        for (j = nritems - 1; j > i; j--)
 655                                rb_erase(&tm_list[j]->node,
 656                                         &fs_info->tree_mod_log);
 657                        return ret;
 658                }
 659        }
 660
 661        return 0;
 662}
 663
 664static noinline int
 665tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
 666                         struct extent_buffer *old_root,
 667                         struct extent_buffer *new_root, gfp_t flags,
 668                         int log_removal)
 669{
 670        struct tree_mod_elem *tm = NULL;
 671        struct tree_mod_elem **tm_list = NULL;
 672        int nritems = 0;
 673        int ret = 0;
 674        int i;
 675
 676        if (!tree_mod_need_log(fs_info, NULL))
 677                return 0;
 678
 679        if (log_removal && btrfs_header_level(old_root) > 0) {
 680                nritems = btrfs_header_nritems(old_root);
 681                tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
 682                                  flags);
 683                if (!tm_list) {
 684                        ret = -ENOMEM;
 685                        goto free_tms;
 686                }
 687                for (i = 0; i < nritems; i++) {
 688                        tm_list[i] = alloc_tree_mod_elem(old_root, i,
 689                            MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
 690                        if (!tm_list[i]) {
 691                                ret = -ENOMEM;
 692                                goto free_tms;
 693                        }
 694                }
 695        }
 696
 697        tm = kzalloc(sizeof(*tm), flags);
 698        if (!tm) {
 699                ret = -ENOMEM;
 700                goto free_tms;
 701        }
 702
 703        tm->logical = new_root->start;
 704        tm->old_root.logical = old_root->start;
 705        tm->old_root.level = btrfs_header_level(old_root);
 706        tm->generation = btrfs_header_generation(old_root);
 707        tm->op = MOD_LOG_ROOT_REPLACE;
 708
 709        if (tree_mod_dont_log(fs_info, NULL))
 710                goto free_tms;
 711
 712        if (tm_list)
 713                ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 714        if (!ret)
 715                ret = __tree_mod_log_insert(fs_info, tm);
 716
 717        tree_mod_log_write_unlock(fs_info);
 718        if (ret)
 719                goto free_tms;
 720        kfree(tm_list);
 721
 722        return ret;
 723
 724free_tms:
 725        if (tm_list) {
 726                for (i = 0; i < nritems; i++)
 727                        kfree(tm_list[i]);
 728                kfree(tm_list);
 729        }
 730        kfree(tm);
 731
 732        return ret;
 733}
 734
 735static struct tree_mod_elem *
 736__tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
 737                      int smallest)
 738{
 739        struct rb_root *tm_root;
 740        struct rb_node *node;
 741        struct tree_mod_elem *cur = NULL;
 742        struct tree_mod_elem *found = NULL;
 743
 744        tree_mod_log_read_lock(fs_info);
 745        tm_root = &fs_info->tree_mod_log;
 746        node = tm_root->rb_node;
 747        while (node) {
 748                cur = container_of(node, struct tree_mod_elem, node);
 749                if (cur->logical < start) {
 750                        node = node->rb_left;
 751                } else if (cur->logical > start) {
 752                        node = node->rb_right;
 753                } else if (cur->seq < min_seq) {
 754                        node = node->rb_left;
 755                } else if (!smallest) {
 756                        /* we want the node with the highest seq */
 757                        if (found)
 758                                BUG_ON(found->seq > cur->seq);
 759                        found = cur;
 760                        node = node->rb_left;
 761                } else if (cur->seq > min_seq) {
 762                        /* we want the node with the smallest seq */
 763                        if (found)
 764                                BUG_ON(found->seq < cur->seq);
 765                        found = cur;
 766                        node = node->rb_right;
 767                } else {
 768                        found = cur;
 769                        break;
 770                }
 771        }
 772        tree_mod_log_read_unlock(fs_info);
 773
 774        return found;
 775}
 776
 777/*
 778 * this returns the element from the log with the smallest time sequence
 779 * value that's in the log (the oldest log item). any element with a time
 780 * sequence lower than min_seq will be ignored.
 781 */
 782static struct tree_mod_elem *
 783tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
 784                           u64 min_seq)
 785{
 786        return __tree_mod_log_search(fs_info, start, min_seq, 1);
 787}
 788
 789/*
 790 * this returns the element from the log with the largest time sequence
 791 * value that's in the log (the most recent log item). any element with
 792 * a time sequence lower than min_seq will be ignored.
 793 */
 794static struct tree_mod_elem *
 795tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
 796{
 797        return __tree_mod_log_search(fs_info, start, min_seq, 0);
 798}
 799
 800static noinline int
 801tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 802                     struct extent_buffer *src, unsigned long dst_offset,
 803                     unsigned long src_offset, int nr_items)
 804{
 805        int ret = 0;
 806        struct tree_mod_elem **tm_list = NULL;
 807        struct tree_mod_elem **tm_list_add, **tm_list_rem;
 808        int i;
 809        int locked = 0;
 810
 811        if (!tree_mod_need_log(fs_info, NULL))
 812                return 0;
 813
 814        if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
 815                return 0;
 816
 817        tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
 818                          GFP_NOFS);
 819        if (!tm_list)
 820                return -ENOMEM;
 821
 822        tm_list_add = tm_list;
 823        tm_list_rem = tm_list + nr_items;
 824        for (i = 0; i < nr_items; i++) {
 825                tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
 826                    MOD_LOG_KEY_REMOVE, GFP_NOFS);
 827                if (!tm_list_rem[i]) {
 828                        ret = -ENOMEM;
 829                        goto free_tms;
 830                }
 831
 832                tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
 833                    MOD_LOG_KEY_ADD, GFP_NOFS);
 834                if (!tm_list_add[i]) {
 835                        ret = -ENOMEM;
 836                        goto free_tms;
 837                }
 838        }
 839
 840        if (tree_mod_dont_log(fs_info, NULL))
 841                goto free_tms;
 842        locked = 1;
 843
 844        for (i = 0; i < nr_items; i++) {
 845                ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
 846                if (ret)
 847                        goto free_tms;
 848                ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
 849                if (ret)
 850                        goto free_tms;
 851        }
 852
 853        tree_mod_log_write_unlock(fs_info);
 854        kfree(tm_list);
 855
 856        return 0;
 857
 858free_tms:
 859        for (i = 0; i < nr_items * 2; i++) {
 860                if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
 861                        rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
 862                kfree(tm_list[i]);
 863        }
 864        if (locked)
 865                tree_mod_log_write_unlock(fs_info);
 866        kfree(tm_list);
 867
 868        return ret;
 869}
 870
 871static inline void
 872tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
 873                     int dst_offset, int src_offset, int nr_items)
 874{
 875        int ret;
 876        ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
 877                                       nr_items, GFP_NOFS);
 878        BUG_ON(ret < 0);
 879}
 880
 881static noinline void
 882tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
 883                          struct extent_buffer *eb, int slot, int atomic)
 884{
 885        int ret;
 886
 887        ret = tree_mod_log_insert_key(fs_info, eb, slot,
 888                                        MOD_LOG_KEY_REPLACE,
 889                                        atomic ? GFP_ATOMIC : GFP_NOFS);
 890        BUG_ON(ret < 0);
 891}
 892
 893static noinline int
 894tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
 895{
 896        struct tree_mod_elem **tm_list = NULL;
 897        int nritems = 0;
 898        int i;
 899        int ret = 0;
 900
 901        if (btrfs_header_level(eb) == 0)
 902                return 0;
 903
 904        if (!tree_mod_need_log(fs_info, NULL))
 905                return 0;
 906
 907        nritems = btrfs_header_nritems(eb);
 908        tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
 909        if (!tm_list)
 910                return -ENOMEM;
 911
 912        for (i = 0; i < nritems; i++) {
 913                tm_list[i] = alloc_tree_mod_elem(eb, i,
 914                    MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
 915                if (!tm_list[i]) {
 916                        ret = -ENOMEM;
 917                        goto free_tms;
 918                }
 919        }
 920
 921        if (tree_mod_dont_log(fs_info, eb))
 922                goto free_tms;
 923
 924        ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
 925        tree_mod_log_write_unlock(fs_info);
 926        if (ret)
 927                goto free_tms;
 928        kfree(tm_list);
 929
 930        return 0;
 931
 932free_tms:
 933        for (i = 0; i < nritems; i++)
 934                kfree(tm_list[i]);
 935        kfree(tm_list);
 936
 937        return ret;
 938}
 939
 940static noinline void
 941tree_mod_log_set_root_pointer(struct btrfs_root *root,
 942                              struct extent_buffer *new_root_node,
 943                              int log_removal)
 944{
 945        int ret;
 946        ret = tree_mod_log_insert_root(root->fs_info, root->node,
 947                                       new_root_node, GFP_NOFS, log_removal);
 948        BUG_ON(ret < 0);
 949}
 950
 951/*
 952 * check if the tree block can be shared by multiple trees
 953 */
 954int btrfs_block_can_be_shared(struct btrfs_root *root,
 955                              struct extent_buffer *buf)
 956{
 957        /*
 958         * Tree blocks not in reference counted trees and tree roots
 959         * are never shared. If a block was allocated after the last
 960         * snapshot and the block was not allocated by tree relocation,
 961         * we know the block is not shared.
 962         */
 963        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 964            buf != root->node && buf != root->commit_root &&
 965            (btrfs_header_generation(buf) <=
 966             btrfs_root_last_snapshot(&root->root_item) ||
 967             btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
 968                return 1;
 969#ifdef BTRFS_COMPAT_EXTENT_TREE_V0
 970        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
 971            btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
 972                return 1;
 973#endif
 974        return 0;
 975}
 976
 977static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
 978                                       struct btrfs_root *root,
 979                                       struct extent_buffer *buf,
 980                                       struct extent_buffer *cow,
 981                                       int *last_ref)
 982{
 983        u64 refs;
 984        u64 owner;
 985        u64 flags;
 986        u64 new_flags = 0;
 987        int ret;
 988
 989        /*
 990         * Backrefs update rules:
 991         *
 992         * Always use full backrefs for extent pointers in tree block
 993         * allocated by tree relocation.
 994         *
 995         * If a shared tree block is no longer referenced by its owner
 996         * tree (btrfs_header_owner(buf) == root->root_key.objectid),
 997         * use full backrefs for extent pointers in tree block.
 998         *
 999         * If a tree block is been relocating
1000         * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001         * use full backrefs for extent pointers in tree block.
1002         * The reason for this is some operations (such as drop tree)
1003         * are only allowed for blocks use full backrefs.
1004         */
1005
1006        if (btrfs_block_can_be_shared(root, buf)) {
1007                ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008                                               btrfs_header_level(buf), 1,
1009                                               &refs, &flags);
1010                if (ret)
1011                        return ret;
1012                if (refs == 0) {
1013                        ret = -EROFS;
1014                        btrfs_handle_fs_error(root->fs_info, ret, NULL);
1015                        return ret;
1016                }
1017        } else {
1018                refs = 1;
1019                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021                        flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022                else
1023                        flags = 0;
1024        }
1025
1026        owner = btrfs_header_owner(buf);
1027        BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028               !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1029
1030        if (refs > 1) {
1031                if ((owner == root->root_key.objectid ||
1032                     root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033                    !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034                        ret = btrfs_inc_ref(trans, root, buf, 1);
1035                        BUG_ON(ret); /* -ENOMEM */
1036
1037                        if (root->root_key.objectid ==
1038                            BTRFS_TREE_RELOC_OBJECTID) {
1039                                ret = btrfs_dec_ref(trans, root, buf, 0);
1040                                BUG_ON(ret); /* -ENOMEM */
1041                                ret = btrfs_inc_ref(trans, root, cow, 1);
1042                                BUG_ON(ret); /* -ENOMEM */
1043                        }
1044                        new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045                } else {
1046
1047                        if (root->root_key.objectid ==
1048                            BTRFS_TREE_RELOC_OBJECTID)
1049                                ret = btrfs_inc_ref(trans, root, cow, 1);
1050                        else
1051                                ret = btrfs_inc_ref(trans, root, cow, 0);
1052                        BUG_ON(ret); /* -ENOMEM */
1053                }
1054                if (new_flags != 0) {
1055                        int level = btrfs_header_level(buf);
1056
1057                        ret = btrfs_set_disk_extent_flags(trans, root,
1058                                                          buf->start,
1059                                                          buf->len,
1060                                                          new_flags, level, 0);
1061                        if (ret)
1062                                return ret;
1063                }
1064        } else {
1065                if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066                        if (root->root_key.objectid ==
1067                            BTRFS_TREE_RELOC_OBJECTID)
1068                                ret = btrfs_inc_ref(trans, root, cow, 1);
1069                        else
1070                                ret = btrfs_inc_ref(trans, root, cow, 0);
1071                        BUG_ON(ret); /* -ENOMEM */
1072                        ret = btrfs_dec_ref(trans, root, buf, 1);
1073                        BUG_ON(ret); /* -ENOMEM */
1074                }
1075                clean_tree_block(trans, root->fs_info, buf);
1076                *last_ref = 1;
1077        }
1078        return 0;
1079}
1080
1081/*
1082 * does the dirty work in cow of a single block.  The parent block (if
1083 * supplied) is updated to point to the new cow copy.  The new buffer is marked
1084 * dirty and returned locked.  If you modify the block it needs to be marked
1085 * dirty again.
1086 *
1087 * search_start -- an allocation hint for the new block
1088 *
1089 * empty_size -- a hint that you plan on doing more cow.  This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1092 */
1093static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094                             struct btrfs_root *root,
1095                             struct extent_buffer *buf,
1096                             struct extent_buffer *parent, int parent_slot,
1097                             struct extent_buffer **cow_ret,
1098                             u64 search_start, u64 empty_size)
1099{
1100        struct btrfs_disk_key disk_key;
1101        struct extent_buffer *cow;
1102        int level, ret;
1103        int last_ref = 0;
1104        int unlock_orig = 0;
1105        u64 parent_start;
1106
1107        if (*cow_ret == buf)
1108                unlock_orig = 1;
1109
1110        btrfs_assert_tree_locked(buf);
1111
1112        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113                trans->transid != root->fs_info->running_transaction->transid);
1114        WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115                trans->transid != root->last_trans);
1116
1117        level = btrfs_header_level(buf);
1118
1119        if (level == 0)
1120                btrfs_item_key(buf, &disk_key, 0);
1121        else
1122                btrfs_node_key(buf, &disk_key, 0);
1123
1124        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125                if (parent)
1126                        parent_start = parent->start;
1127                else
1128                        parent_start = 0;
1129        } else
1130                parent_start = 0;
1131
1132        cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133                        root->root_key.objectid, &disk_key, level,
1134                        search_start, empty_size);
1135        if (IS_ERR(cow))
1136                return PTR_ERR(cow);
1137
1138        /* cow is set to blocking by btrfs_init_new_buffer */
1139
1140        copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141        btrfs_set_header_bytenr(cow, cow->start);
1142        btrfs_set_header_generation(cow, trans->transid);
1143        btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144        btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145                                     BTRFS_HEADER_FLAG_RELOC);
1146        if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147                btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148        else
1149                btrfs_set_header_owner(cow, root->root_key.objectid);
1150
1151        write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152                            BTRFS_FSID_SIZE);
1153
1154        ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155        if (ret) {
1156                btrfs_abort_transaction(trans, ret);
1157                return ret;
1158        }
1159
1160        if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162                if (ret) {
1163                        btrfs_abort_transaction(trans, ret);
1164                        return ret;
1165                }
1166        }
1167
1168        if (buf == root->node) {
1169                WARN_ON(parent && parent != buf);
1170                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1171                    btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1172                        parent_start = buf->start;
1173                else
1174                        parent_start = 0;
1175
1176                extent_buffer_get(cow);
1177                tree_mod_log_set_root_pointer(root, cow, 1);
1178                rcu_assign_pointer(root->node, cow);
1179
1180                btrfs_free_tree_block(trans, root, buf, parent_start,
1181                                      last_ref);
1182                free_extent_buffer(buf);
1183                add_root_to_dirty_list(root);
1184        } else {
1185                if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1186                        parent_start = parent->start;
1187                else
1188                        parent_start = 0;
1189
1190                WARN_ON(trans->transid != btrfs_header_generation(parent));
1191                tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1192                                        MOD_LOG_KEY_REPLACE, GFP_NOFS);
1193                btrfs_set_node_blockptr(parent, parent_slot,
1194                                        cow->start);
1195                btrfs_set_node_ptr_generation(parent, parent_slot,
1196                                              trans->transid);
1197                btrfs_mark_buffer_dirty(parent);
1198                if (last_ref) {
1199                        ret = tree_mod_log_free_eb(root->fs_info, buf);
1200                        if (ret) {
1201                                btrfs_abort_transaction(trans, ret);
1202                                return ret;
1203                        }
1204                }
1205                btrfs_free_tree_block(trans, root, buf, parent_start,
1206                                      last_ref);
1207        }
1208        if (unlock_orig)
1209                btrfs_tree_unlock(buf);
1210        free_extent_buffer_stale(buf);
1211        btrfs_mark_buffer_dirty(cow);
1212        *cow_ret = cow;
1213        return 0;
1214}
1215
1216/*
1217 * returns the logical address of the oldest predecessor of the given root.
1218 * entries older than time_seq are ignored.
1219 */
1220static struct tree_mod_elem *
1221__tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1222                           struct extent_buffer *eb_root, u64 time_seq)
1223{
1224        struct tree_mod_elem *tm;
1225        struct tree_mod_elem *found = NULL;
1226        u64 root_logical = eb_root->start;
1227        int looped = 0;
1228
1229        if (!time_seq)
1230                return NULL;
1231
1232        /*
1233         * the very last operation that's logged for a root is the
1234         * replacement operation (if it is replaced at all). this has
1235         * the logical address of the *new* root, making it the very
1236         * first operation that's logged for this root.
1237         */
1238        while (1) {
1239                tm = tree_mod_log_search_oldest(fs_info, root_logical,
1240                                                time_seq);
1241                if (!looped && !tm)
1242                        return NULL;
1243                /*
1244                 * if there are no tree operation for the oldest root, we simply
1245                 * return it. this should only happen if that (old) root is at
1246                 * level 0.
1247                 */
1248                if (!tm)
1249                        break;
1250
1251                /*
1252                 * if there's an operation that's not a root replacement, we
1253                 * found the oldest version of our root. normally, we'll find a
1254                 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1255                 */
1256                if (tm->op != MOD_LOG_ROOT_REPLACE)
1257                        break;
1258
1259                found = tm;
1260                root_logical = tm->old_root.logical;
1261                looped = 1;
1262        }
1263
1264        /* if there's no old root to return, return what we found instead */
1265        if (!found)
1266                found = tm;
1267
1268        return found;
1269}
1270
1271/*
1272 * tm is a pointer to the first operation to rewind within eb. then, all
1273 * previous operations will be rewound (until we reach something older than
1274 * time_seq).
1275 */
1276static void
1277__tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1278                      u64 time_seq, struct tree_mod_elem *first_tm)
1279{
1280        u32 n;
1281        struct rb_node *next;
1282        struct tree_mod_elem *tm = first_tm;
1283        unsigned long o_dst;
1284        unsigned long o_src;
1285        unsigned long p_size = sizeof(struct btrfs_key_ptr);
1286
1287        n = btrfs_header_nritems(eb);
1288        tree_mod_log_read_lock(fs_info);
1289        while (tm && tm->seq >= time_seq) {
1290                /*
1291                 * all the operations are recorded with the operator used for
1292                 * the modification. as we're going backwards, we do the
1293                 * opposite of each operation here.
1294                 */
1295                switch (tm->op) {
1296                case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1297                        BUG_ON(tm->slot < n);
1298                        /* Fallthrough */
1299                case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1300                case MOD_LOG_KEY_REMOVE:
1301                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1302                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1303                        btrfs_set_node_ptr_generation(eb, tm->slot,
1304                                                      tm->generation);
1305                        n++;
1306                        break;
1307                case MOD_LOG_KEY_REPLACE:
1308                        BUG_ON(tm->slot >= n);
1309                        btrfs_set_node_key(eb, &tm->key, tm->slot);
1310                        btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1311                        btrfs_set_node_ptr_generation(eb, tm->slot,
1312                                                      tm->generation);
1313                        break;
1314                case MOD_LOG_KEY_ADD:
1315                        /* if a move operation is needed it's in the log */
1316                        n--;
1317                        break;
1318                case MOD_LOG_MOVE_KEYS:
1319                        o_dst = btrfs_node_key_ptr_offset(tm->slot);
1320                        o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1321                        memmove_extent_buffer(eb, o_dst, o_src,
1322                                              tm->move.nr_items * p_size);
1323                        break;
1324                case MOD_LOG_ROOT_REPLACE:
1325                        /*
1326                         * this operation is special. for roots, this must be
1327                         * handled explicitly before rewinding.
1328                         * for non-roots, this operation may exist if the node
1329                         * was a root: root A -> child B; then A gets empty and
1330                         * B is promoted to the new root. in the mod log, we'll
1331                         * have a root-replace operation for B, a tree block
1332                         * that is no root. we simply ignore that operation.
1333                         */
1334                        break;
1335                }
1336                next = rb_next(&tm->node);
1337                if (!next)
1338                        break;
1339                tm = container_of(next, struct tree_mod_elem, node);
1340                if (tm->logical != first_tm->logical)
1341                        break;
1342        }
1343        tree_mod_log_read_unlock(fs_info);
1344        btrfs_set_header_nritems(eb, n);
1345}
1346
1347/*
1348 * Called with eb read locked. If the buffer cannot be rewound, the same buffer
1349 * is returned. If rewind operations happen, a fresh buffer is returned. The
1350 * returned buffer is always read-locked. If the returned buffer is not the
1351 * input buffer, the lock on the input buffer is released and the input buffer
1352 * is freed (its refcount is decremented).
1353 */
1354static struct extent_buffer *
1355tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1356                    struct extent_buffer *eb, u64 time_seq)
1357{
1358        struct extent_buffer *eb_rewin;
1359        struct tree_mod_elem *tm;
1360
1361        if (!time_seq)
1362                return eb;
1363
1364        if (btrfs_header_level(eb) == 0)
1365                return eb;
1366
1367        tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1368        if (!tm)
1369                return eb;
1370
1371        btrfs_set_path_blocking(path);
1372        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1373
1374        if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1375                BUG_ON(tm->slot != 0);
1376                eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start,
1377                                                eb->len);
1378                if (!eb_rewin) {
1379                        btrfs_tree_read_unlock_blocking(eb);
1380                        free_extent_buffer(eb);
1381                        return NULL;
1382                }
1383                btrfs_set_header_bytenr(eb_rewin, eb->start);
1384                btrfs_set_header_backref_rev(eb_rewin,
1385                                             btrfs_header_backref_rev(eb));
1386                btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1387                btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1388        } else {
1389                eb_rewin = btrfs_clone_extent_buffer(eb);
1390                if (!eb_rewin) {
1391                        btrfs_tree_read_unlock_blocking(eb);
1392                        free_extent_buffer(eb);
1393                        return NULL;
1394                }
1395        }
1396
1397        btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1398        btrfs_tree_read_unlock_blocking(eb);
1399        free_extent_buffer(eb);
1400
1401        extent_buffer_get(eb_rewin);
1402        btrfs_tree_read_lock(eb_rewin);
1403        __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1404        WARN_ON(btrfs_header_nritems(eb_rewin) >
1405                BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1406
1407        return eb_rewin;
1408}
1409
1410/*
1411 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1412 * value. If there are no changes, the current root->root_node is returned. If
1413 * anything changed in between, there's a fresh buffer allocated on which the
1414 * rewind operations are done. In any case, the returned buffer is read locked.
1415 * Returns NULL on error (with no locks held).
1416 */
1417static inline struct extent_buffer *
1418get_old_root(struct btrfs_root *root, u64 time_seq)
1419{
1420        struct tree_mod_elem *tm;
1421        struct extent_buffer *eb = NULL;
1422        struct extent_buffer *eb_root;
1423        struct extent_buffer *old;
1424        struct tree_mod_root *old_root = NULL;
1425        u64 old_generation = 0;
1426        u64 logical;
1427
1428        eb_root = btrfs_read_lock_root_node(root);
1429        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1430        if (!tm)
1431                return eb_root;
1432
1433        if (tm->op == MOD_LOG_ROOT_REPLACE) {
1434                old_root = &tm->old_root;
1435                old_generation = tm->generation;
1436                logical = old_root->logical;
1437        } else {
1438                logical = eb_root->start;
1439        }
1440
1441        tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1442        if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1443                btrfs_tree_read_unlock(eb_root);
1444                free_extent_buffer(eb_root);
1445                old = read_tree_block(root, logical, 0);
1446                if (WARN_ON(IS_ERR(old) || !extent_buffer_uptodate(old))) {
1447                        if (!IS_ERR(old))
1448                                free_extent_buffer(old);
1449                        btrfs_warn(root->fs_info,
1450                                "failed to read tree block %llu from get_old_root", logical);
1451                } else {
1452                        eb = btrfs_clone_extent_buffer(old);
1453                        free_extent_buffer(old);
1454                }
1455        } else if (old_root) {
1456                btrfs_tree_read_unlock(eb_root);
1457                free_extent_buffer(eb_root);
1458                eb = alloc_dummy_extent_buffer(root->fs_info, logical,
1459                                        root->nodesize);
1460        } else {
1461                btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1462                eb = btrfs_clone_extent_buffer(eb_root);
1463                btrfs_tree_read_unlock_blocking(eb_root);
1464                free_extent_buffer(eb_root);
1465        }
1466
1467        if (!eb)
1468                return NULL;
1469        extent_buffer_get(eb);
1470        btrfs_tree_read_lock(eb);
1471        if (old_root) {
1472                btrfs_set_header_bytenr(eb, eb->start);
1473                btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1474                btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1475                btrfs_set_header_level(eb, old_root->level);
1476                btrfs_set_header_generation(eb, old_generation);
1477        }
1478        if (tm)
1479                __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1480        else
1481                WARN_ON(btrfs_header_level(eb) != 0);
1482        WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1483
1484        return eb;
1485}
1486
1487int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1488{
1489        struct tree_mod_elem *tm;
1490        int level;
1491        struct extent_buffer *eb_root = btrfs_root_node(root);
1492
1493        tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1494        if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1495                level = tm->old_root.level;
1496        } else {
1497                level = btrfs_header_level(eb_root);
1498        }
1499        free_extent_buffer(eb_root);
1500
1501        return level;
1502}
1503
1504static inline int should_cow_block(struct btrfs_trans_handle *trans,
1505                                   struct btrfs_root *root,
1506                                   struct extent_buffer *buf)
1507{
1508        if (btrfs_is_testing(root->fs_info))
1509                return 0;
1510
1511        /* ensure we can see the force_cow */
1512        smp_rmb();
1513
1514        /*
1515         * We do not need to cow a block if
1516         * 1) this block is not created or changed in this transaction;
1517         * 2) this block does not belong to TREE_RELOC tree;
1518         * 3) the root is not forced COW.
1519         *
1520         * What is forced COW:
1521         *    when we create snapshot during committing the transaction,
1522         *    after we've finished coping src root, we must COW the shared
1523         *    block to ensure the metadata consistency.
1524         */
1525        if (btrfs_header_generation(buf) == trans->transid &&
1526            !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1527            !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1528              btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1529            !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1530                return 0;
1531        return 1;
1532}
1533
1534/*
1535 * cows a single block, see __btrfs_cow_block for the real work.
1536 * This version of it has extra checks so that a block isn't COWed more than
1537 * once per transaction, as long as it hasn't been written yet
1538 */
1539noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1540                    struct btrfs_root *root, struct extent_buffer *buf,
1541                    struct extent_buffer *parent, int parent_slot,
1542                    struct extent_buffer **cow_ret)
1543{
1544        u64 search_start;
1545        int ret;
1546
1547        if (trans->transaction != root->fs_info->running_transaction)
1548                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1549                       trans->transid,
1550                       root->fs_info->running_transaction->transid);
1551
1552        if (trans->transid != root->fs_info->generation)
1553                WARN(1, KERN_CRIT "trans %llu running %llu\n",
1554                       trans->transid, root->fs_info->generation);
1555
1556        if (!should_cow_block(trans, root, buf)) {
1557                trans->dirty = true;
1558                *cow_ret = buf;
1559                return 0;
1560        }
1561
1562        search_start = buf->start & ~((u64)SZ_1G - 1);
1563
1564        if (parent)
1565                btrfs_set_lock_blocking(parent);
1566        btrfs_set_lock_blocking(buf);
1567
1568        ret = __btrfs_cow_block(trans, root, buf, parent,
1569                                 parent_slot, cow_ret, search_start, 0);
1570
1571        trace_btrfs_cow_block(root, buf, *cow_ret);
1572
1573        return ret;
1574}
1575
1576/*
1577 * helper function for defrag to decide if two blocks pointed to by a
1578 * node are actually close by
1579 */
1580static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1581{
1582        if (blocknr < other && other - (blocknr + blocksize) < 32768)
1583                return 1;
1584        if (blocknr > other && blocknr - (other + blocksize) < 32768)
1585                return 1;
1586        return 0;
1587}
1588
1589/*
1590 * compare two keys in a memcmp fashion
1591 */
1592static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1593{
1594        struct btrfs_key k1;
1595
1596        btrfs_disk_key_to_cpu(&k1, disk);
1597
1598        return btrfs_comp_cpu_keys(&k1, k2);
1599}
1600
1601/*
1602 * same as comp_keys only with two btrfs_key's
1603 */
1604int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1605{
1606        if (k1->objectid > k2->objectid)
1607                return 1;
1608        if (k1->objectid < k2->objectid)
1609                return -1;
1610        if (k1->type > k2->type)
1611                return 1;
1612        if (k1->type < k2->type)
1613                return -1;
1614        if (k1->offset > k2->offset)
1615                return 1;
1616        if (k1->offset < k2->offset)
1617                return -1;
1618        return 0;
1619}
1620
1621/*
1622 * this is used by the defrag code to go through all the
1623 * leaves pointed to by a node and reallocate them so that
1624 * disk order is close to key order
1625 */
1626int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1627                       struct btrfs_root *root, struct extent_buffer *parent,
1628                       int start_slot, u64 *last_ret,
1629                       struct btrfs_key *progress)
1630{
1631        struct extent_buffer *cur;
1632        u64 blocknr;
1633        u64 gen;
1634        u64 search_start = *last_ret;
1635        u64 last_block = 0;
1636        u64 other;
1637        u32 parent_nritems;
1638        int end_slot;
1639        int i;
1640        int err = 0;
1641        int parent_level;
1642        int uptodate;
1643        u32 blocksize;
1644        int progress_passed = 0;
1645        struct btrfs_disk_key disk_key;
1646
1647        parent_level = btrfs_header_level(parent);
1648
1649        WARN_ON(trans->transaction != root->fs_info->running_transaction);
1650        WARN_ON(trans->transid != root->fs_info->generation);
1651
1652        parent_nritems = btrfs_header_nritems(parent);
1653        blocksize = root->nodesize;
1654        end_slot = parent_nritems - 1;
1655
1656        if (parent_nritems <= 1)
1657                return 0;
1658
1659        btrfs_set_lock_blocking(parent);
1660
1661        for (i = start_slot; i <= end_slot; i++) {
1662                int close = 1;
1663
1664                btrfs_node_key(parent, &disk_key, i);
1665                if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1666                        continue;
1667
1668                progress_passed = 1;
1669                blocknr = btrfs_node_blockptr(parent, i);
1670                gen = btrfs_node_ptr_generation(parent, i);
1671                if (last_block == 0)
1672                        last_block = blocknr;
1673
1674                if (i > 0) {
1675                        other = btrfs_node_blockptr(parent, i - 1);
1676                        close = close_blocks(blocknr, other, blocksize);
1677                }
1678                if (!close && i < end_slot) {
1679                        other = btrfs_node_blockptr(parent, i + 1);
1680                        close = close_blocks(blocknr, other, blocksize);
1681                }
1682                if (close) {
1683                        last_block = blocknr;
1684                        continue;
1685                }
1686
1687                cur = btrfs_find_tree_block(root->fs_info, blocknr);
1688                if (cur)
1689                        uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1690                else
1691                        uptodate = 0;
1692                if (!cur || !uptodate) {
1693                        if (!cur) {
1694                                cur = read_tree_block(root, blocknr, gen);
1695                                if (IS_ERR(cur)) {
1696                                        return PTR_ERR(cur);
1697                                } else if (!extent_buffer_uptodate(cur)) {
1698                                        free_extent_buffer(cur);
1699                                        return -EIO;
1700                                }
1701                        } else if (!uptodate) {
1702                                err = btrfs_read_buffer(cur, gen);
1703                                if (err) {
1704                                        free_extent_buffer(cur);
1705                                        return err;
1706                                }
1707                        }
1708                }
1709                if (search_start == 0)
1710                        search_start = last_block;
1711
1712                btrfs_tree_lock(cur);
1713                btrfs_set_lock_blocking(cur);
1714                err = __btrfs_cow_block(trans, root, cur, parent, i,
1715                                        &cur, search_start,
1716                                        min(16 * blocksize,
1717                                            (end_slot - i) * blocksize));
1718                if (err) {
1719                        btrfs_tree_unlock(cur);
1720                        free_extent_buffer(cur);
1721                        break;
1722                }
1723                search_start = cur->start;
1724                last_block = cur->start;
1725                *last_ret = search_start;
1726                btrfs_tree_unlock(cur);
1727                free_extent_buffer(cur);
1728        }
1729        return err;
1730}
1731
1732/*
1733 * The leaf data grows from end-to-front in the node.
1734 * this returns the address of the start of the last item,
1735 * which is the stop of the leaf data stack
1736 */
1737static inline unsigned int leaf_data_end(struct btrfs_root *root,
1738                                         struct extent_buffer *leaf)
1739{
1740        u32 nr = btrfs_header_nritems(leaf);
1741        if (nr == 0)
1742                return BTRFS_LEAF_DATA_SIZE(root);
1743        return btrfs_item_offset_nr(leaf, nr - 1);
1744}
1745
1746
1747/*
1748 * search for key in the extent_buffer.  The items start at offset p,
1749 * and they are item_size apart.  There are 'max' items in p.
1750 *
1751 * the slot in the array is returned via slot, and it points to
1752 * the place where you would insert key if it is not found in
1753 * the array.
1754 *
1755 * slot may point to max if the key is bigger than all of the keys
1756 */
1757static noinline int generic_bin_search(struct extent_buffer *eb,
1758                                       unsigned long p,
1759                                       int item_size, struct btrfs_key *key,
1760                                       int max, int *slot)
1761{
1762        int low = 0;
1763        int high = max;
1764        int mid;
1765        int ret;
1766        struct btrfs_disk_key *tmp = NULL;
1767        struct btrfs_disk_key unaligned;
1768        unsigned long offset;
1769        char *kaddr = NULL;
1770        unsigned long map_start = 0;
1771        unsigned long map_len = 0;
1772        int err;
1773
1774        if (low > high) {
1775                btrfs_err(eb->fs_info,
1776                 "%s: low (%d) > high (%d) eb %llu owner %llu level %d",
1777                          __func__, low, high, eb->start,
1778                          btrfs_header_owner(eb), btrfs_header_level(eb));
1779                return -EINVAL;
1780        }
1781
1782        while (low < high) {
1783                mid = (low + high) / 2;
1784                offset = p + mid * item_size;
1785
1786                if (!kaddr || offset < map_start ||
1787                    (offset + sizeof(struct btrfs_disk_key)) >
1788                    map_start + map_len) {
1789
1790                        err = map_private_extent_buffer(eb, offset,
1791                                                sizeof(struct btrfs_disk_key),
1792                                                &kaddr, &map_start, &map_len);
1793
1794                        if (!err) {
1795                                tmp = (struct btrfs_disk_key *)(kaddr + offset -
1796                                                        map_start);
1797                        } else if (err == 1) {
1798                                read_extent_buffer(eb, &unaligned,
1799                                                   offset, sizeof(unaligned));
1800                                tmp = &unaligned;
1801                        } else {
1802                                return err;
1803                        }
1804
1805                } else {
1806                        tmp = (struct btrfs_disk_key *)(kaddr + offset -
1807                                                        map_start);
1808                }
1809                ret = comp_keys(tmp, key);
1810
1811                if (ret < 0)
1812                        low = mid + 1;
1813                else if (ret > 0)
1814                        high = mid;
1815                else {
1816                        *slot = mid;
1817                        return 0;
1818                }
1819        }
1820        *slot = low;
1821        return 1;
1822}
1823
1824/*
1825 * simple bin_search frontend that does the right thing for
1826 * leaves vs nodes
1827 */
1828static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1829                      int level, int *slot)
1830{
1831        if (level == 0)
1832                return generic_bin_search(eb,
1833                                          offsetof(struct btrfs_leaf, items),
1834                                          sizeof(struct btrfs_item),
1835                                          key, btrfs_header_nritems(eb),
1836                                          slot);
1837        else
1838                return generic_bin_search(eb,
1839                                          offsetof(struct btrfs_node, ptrs),
1840                                          sizeof(struct btrfs_key_ptr),
1841                                          key, btrfs_header_nritems(eb),
1842                                          slot);
1843}
1844
1845int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1846                     int level, int *slot)
1847{
1848        return bin_search(eb, key, level, slot);
1849}
1850
1851static void root_add_used(struct btrfs_root *root, u32 size)
1852{
1853        spin_lock(&root->accounting_lock);
1854        btrfs_set_root_used(&root->root_item,
1855                            btrfs_root_used(&root->root_item) + size);
1856        spin_unlock(&root->accounting_lock);
1857}
1858
1859static void root_sub_used(struct btrfs_root *root, u32 size)
1860{
1861        spin_lock(&root->accounting_lock);
1862        btrfs_set_root_used(&root->root_item,
1863                            btrfs_root_used(&root->root_item) - size);
1864        spin_unlock(&root->accounting_lock);
1865}
1866
1867/* given a node and slot number, this reads the blocks it points to.  The
1868 * extent buffer is returned with a reference taken (but unlocked).
1869 */
1870static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1871                                   struct extent_buffer *parent, int slot)
1872{
1873        int level = btrfs_header_level(parent);
1874        struct extent_buffer *eb;
1875
1876        if (slot < 0 || slot >= btrfs_header_nritems(parent))
1877                return ERR_PTR(-ENOENT);
1878
1879        BUG_ON(level == 0);
1880
1881        eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1882                             btrfs_node_ptr_generation(parent, slot));
1883        if (!IS_ERR(eb) && !extent_buffer_uptodate(eb)) {
1884                free_extent_buffer(eb);
1885                eb = ERR_PTR(-EIO);
1886        }
1887
1888        return eb;
1889}
1890
1891/*
1892 * node level balancing, used to make sure nodes are in proper order for
1893 * item deletion.  We balance from the top down, so we have to make sure
1894 * that a deletion won't leave an node completely empty later on.
1895 */
1896static noinline int balance_level(struct btrfs_trans_handle *trans,
1897                         struct btrfs_root *root,
1898                         struct btrfs_path *path, int level)
1899{
1900        struct extent_buffer *right = NULL;
1901        struct extent_buffer *mid;
1902        struct extent_buffer *left = NULL;
1903        struct extent_buffer *parent = NULL;
1904        int ret = 0;
1905        int wret;
1906        int pslot;
1907        int orig_slot = path->slots[level];
1908        u64 orig_ptr;
1909
1910        if (level == 0)
1911                return 0;
1912
1913        mid = path->nodes[level];
1914
1915        WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1916                path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1917        WARN_ON(btrfs_header_generation(mid) != trans->transid);
1918
1919        orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1920
1921        if (level < BTRFS_MAX_LEVEL - 1) {
1922                parent = path->nodes[level + 1];
1923                pslot = path->slots[level + 1];
1924        }
1925
1926        /*
1927         * deal with the case where there is only one pointer in the root
1928         * by promoting the node below to a root
1929         */
1930        if (!parent) {
1931                struct extent_buffer *child;
1932
1933                if (btrfs_header_nritems(mid) != 1)
1934                        return 0;
1935
1936                /* promote the child to a root */
1937                child = read_node_slot(root, mid, 0);
1938                if (IS_ERR(child)) {
1939                        ret = PTR_ERR(child);
1940                        btrfs_handle_fs_error(root->fs_info, ret, NULL);
1941                        goto enospc;
1942                }
1943
1944                btrfs_tree_lock(child);
1945                btrfs_set_lock_blocking(child);
1946                ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1947                if (ret) {
1948                        btrfs_tree_unlock(child);
1949                        free_extent_buffer(child);
1950                        goto enospc;
1951                }
1952
1953                tree_mod_log_set_root_pointer(root, child, 1);
1954                rcu_assign_pointer(root->node, child);
1955
1956                add_root_to_dirty_list(root);
1957                btrfs_tree_unlock(child);
1958
1959                path->locks[level] = 0;
1960                path->nodes[level] = NULL;
1961                clean_tree_block(trans, root->fs_info, mid);
1962                btrfs_tree_unlock(mid);
1963                /* once for the path */
1964                free_extent_buffer(mid);
1965
1966                root_sub_used(root, mid->len);
1967                btrfs_free_tree_block(trans, root, mid, 0, 1);
1968                /* once for the root ptr */
1969                free_extent_buffer_stale(mid);
1970                return 0;
1971        }
1972        if (btrfs_header_nritems(mid) >
1973            BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1974                return 0;
1975
1976        left = read_node_slot(root, parent, pslot - 1);
1977        if (IS_ERR(left))
1978                left = NULL;
1979
1980        if (left) {
1981                btrfs_tree_lock(left);
1982                btrfs_set_lock_blocking(left);
1983                wret = btrfs_cow_block(trans, root, left,
1984                                       parent, pslot - 1, &left);
1985                if (wret) {
1986                        ret = wret;
1987                        goto enospc;
1988                }
1989        }
1990
1991        right = read_node_slot(root, parent, pslot + 1);
1992        if (IS_ERR(right))
1993                right = NULL;
1994
1995        if (right) {
1996                btrfs_tree_lock(right);
1997                btrfs_set_lock_blocking(right);
1998                wret = btrfs_cow_block(trans, root, right,
1999                                       parent, pslot + 1, &right);
2000                if (wret) {
2001                        ret = wret;
2002                        goto enospc;
2003                }
2004        }
2005
2006        /* first, try to make some room in the middle buffer */
2007        if (left) {
2008                orig_slot += btrfs_header_nritems(left);
2009                wret = push_node_left(trans, root, left, mid, 1);
2010                if (wret < 0)
2011                        ret = wret;
2012        }
2013
2014        /*
2015         * then try to empty the right most buffer into the middle
2016         */
2017        if (right) {
2018                wret = push_node_left(trans, root, mid, right, 1);
2019                if (wret < 0 && wret != -ENOSPC)
2020                        ret = wret;
2021                if (btrfs_header_nritems(right) == 0) {
2022                        clean_tree_block(trans, root->fs_info, right);
2023                        btrfs_tree_unlock(right);
2024                        del_ptr(root, path, level + 1, pslot + 1);
2025                        root_sub_used(root, right->len);
2026                        btrfs_free_tree_block(trans, root, right, 0, 1);
2027                        free_extent_buffer_stale(right);
2028                        right = NULL;
2029                } else {
2030                        struct btrfs_disk_key right_key;
2031                        btrfs_node_key(right, &right_key, 0);
2032                        tree_mod_log_set_node_key(root->fs_info, parent,
2033                                                  pslot + 1, 0);
2034                        btrfs_set_node_key(parent, &right_key, pslot + 1);
2035                        btrfs_mark_buffer_dirty(parent);
2036                }
2037        }
2038        if (btrfs_header_nritems(mid) == 1) {
2039                /*
2040                 * we're not allowed to leave a node with one item in the
2041                 * tree during a delete.  A deletion from lower in the tree
2042                 * could try to delete the only pointer in this node.
2043                 * So, pull some keys from the left.
2044                 * There has to be a left pointer at this point because
2045                 * otherwise we would have pulled some pointers from the
2046                 * right
2047                 */
2048                if (!left) {
2049                        ret = -EROFS;
2050                        btrfs_handle_fs_error(root->fs_info, ret, NULL);
2051                        goto enospc;
2052                }
2053                wret = balance_node_right(trans, root, mid, left);
2054                if (wret < 0) {
2055                        ret = wret;
2056                        goto enospc;
2057                }
2058                if (wret == 1) {
2059                        wret = push_node_left(trans, root, left, mid, 1);
2060                        if (wret < 0)
2061                                ret = wret;
2062                }
2063                BUG_ON(wret == 1);
2064        }
2065        if (btrfs_header_nritems(mid) == 0) {
2066                clean_tree_block(trans, root->fs_info, mid);
2067                btrfs_tree_unlock(mid);
2068                del_ptr(root, path, level + 1, pslot);
2069                root_sub_used(root, mid->len);
2070                btrfs_free_tree_block(trans, root, mid, 0, 1);
2071                free_extent_buffer_stale(mid);
2072                mid = NULL;
2073        } else {
2074                /* update the parent key to reflect our changes */
2075                struct btrfs_disk_key mid_key;
2076                btrfs_node_key(mid, &mid_key, 0);
2077                tree_mod_log_set_node_key(root->fs_info, parent,
2078                                          pslot, 0);
2079                btrfs_set_node_key(parent, &mid_key, pslot);
2080                btrfs_mark_buffer_dirty(parent);
2081        }
2082
2083        /* update the path */
2084        if (left) {
2085                if (btrfs_header_nritems(left) > orig_slot) {
2086                        extent_buffer_get(left);
2087                        /* left was locked after cow */
2088                        path->nodes[level] = left;
2089                        path->slots[level + 1] -= 1;
2090                        path->slots[level] = orig_slot;
2091                        if (mid) {
2092                                btrfs_tree_unlock(mid);
2093                                free_extent_buffer(mid);
2094                        }
2095                } else {
2096                        orig_slot -= btrfs_header_nritems(left);
2097                        path->slots[level] = orig_slot;
2098                }
2099        }
2100        /* double check we haven't messed things up */
2101        if (orig_ptr !=
2102            btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2103                BUG();
2104enospc:
2105        if (right) {
2106                btrfs_tree_unlock(right);
2107                free_extent_buffer(right);
2108        }
2109        if (left) {
2110                if (path->nodes[level] != left)
2111                        btrfs_tree_unlock(left);
2112                free_extent_buffer(left);
2113        }
2114        return ret;
2115}
2116
2117/* Node balancing for insertion.  Here we only split or push nodes around
2118 * when they are completely full.  This is also done top down, so we
2119 * have to be pessimistic.
2120 */
2121static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2122                                          struct btrfs_root *root,
2123                                          struct btrfs_path *path, int level)
2124{
2125        struct extent_buffer *right = NULL;
2126        struct extent_buffer *mid;
2127        struct extent_buffer *left = NULL;
2128        struct extent_buffer *parent = NULL;
2129        int ret = 0;
2130        int wret;
2131        int pslot;
2132        int orig_slot = path->slots[level];
2133
2134        if (level == 0)
2135                return 1;
2136
2137        mid = path->nodes[level];
2138        WARN_ON(btrfs_header_generation(mid) != trans->transid);
2139
2140        if (level < BTRFS_MAX_LEVEL - 1) {
2141                parent = path->nodes[level + 1];
2142                pslot = path->slots[level + 1];
2143        }
2144
2145        if (!parent)
2146                return 1;
2147
2148        left = read_node_slot(root, parent, pslot - 1);
2149        if (IS_ERR(left))
2150                left = NULL;
2151
2152        /* first, try to make some room in the middle buffer */
2153        if (left) {
2154                u32 left_nr;
2155
2156                btrfs_tree_lock(left);
2157                btrfs_set_lock_blocking(left);
2158
2159                left_nr = btrfs_header_nritems(left);
2160                if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2161                        wret = 1;
2162                } else {
2163                        ret = btrfs_cow_block(trans, root, left, parent,
2164                                              pslot - 1, &left);
2165                        if (ret)
2166                                wret = 1;
2167                        else {
2168                                wret = push_node_left(trans, root,
2169                                                      left, mid, 0);
2170                        }
2171                }
2172                if (wret < 0)
2173                        ret = wret;
2174                if (wret == 0) {
2175                        struct btrfs_disk_key disk_key;
2176                        orig_slot += left_nr;
2177                        btrfs_node_key(mid, &disk_key, 0);
2178                        tree_mod_log_set_node_key(root->fs_info, parent,
2179                                                  pslot, 0);
2180                        btrfs_set_node_key(parent, &disk_key, pslot);
2181                        btrfs_mark_buffer_dirty(parent);
2182                        if (btrfs_header_nritems(left) > orig_slot) {
2183                                path->nodes[level] = left;
2184                                path->slots[level + 1] -= 1;
2185                                path->slots[level] = orig_slot;
2186                                btrfs_tree_unlock(mid);
2187                                free_extent_buffer(mid);
2188                        } else {
2189                                orig_slot -=
2190                                        btrfs_header_nritems(left);
2191                                path->slots[level] = orig_slot;
2192                                btrfs_tree_unlock(left);
2193                                free_extent_buffer(left);
2194                        }
2195                        return 0;
2196                }
2197                btrfs_tree_unlock(left);
2198                free_extent_buffer(left);
2199        }
2200        right = read_node_slot(root, parent, pslot + 1);
2201        if (IS_ERR(right))
2202                right = NULL;
2203
2204        /*
2205         * then try to empty the right most buffer into the middle
2206         */
2207        if (right) {
2208                u32 right_nr;
2209
2210                btrfs_tree_lock(right);
2211                btrfs_set_lock_blocking(right);
2212
2213                right_nr = btrfs_header_nritems(right);
2214                if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2215                        wret = 1;
2216                } else {
2217                        ret = btrfs_cow_block(trans, root, right,
2218                                              parent, pslot + 1,
2219                                              &right);
2220                        if (ret)
2221                                wret = 1;
2222                        else {
2223                                wret = balance_node_right(trans, root,
2224                                                          right, mid);
2225                        }
2226                }
2227                if (wret < 0)
2228                        ret = wret;
2229                if (wret == 0) {
2230                        struct btrfs_disk_key disk_key;
2231
2232                        btrfs_node_key(right, &disk_key, 0);
2233                        tree_mod_log_set_node_key(root->fs_info, parent,
2234                                                  pslot + 1, 0);
2235                        btrfs_set_node_key(parent, &disk_key, pslot + 1);
2236                        btrfs_mark_buffer_dirty(parent);
2237
2238                        if (btrfs_header_nritems(mid) <= orig_slot) {
2239                                path->nodes[level] = right;
2240                                path->slots[level + 1] += 1;
2241                                path->slots[level] = orig_slot -
2242                                        btrfs_header_nritems(mid);
2243                                btrfs_tree_unlock(mid);
2244                                free_extent_buffer(mid);
2245                        } else {
2246                                btrfs_tree_unlock(right);
2247                                free_extent_buffer(right);
2248                        }
2249                        return 0;
2250                }
2251                btrfs_tree_unlock(right);
2252                free_extent_buffer(right);
2253        }
2254        return 1;
2255}
2256
2257/*
2258 * readahead one full node of leaves, finding things that are close
2259 * to the block in 'slot', and triggering ra on them.
2260 */
2261static void reada_for_search(struct btrfs_root *root,
2262                             struct btrfs_path *path,
2263                             int level, int slot, u64 objectid)
2264{
2265        struct extent_buffer *node;
2266        struct btrfs_disk_key disk_key;
2267        u32 nritems;
2268        u64 search;
2269        u64 target;
2270        u64 nread = 0;
2271        u64 gen;
2272        struct extent_buffer *eb;
2273        u32 nr;
2274        u32 blocksize;
2275        u32 nscan = 0;
2276
2277        if (level != 1)
2278                return;
2279
2280        if (!path->nodes[level])
2281                return;
2282
2283        node = path->nodes[level];
2284
2285        search = btrfs_node_blockptr(node, slot);
2286        blocksize = root->nodesize;
2287        eb = btrfs_find_tree_block(root->fs_info, search);
2288        if (eb) {
2289                free_extent_buffer(eb);
2290                return;
2291        }
2292
2293        target = search;
2294
2295        nritems = btrfs_header_nritems(node);
2296        nr = slot;
2297
2298        while (1) {
2299                if (path->reada == READA_BACK) {
2300                        if (nr == 0)
2301                                break;
2302                        nr--;
2303                } else if (path->reada == READA_FORWARD) {
2304                        nr++;
2305                        if (nr >= nritems)
2306                                break;
2307                }
2308                if (path->reada == READA_BACK && objectid) {
2309                        btrfs_node_key(node, &disk_key, nr);
2310                        if (btrfs_disk_key_objectid(&disk_key) != objectid)
2311                                break;
2312                }
2313                search = btrfs_node_blockptr(node, nr);
2314                if ((search <= target && target - search <= 65536) ||
2315                    (search > target && search - target <= 65536)) {
2316                        gen = btrfs_node_ptr_generation(node, nr);
2317                        readahead_tree_block(root, search);
2318                        nread += blocksize;
2319                }
2320                nscan++;
2321                if ((nread > 65536 || nscan > 32))
2322                        break;
2323        }
2324}
2325
2326static noinline void reada_for_balance(struct btrfs_root *root,
2327                                       struct btrfs_path *path, int level)
2328{
2329        int slot;
2330        int nritems;
2331        struct extent_buffer *parent;
2332        struct extent_buffer *eb;
2333        u64 gen;
2334        u64 block1 = 0;
2335        u64 block2 = 0;
2336
2337        parent = path->nodes[level + 1];
2338        if (!parent)
2339                return;
2340
2341        nritems = btrfs_header_nritems(parent);
2342        slot = path->slots[level + 1];
2343
2344        if (slot > 0) {
2345                block1 = btrfs_node_blockptr(parent, slot - 1);
2346                gen = btrfs_node_ptr_generation(parent, slot - 1);
2347                eb = btrfs_find_tree_block(root->fs_info, block1);
2348                /*
2349                 * if we get -eagain from btrfs_buffer_uptodate, we
2350                 * don't want to return eagain here.  That will loop
2351                 * forever
2352                 */
2353                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2354                        block1 = 0;
2355                free_extent_buffer(eb);
2356        }
2357        if (slot + 1 < nritems) {
2358                block2 = btrfs_node_blockptr(parent, slot + 1);
2359                gen = btrfs_node_ptr_generation(parent, slot + 1);
2360                eb = btrfs_find_tree_block(root->fs_info, block2);
2361                if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2362                        block2 = 0;
2363                free_extent_buffer(eb);
2364        }
2365
2366        if (block1)
2367                readahead_tree_block(root, block1);
2368        if (block2)
2369                readahead_tree_block(root, block2);
2370}
2371
2372
2373/*
2374 * when we walk down the tree, it is usually safe to unlock the higher layers
2375 * in the tree.  The exceptions are when our path goes through slot 0, because
2376 * operations on the tree might require changing key pointers higher up in the
2377 * tree.
2378 *
2379 * callers might also have set path->keep_locks, which tells this code to keep
2380 * the lock if the path points to the last slot in the block.  This is part of
2381 * walking through the tree, and selecting the next slot in the higher block.
2382 *
2383 * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
2384 * if lowest_unlock is 1, level 0 won't be unlocked
2385 */
2386static noinline void unlock_up(struct btrfs_path *path, int level,
2387                               int lowest_unlock, int min_write_lock_level,
2388                               int *write_lock_level)
2389{
2390        int i;
2391        int skip_level = level;
2392        int no_skips = 0;
2393        struct extent_buffer *t;
2394
2395        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2396                if (!path->nodes[i])
2397                        break;
2398                if (!path->locks[i])
2399                        break;
2400                if (!no_skips && path->slots[i] == 0) {
2401                        skip_level = i + 1;
2402                        continue;
2403                }
2404                if (!no_skips && path->keep_locks) {
2405                        u32 nritems;
2406                        t = path->nodes[i];
2407                        nritems = btrfs_header_nritems(t);
2408                        if (nritems < 1 || path->slots[i] >= nritems - 1) {
2409                                skip_level = i + 1;
2410                                continue;
2411                        }
2412                }
2413                if (skip_level < i && i >= lowest_unlock)
2414                        no_skips = 1;
2415
2416                t = path->nodes[i];
2417                if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2418                        btrfs_tree_unlock_rw(t, path->locks[i]);
2419                        path->locks[i] = 0;
2420                        if (write_lock_level &&
2421                            i > min_write_lock_level &&
2422                            i <= *write_lock_level) {
2423                                *write_lock_level = i - 1;
2424                        }
2425                }
2426        }
2427}
2428
2429/*
2430 * This releases any locks held in the path starting at level and
2431 * going all the way up to the root.
2432 *
2433 * btrfs_search_slot will keep the lock held on higher nodes in a few
2434 * corner cases, such as COW of the block at slot zero in the node.  This
2435 * ignores those rules, and it should only be called when there are no
2436 * more updates to be done higher up in the tree.
2437 */
2438noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2439{
2440        int i;
2441
2442        if (path->keep_locks)
2443                return;
2444
2445        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2446                if (!path->nodes[i])
2447                        continue;
2448                if (!path->locks[i])
2449                        continue;
2450                btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2451                path->locks[i] = 0;
2452        }
2453}
2454
2455/*
2456 * helper function for btrfs_search_slot.  The goal is to find a block
2457 * in cache without setting the path to blocking.  If we find the block
2458 * we return zero and the path is unchanged.
2459 *
2460 * If we can't find the block, we set the path blocking and do some
2461 * reada.  -EAGAIN is returned and the search must be repeated.
2462 */
2463static int
2464read_block_for_search(struct btrfs_trans_handle *trans,
2465                       struct btrfs_root *root, struct btrfs_path *p,
2466                       struct extent_buffer **eb_ret, int level, int slot,
2467                       struct btrfs_key *key, u64 time_seq)
2468{
2469        u64 blocknr;
2470        u64 gen;
2471        struct extent_buffer *b = *eb_ret;
2472        struct extent_buffer *tmp;
2473        int ret;
2474
2475        blocknr = btrfs_node_blockptr(b, slot);
2476        gen = btrfs_node_ptr_generation(b, slot);
2477
2478        tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2479        if (tmp) {
2480                /* first we do an atomic uptodate check */
2481                if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2482                        *eb_ret = tmp;
2483                        return 0;
2484                }
2485
2486                /* the pages were up to date, but we failed
2487                 * the generation number check.  Do a full
2488                 * read for the generation number that is correct.
2489                 * We must do this without dropping locks so
2490                 * we can trust our generation number
2491                 */
2492                btrfs_set_path_blocking(p);
2493
2494                /* now we're allowed to do a blocking uptodate check */
2495                ret = btrfs_read_buffer(tmp, gen);
2496                if (!ret) {
2497                        *eb_ret = tmp;
2498                        return 0;
2499                }
2500                free_extent_buffer(tmp);
2501                btrfs_release_path(p);
2502                return -EIO;
2503        }
2504
2505        /*
2506         * reduce lock contention at high levels
2507         * of the btree by dropping locks before
2508         * we read.  Don't release the lock on the current
2509         * level because we need to walk this node to figure
2510         * out which blocks to read.
2511         */
2512        btrfs_unlock_up_safe(p, level + 1);
2513        btrfs_set_path_blocking(p);
2514
2515        free_extent_buffer(tmp);
2516        if (p->reada != READA_NONE)
2517                reada_for_search(root, p, level, slot, key->objectid);
2518
2519        btrfs_release_path(p);
2520
2521        ret = -EAGAIN;
2522        tmp = read_tree_block(root, blocknr, 0);
2523        if (!IS_ERR(tmp)) {
2524                /*
2525                 * If the read above didn't mark this buffer up to date,
2526                 * it will never end up being up to date.  Set ret to EIO now
2527                 * and give up so that our caller doesn't loop forever
2528                 * on our EAGAINs.
2529                 */
2530                if (!btrfs_buffer_uptodate(tmp, 0, 0))
2531                        ret = -EIO;
2532                free_extent_buffer(tmp);
2533        } else {
2534                ret = PTR_ERR(tmp);
2535        }
2536        return ret;
2537}
2538
2539/*
2540 * helper function for btrfs_search_slot.  This does all of the checks
2541 * for node-level blocks and does any balancing required based on
2542 * the ins_len.
2543 *
2544 * If no extra work was required, zero is returned.  If we had to
2545 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2546 * start over
2547 */
2548static int
2549setup_nodes_for_search(struct btrfs_trans_handle *trans,
2550                       struct btrfs_root *root, struct btrfs_path *p,
2551                       struct extent_buffer *b, int level, int ins_len,
2552                       int *write_lock_level)
2553{
2554        int ret;
2555        if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2556            BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2557                int sret;
2558
2559                if (*write_lock_level < level + 1) {
2560                        *write_lock_level = level + 1;
2561                        btrfs_release_path(p);
2562                        goto again;
2563                }
2564
2565                btrfs_set_path_blocking(p);
2566                reada_for_balance(root, p, level);
2567                sret = split_node(trans, root, p, level);
2568                btrfs_clear_path_blocking(p, NULL, 0);
2569
2570                BUG_ON(sret > 0);
2571                if (sret) {
2572                        ret = sret;
2573                        goto done;
2574                }
2575                b = p->nodes[level];
2576        } else if (ins_len < 0 && btrfs_header_nritems(b) <
2577                   BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2578                int sret;
2579
2580                if (*write_lock_level < level + 1) {
2581                        *write_lock_level = level + 1;
2582                        btrfs_release_path(p);
2583                        goto again;
2584                }
2585
2586                btrfs_set_path_blocking(p);
2587                reada_for_balance(root, p, level);
2588                sret = balance_level(trans, root, p, level);
2589                btrfs_clear_path_blocking(p, NULL, 0);
2590
2591                if (sret) {
2592                        ret = sret;
2593                        goto done;
2594                }
2595                b = p->nodes[level];
2596                if (!b) {
2597                        btrfs_release_path(p);
2598                        goto again;
2599                }
2600                BUG_ON(btrfs_header_nritems(b) == 1);
2601        }
2602        return 0;
2603
2604again:
2605        ret = -EAGAIN;
2606done:
2607        return ret;
2608}
2609
2610static void key_search_validate(struct extent_buffer *b,
2611                                struct btrfs_key *key,
2612                                int level)
2613{
2614#ifdef CONFIG_BTRFS_ASSERT
2615        struct btrfs_disk_key disk_key;
2616
2617        btrfs_cpu_key_to_disk(&disk_key, key);
2618
2619        if (level == 0)
2620                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2621                    offsetof(struct btrfs_leaf, items[0].key),
2622                    sizeof(disk_key)));
2623        else
2624                ASSERT(!memcmp_extent_buffer(b, &disk_key,
2625                    offsetof(struct btrfs_node, ptrs[0].key),
2626                    sizeof(disk_key)));
2627#endif
2628}
2629
2630static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2631                      int level, int *prev_cmp, int *slot)
2632{
2633        if (*prev_cmp != 0) {
2634                *prev_cmp = bin_search(b, key, level, slot);
2635                return *prev_cmp;
2636        }
2637
2638        key_search_validate(b, key, level);
2639        *slot = 0;
2640
2641        return 0;
2642}
2643
2644int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2645                u64 iobjectid, u64 ioff, u8 key_type,
2646                struct btrfs_key *found_key)
2647{
2648        int ret;
2649        struct btrfs_key key;
2650        struct extent_buffer *eb;
2651
2652        ASSERT(path);
2653        ASSERT(found_key);
2654
2655        key.type = key_type;
2656        key.objectid = iobjectid;
2657        key.offset = ioff;
2658
2659        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2660        if (ret < 0)
2661                return ret;
2662
2663        eb = path->nodes[0];
2664        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2665                ret = btrfs_next_leaf(fs_root, path);
2666                if (ret)
2667                        return ret;
2668                eb = path->nodes[0];
2669        }
2670
2671        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2672        if (found_key->type != key.type ||
2673                        found_key->objectid != key.objectid)
2674                return 1;
2675
2676        return 0;
2677}
2678
2679/*
2680 * look for key in the tree.  path is filled in with nodes along the way
2681 * if key is found, we return zero and you can find the item in the leaf
2682 * level of the path (level 0)
2683 *
2684 * If the key isn't found, the path points to the slot where it should
2685 * be inserted, and 1 is returned.  If there are other errors during the
2686 * search a negative error number is returned.
2687 *
2688 * if ins_len > 0, nodes and leaves will be split as we walk down the
2689 * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
2690 * possible)
2691 */
2692int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2693                      *root, struct btrfs_key *key, struct btrfs_path *p, int
2694                      ins_len, int cow)
2695{
2696        struct extent_buffer *b;
2697        int slot;
2698        int ret;
2699        int err;
2700        int level;
2701        int lowest_unlock = 1;
2702        int root_lock;
2703        /* everything at write_lock_level or lower must be write locked */
2704        int write_lock_level = 0;
2705        u8 lowest_level = 0;
2706        int min_write_lock_level;
2707        int prev_cmp;
2708
2709        lowest_level = p->lowest_level;
2710        WARN_ON(lowest_level && ins_len > 0);
2711        WARN_ON(p->nodes[0] != NULL);
2712        BUG_ON(!cow && ins_len);
2713
2714        if (ins_len < 0) {
2715                lowest_unlock = 2;
2716
2717                /* when we are removing items, we might have to go up to level
2718                 * two as we update tree pointers  Make sure we keep write
2719                 * for those levels as well
2720                 */
2721                write_lock_level = 2;
2722        } else if (ins_len > 0) {
2723                /*
2724                 * for inserting items, make sure we have a write lock on
2725                 * level 1 so we can update keys
2726                 */
2727                write_lock_level = 1;
2728        }
2729
2730        if (!cow)
2731                write_lock_level = -1;
2732
2733        if (cow && (p->keep_locks || p->lowest_level))
2734                write_lock_level = BTRFS_MAX_LEVEL;
2735
2736        min_write_lock_level = write_lock_level;
2737
2738again:
2739        prev_cmp = -1;
2740        /*
2741         * we try very hard to do read locks on the root
2742         */
2743        root_lock = BTRFS_READ_LOCK;
2744        level = 0;
2745        if (p->search_commit_root) {
2746                /*
2747                 * the commit roots are read only
2748                 * so we always do read locks
2749                 */
2750                if (p->need_commit_sem)
2751                        down_read(&root->fs_info->commit_root_sem);
2752                b = root->commit_root;
2753                extent_buffer_get(b);
2754                level = btrfs_header_level(b);
2755                if (p->need_commit_sem)
2756                        up_read(&root->fs_info->commit_root_sem);
2757                if (!p->skip_locking)
2758                        btrfs_tree_read_lock(b);
2759        } else {
2760                if (p->skip_locking) {
2761                        b = btrfs_root_node(root);
2762                        level = btrfs_header_level(b);
2763                } else {
2764                        /* we don't know the level of the root node
2765                         * until we actually have it read locked
2766                         */
2767                        b = btrfs_read_lock_root_node(root);
2768                        level = btrfs_header_level(b);
2769                        if (level <= write_lock_level) {
2770                                /* whoops, must trade for write lock */
2771                                btrfs_tree_read_unlock(b);
2772                                free_extent_buffer(b);
2773                                b = btrfs_lock_root_node(root);
2774                                root_lock = BTRFS_WRITE_LOCK;
2775
2776                                /* the level might have changed, check again */
2777                                level = btrfs_header_level(b);
2778                        }
2779                }
2780        }
2781        p->nodes[level] = b;
2782        if (!p->skip_locking)
2783                p->locks[level] = root_lock;
2784
2785        while (b) {
2786                level = btrfs_header_level(b);
2787
2788                /*
2789                 * setup the path here so we can release it under lock
2790                 * contention with the cow code
2791                 */
2792                if (cow) {
2793                        /*
2794                         * if we don't really need to cow this block
2795                         * then we don't want to set the path blocking,
2796                         * so we test it here
2797                         */
2798                        if (!should_cow_block(trans, root, b)) {
2799                                trans->dirty = true;
2800                                goto cow_done;
2801                        }
2802
2803                        /*
2804                         * must have write locks on this node and the
2805                         * parent
2806                         */
2807                        if (level > write_lock_level ||
2808                            (level + 1 > write_lock_level &&
2809                            level + 1 < BTRFS_MAX_LEVEL &&
2810                            p->nodes[level + 1])) {
2811                                write_lock_level = level + 1;
2812                                btrfs_release_path(p);
2813                                goto again;
2814                        }
2815
2816                        btrfs_set_path_blocking(p);
2817                        err = btrfs_cow_block(trans, root, b,
2818                                              p->nodes[level + 1],
2819                                              p->slots[level + 1], &b);
2820                        if (err) {
2821                                ret = err;
2822                                goto done;
2823                        }
2824                }
2825cow_done:
2826                p->nodes[level] = b;
2827                btrfs_clear_path_blocking(p, NULL, 0);
2828
2829                /*
2830                 * we have a lock on b and as long as we aren't changing
2831                 * the tree, there is no way to for the items in b to change.
2832                 * It is safe to drop the lock on our parent before we
2833                 * go through the expensive btree search on b.
2834                 *
2835                 * If we're inserting or deleting (ins_len != 0), then we might
2836                 * be changing slot zero, which may require changing the parent.
2837                 * So, we can't drop the lock until after we know which slot
2838                 * we're operating on.
2839                 */
2840                if (!ins_len && !p->keep_locks) {
2841                        int u = level + 1;
2842
2843                        if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2844                                btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2845                                p->locks[u] = 0;
2846                        }
2847                }
2848
2849                ret = key_search(b, key, level, &prev_cmp, &slot);
2850                if (ret < 0)
2851                        goto done;
2852
2853                if (level != 0) {
2854                        int dec = 0;
2855                        if (ret && slot > 0) {
2856                                dec = 1;
2857                                slot -= 1;
2858                        }
2859                        p->slots[level] = slot;
2860                        err = setup_nodes_for_search(trans, root, p, b, level,
2861                                             ins_len, &write_lock_level);
2862                        if (err == -EAGAIN)
2863                                goto again;
2864                        if (err) {
2865                                ret = err;
2866                                goto done;
2867                        }
2868                        b = p->nodes[level];
2869                        slot = p->slots[level];
2870
2871                        /*
2872                         * slot 0 is special, if we change the key
2873                         * we have to update the parent pointer
2874                         * which means we must have a write lock
2875                         * on the parent
2876                         */
2877                        if (slot == 0 && ins_len &&
2878                            write_lock_level < level + 1) {
2879                                write_lock_level = level + 1;
2880                                btrfs_release_path(p);
2881                                goto again;
2882                        }
2883
2884                        unlock_up(p, level, lowest_unlock,
2885                                  min_write_lock_level, &write_lock_level);
2886
2887                        if (level == lowest_level) {
2888                                if (dec)
2889                                        p->slots[level]++;
2890                                goto done;
2891                        }
2892
2893                        err = read_block_for_search(trans, root, p,
2894                                                    &b, level, slot, key, 0);
2895                        if (err == -EAGAIN)
2896                                goto again;
2897                        if (err) {
2898                                ret = err;
2899                                goto done;
2900                        }
2901
2902                        if (!p->skip_locking) {
2903                                level = btrfs_header_level(b);
2904                                if (level <= write_lock_level) {
2905                                        err = btrfs_try_tree_write_lock(b);
2906                                        if (!err) {
2907                                                btrfs_set_path_blocking(p);
2908                                                btrfs_tree_lock(b);
2909                                                btrfs_clear_path_blocking(p, b,
2910                                                                  BTRFS_WRITE_LOCK);
2911                                        }
2912                                        p->locks[level] = BTRFS_WRITE_LOCK;
2913                                } else {
2914                                        err = btrfs_tree_read_lock_atomic(b);
2915                                        if (!err) {
2916                                                btrfs_set_path_blocking(p);
2917                                                btrfs_tree_read_lock(b);
2918                                                btrfs_clear_path_blocking(p, b,
2919                                                                  BTRFS_READ_LOCK);
2920                                        }
2921                                        p->locks[level] = BTRFS_READ_LOCK;
2922                                }
2923                                p->nodes[level] = b;
2924                        }
2925                } else {
2926                        p->slots[level] = slot;
2927                        if (ins_len > 0 &&
2928                            btrfs_leaf_free_space(root, b) < ins_len) {
2929                                if (write_lock_level < 1) {
2930                                        write_lock_level = 1;
2931                                        btrfs_release_path(p);
2932                                        goto again;
2933                                }
2934
2935                                btrfs_set_path_blocking(p);
2936                                err = split_leaf(trans, root, key,
2937                                                 p, ins_len, ret == 0);
2938                                btrfs_clear_path_blocking(p, NULL, 0);
2939
2940                                BUG_ON(err > 0);
2941                                if (err) {
2942                                        ret = err;
2943                                        goto done;
2944                                }
2945                        }
2946                        if (!p->search_for_split)
2947                                unlock_up(p, level, lowest_unlock,
2948                                          min_write_lock_level, &write_lock_level);
2949                        goto done;
2950                }
2951        }
2952        ret = 1;
2953done:
2954        /*
2955         * we don't really know what they plan on doing with the path
2956         * from here on, so for now just mark it as blocking
2957         */
2958        if (!p->leave_spinning)
2959                btrfs_set_path_blocking(p);
2960        if (ret < 0 && !p->skip_release_on_error)
2961                btrfs_release_path(p);
2962        return ret;
2963}
2964
2965/*
2966 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2967 * current state of the tree together with the operations recorded in the tree
2968 * modification log to search for the key in a previous version of this tree, as
2969 * denoted by the time_seq parameter.
2970 *
2971 * Naturally, there is no support for insert, delete or cow operations.
2972 *
2973 * The resulting path and return value will be set up as if we called
2974 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2975 */
2976int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2977                          struct btrfs_path *p, u64 time_seq)
2978{
2979        struct extent_buffer *b;
2980        int slot;
2981        int ret;
2982        int err;
2983        int level;
2984        int lowest_unlock = 1;
2985        u8 lowest_level = 0;
2986        int prev_cmp = -1;
2987
2988        lowest_level = p->lowest_level;
2989        WARN_ON(p->nodes[0] != NULL);
2990
2991        if (p->search_commit_root) {
2992                BUG_ON(time_seq);
2993                return btrfs_search_slot(NULL, root, key, p, 0, 0);
2994        }
2995
2996again:
2997        b = get_old_root(root, time_seq);
2998        level = btrfs_header_level(b);
2999        p->locks[level] = BTRFS_READ_LOCK;
3000
3001        while (b) {
3002                level = btrfs_header_level(b);
3003                p->nodes[level] = b;
3004                btrfs_clear_path_blocking(p, NULL, 0);
3005
3006                /*
3007                 * we have a lock on b and as long as we aren't changing
3008                 * the tree, there is no way to for the items in b to change.
3009                 * It is safe to drop the lock on our parent before we
3010                 * go through the expensive btree search on b.
3011                 */
3012                btrfs_unlock_up_safe(p, level + 1);
3013
3014                /*
3015                 * Since we can unwind ebs we want to do a real search every
3016                 * time.
3017                 */
3018                prev_cmp = -1;
3019                ret = key_search(b, key, level, &prev_cmp, &slot);
3020
3021                if (level != 0) {
3022                        int dec = 0;
3023                        if (ret && slot > 0) {
3024                                dec = 1;
3025                                slot -= 1;
3026                        }
3027                        p->slots[level] = slot;
3028                        unlock_up(p, level, lowest_unlock, 0, NULL);
3029
3030                        if (level == lowest_level) {
3031                                if (dec)
3032                                        p->slots[level]++;
3033                                goto done;
3034                        }
3035
3036                        err = read_block_for_search(NULL, root, p, &b, level,
3037                                                    slot, key, time_seq);
3038                        if (err == -EAGAIN)
3039                                goto again;
3040                        if (err) {
3041                                ret = err;
3042                                goto done;
3043                        }
3044
3045                        level = btrfs_header_level(b);
3046                        err = btrfs_tree_read_lock_atomic(b);
3047                        if (!err) {
3048                                btrfs_set_path_blocking(p);
3049                                btrfs_tree_read_lock(b);
3050                                btrfs_clear_path_blocking(p, b,
3051                                                          BTRFS_READ_LOCK);
3052                        }
3053                        b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3054                        if (!b) {
3055                                ret = -ENOMEM;
3056                                goto done;
3057                        }
3058                        p->locks[level] = BTRFS_READ_LOCK;
3059                        p->nodes[level] = b;
3060                } else {
3061                        p->slots[level] = slot;
3062                        unlock_up(p, level, lowest_unlock, 0, NULL);
3063                        goto done;
3064                }
3065        }
3066        ret = 1;
3067done:
3068        if (!p->leave_spinning)
3069                btrfs_set_path_blocking(p);
3070        if (ret < 0)
3071                btrfs_release_path(p);
3072
3073        return ret;
3074}
3075
3076/*
3077 * helper to use instead of search slot if no exact match is needed but
3078 * instead the next or previous item should be returned.
3079 * When find_higher is true, the next higher item is returned, the next lower
3080 * otherwise.
3081 * When return_any and find_higher are both true, and no higher item is found,
3082 * return the next lower instead.
3083 * When return_any is true and find_higher is false, and no lower item is found,
3084 * return the next higher instead.
3085 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3086 * < 0 on error
3087 */
3088int btrfs_search_slot_for_read(struct btrfs_root *root,
3089                               struct btrfs_key *key, struct btrfs_path *p,
3090                               int find_higher, int return_any)
3091{
3092        int ret;
3093        struct extent_buffer *leaf;
3094
3095again:
3096        ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3097        if (ret <= 0)
3098                return ret;
3099        /*
3100         * a return value of 1 means the path is at the position where the
3101         * item should be inserted. Normally this is the next bigger item,
3102         * but in case the previous item is the last in a leaf, path points
3103         * to the first free slot in the previous leaf, i.e. at an invalid
3104         * item.
3105         */
3106        leaf = p->nodes[0];
3107
3108        if (find_higher) {
3109                if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3110                        ret = btrfs_next_leaf(root, p);
3111                        if (ret <= 0)
3112                                return ret;
3113                        if (!return_any)
3114                                return 1;
3115                        /*
3116                         * no higher item found, return the next
3117                         * lower instead
3118                         */
3119                        return_any = 0;
3120                        find_higher = 0;
3121                        btrfs_release_path(p);
3122                        goto again;
3123                }
3124        } else {
3125                if (p->slots[0] == 0) {
3126                        ret = btrfs_prev_leaf(root, p);
3127                        if (ret < 0)
3128                                return ret;
3129                        if (!ret) {
3130                                leaf = p->nodes[0];
3131                                if (p->slots[0] == btrfs_header_nritems(leaf))
3132                                        p->slots[0]--;
3133                                return 0;
3134                        }
3135                        if (!return_any)
3136                                return 1;
3137                        /*
3138                         * no lower item found, return the next
3139                         * higher instead
3140                         */
3141                        return_any = 0;
3142                        find_higher = 1;
3143                        btrfs_release_path(p);
3144                        goto again;
3145                } else {
3146                        --p->slots[0];
3147                }
3148        }
3149        return 0;
3150}
3151
3152/*
3153 * adjust the pointers going up the tree, starting at level
3154 * making sure the right key of each node is points to 'key'.
3155 * This is used after shifting pointers to the left, so it stops
3156 * fixing up pointers when a given leaf/node is not in slot 0 of the
3157 * higher levels
3158 *
3159 */
3160static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3161                           struct btrfs_path *path,
3162                           struct btrfs_disk_key *key, int level)
3163{
3164        int i;
3165        struct extent_buffer *t;
3166
3167        for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3168                int tslot = path->slots[i];
3169                if (!path->nodes[i])
3170                        break;
3171                t = path->nodes[i];
3172                tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3173                btrfs_set_node_key(t, key, tslot);
3174                btrfs_mark_buffer_dirty(path->nodes[i]);
3175                if (tslot != 0)
3176                        break;
3177        }
3178}
3179
3180/*
3181 * update item key.
3182 *
3183 * This function isn't completely safe. It's the caller's responsibility
3184 * that the new key won't break the order
3185 */
3186void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3187                             struct btrfs_path *path,
3188                             struct btrfs_key *new_key)
3189{
3190        struct btrfs_disk_key disk_key;
3191        struct extent_buffer *eb;
3192        int slot;
3193
3194        eb = path->nodes[0];
3195        slot = path->slots[0];
3196        if (slot > 0) {
3197                btrfs_item_key(eb, &disk_key, slot - 1);
3198                BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3199        }
3200        if (slot < btrfs_header_nritems(eb) - 1) {
3201                btrfs_item_key(eb, &disk_key, slot + 1);
3202                BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3203        }
3204
3205        btrfs_cpu_key_to_disk(&disk_key, new_key);
3206        btrfs_set_item_key(eb, &disk_key, slot);
3207        btrfs_mark_buffer_dirty(eb);
3208        if (slot == 0)
3209                fixup_low_keys(fs_info, path, &disk_key, 1);
3210}
3211
3212/*
3213 * try to push data from one node into the next node left in the
3214 * tree.
3215 *
3216 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3217 * error, and > 0 if there was no room in the left hand block.
3218 */
3219static int push_node_left(struct btrfs_trans_handle *trans,
3220                          struct btrfs_root *root, struct extent_buffer *dst,
3221                          struct extent_buffer *src, int empty)
3222{
3223        int push_items = 0;
3224        int src_nritems;
3225        int dst_nritems;
3226        int ret = 0;
3227
3228        src_nritems = btrfs_header_nritems(src);
3229        dst_nritems = btrfs_header_nritems(dst);
3230        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3231        WARN_ON(btrfs_header_generation(src) != trans->transid);
3232        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3233
3234        if (!empty && src_nritems <= 8)
3235                return 1;
3236
3237        if (push_items <= 0)
3238                return 1;
3239
3240        if (empty) {
3241                push_items = min(src_nritems, push_items);
3242                if (push_items < src_nritems) {
3243                        /* leave at least 8 pointers in the node if
3244                         * we aren't going to empty it
3245                         */
3246                        if (src_nritems - push_items < 8) {
3247                                if (push_items <= 8)
3248                                        return 1;
3249                                push_items -= 8;
3250                        }
3251                }
3252        } else
3253                push_items = min(src_nritems - 8, push_items);
3254
3255        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3256                                   push_items);
3257        if (ret) {
3258                btrfs_abort_transaction(trans, ret);
3259                return ret;
3260        }
3261        copy_extent_buffer(dst, src,
3262                           btrfs_node_key_ptr_offset(dst_nritems),
3263                           btrfs_node_key_ptr_offset(0),
3264                           push_items * sizeof(struct btrfs_key_ptr));
3265
3266        if (push_items < src_nritems) {
3267                /*
3268                 * don't call tree_mod_log_eb_move here, key removal was already
3269                 * fully logged by tree_mod_log_eb_copy above.
3270                 */
3271                memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3272                                      btrfs_node_key_ptr_offset(push_items),
3273                                      (src_nritems - push_items) *
3274                                      sizeof(struct btrfs_key_ptr));
3275        }
3276        btrfs_set_header_nritems(src, src_nritems - push_items);
3277        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3278        btrfs_mark_buffer_dirty(src);
3279        btrfs_mark_buffer_dirty(dst);
3280
3281        return ret;
3282}
3283
3284/*
3285 * try to push data from one node into the next node right in the
3286 * tree.
3287 *
3288 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3289 * error, and > 0 if there was no room in the right hand block.
3290 *
3291 * this will  only push up to 1/2 the contents of the left node over
3292 */
3293static int balance_node_right(struct btrfs_trans_handle *trans,
3294                              struct btrfs_root *root,
3295                              struct extent_buffer *dst,
3296                              struct extent_buffer *src)
3297{
3298        int push_items = 0;
3299        int max_push;
3300        int src_nritems;
3301        int dst_nritems;
3302        int ret = 0;
3303
3304        WARN_ON(btrfs_header_generation(src) != trans->transid);
3305        WARN_ON(btrfs_header_generation(dst) != trans->transid);
3306
3307        src_nritems = btrfs_header_nritems(src);
3308        dst_nritems = btrfs_header_nritems(dst);
3309        push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3310        if (push_items <= 0)
3311                return 1;
3312
3313        if (src_nritems < 4)
3314                return 1;
3315
3316        max_push = src_nritems / 2 + 1;
3317        /* don't try to empty the node */
3318        if (max_push >= src_nritems)
3319                return 1;
3320
3321        if (max_push < push_items)
3322                push_items = max_push;
3323
3324        tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3325        memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3326                                      btrfs_node_key_ptr_offset(0),
3327                                      (dst_nritems) *
3328                                      sizeof(struct btrfs_key_ptr));
3329
3330        ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3331                                   src_nritems - push_items, push_items);
3332        if (ret) {
3333                btrfs_abort_transaction(trans, ret);
3334                return ret;
3335        }
3336        copy_extent_buffer(dst, src,
3337                           btrfs_node_key_ptr_offset(0),
3338                           btrfs_node_key_ptr_offset(src_nritems - push_items),
3339                           push_items * sizeof(struct btrfs_key_ptr));
3340
3341        btrfs_set_header_nritems(src, src_nritems - push_items);
3342        btrfs_set_header_nritems(dst, dst_nritems + push_items);
3343
3344        btrfs_mark_buffer_dirty(src);
3345        btrfs_mark_buffer_dirty(dst);
3346
3347        return ret;
3348}
3349
3350/*
3351 * helper function to insert a new root level in the tree.
3352 * A new node is allocated, and a single item is inserted to
3353 * point to the existing root
3354 *
3355 * returns zero on success or < 0 on failure.
3356 */
3357static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3358                           struct btrfs_root *root,
3359                           struct btrfs_path *path, int level)
3360{
3361        u64 lower_gen;
3362        struct extent_buffer *lower;
3363        struct extent_buffer *c;
3364        struct extent_buffer *old;
3365        struct btrfs_disk_key lower_key;
3366
3367        BUG_ON(path->nodes[level]);
3368        BUG_ON(path->nodes[level-1] != root->node);
3369
3370        lower = path->nodes[level-1];
3371        if (level == 1)
3372                btrfs_item_key(lower, &lower_key, 0);
3373        else
3374                btrfs_node_key(lower, &lower_key, 0);
3375
3376        c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3377                                   &lower_key, level, root->node->start, 0);
3378        if (IS_ERR(c))
3379                return PTR_ERR(c);
3380
3381        root_add_used(root, root->nodesize);
3382
3383        memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3384        btrfs_set_header_nritems(c, 1);
3385        btrfs_set_header_level(c, level);
3386        btrfs_set_header_bytenr(c, c->start);
3387        btrfs_set_header_generation(c, trans->transid);
3388        btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3389        btrfs_set_header_owner(c, root->root_key.objectid);
3390
3391        write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3392                            BTRFS_FSID_SIZE);
3393
3394        write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3395                            btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3396
3397        btrfs_set_node_key(c, &lower_key, 0);
3398        btrfs_set_node_blockptr(c, 0, lower->start);
3399        lower_gen = btrfs_header_generation(lower);
3400        WARN_ON(lower_gen != trans->transid);
3401
3402        btrfs_set_node_ptr_generation(c, 0, lower_gen);
3403
3404        btrfs_mark_buffer_dirty(c);
3405
3406        old = root->node;
3407        tree_mod_log_set_root_pointer(root, c, 0);
3408        rcu_assign_pointer(root->node, c);
3409
3410        /* the super has an extra ref to root->node */
3411        free_extent_buffer(old);
3412
3413        add_root_to_dirty_list(root);
3414        extent_buffer_get(c);
3415        path->nodes[level] = c;
3416        path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3417        path->slots[level] = 0;
3418        return 0;
3419}
3420
3421/*
3422 * worker function to insert a single pointer in a node.
3423 * the node should have enough room for the pointer already
3424 *
3425 * slot and level indicate where you want the key to go, and
3426 * blocknr is the block the key points to.
3427 */
3428static void insert_ptr(struct btrfs_trans_handle *trans,
3429                       struct btrfs_root *root, struct btrfs_path *path,
3430                       struct btrfs_disk_key *key, u64 bytenr,
3431                       int slot, int level)
3432{
3433        struct extent_buffer *lower;
3434        int nritems;
3435        int ret;
3436
3437        BUG_ON(!path->nodes[level]);
3438        btrfs_assert_tree_locked(path->nodes[level]);
3439        lower = path->nodes[level];
3440        nritems = btrfs_header_nritems(lower);
3441        BUG_ON(slot > nritems);
3442        BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3443        if (slot != nritems) {
3444                if (level)
3445                        tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3446                                             slot, nritems - slot);
3447                memmove_extent_buffer(lower,
3448                              btrfs_node_key_ptr_offset(slot + 1),
3449                              btrfs_node_key_ptr_offset(slot),
3450                              (nritems - slot) * sizeof(struct btrfs_key_ptr));
3451        }
3452        if (level) {
3453                ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3454                                              MOD_LOG_KEY_ADD, GFP_NOFS);
3455                BUG_ON(ret < 0);
3456        }
3457        btrfs_set_node_key(lower, key, slot);
3458        btrfs_set_node_blockptr(lower, slot, bytenr);
3459        WARN_ON(trans->transid == 0);
3460        btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3461        btrfs_set_header_nritems(lower, nritems + 1);
3462        btrfs_mark_buffer_dirty(lower);
3463}
3464
3465/*
3466 * split the node at the specified level in path in two.
3467 * The path is corrected to point to the appropriate node after the split
3468 *
3469 * Before splitting this tries to make some room in the node by pushing
3470 * left and right, if either one works, it returns right away.
3471 *
3472 * returns 0 on success and < 0 on failure
3473 */
3474static noinline int split_node(struct btrfs_trans_handle *trans,
3475                               struct btrfs_root *root,
3476                               struct btrfs_path *path, int level)
3477{
3478        struct extent_buffer *c;
3479        struct extent_buffer *split;
3480        struct btrfs_disk_key disk_key;
3481        int mid;
3482        int ret;
3483        u32 c_nritems;
3484
3485        c = path->nodes[level];
3486        WARN_ON(btrfs_header_generation(c) != trans->transid);
3487        if (c == root->node) {
3488                /*
3489                 * trying to split the root, lets make a new one
3490                 *
3491                 * tree mod log: We don't log_removal old root in
3492                 * insert_new_root, because that root buffer will be kept as a
3493                 * normal node. We are going to log removal of half of the
3494                 * elements below with tree_mod_log_eb_copy. We're holding a
3495                 * tree lock on the buffer, which is why we cannot race with
3496                 * other tree_mod_log users.
3497                 */
3498                ret = insert_new_root(trans, root, path, level + 1);
3499                if (ret)
3500                        return ret;
3501        } else {
3502                ret = push_nodes_for_insert(trans, root, path, level);
3503                c = path->nodes[level];
3504                if (!ret && btrfs_header_nritems(c) <
3505                    BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3506                        return 0;
3507                if (ret < 0)
3508                        return ret;
3509        }
3510
3511        c_nritems = btrfs_header_nritems(c);
3512        mid = (c_nritems + 1) / 2;
3513        btrfs_node_key(c, &disk_key, mid);
3514
3515        split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3516                        &disk_key, level, c->start, 0);
3517        if (IS_ERR(split))
3518                return PTR_ERR(split);
3519
3520        root_add_used(root, root->nodesize);
3521
3522        memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3523        btrfs_set_header_level(split, btrfs_header_level(c));
3524        btrfs_set_header_bytenr(split, split->start);
3525        btrfs_set_header_generation(split, trans->transid);
3526        btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3527        btrfs_set_header_owner(split, root->root_key.objectid);
3528        write_extent_buffer(split, root->fs_info->fsid,
3529                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
3530        write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3531                            btrfs_header_chunk_tree_uuid(split),
3532                            BTRFS_UUID_SIZE);
3533
3534        ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3535                                   mid, c_nritems - mid);
3536        if (ret) {
3537                btrfs_abort_transaction(trans, ret);
3538                return ret;
3539        }
3540        copy_extent_buffer(split, c,
3541                           btrfs_node_key_ptr_offset(0),
3542                           btrfs_node_key_ptr_offset(mid),
3543                           (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3544        btrfs_set_header_nritems(split, c_nritems - mid);
3545        btrfs_set_header_nritems(c, mid);
3546        ret = 0;
3547
3548        btrfs_mark_buffer_dirty(c);
3549        btrfs_mark_buffer_dirty(split);
3550
3551        insert_ptr(trans, root, path, &disk_key, split->start,
3552                   path->slots[level + 1] + 1, level + 1);
3553
3554        if (path->slots[level] >= mid) {
3555                path->slots[level] -= mid;
3556                btrfs_tree_unlock(c);
3557                free_extent_buffer(c);
3558                path->nodes[level] = split;
3559                path->slots[level + 1] += 1;
3560        } else {
3561                btrfs_tree_unlock(split);
3562                free_extent_buffer(split);
3563        }
3564        return ret;
3565}
3566
3567/*
3568 * how many bytes are required to store the items in a leaf.  start
3569 * and nr indicate which items in the leaf to check.  This totals up the
3570 * space used both by the item structs and the item data
3571 */
3572static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3573{
3574        struct btrfs_item *start_item;
3575        struct btrfs_item *end_item;
3576        struct btrfs_map_token token;
3577        int data_len;
3578        int nritems = btrfs_header_nritems(l);
3579        int end = min(nritems, start + nr) - 1;
3580
3581        if (!nr)
3582                return 0;
3583        btrfs_init_map_token(&token);
3584        start_item = btrfs_item_nr(start);
3585        end_item = btrfs_item_nr(end);
3586        data_len = btrfs_token_item_offset(l, start_item, &token) +
3587                btrfs_token_item_size(l, start_item, &token);
3588        data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3589        data_len += sizeof(struct btrfs_item) * nr;
3590        WARN_ON(data_len < 0);
3591        return data_len;
3592}
3593
3594/*
3595 * The space between the end of the leaf items and
3596 * the start of the leaf data.  IOW, how much room
3597 * the leaf has left for both items and data
3598 */
3599noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3600                                   struct extent_buffer *leaf)
3601{
3602        int nritems = btrfs_header_nritems(leaf);
3603        int ret;
3604        ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3605        if (ret < 0) {
3606                btrfs_crit(root->fs_info,
3607                        "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3608                       ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3609                       leaf_space_used(leaf, 0, nritems), nritems);
3610        }
3611        return ret;
3612}
3613
3614/*
3615 * min slot controls the lowest index we're willing to push to the
3616 * right.  We'll push up to and including min_slot, but no lower
3617 */
3618static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3619                                      struct btrfs_root *root,
3620                                      struct btrfs_path *path,
3621                                      int data_size, int empty,
3622                                      struct extent_buffer *right,
3623                                      int free_space, u32 left_nritems,
3624                                      u32 min_slot)
3625{
3626        struct extent_buffer *left = path->nodes[0];
3627        struct extent_buffer *upper = path->nodes[1];
3628        struct btrfs_map_token token;
3629        struct btrfs_disk_key disk_key;
3630        int slot;
3631        u32 i;
3632        int push_space = 0;
3633        int push_items = 0;
3634        struct btrfs_item *item;
3635        u32 nr;
3636        u32 right_nritems;
3637        u32 data_end;
3638        u32 this_item_size;
3639
3640        btrfs_init_map_token(&token);
3641
3642        if (empty)
3643                nr = 0;
3644        else
3645                nr = max_t(u32, 1, min_slot);
3646
3647        if (path->slots[0] >= left_nritems)
3648                push_space += data_size;
3649
3650        slot = path->slots[1];
3651        i = left_nritems - 1;
3652        while (i >= nr) {
3653                item = btrfs_item_nr(i);
3654
3655                if (!empty && push_items > 0) {
3656                        if (path->slots[0] > i)
3657                                break;
3658                        if (path->slots[0] == i) {
3659                                int space = btrfs_leaf_free_space(root, left);
3660                                if (space + push_space * 2 > free_space)
3661                                        break;
3662                        }
3663                }
3664
3665                if (path->slots[0] == i)
3666                        push_space += data_size;
3667
3668                this_item_size = btrfs_item_size(left, item);
3669                if (this_item_size + sizeof(*item) + push_space > free_space)
3670                        break;
3671
3672                push_items++;
3673                push_space += this_item_size + sizeof(*item);
3674                if (i == 0)
3675                        break;
3676                i--;
3677        }
3678
3679        if (push_items == 0)
3680                goto out_unlock;
3681
3682        WARN_ON(!empty && push_items == left_nritems);
3683
3684        /* push left to right */
3685        right_nritems = btrfs_header_nritems(right);
3686
3687        push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3688        push_space -= leaf_data_end(root, left);
3689
3690        /* make room in the right data area */
3691        data_end = leaf_data_end(root, right);
3692        memmove_extent_buffer(right,
3693                              btrfs_leaf_data(right) + data_end - push_space,
3694                              btrfs_leaf_data(right) + data_end,
3695                              BTRFS_LEAF_DATA_SIZE(root) - data_end);
3696
3697        /* copy from the left data area */
3698        copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3699                     BTRFS_LEAF_DATA_SIZE(root) - push_space,
3700                     btrfs_leaf_data(left) + leaf_data_end(root, left),
3701                     push_space);
3702
3703        memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3704                              btrfs_item_nr_offset(0),
3705                              right_nritems * sizeof(struct btrfs_item));
3706
3707        /* copy the items from left to right */
3708        copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3709                   btrfs_item_nr_offset(left_nritems - push_items),
3710                   push_items * sizeof(struct btrfs_item));
3711
3712        /* update the item pointers */
3713        right_nritems += push_items;
3714        btrfs_set_header_nritems(right, right_nritems);
3715        push_space = BTRFS_LEAF_DATA_SIZE(root);
3716        for (i = 0; i < right_nritems; i++) {
3717                item = btrfs_item_nr(i);
3718                push_space -= btrfs_token_item_size(right, item, &token);
3719                btrfs_set_token_item_offset(right, item, push_space, &token);
3720        }
3721
3722        left_nritems -= push_items;
3723        btrfs_set_header_nritems(left, left_nritems);
3724
3725        if (left_nritems)
3726                btrfs_mark_buffer_dirty(left);
3727        else
3728                clean_tree_block(trans, root->fs_info, left);
3729
3730        btrfs_mark_buffer_dirty(right);
3731
3732        btrfs_item_key(right, &disk_key, 0);
3733        btrfs_set_node_key(upper, &disk_key, slot + 1);
3734        btrfs_mark_buffer_dirty(upper);
3735
3736        /* then fixup the leaf pointer in the path */
3737        if (path->slots[0] >= left_nritems) {
3738                path->slots[0] -= left_nritems;
3739                if (btrfs_header_nritems(path->nodes[0]) == 0)
3740                        clean_tree_block(trans, root->fs_info, path->nodes[0]);
3741                btrfs_tree_unlock(path->nodes[0]);
3742                free_extent_buffer(path->nodes[0]);
3743                path->nodes[0] = right;
3744                path->slots[1] += 1;
3745        } else {
3746                btrfs_tree_unlock(right);
3747                free_extent_buffer(right);
3748        }
3749        return 0;
3750
3751out_unlock:
3752        btrfs_tree_unlock(right);
3753        free_extent_buffer(right);
3754        return 1;
3755}
3756
3757/*
3758 * push some data in the path leaf to the right, trying to free up at
3759 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3760 *
3761 * returns 1 if the push failed because the other node didn't have enough
3762 * room, 0 if everything worked out and < 0 if there were major errors.
3763 *
3764 * this will push starting from min_slot to the end of the leaf.  It won't
3765 * push any slot lower than min_slot
3766 */
3767static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3768                           *root, struct btrfs_path *path,
3769                           int min_data_size, int data_size,
3770                           int empty, u32 min_slot)
3771{
3772        struct extent_buffer *left = path->nodes[0];
3773        struct extent_buffer *right;
3774        struct extent_buffer *upper;
3775        int slot;
3776        int free_space;
3777        u32 left_nritems;
3778        int ret;
3779
3780        if (!path->nodes[1])
3781                return 1;
3782
3783        slot = path->slots[1];
3784        upper = path->nodes[1];
3785        if (slot >= btrfs_header_nritems(upper) - 1)
3786                return 1;
3787
3788        btrfs_assert_tree_locked(path->nodes[1]);
3789
3790        right = read_node_slot(root, upper, slot + 1);
3791        /*
3792         * slot + 1 is not valid or we fail to read the right node,
3793         * no big deal, just return.
3794         */
3795        if (IS_ERR(right))
3796                return 1;
3797
3798        btrfs_tree_lock(right);
3799        btrfs_set_lock_blocking(right);
3800
3801        free_space = btrfs_leaf_free_space(root, right);
3802        if (free_space < data_size)
3803                goto out_unlock;
3804
3805        /* cow and double check */
3806        ret = btrfs_cow_block(trans, root, right, upper,
3807                              slot + 1, &right);
3808        if (ret)
3809                goto out_unlock;
3810
3811        free_space = btrfs_leaf_free_space(root, right);
3812        if (free_space < data_size)
3813                goto out_unlock;
3814
3815        left_nritems = btrfs_header_nritems(left);
3816        if (left_nritems == 0)
3817                goto out_unlock;
3818
3819        if (path->slots[0] == left_nritems && !empty) {
3820                /* Key greater than all keys in the leaf, right neighbor has
3821                 * enough room for it and we're not emptying our leaf to delete
3822                 * it, therefore use right neighbor to insert the new item and
3823                 * no need to touch/dirty our left leaft. */
3824                btrfs_tree_unlock(left);
3825                free_extent_buffer(left);
3826                path->nodes[0] = right;
3827                path->slots[0] = 0;
3828                path->slots[1]++;
3829                return 0;
3830        }
3831
3832        return __push_leaf_right(trans, root, path, min_data_size, empty,
3833                                right, free_space, left_nritems, min_slot);
3834out_unlock:
3835        btrfs_tree_unlock(right);
3836        free_extent_buffer(right);
3837        return 1;
3838}
3839
3840/*
3841 * push some data in the path leaf to the left, trying to free up at
3842 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3843 *
3844 * max_slot can put a limit on how far into the leaf we'll push items.  The
3845 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us do all the
3846 * items
3847 */
3848static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3849                                     struct btrfs_root *root,
3850                                     struct btrfs_path *path, int data_size,
3851                                     int empty, struct extent_buffer *left,
3852                                     int free_space, u32 right_nritems,
3853                                     u32 max_slot)
3854{
3855        struct btrfs_disk_key disk_key;
3856        struct extent_buffer *right = path->nodes[0];
3857        int i;
3858        int push_space = 0;
3859        int push_items = 0;
3860        struct btrfs_item *item;
3861        u32 old_left_nritems;
3862        u32 nr;
3863        int ret = 0;
3864        u32 this_item_size;
3865        u32 old_left_item_size;
3866        struct btrfs_map_token token;
3867
3868        btrfs_init_map_token(&token);
3869
3870        if (empty)
3871                nr = min(right_nritems, max_slot);
3872        else
3873                nr = min(right_nritems - 1, max_slot);
3874
3875        for (i = 0; i < nr; i++) {
3876                item = btrfs_item_nr(i);
3877
3878                if (!empty && push_items > 0) {
3879                        if (path->slots[0] < i)
3880                                break;
3881                        if (path->slots[0] == i) {
3882                                int space = btrfs_leaf_free_space(root, right);
3883                                if (space + push_space * 2 > free_space)
3884                                        break;
3885                        }
3886                }
3887
3888                if (path->slots[0] == i)
3889                        push_space += data_size;
3890
3891                this_item_size = btrfs_item_size(right, item);
3892                if (this_item_size + sizeof(*item) + push_space > free_space)
3893                        break;
3894
3895                push_items++;
3896                push_space += this_item_size + sizeof(*item);
3897        }
3898
3899        if (push_items == 0) {
3900                ret = 1;
3901                goto out;
3902        }
3903        WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3904
3905        /* push data from right to left */
3906        copy_extent_buffer(left, right,
3907                           btrfs_item_nr_offset(btrfs_header_nritems(left)),
3908                           btrfs_item_nr_offset(0),
3909                           push_items * sizeof(struct btrfs_item));
3910
3911        push_space = BTRFS_LEAF_DATA_SIZE(root) -
3912                     btrfs_item_offset_nr(right, push_items - 1);
3913
3914        copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3915                     leaf_data_end(root, left) - push_space,
3916                     btrfs_leaf_data(right) +
3917                     btrfs_item_offset_nr(right, push_items - 1),
3918                     push_space);
3919        old_left_nritems = btrfs_header_nritems(left);
3920        BUG_ON(old_left_nritems <= 0);
3921
3922        old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3923        for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3924                u32 ioff;
3925
3926                item = btrfs_item_nr(i);
3927
3928                ioff = btrfs_token_item_offset(left, item, &token);
3929                btrfs_set_token_item_offset(left, item,
3930                      ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3931                      &token);
3932        }
3933        btrfs_set_header_nritems(left, old_left_nritems + push_items);
3934
3935        /* fixup right node */
3936        if (push_items > right_nritems)
3937                WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3938                       right_nritems);
3939
3940        if (push_items < right_nritems) {
3941                push_space = btrfs_item_offset_nr(right, push_items - 1) -
3942                                                  leaf_data_end(root, right);
3943                memmove_extent_buffer(right, btrfs_leaf_data(right) +
3944                                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
3945                                      btrfs_leaf_data(right) +
3946                                      leaf_data_end(root, right), push_space);
3947
3948                memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3949                              btrfs_item_nr_offset(push_items),
3950                             (btrfs_header_nritems(right) - push_items) *
3951                             sizeof(struct btrfs_item));
3952        }
3953        right_nritems -= push_items;
3954        btrfs_set_header_nritems(right, right_nritems);
3955        push_space = BTRFS_LEAF_DATA_SIZE(root);
3956        for (i = 0; i < right_nritems; i++) {
3957                item = btrfs_item_nr(i);
3958
3959                push_space = push_space - btrfs_token_item_size(right,
3960                                                                item, &token);
3961                btrfs_set_token_item_offset(right, item, push_space, &token);
3962        }
3963
3964        btrfs_mark_buffer_dirty(left);
3965        if (right_nritems)
3966                btrfs_mark_buffer_dirty(right);
3967        else
3968                clean_tree_block(trans, root->fs_info, right);
3969
3970        btrfs_item_key(right, &disk_key, 0);
3971        fixup_low_keys(root->fs_info, path, &disk_key, 1);
3972
3973        /* then fixup the leaf pointer in the path */
3974        if (path->slots[0] < push_items) {
3975                path->slots[0] += old_left_nritems;
3976                btrfs_tree_unlock(path->nodes[0]);
3977                free_extent_buffer(path->nodes[0]);
3978                path->nodes[0] = left;
3979                path->slots[1] -= 1;
3980        } else {
3981                btrfs_tree_unlock(left);
3982                free_extent_buffer(left);
3983                path->slots[0] -= push_items;
3984        }
3985        BUG_ON(path->slots[0] < 0);
3986        return ret;
3987out:
3988        btrfs_tree_unlock(left);
3989        free_extent_buffer(left);
3990        return ret;
3991}
3992
3993/*
3994 * push some data in the path leaf to the left, trying to free up at
3995 * least data_size bytes.  returns zero if the push worked, nonzero otherwise
3996 *
3997 * max_slot can put a limit on how far into the leaf we'll push items.  The
3998 * item at 'max_slot' won't be touched.  Use (u32)-1 to make us push all the
3999 * items
4000 */
4001static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
4002                          *root, struct btrfs_path *path, int min_data_size,
4003                          int data_size, int empty, u32 max_slot)
4004{
4005        struct extent_buffer *right = path->nodes[0];
4006        struct extent_buffer *left;
4007        int slot;
4008        int free_space;
4009        u32 right_nritems;
4010        int ret = 0;
4011
4012        slot = path->slots[1];
4013        if (slot == 0)
4014                return 1;
4015        if (!path->nodes[1])
4016                return 1;
4017
4018        right_nritems = btrfs_header_nritems(right);
4019        if (right_nritems == 0)
4020                return 1;
4021
4022        btrfs_assert_tree_locked(path->nodes[1]);
4023
4024        left = read_node_slot(root, path->nodes[1], slot - 1);
4025        /*
4026         * slot - 1 is not valid or we fail to read the left node,
4027         * no big deal, just return.
4028         */
4029        if (IS_ERR(left))
4030                return 1;
4031
4032        btrfs_tree_lock(left);
4033        btrfs_set_lock_blocking(left);
4034
4035        free_space = btrfs_leaf_free_space(root, left);
4036        if (free_space < data_size) {
4037                ret = 1;
4038                goto out;
4039        }
4040
4041        /* cow and double check */
4042        ret = btrfs_cow_block(trans, root, left,
4043                              path->nodes[1], slot - 1, &left);
4044        if (ret) {
4045                /* we hit -ENOSPC, but it isn't fatal here */
4046                if (ret == -ENOSPC)
4047                        ret = 1;
4048                goto out;
4049        }
4050
4051        free_space = btrfs_leaf_free_space(root, left);
4052        if (free_space < data_size) {
4053                ret = 1;
4054                goto out;
4055        }
4056
4057        return __push_leaf_left(trans, root, path, min_data_size,
4058                               empty, left, free_space, right_nritems,
4059                               max_slot);
4060out:
4061        btrfs_tree_unlock(left);
4062        free_extent_buffer(left);
4063        return ret;
4064}
4065
4066/*
4067 * split the path's leaf in two, making sure there is at least data_size
4068 * available for the resulting leaf level of the path.
4069 */
4070static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4071                                    struct btrfs_root *root,
4072                                    struct btrfs_path *path,
4073                                    struct extent_buffer *l,
4074                                    struct extent_buffer *right,
4075                                    int slot, int mid, int nritems)
4076{
4077        int data_copy_size;
4078        int rt_data_off;
4079        int i;
4080        struct btrfs_disk_key disk_key;
4081        struct btrfs_map_token token;
4082
4083        btrfs_init_map_token(&token);
4084
4085        nritems = nritems - mid;
4086        btrfs_set_header_nritems(right, nritems);
4087        data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4088
4089        copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4090                           btrfs_item_nr_offset(mid),
4091                           nritems * sizeof(struct btrfs_item));
4092
4093        copy_extent_buffer(right, l,
4094                     btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4095                     data_copy_size, btrfs_leaf_data(l) +
4096                     leaf_data_end(root, l), data_copy_size);
4097
4098        rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4099                      btrfs_item_end_nr(l, mid);
4100
4101        for (i = 0; i < nritems; i++) {
4102                struct btrfs_item *item = btrfs_item_nr(i);
4103                u32 ioff;
4104
4105                ioff = btrfs_token_item_offset(right, item, &token);
4106                btrfs_set_token_item_offset(right, item,
4107                                            ioff + rt_data_off, &token);
4108        }
4109
4110        btrfs_set_header_nritems(l, mid);
4111        btrfs_item_key(right, &disk_key, 0);
4112        insert_ptr(trans, root, path, &disk_key, right->start,
4113                   path->slots[1] + 1, 1);
4114
4115        btrfs_mark_buffer_dirty(right);
4116        btrfs_mark_buffer_dirty(l);
4117        BUG_ON(path->slots[0] != slot);
4118
4119        if (mid <= slot) {
4120                btrfs_tree_unlock(path->nodes[0]);
4121                free_extent_buffer(path->nodes[0]);
4122                path->nodes[0] = right;
4123                path->slots[0] -= mid;
4124                path->slots[1] += 1;
4125        } else {
4126                btrfs_tree_unlock(right);
4127                free_extent_buffer(right);
4128        }
4129
4130        BUG_ON(path->slots[0] < 0);
4131}
4132
4133/*
4134 * double splits happen when we need to insert a big item in the middle
4135 * of a leaf.  A double split can leave us with 3 mostly empty leaves:
4136 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4137 *          A                 B                 C
4138 *
4139 * We avoid this by trying to push the items on either side of our target
4140 * into the adjacent leaves.  If all goes well we can avoid the double split
4141 * completely.
4142 */
4143static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4144                                          struct btrfs_root *root,
4145                                          struct btrfs_path *path,
4146                                          int data_size)
4147{
4148        int ret;
4149        int progress = 0;
4150        int slot;
4151        u32 nritems;
4152        int space_needed = data_size;
4153
4154        slot = path->slots[0];
4155        if (slot < btrfs_header_nritems(path->nodes[0]))
4156                space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4157
4158        /*
4159         * try to push all the items after our slot into the
4160         * right leaf
4161         */
4162        ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4163        if (ret < 0)
4164                return ret;
4165
4166        if (ret == 0)
4167                progress++;
4168
4169        nritems = btrfs_header_nritems(path->nodes[0]);
4170        /*
4171         * our goal is to get our slot at the start or end of a leaf.  If
4172         * we've done so we're done
4173         */
4174        if (path->slots[0] == 0 || path->slots[0] == nritems)
4175                return 0;
4176
4177        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4178                return 0;
4179
4180        /* try to push all the items before our slot into the next leaf */
4181        slot = path->slots[0];
4182        ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4183        if (ret < 0)
4184                return ret;
4185
4186        if (ret == 0)
4187                progress++;
4188
4189        if (progress)
4190                return 0;
4191        return 1;
4192}
4193
4194/*
4195 * split the path's leaf in two, making sure there is at least data_size
4196 * available for the resulting leaf level of the path.
4197 *
4198 * returns 0 if all went well and < 0 on failure.
4199 */
4200static noinline int split_leaf(struct btrfs_trans_handle *trans,
4201                               struct btrfs_root *root,
4202                               struct btrfs_key *ins_key,
4203                               struct btrfs_path *path, int data_size,
4204                               int extend)
4205{
4206        struct btrfs_disk_key disk_key;
4207        struct extent_buffer *l;
4208        u32 nritems;
4209        int mid;
4210        int slot;
4211        struct extent_buffer *right;
4212        struct btrfs_fs_info *fs_info = root->fs_info;
4213        int ret = 0;
4214        int wret;
4215        int split;
4216        int num_doubles = 0;
4217        int tried_avoid_double = 0;
4218
4219        l = path->nodes[0];
4220        slot = path->slots[0];
4221        if (extend && data_size + btrfs_item_size_nr(l, slot) +
4222            sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4223                return -EOVERFLOW;
4224
4225        /* first try to make some room by pushing left and right */
4226        if (data_size && path->nodes[1]) {
4227                int space_needed = data_size;
4228
4229                if (slot < btrfs_header_nritems(l))
4230                        space_needed -= btrfs_leaf_free_space(root, l);
4231
4232                wret = push_leaf_right(trans, root, path, space_needed,
4233                                       space_needed, 0, 0);
4234                if (wret < 0)
4235                        return wret;
4236                if (wret) {
4237                        wret = push_leaf_left(trans, root, path, space_needed,
4238                                              space_needed, 0, (u32)-1);
4239                        if (wret < 0)
4240                                return wret;
4241                }
4242                l = path->nodes[0];
4243
4244                /* did the pushes work? */
4245                if (btrfs_leaf_free_space(root, l) >= data_size)
4246                        return 0;
4247        }
4248
4249        if (!path->nodes[1]) {
4250                ret = insert_new_root(trans, root, path, 1);
4251                if (ret)
4252                        return ret;
4253        }
4254again:
4255        split = 1;
4256        l = path->nodes[0];
4257        slot = path->slots[0];
4258        nritems = btrfs_header_nritems(l);
4259        mid = (nritems + 1) / 2;
4260
4261        if (mid <= slot) {
4262                if (nritems == 1 ||
4263                    leaf_space_used(l, mid, nritems - mid) + data_size >
4264                        BTRFS_LEAF_DATA_SIZE(root)) {
4265                        if (slot >= nritems) {
4266                                split = 0;
4267                        } else {
4268                                mid = slot;
4269                                if (mid != nritems &&
4270                                    leaf_space_used(l, mid, nritems - mid) +
4271                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4272                                        if (data_size && !tried_avoid_double)
4273                                                goto push_for_double;
4274                                        split = 2;
4275                                }
4276                        }
4277                }
4278        } else {
4279                if (leaf_space_used(l, 0, mid) + data_size >
4280                        BTRFS_LEAF_DATA_SIZE(root)) {
4281                        if (!extend && data_size && slot == 0) {
4282                                split = 0;
4283                        } else if ((extend || !data_size) && slot == 0) {
4284                                mid = 1;
4285                        } else {
4286                                mid = slot;
4287                                if (mid != nritems &&
4288                                    leaf_space_used(l, mid, nritems - mid) +
4289                                    data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4290                                        if (data_size && !tried_avoid_double)
4291                                                goto push_for_double;
4292                                        split = 2;
4293                                }
4294                        }
4295                }
4296        }
4297
4298        if (split == 0)
4299                btrfs_cpu_key_to_disk(&disk_key, ins_key);
4300        else
4301                btrfs_item_key(l, &disk_key, mid);
4302
4303        right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4304                        &disk_key, 0, l->start, 0);
4305        if (IS_ERR(right))
4306                return PTR_ERR(right);
4307
4308        root_add_used(root, root->nodesize);
4309
4310        memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4311        btrfs_set_header_bytenr(right, right->start);
4312        btrfs_set_header_generation(right, trans->transid);
4313        btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4314        btrfs_set_header_owner(right, root->root_key.objectid);
4315        btrfs_set_header_level(right, 0);
4316        write_extent_buffer(right, fs_info->fsid,
4317                            btrfs_header_fsid(), BTRFS_FSID_SIZE);
4318
4319        write_extent_buffer(right, fs_info->chunk_tree_uuid,
4320                            btrfs_header_chunk_tree_uuid(right),
4321                            BTRFS_UUID_SIZE);
4322
4323        if (split == 0) {
4324                if (mid <= slot) {
4325                        btrfs_set_header_nritems(right, 0);
4326                        insert_ptr(trans, root, path, &disk_key, right->start,
4327                                   path->slots[1] + 1, 1);
4328                        btrfs_tree_unlock(path->nodes[0]);
4329                        free_extent_buffer(path->nodes[0]);
4330                        path->nodes[0] = right;
4331                        path->slots[0] = 0;
4332                        path->slots[1] += 1;
4333                } else {
4334                        btrfs_set_header_nritems(right, 0);
4335                        insert_ptr(trans, root, path, &disk_key, right->start,
4336                                          path->slots[1], 1);
4337                        btrfs_tree_unlock(path->nodes[0]);
4338                        free_extent_buffer(path->nodes[0]);
4339                        path->nodes[0] = right;
4340                        path->slots[0] = 0;
4341                        if (path->slots[1] == 0)
4342                                fixup_low_keys(fs_info, path, &disk_key, 1);
4343                }
4344                btrfs_mark_buffer_dirty(right);
4345                return ret;
4346        }
4347
4348        copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4349
4350        if (split == 2) {
4351                BUG_ON(num_doubles != 0);
4352                num_doubles++;
4353                goto again;
4354        }
4355
4356        return 0;
4357
4358push_for_double:
4359        push_for_double_split(trans, root, path, data_size);
4360        tried_avoid_double = 1;
4361        if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4362                return 0;
4363        goto again;
4364}
4365
4366static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4367                                         struct btrfs_root *root,
4368                                         struct btrfs_path *path, int ins_len)
4369{
4370        struct btrfs_key key;
4371        struct extent_buffer *leaf;
4372        struct btrfs_file_extent_item *fi;
4373        u64 extent_len = 0;
4374        u32 item_size;
4375        int ret;
4376
4377        leaf = path->nodes[0];
4378        btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4379
4380        BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4381               key.type != BTRFS_EXTENT_CSUM_KEY);
4382
4383        if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4384                return 0;
4385
4386        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4387        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4388                fi = btrfs_item_ptr(leaf, path->slots[0],
4389                                    struct btrfs_file_extent_item);
4390                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4391        }
4392        btrfs_release_path(path);
4393
4394        path->keep_locks = 1;
4395        path->search_for_split = 1;
4396        ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4397        path->search_for_split = 0;
4398        if (ret > 0)
4399                ret = -EAGAIN;
4400        if (ret < 0)
4401                goto err;
4402
4403        ret = -EAGAIN;
4404        leaf = path->nodes[0];
4405        /* if our item isn't there, return now */
4406        if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4407                goto err;
4408
4409        /* the leaf has  changed, it now has room.  return now */
4410        if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4411                goto err;
4412
4413        if (key.type == BTRFS_EXTENT_DATA_KEY) {
4414                fi = btrfs_item_ptr(leaf, path->slots[0],
4415                                    struct btrfs_file_extent_item);
4416                if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4417                        goto err;
4418        }
4419
4420        btrfs_set_path_blocking(path);
4421        ret = split_leaf(trans, root, &key, path, ins_len, 1);
4422        if (ret)
4423                goto err;
4424
4425        path->keep_locks = 0;
4426        btrfs_unlock_up_safe(path, 1);
4427        return 0;
4428err:
4429        path->keep_locks = 0;
4430        return ret;
4431}
4432
4433static noinline int split_item(struct btrfs_trans_handle *trans,
4434                               struct btrfs_root *root,
4435                               struct btrfs_path *path,
4436                               struct btrfs_key *new_key,
4437                               unsigned long split_offset)
4438{
4439        struct extent_buffer *leaf;
4440        struct btrfs_item *item;
4441        struct btrfs_item *new_item;
4442        int slot;
4443        char *buf;
4444        u32 nritems;
4445        u32 item_size;
4446        u32 orig_offset;
4447        struct btrfs_disk_key disk_key;
4448
4449        leaf = path->nodes[0];
4450        BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4451
4452        btrfs_set_path_blocking(path);
4453
4454        item = btrfs_item_nr(path->slots[0]);
4455        orig_offset = btrfs_item_offset(leaf, item);
4456        item_size = btrfs_item_size(leaf, item);
4457
4458        buf = kmalloc(item_size, GFP_NOFS);
4459        if (!buf)
4460                return -ENOMEM;
4461
4462        read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4463                            path->slots[0]), item_size);
4464
4465        slot = path->slots[0] + 1;
4466        nritems = btrfs_header_nritems(leaf);
4467        if (slot != nritems) {
4468                /* shift the items */
4469                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4470                                btrfs_item_nr_offset(slot),
4471                                (nritems - slot) * sizeof(struct btrfs_item));
4472        }
4473
4474        btrfs_cpu_key_to_disk(&disk_key, new_key);
4475        btrfs_set_item_key(leaf, &disk_key, slot);
4476
4477        new_item = btrfs_item_nr(slot);
4478
4479        btrfs_set_item_offset(leaf, new_item, orig_offset);
4480        btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4481
4482        btrfs_set_item_offset(leaf, item,
4483                              orig_offset + item_size - split_offset);
4484        btrfs_set_item_size(leaf, item, split_offset);
4485
4486        btrfs_set_header_nritems(leaf, nritems + 1);
4487
4488        /* write the data for the start of the original item */
4489        write_extent_buffer(leaf, buf,
4490                            btrfs_item_ptr_offset(leaf, path->slots[0]),
4491                            split_offset);
4492
4493        /* write the data for the new item */
4494        write_extent_buffer(leaf, buf + split_offset,
4495                            btrfs_item_ptr_offset(leaf, slot),
4496                            item_size - split_offset);
4497        btrfs_mark_buffer_dirty(leaf);
4498
4499        BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4500        kfree(buf);
4501        return 0;
4502}
4503
4504/*
4505 * This function splits a single item into two items,
4506 * giving 'new_key' to the new item and splitting the
4507 * old one at split_offset (from the start of the item).
4508 *
4509 * The path may be released by this operation.  After
4510 * the split, the path is pointing to the old item.  The
4511 * new item is going to be in the same node as the old one.
4512 *
4513 * Note, the item being split must be smaller enough to live alone on
4514 * a tree block with room for one extra struct btrfs_item
4515 *
4516 * This allows us to split the item in place, keeping a lock on the
4517 * leaf the entire time.
4518 */
4519int btrfs_split_item(struct btrfs_trans_handle *trans,
4520                     struct btrfs_root *root,
4521                     struct btrfs_path *path,
4522                     struct btrfs_key *new_key,
4523                     unsigned long split_offset)
4524{
4525        int ret;
4526        ret = setup_leaf_for_split(trans, root, path,
4527                                   sizeof(struct btrfs_item));
4528        if (ret)
4529                return ret;
4530
4531        ret = split_item(trans, root, path, new_key, split_offset);
4532        return ret;
4533}
4534
4535/*
4536 * This function duplicate a item, giving 'new_key' to the new item.
4537 * It guarantees both items live in the same tree leaf and the new item
4538 * is contiguous with the original item.
4539 *
4540 * This allows us to split file extent in place, keeping a lock on the
4541 * leaf the entire time.
4542 */
4543int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4544                         struct btrfs_root *root,
4545                         struct btrfs_path *path,
4546                         struct btrfs_key *new_key)
4547{
4548        struct extent_buffer *leaf;
4549        int ret;
4550        u32 item_size;
4551
4552        leaf = path->nodes[0];
4553        item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4554        ret = setup_leaf_for_split(trans, root, path,
4555                                   item_size + sizeof(struct btrfs_item));
4556        if (ret)
4557                return ret;
4558
4559        path->slots[0]++;
4560        setup_items_for_insert(root, path, new_key, &item_size,
4561                               item_size, item_size +
4562                               sizeof(struct btrfs_item), 1);
4563        leaf = path->nodes[0];
4564        memcpy_extent_buffer(leaf,
4565                             btrfs_item_ptr_offset(leaf, path->slots[0]),
4566                             btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4567                             item_size);
4568        return 0;
4569}
4570
4571/*
4572 * make the item pointed to by the path smaller.  new_size indicates
4573 * how small to make it, and from_end tells us if we just chop bytes
4574 * off the end of the item or if we shift the item to chop bytes off
4575 * the front.
4576 */
4577void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4578                         u32 new_size, int from_end)
4579{
4580        int slot;
4581        struct extent_buffer *leaf;
4582        struct btrfs_item *item;
4583        u32 nritems;
4584        unsigned int data_end;
4585        unsigned int old_data_start;
4586        unsigned int old_size;
4587        unsigned int size_diff;
4588        int i;
4589        struct btrfs_map_token token;
4590
4591        btrfs_init_map_token(&token);
4592
4593        leaf = path->nodes[0];
4594        slot = path->slots[0];
4595
4596        old_size = btrfs_item_size_nr(leaf, slot);
4597        if (old_size == new_size)
4598                return;
4599
4600        nritems = btrfs_header_nritems(leaf);
4601        data_end = leaf_data_end(root, leaf);
4602
4603        old_data_start = btrfs_item_offset_nr(leaf, slot);
4604
4605        size_diff = old_size - new_size;
4606
4607        BUG_ON(slot < 0);
4608        BUG_ON(slot >= nritems);
4609
4610        /*
4611         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4612         */
4613        /* first correct the data pointers */
4614        for (i = slot; i < nritems; i++) {
4615                u32 ioff;
4616                item = btrfs_item_nr(i);
4617
4618                ioff = btrfs_token_item_offset(leaf, item, &token);
4619                btrfs_set_token_item_offset(leaf, item,
4620                                            ioff + size_diff, &token);
4621        }
4622
4623        /* shift the data */
4624        if (from_end) {
4625                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4626                              data_end + size_diff, btrfs_leaf_data(leaf) +
4627                              data_end, old_data_start + new_size - data_end);
4628        } else {
4629                struct btrfs_disk_key disk_key;
4630                u64 offset;
4631
4632                btrfs_item_key(leaf, &disk_key, slot);
4633
4634                if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4635                        unsigned long ptr;
4636                        struct btrfs_file_extent_item *fi;
4637
4638                        fi = btrfs_item_ptr(leaf, slot,
4639                                            struct btrfs_file_extent_item);
4640                        fi = (struct btrfs_file_extent_item *)(
4641                             (unsigned long)fi - size_diff);
4642
4643                        if (btrfs_file_extent_type(leaf, fi) ==
4644                            BTRFS_FILE_EXTENT_INLINE) {
4645                                ptr = btrfs_item_ptr_offset(leaf, slot);
4646                                memmove_extent_buffer(leaf, ptr,
4647                                      (unsigned long)fi,
4648                                      BTRFS_FILE_EXTENT_INLINE_DATA_START);
4649                        }
4650                }
4651
4652                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4653                              data_end + size_diff, btrfs_leaf_data(leaf) +
4654                              data_end, old_data_start - data_end);
4655
4656                offset = btrfs_disk_key_offset(&disk_key);
4657                btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4658                btrfs_set_item_key(leaf, &disk_key, slot);
4659                if (slot == 0)
4660                        fixup_low_keys(root->fs_info, path, &disk_key, 1);
4661        }
4662
4663        item = btrfs_item_nr(slot);
4664        btrfs_set_item_size(leaf, item, new_size);
4665        btrfs_mark_buffer_dirty(leaf);
4666
4667        if (btrfs_leaf_free_space(root, leaf) < 0) {
4668                btrfs_print_leaf(root, leaf);
4669                BUG();
4670        }
4671}
4672
4673/*
4674 * make the item pointed to by the path bigger, data_size is the added size.
4675 */
4676void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4677                       u32 data_size)
4678{
4679        int slot;
4680        struct extent_buffer *leaf;
4681        struct btrfs_item *item;
4682        u32 nritems;
4683        unsigned int data_end;
4684        unsigned int old_data;
4685        unsigned int old_size;
4686        int i;
4687        struct btrfs_map_token token;
4688
4689        btrfs_init_map_token(&token);
4690
4691        leaf = path->nodes[0];
4692
4693        nritems = btrfs_header_nritems(leaf);
4694        data_end = leaf_data_end(root, leaf);
4695
4696        if (btrfs_leaf_free_space(root, leaf) < data_size) {
4697                btrfs_print_leaf(root, leaf);
4698                BUG();
4699        }
4700        slot = path->slots[0];
4701        old_data = btrfs_item_end_nr(leaf, slot);
4702
4703        BUG_ON(slot < 0);
4704        if (slot >= nritems) {
4705                btrfs_print_leaf(root, leaf);
4706                btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4707                       slot, nritems);
4708                BUG_ON(1);
4709        }
4710
4711        /*
4712         * item0..itemN ... dataN.offset..dataN.size .. data0.size
4713         */
4714        /* first correct the data pointers */
4715        for (i = slot; i < nritems; i++) {
4716                u32 ioff;
4717                item = btrfs_item_nr(i);
4718
4719                ioff = btrfs_token_item_offset(leaf, item, &token);
4720                btrfs_set_token_item_offset(leaf, item,
4721                                            ioff - data_size, &token);
4722        }
4723
4724        /* shift the data */
4725        memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4726                      data_end - data_size, btrfs_leaf_data(leaf) +
4727                      data_end, old_data - data_end);
4728
4729        data_end = old_data;
4730        old_size = btrfs_item_size_nr(leaf, slot);
4731        item = btrfs_item_nr(slot);
4732        btrfs_set_item_size(leaf, item, old_size + data_size);
4733        btrfs_mark_buffer_dirty(leaf);
4734
4735        if (btrfs_leaf_free_space(root, leaf) < 0) {
4736                btrfs_print_leaf(root, leaf);
4737                BUG();
4738        }
4739}
4740
4741/*
4742 * this is a helper for btrfs_insert_empty_items, the main goal here is
4743 * to save stack depth by doing the bulk of the work in a function
4744 * that doesn't call btrfs_search_slot
4745 */
4746void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4747                            struct btrfs_key *cpu_key, u32 *data_size,
4748                            u32 total_data, u32 total_size, int nr)
4749{
4750        struct btrfs_item *item;
4751        int i;
4752        u32 nritems;
4753        unsigned int data_end;
4754        struct btrfs_disk_key disk_key;
4755        struct extent_buffer *leaf;
4756        int slot;
4757        struct btrfs_map_token token;
4758
4759        if (path->slots[0] == 0) {
4760                btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4761                fixup_low_keys(root->fs_info, path, &disk_key, 1);
4762        }
4763        btrfs_unlock_up_safe(path, 1);
4764
4765        btrfs_init_map_token(&token);
4766
4767        leaf = path->nodes[0];
4768        slot = path->slots[0];
4769
4770        nritems = btrfs_header_nritems(leaf);
4771        data_end = leaf_data_end(root, leaf);
4772
4773        if (btrfs_leaf_free_space(root, leaf) < total_size) {
4774                btrfs_print_leaf(root, leaf);
4775                btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4776                       total_size, btrfs_leaf_free_space(root, leaf));
4777                BUG();
4778        }
4779
4780        if (slot != nritems) {
4781                unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4782
4783                if (old_data < data_end) {
4784                        btrfs_print_leaf(root, leaf);
4785                        btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4786                               slot, old_data, data_end);
4787                        BUG_ON(1);
4788                }
4789                /*
4790                 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4791                 */
4792                /* first correct the data pointers */
4793                for (i = slot; i < nritems; i++) {
4794                        u32 ioff;
4795
4796                        item = btrfs_item_nr( i);
4797                        ioff = btrfs_token_item_offset(leaf, item, &token);
4798                        btrfs_set_token_item_offset(leaf, item,
4799                                                    ioff - total_data, &token);
4800                }
4801                /* shift the items */
4802                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4803                              btrfs_item_nr_offset(slot),
4804                              (nritems - slot) * sizeof(struct btrfs_item));
4805
4806                /* shift the data */
4807                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4808                              data_end - total_data, btrfs_leaf_data(leaf) +
4809                              data_end, old_data - data_end);
4810                data_end = old_data;
4811        }
4812
4813        /* setup the item for the new data */
4814        for (i = 0; i < nr; i++) {
4815                btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4816                btrfs_set_item_key(leaf, &disk_key, slot + i);
4817                item = btrfs_item_nr(slot + i);
4818                btrfs_set_token_item_offset(leaf, item,
4819                                            data_end - data_size[i], &token);
4820                data_end -= data_size[i];
4821                btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4822        }
4823
4824        btrfs_set_header_nritems(leaf, nritems + nr);
4825        btrfs_mark_buffer_dirty(leaf);
4826
4827        if (btrfs_leaf_free_space(root, leaf) < 0) {
4828                btrfs_print_leaf(root, leaf);
4829                BUG();
4830        }
4831}
4832
4833/*
4834 * Given a key and some data, insert items into the tree.
4835 * This does all the path init required, making room in the tree if needed.
4836 */
4837int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4838                            struct btrfs_root *root,
4839                            struct btrfs_path *path,
4840                            struct btrfs_key *cpu_key, u32 *data_size,
4841                            int nr)
4842{
4843        int ret = 0;
4844        int slot;
4845        int i;
4846        u32 total_size = 0;
4847        u32 total_data = 0;
4848
4849        for (i = 0; i < nr; i++)
4850                total_data += data_size[i];
4851
4852        total_size = total_data + (nr * sizeof(struct btrfs_item));
4853        ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4854        if (ret == 0)
4855                return -EEXIST;
4856        if (ret < 0)
4857                return ret;
4858
4859        slot = path->slots[0];
4860        BUG_ON(slot < 0);
4861
4862        setup_items_for_insert(root, path, cpu_key, data_size,
4863                               total_data, total_size, nr);
4864        return 0;
4865}
4866
4867/*
4868 * Given a key and some data, insert an item into the tree.
4869 * This does all the path init required, making room in the tree if needed.
4870 */
4871int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4872                      *root, struct btrfs_key *cpu_key, void *data, u32
4873                      data_size)
4874{
4875        int ret = 0;
4876        struct btrfs_path *path;
4877        struct extent_buffer *leaf;
4878        unsigned long ptr;
4879
4880        path = btrfs_alloc_path();
4881        if (!path)
4882                return -ENOMEM;
4883        ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4884        if (!ret) {
4885                leaf = path->nodes[0];
4886                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4887                write_extent_buffer(leaf, data, ptr, data_size);
4888                btrfs_mark_buffer_dirty(leaf);
4889        }
4890        btrfs_free_path(path);
4891        return ret;
4892}
4893
4894/*
4895 * delete the pointer from a given node.
4896 *
4897 * the tree should have been previously balanced so the deletion does not
4898 * empty a node.
4899 */
4900static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4901                    int level, int slot)
4902{
4903        struct extent_buffer *parent = path->nodes[level];
4904        u32 nritems;
4905        int ret;
4906
4907        nritems = btrfs_header_nritems(parent);
4908        if (slot != nritems - 1) {
4909                if (level)
4910                        tree_mod_log_eb_move(root->fs_info, parent, slot,
4911                                             slot + 1, nritems - slot - 1);
4912                memmove_extent_buffer(parent,
4913                              btrfs_node_key_ptr_offset(slot),
4914                              btrfs_node_key_ptr_offset(slot + 1),
4915                              sizeof(struct btrfs_key_ptr) *
4916                              (nritems - slot - 1));
4917        } else if (level) {
4918                ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4919                                              MOD_LOG_KEY_REMOVE, GFP_NOFS);
4920                BUG_ON(ret < 0);
4921        }
4922
4923        nritems--;
4924        btrfs_set_header_nritems(parent, nritems);
4925        if (nritems == 0 && parent == root->node) {
4926                BUG_ON(btrfs_header_level(root->node) != 1);
4927                /* just turn the root into a leaf and break */
4928                btrfs_set_header_level(root->node, 0);
4929        } else if (slot == 0) {
4930                struct btrfs_disk_key disk_key;
4931
4932                btrfs_node_key(parent, &disk_key, 0);
4933                fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4934        }
4935        btrfs_mark_buffer_dirty(parent);
4936}
4937
4938/*
4939 * a helper function to delete the leaf pointed to by path->slots[1] and
4940 * path->nodes[1].
4941 *
4942 * This deletes the pointer in path->nodes[1] and frees the leaf
4943 * block extent.  zero is returned if it all worked out, < 0 otherwise.
4944 *
4945 * The path must have already been setup for deleting the leaf, including
4946 * all the proper balancing.  path->nodes[1] must be locked.
4947 */
4948static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4949                                    struct btrfs_root *root,
4950                                    struct btrfs_path *path,
4951                                    struct extent_buffer *leaf)
4952{
4953        WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4954        del_ptr(root, path, 1, path->slots[1]);
4955
4956        /*
4957         * btrfs_free_extent is expensive, we want to make sure we
4958         * aren't holding any locks when we call it
4959         */
4960        btrfs_unlock_up_safe(path, 0);
4961
4962        root_sub_used(root, leaf->len);
4963
4964        extent_buffer_get(leaf);
4965        btrfs_free_tree_block(trans, root, leaf, 0, 1);
4966        free_extent_buffer_stale(leaf);
4967}
4968/*
4969 * delete the item at the leaf level in path.  If that empties
4970 * the leaf, remove it from the tree
4971 */
4972int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4973                    struct btrfs_path *path, int slot, int nr)
4974{
4975        struct extent_buffer *leaf;
4976        struct btrfs_item *item;
4977        u32 last_off;
4978        u32 dsize = 0;
4979        int ret = 0;
4980        int wret;
4981        int i;
4982        u32 nritems;
4983        struct btrfs_map_token token;
4984
4985        btrfs_init_map_token(&token);
4986
4987        leaf = path->nodes[0];
4988        last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4989
4990        for (i = 0; i < nr; i++)
4991                dsize += btrfs_item_size_nr(leaf, slot + i);
4992
4993        nritems = btrfs_header_nritems(leaf);
4994
4995        if (slot + nr != nritems) {
4996                int data_end = leaf_data_end(root, leaf);
4997
4998                memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4999                              data_end + dsize,
5000                              btrfs_leaf_data(leaf) + data_end,
5001                              last_off - data_end);
5002
5003                for (i = slot + nr; i < nritems; i++) {
5004                        u32 ioff;
5005
5006                        item = btrfs_item_nr(i);
5007                        ioff = btrfs_token_item_offset(leaf, item, &token);
5008                        btrfs_set_token_item_offset(leaf, item,
5009                                                    ioff + dsize, &token);
5010                }
5011
5012                memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
5013                              btrfs_item_nr_offset(slot + nr),
5014                              sizeof(struct btrfs_item) *
5015                              (nritems - slot - nr));
5016        }
5017        btrfs_set_header_nritems(leaf, nritems - nr);
5018        nritems -= nr;
5019
5020        /* delete the leaf if we've emptied it */
5021        if (nritems == 0) {
5022                if (leaf == root->node) {
5023                        btrfs_set_header_level(leaf, 0);
5024                } else {
5025                        btrfs_set_path_blocking(path);
5026                        clean_tree_block(trans, root->fs_info, leaf);
5027                        btrfs_del_leaf(trans, root, path, leaf);
5028                }
5029        } else {
5030                int used = leaf_space_used(leaf, 0, nritems);
5031                if (slot == 0) {
5032                        struct btrfs_disk_key disk_key;
5033
5034                        btrfs_item_key(leaf, &disk_key, 0);
5035                        fixup_low_keys(root->fs_info, path, &disk_key, 1);
5036                }
5037
5038                /* delete the leaf if it is mostly empty */
5039                if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5040                        /* push_leaf_left fixes the path.
5041                         * make sure the path still points to our leaf
5042                         * for possible call to del_ptr below
5043                         */
5044                        slot = path->slots[1];
5045                        extent_buffer_get(leaf);
5046
5047                        btrfs_set_path_blocking(path);
5048                        wret = push_leaf_left(trans, root, path, 1, 1,
5049                                              1, (u32)-1);
5050                        if (wret < 0 && wret != -ENOSPC)
5051                                ret = wret;
5052
5053                        if (path->nodes[0] == leaf &&
5054                            btrfs_header_nritems(leaf)) {
5055                                wret = push_leaf_right(trans, root, path, 1,
5056                                                       1, 1, 0);
5057                                if (wret < 0 && wret != -ENOSPC)
5058                                        ret = wret;
5059                        }
5060
5061                        if (btrfs_header_nritems(leaf) == 0) {
5062                                path->slots[1] = slot;
5063                                btrfs_del_leaf(trans, root, path, leaf);
5064                                free_extent_buffer(leaf);
5065                                ret = 0;
5066                        } else {
5067                                /* if we're still in the path, make sure
5068                                 * we're dirty.  Otherwise, one of the
5069                                 * push_leaf functions must have already
5070                                 * dirtied this buffer
5071                                 */
5072                                if (path->nodes[0] == leaf)
5073                                        btrfs_mark_buffer_dirty(leaf);
5074                                free_extent_buffer(leaf);
5075                        }
5076                } else {
5077                        btrfs_mark_buffer_dirty(leaf);
5078                }
5079        }
5080        return ret;
5081}
5082
5083/*
5084 * search the tree again to find a leaf with lesser keys
5085 * returns 0 if it found something or 1 if there are no lesser leaves.
5086 * returns < 0 on io errors.
5087 *
5088 * This may release the path, and so you may lose any locks held at the
5089 * time you call it.
5090 */
5091int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5092{
5093        struct btrfs_key key;
5094        struct btrfs_disk_key found_key;
5095        int ret;
5096
5097        btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5098
5099        if (key.offset > 0) {
5100                key.offset--;
5101        } else if (key.type > 0) {
5102                key.type--;
5103                key.offset = (u64)-1;
5104        } else if (key.objectid > 0) {
5105                key.objectid--;
5106                key.type = (u8)-1;
5107                key.offset = (u64)-1;
5108        } else {
5109                return 1;
5110        }
5111
5112        btrfs_release_path(path);
5113        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5114        if (ret < 0)
5115                return ret;
5116        btrfs_item_key(path->nodes[0], &found_key, 0);
5117        ret = comp_keys(&found_key, &key);
5118        /*
5119         * We might have had an item with the previous key in the tree right
5120         * before we released our path. And after we released our path, that
5121         * item might have been pushed to the first slot (0) of the leaf we
5122         * were holding due to a tree balance. Alternatively, an item with the
5123         * previous key can exist as the only element of a leaf (big fat item).
5124         * Therefore account for these 2 cases, so that our callers (like
5125         * btrfs_previous_item) don't miss an existing item with a key matching
5126         * the previous key we computed above.
5127         */
5128        if (ret <= 0)
5129                return 0;
5130        return 1;
5131}
5132
5133/*
5134 * A helper function to walk down the tree starting at min_key, and looking
5135 * for nodes or leaves that are have a minimum transaction id.
5136 * This is used by the btree defrag code, and tree logging
5137 *
5138 * This does not cow, but it does stuff the starting key it finds back
5139 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5140 * key and get a writable path.
5141 *
5142 * This does lock as it descends, and path->keep_locks should be set
5143 * to 1 by the caller.
5144 *
5145 * This honors path->lowest_level to prevent descent past a given level
5146 * of the tree.
5147 *
5148 * min_trans indicates the oldest transaction that you are interested
5149 * in walking through.  Any nodes or leaves older than min_trans are
5150 * skipped over (without reading them).
5151 *
5152 * returns zero if something useful was found, < 0 on error and 1 if there
5153 * was nothing in the tree that matched the search criteria.
5154 */
5155int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5156                         struct btrfs_path *path,
5157                         u64 min_trans)
5158{
5159        struct extent_buffer *cur;
5160        struct btrfs_key found_key;
5161        int slot;
5162        int sret;
5163        u32 nritems;
5164        int level;
5165        int ret = 1;
5166        int keep_locks = path->keep_locks;
5167
5168        path->keep_locks = 1;
5169again:
5170        cur = btrfs_read_lock_root_node(root);
5171        level = btrfs_header_level(cur);
5172        WARN_ON(path->nodes[level]);
5173        path->nodes[level] = cur;
5174        path->locks[level] = BTRFS_READ_LOCK;
5175
5176        if (btrfs_header_generation(cur) < min_trans) {
5177                ret = 1;
5178                goto out;
5179        }
5180        while (1) {
5181                nritems = btrfs_header_nritems(cur);
5182                level = btrfs_header_level(cur);
5183                sret = bin_search(cur, min_key, level, &slot);
5184
5185                /* at the lowest level, we're done, setup the path and exit */
5186                if (level == path->lowest_level) {
5187                        if (slot >= nritems)
5188                                goto find_next_key;
5189                        ret = 0;
5190                        path->slots[level] = slot;
5191                        btrfs_item_key_to_cpu(cur, &found_key, slot);
5192                        goto out;
5193                }
5194                if (sret && slot > 0)
5195                        slot--;
5196                /*
5197                 * check this node pointer against the min_trans parameters.
5198                 * If it is too old, old, skip to the next one.
5199                 */
5200                while (slot < nritems) {
5201                        u64 gen;
5202
5203                        gen = btrfs_node_ptr_generation(cur, slot);
5204                        if (gen < min_trans) {
5205                                slot++;
5206                                continue;
5207                        }
5208                        break;
5209                }
5210find_next_key:
5211                /*
5212                 * we didn't find a candidate key in this node, walk forward
5213                 * and find another one
5214                 */
5215                if (slot >= nritems) {
5216                        path->slots[level] = slot;
5217                        btrfs_set_path_blocking(path);
5218                        sret = btrfs_find_next_key(root, path, min_key, level,
5219                                                  min_trans);
5220                        if (sret == 0) {
5221                                btrfs_release_path(path);
5222                                goto again;
5223                        } else {
5224                                goto out;
5225                        }
5226                }
5227                /* save our key for returning back */
5228                btrfs_node_key_to_cpu(cur, &found_key, slot);
5229                path->slots[level] = slot;
5230                if (level == path->lowest_level) {
5231                        ret = 0;
5232                        goto out;
5233                }
5234                btrfs_set_path_blocking(path);
5235                cur = read_node_slot(root, cur, slot);
5236                if (IS_ERR(cur)) {
5237                        ret = PTR_ERR(cur);
5238                        goto out;
5239                }
5240
5241                btrfs_tree_read_lock(cur);
5242
5243                path->locks[level - 1] = BTRFS_READ_LOCK;
5244                path->nodes[level - 1] = cur;
5245                unlock_up(path, level, 1, 0, NULL);
5246                btrfs_clear_path_blocking(path, NULL, 0);
5247        }
5248out:
5249        path->keep_locks = keep_locks;
5250        if (ret == 0) {
5251                btrfs_unlock_up_safe(path, path->lowest_level + 1);
5252                btrfs_set_path_blocking(path);
5253                memcpy(min_key, &found_key, sizeof(found_key));
5254        }
5255        return ret;
5256}
5257
5258static int tree_move_down(struct btrfs_root *root,
5259                           struct btrfs_path *path,
5260                           int *level, int root_level)
5261{
5262        struct extent_buffer *eb;
5263
5264        BUG_ON(*level == 0);
5265        eb = read_node_slot(root, path->nodes[*level], path->slots[*level]);
5266        if (IS_ERR(eb))
5267                return PTR_ERR(eb);
5268
5269        path->nodes[*level - 1] = eb;
5270        path->slots[*level - 1] = 0;
5271        (*level)--;
5272        return 0;
5273}
5274
5275static int tree_move_next_or_upnext(struct btrfs_root *root,
5276                                    struct btrfs_path *path,
5277                                    int *level, int root_level)
5278{
5279        int ret = 0;
5280        int nritems;
5281        nritems = btrfs_header_nritems(path->nodes[*level]);
5282
5283        path->slots[*level]++;
5284
5285        while (path->slots[*level] >= nritems) {
5286                if (*level == root_level)
5287                        return -1;
5288
5289                /* move upnext */
5290                path->slots[*level] = 0;
5291                free_extent_buffer(path->nodes[*level]);
5292                path->nodes[*level] = NULL;
5293                (*level)++;
5294                path->slots[*level]++;
5295
5296                nritems = btrfs_header_nritems(path->nodes[*level]);
5297                ret = 1;
5298        }
5299        return ret;
5300}
5301
5302/*
5303 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5304 * or down.
5305 */
5306static int tree_advance(struct btrfs_root *root,
5307                        struct btrfs_path *path,
5308                        int *level, int root_level,
5309                        int allow_down,
5310                        struct btrfs_key *key)
5311{
5312        int ret;
5313
5314        if (*level == 0 || !allow_down) {
5315                ret = tree_move_next_or_upnext(root, path, level, root_level);
5316        } else {
5317                ret = tree_move_down(root, path, level, root_level);
5318        }
5319        if (ret >= 0) {
5320                if (*level == 0)
5321                        btrfs_item_key_to_cpu(path->nodes[*level], key,
5322                                        path->slots[*level]);
5323                else
5324                        btrfs_node_key_to_cpu(path->nodes[*level], key,
5325                                        path->slots[*level]);
5326        }
5327        return ret;
5328}
5329
5330static int tree_compare_item(struct btrfs_root *left_root,
5331                             struct btrfs_path *left_path,
5332                             struct btrfs_path *right_path,
5333                             char *tmp_buf)
5334{
5335        int cmp;
5336        int len1, len2;
5337        unsigned long off1, off2;
5338
5339        len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5340        len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5341        if (len1 != len2)
5342                return 1;
5343
5344        off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5345        off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5346                                right_path->slots[0]);
5347
5348        read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5349
5350        cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5351        if (cmp)
5352                return 1;
5353        return 0;
5354}
5355
5356#define ADVANCE 1
5357#define ADVANCE_ONLY_NEXT -1
5358
5359/*
5360 * This function compares two trees and calls the provided callback for
5361 * every changed/new/deleted item it finds.
5362 * If shared tree blocks are encountered, whole subtrees are skipped, making
5363 * the compare pretty fast on snapshotted subvolumes.
5364 *
5365 * This currently works on commit roots only. As commit roots are read only,
5366 * we don't do any locking. The commit roots are protected with transactions.
5367 * Transactions are ended and rejoined when a commit is tried in between.
5368 *
5369 * This function checks for modifications done to the trees while comparing.
5370 * If it detects a change, it aborts immediately.
5371 */
5372int btrfs_compare_trees(struct btrfs_root *left_root,
5373                        struct btrfs_root *right_root,
5374                        btrfs_changed_cb_t changed_cb, void *ctx)
5375{
5376        int ret;
5377        int cmp;
5378        struct btrfs_path *left_path = NULL;
5379        struct btrfs_path *right_path = NULL;
5380        struct btrfs_key left_key;
5381        struct btrfs_key right_key;
5382        char *tmp_buf = NULL;
5383        int left_root_level;
5384        int right_root_level;
5385        int left_level;
5386        int right_level;
5387        int left_end_reached;
5388        int right_end_reached;
5389        int advance_left;
5390        int advance_right;
5391        u64 left_blockptr;
5392        u64 right_blockptr;
5393        u64 left_gen;
5394        u64 right_gen;
5395
5396        left_path = btrfs_alloc_path();
5397        if (!left_path) {
5398                ret = -ENOMEM;
5399                goto out;
5400        }
5401        right_path = btrfs_alloc_path();
5402        if (!right_path) {
5403                ret = -ENOMEM;
5404                goto out;
5405        }
5406
5407        tmp_buf = kmalloc(left_root->nodesize, GFP_KERNEL | __GFP_NOWARN);
5408        if (!tmp_buf) {
5409                tmp_buf = vmalloc(left_root->nodesize);
5410                if (!tmp_buf) {
5411                        ret = -ENOMEM;
5412                        goto out;
5413                }
5414        }
5415
5416        left_path->search_commit_root = 1;
5417        left_path->skip_locking = 1;
5418        right_path->search_commit_root = 1;
5419        right_path->skip_locking = 1;
5420
5421        /*
5422         * Strategy: Go to the first items of both trees. Then do
5423         *
5424         * If both trees are at level 0
5425         *   Compare keys of current items
5426         *     If left < right treat left item as new, advance left tree
5427         *       and repeat
5428         *     If left > right treat right item as deleted, advance right tree
5429         *       and repeat
5430         *     If left == right do deep compare of items, treat as changed if
5431         *       needed, advance both trees and repeat
5432         * If both trees are at the same level but not at level 0
5433         *   Compare keys of current nodes/leafs
5434         *     If left < right advance left tree and repeat
5435         *     If left > right advance right tree and repeat
5436         *     If left == right compare blockptrs of the next nodes/leafs
5437         *       If they match advance both trees but stay at the same level
5438         *         and repeat
5439         *       If they don't match advance both trees while allowing to go
5440         *         deeper and repeat
5441         * If tree levels are different
5442         *   Advance the tree that needs it and repeat
5443         *
5444         * Advancing a tree means:
5445         *   If we are at level 0, try to go to the next slot. If that's not
5446         *   possible, go one level up and repeat. Stop when we found a level
5447         *   where we could go to the next slot. We may at this point be on a
5448         *   node or a leaf.
5449         *
5450         *   If we are not at level 0 and not on shared tree blocks, go one
5451         *   level deeper.
5452         *
5453         *   If we are not at level 0 and on shared tree blocks, go one slot to
5454         *   the right if possible or go up and right.
5455         */
5456
5457        down_read(&left_root->fs_info->commit_root_sem);
5458        left_level = btrfs_header_level(left_root->commit_root);
5459        left_root_level = left_level;
5460        left_path->nodes[left_level] = left_root->commit_root;
5461        extent_buffer_get(left_path->nodes[left_level]);
5462
5463        right_level = btrfs_header_level(right_root->commit_root);
5464        right_root_level = right_level;
5465        right_path->nodes[right_level] = right_root->commit_root;
5466        extent_buffer_get(right_path->nodes[right_level]);
5467        up_read(&left_root->fs_info->commit_root_sem);
5468
5469        if (left_level == 0)
5470                btrfs_item_key_to_cpu(left_path->nodes[left_level],
5471                                &left_key, left_path->slots[left_level]);
5472        else
5473                btrfs_node_key_to_cpu(left_path->nodes[left_level],
5474                                &left_key, left_path->slots[left_level]);
5475        if (right_level == 0)
5476                btrfs_item_key_to_cpu(right_path->nodes[right_level],
5477                                &right_key, right_path->slots[right_level]);
5478        else
5479                btrfs_node_key_to_cpu(right_path->nodes[right_level],
5480                                &right_key, right_path->slots[right_level]);
5481
5482        left_end_reached = right_end_reached = 0;
5483        advance_left = advance_right = 0;
5484
5485        while (1) {
5486                if (advance_left && !left_end_reached) {
5487                        ret = tree_advance(left_root, left_path, &left_level,
5488                                        left_root_level,
5489                                        advance_left != ADVANCE_ONLY_NEXT,
5490                                        &left_key);
5491                        if (ret == -1)
5492                                left_end_reached = ADVANCE;
5493                        else if (ret < 0)
5494                                goto out;
5495                        advance_left = 0;
5496                }
5497                if (advance_right && !right_end_reached) {
5498                        ret = tree_advance(right_root, right_path, &right_level,
5499                                        right_root_level,
5500                                        advance_right != ADVANCE_ONLY_NEXT,
5501                                        &right_key);
5502                        if (ret == -1)
5503                                right_end_reached = ADVANCE;
5504                        else if (ret < 0)
5505                                goto out;
5506                        advance_right = 0;
5507                }
5508
5509                if (left_end_reached && right_end_reached) {
5510                        ret = 0;
5511                        goto out;
5512                } else if (left_end_reached) {
5513                        if (right_level == 0) {
5514                                ret = changed_cb(left_root, right_root,
5515                                                left_path, right_path,
5516                                                &right_key,
5517                                                BTRFS_COMPARE_TREE_DELETED,
5518                                                ctx);
5519                                if (ret < 0)
5520                                        goto out;
5521                        }
5522                        advance_right = ADVANCE;
5523                        continue;
5524                } else if (right_end_reached) {
5525                        if (left_level == 0) {
5526                                ret = changed_cb(left_root, right_root,
5527                                                left_path, right_path,
5528                                                &left_key,
5529                                                BTRFS_COMPARE_TREE_NEW,
5530                                                ctx);
5531                                if (ret < 0)
5532                                        goto out;
5533                        }
5534                        advance_left = ADVANCE;
5535                        continue;
5536                }
5537
5538                if (left_level == 0 && right_level == 0) {
5539                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5540                        if (cmp < 0) {
5541                                ret = changed_cb(left_root, right_root,
5542                                                left_path, right_path,
5543                                                &left_key,
5544                                                BTRFS_COMPARE_TREE_NEW,
5545                                                ctx);
5546                                if (ret < 0)
5547                                        goto out;
5548                                advance_left = ADVANCE;
5549                        } else if (cmp > 0) {
5550                                ret = changed_cb(left_root, right_root,
5551                                                left_path, right_path,
5552                                                &right_key,
5553                                                BTRFS_COMPARE_TREE_DELETED,
5554                                                ctx);
5555                                if (ret < 0)
5556                                        goto out;
5557                                advance_right = ADVANCE;
5558                        } else {
5559                                enum btrfs_compare_tree_result result;
5560
5561                                WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5562                                ret = tree_compare_item(left_root, left_path,
5563                                                right_path, tmp_buf);
5564                                if (ret)
5565                                        result = BTRFS_COMPARE_TREE_CHANGED;
5566                                else
5567                                        result = BTRFS_COMPARE_TREE_SAME;
5568                                ret = changed_cb(left_root, right_root,
5569                                                 left_path, right_path,
5570                                                 &left_key, result, ctx);
5571                                if (ret < 0)
5572                                        goto out;
5573                                advance_left = ADVANCE;
5574                                advance_right = ADVANCE;
5575                        }
5576                } else if (left_level == right_level) {
5577                        cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5578                        if (cmp < 0) {
5579                                advance_left = ADVANCE;
5580                        } else if (cmp > 0) {
5581                                advance_right = ADVANCE;
5582                        } else {
5583                                left_blockptr = btrfs_node_blockptr(
5584                                                left_path->nodes[left_level],
5585                                                left_path->slots[left_level]);
5586                                right_blockptr = btrfs_node_blockptr(
5587                                                right_path->nodes[right_level],
5588                                                right_path->slots[right_level]);
5589                                left_gen = btrfs_node_ptr_generation(
5590                                                left_path->nodes[left_level],
5591                                                left_path->slots[left_level]);
5592                                right_gen = btrfs_node_ptr_generation(
5593                                                right_path->nodes[right_level],
5594                                                right_path->slots[right_level]);
5595                                if (left_blockptr == right_blockptr &&
5596                                    left_gen == right_gen) {
5597                                        /*
5598                                         * As we're on a shared block, don't
5599                                         * allow to go deeper.
5600                                         */
5601                                        advance_left = ADVANCE_ONLY_NEXT;
5602                                        advance_right = ADVANCE_ONLY_NEXT;
5603                                } else {
5604                                        advance_left = ADVANCE;
5605                                        advance_right = ADVANCE;
5606                                }
5607                        }
5608                } else if (left_level < right_level) {
5609                        advance_right = ADVANCE;
5610                } else {
5611                        advance_left = ADVANCE;
5612                }
5613        }
5614
5615out:
5616        btrfs_free_path(left_path);
5617        btrfs_free_path(right_path);
5618        kvfree(tmp_buf);
5619        return ret;
5620}
5621
5622/*
5623 * this is similar to btrfs_next_leaf, but does not try to preserve
5624 * and fixup the path.  It looks for and returns the next key in the
5625 * tree based on the current path and the min_trans parameters.
5626 *
5627 * 0 is returned if another key is found, < 0 if there are any errors
5628 * and 1 is returned if there are no higher keys in the tree
5629 *
5630 * path->keep_locks should be set to 1 on the search made before
5631 * calling this function.
5632 */
5633int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5634                        struct btrfs_key *key, int level, u64 min_trans)
5635{
5636        int slot;
5637        struct extent_buffer *c;
5638
5639        WARN_ON(!path->keep_locks);
5640        while (level < BTRFS_MAX_LEVEL) {
5641                if (!path->nodes[level])
5642                        return 1;
5643
5644                slot = path->slots[level] + 1;
5645                c = path->nodes[level];
5646next:
5647                if (slot >= btrfs_header_nritems(c)) {
5648                        int ret;
5649                        int orig_lowest;
5650                        struct btrfs_key cur_key;
5651                        if (level + 1 >= BTRFS_MAX_LEVEL ||
5652                            !path->nodes[level + 1])
5653                                return 1;
5654
5655                        if (path->locks[level + 1]) {
5656                                level++;
5657                                continue;
5658                        }
5659
5660                        slot = btrfs_header_nritems(c) - 1;
5661                        if (level == 0)
5662                                btrfs_item_key_to_cpu(c, &cur_key, slot);
5663                        else
5664                                btrfs_node_key_to_cpu(c, &cur_key, slot);
5665
5666                        orig_lowest = path->lowest_level;
5667                        btrfs_release_path(path);
5668                        path->lowest_level = level;
5669                        ret = btrfs_search_slot(NULL, root, &cur_key, path,
5670                                                0, 0);
5671                        path->lowest_level = orig_lowest;
5672                        if (ret < 0)
5673                                return ret;
5674
5675                        c = path->nodes[level];
5676                        slot = path->slots[level];
5677                        if (ret == 0)
5678                                slot++;
5679                        goto next;
5680                }
5681
5682                if (level == 0)
5683                        btrfs_item_key_to_cpu(c, key, slot);
5684                else {
5685                        u64 gen = btrfs_node_ptr_generation(c, slot);
5686
5687                        if (gen < min_trans) {
5688                                slot++;
5689                                goto next;
5690                        }
5691                        btrfs_node_key_to_cpu(c, key, slot);
5692                }
5693                return 0;
5694        }
5695        return 1;
5696}
5697
5698/*
5699 * search the tree again to find a leaf with greater keys
5700 * returns 0 if it found something or 1 if there are no greater leaves.
5701 * returns < 0 on io errors.
5702 */
5703int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5704{
5705        return btrfs_next_old_leaf(root, path, 0);
5706}
5707
5708int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5709                        u64 time_seq)
5710{
5711        int slot;
5712        int level;
5713        struct extent_buffer *c;
5714        struct extent_buffer *next;
5715        struct btrfs_key key;
5716        u32 nritems;
5717        int ret;
5718        int old_spinning = path->leave_spinning;
5719        int next_rw_lock = 0;
5720
5721        nritems = btrfs_header_nritems(path->nodes[0]);
5722        if (nritems == 0)
5723                return 1;
5724
5725        btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5726again:
5727        level = 1;
5728        next = NULL;
5729        next_rw_lock = 0;
5730        btrfs_release_path(path);
5731
5732        path->keep_locks = 1;
5733        path->leave_spinning = 1;
5734
5735        if (time_seq)
5736                ret = btrfs_search_old_slot(root, &key, path, time_seq);
5737        else
5738                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5739        path->keep_locks = 0;
5740
5741        if (ret < 0)
5742                return ret;
5743
5744        nritems = btrfs_header_nritems(path->nodes[0]);
5745        /*
5746         * by releasing the path above we dropped all our locks.  A balance
5747         * could have added more items next to the key that used to be
5748         * at the very end of the block.  So, check again here and
5749         * advance the path if there are now more items available.
5750         */
5751        if (nritems > 0 && path->slots[0] < nritems - 1) {
5752                if (ret == 0)
5753                        path->slots[0]++;
5754                ret = 0;
5755                goto done;
5756        }
5757        /*
5758         * So the above check misses one case:
5759         * - after releasing the path above, someone has removed the item that
5760         *   used to be at the very end of the block, and balance between leafs
5761         *   gets another one with bigger key.offset to replace it.
5762         *
5763         * This one should be returned as well, or we can get leaf corruption
5764         * later(esp. in __btrfs_drop_extents()).
5765         *
5766         * And a bit more explanation about this check,
5767         * with ret > 0, the key isn't found, the path points to the slot
5768         * where it should be inserted, so the path->slots[0] item must be the
5769         * bigger one.
5770         */
5771        if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5772                ret = 0;
5773                goto done;
5774        }
5775
5776        while (level < BTRFS_MAX_LEVEL) {
5777                if (!path->nodes[level]) {
5778                        ret = 1;
5779                        goto done;
5780                }
5781
5782                slot = path->slots[level] + 1;
5783                c = path->nodes[level];
5784                if (slot >= btrfs_header_nritems(c)) {
5785                        level++;
5786                        if (level == BTRFS_MAX_LEVEL) {
5787                                ret = 1;
5788                                goto done;
5789                        }
5790                        continue;
5791                }
5792
5793                if (next) {
5794                        btrfs_tree_unlock_rw(next, next_rw_lock);
5795                        free_extent_buffer(next);
5796                }
5797
5798                next = c;
5799                next_rw_lock = path->locks[level];
5800                ret = read_block_for_search(NULL, root, path, &next, level,
5801                                            slot, &key, 0);
5802                if (ret == -EAGAIN)
5803                        goto again;
5804
5805                if (ret < 0) {
5806                        btrfs_release_path(path);
5807                        goto done;
5808                }
5809
5810                if (!path->skip_locking) {
5811                        ret = btrfs_try_tree_read_lock(next);
5812                        if (!ret && time_seq) {
5813                                /*
5814                                 * If we don't get the lock, we may be racing
5815                                 * with push_leaf_left, holding that lock while
5816                                 * itself waiting for the leaf we've currently
5817                                 * locked. To solve this situation, we give up
5818                                 * on our lock and cycle.
5819                                 */
5820                                free_extent_buffer(next);
5821                                btrfs_release_path(path);
5822                                cond_resched();
5823                                goto again;
5824                        }
5825                        if (!ret) {
5826                                btrfs_set_path_blocking(path);
5827                                btrfs_tree_read_lock(next);
5828                                btrfs_clear_path_blocking(path, next,
5829                                                          BTRFS_READ_LOCK);
5830                        }
5831                        next_rw_lock = BTRFS_READ_LOCK;
5832                }
5833                break;
5834        }
5835        path->slots[level] = slot;
5836        while (1) {
5837                level--;
5838                c = path->nodes[level];
5839                if (path->locks[level])
5840                        btrfs_tree_unlock_rw(c, path->locks[level]);
5841
5842                free_extent_buffer(c);
5843                path->nodes[level] = next;
5844                path->slots[level] = 0;
5845                if (!path->skip_locking)
5846                        path->locks[level] = next_rw_lock;
5847                if (!level)
5848                        break;
5849
5850                ret = read_block_for_search(NULL, root, path, &next, level,
5851                                            0, &key, 0);
5852                if (ret == -EAGAIN)
5853                        goto again;
5854
5855                if (ret < 0) {
5856                        btrfs_release_path(path);
5857                        goto done;
5858                }
5859
5860                if (!path->skip_locking) {
5861                        ret = btrfs_try_tree_read_lock(next);
5862                        if (!ret) {
5863                                btrfs_set_path_blocking(path);
5864                                btrfs_tree_read_lock(next);
5865                                btrfs_clear_path_blocking(path, next,
5866                                                          BTRFS_READ_LOCK);
5867                        }
5868                        next_rw_lock = BTRFS_READ_LOCK;
5869                }
5870        }
5871        ret = 0;
5872done:
5873        unlock_up(path, 0, 1, 0, NULL);
5874        path->leave_spinning = old_spinning;
5875        if (!old_spinning)
5876                btrfs_set_path_blocking(path);
5877
5878        return ret;
5879}
5880
5881/*
5882 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5883 * searching until it gets past min_objectid or finds an item of 'type'
5884 *
5885 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5886 */
5887int btrfs_previous_item(struct btrfs_root *root,
5888                        struct btrfs_path *path, u64 min_objectid,
5889                        int type)
5890{
5891        struct btrfs_key found_key;
5892        struct extent_buffer *leaf;
5893        u32 nritems;
5894        int ret;
5895
5896        while (1) {
5897                if (path->slots[0] == 0) {
5898                        btrfs_set_path_blocking(path);
5899                        ret = btrfs_prev_leaf(root, path);
5900                        if (ret != 0)
5901                                return ret;
5902                } else {
5903                        path->slots[0]--;
5904                }
5905                leaf = path->nodes[0];
5906                nritems = btrfs_header_nritems(leaf);
5907                if (nritems == 0)
5908                        return 1;
5909                if (path->slots[0] == nritems)
5910                        path->slots[0]--;
5911
5912                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5913                if (found_key.objectid < min_objectid)
5914                        break;
5915                if (found_key.type == type)
5916                        return 0;
5917                if (found_key.objectid == min_objectid &&
5918                    found_key.type < type)
5919                        break;
5920        }
5921        return 1;
5922}
5923
5924/*
5925 * search in extent tree to find a previous Metadata/Data extent item with
5926 * min objecitd.
5927 *
5928 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5929 */
5930int btrfs_previous_extent_item(struct btrfs_root *root,
5931                        struct btrfs_path *path, u64 min_objectid)
5932{
5933        struct btrfs_key found_key;
5934        struct extent_buffer *leaf;
5935        u32 nritems;
5936        int ret;
5937
5938        while (1) {
5939                if (path->slots[0] == 0) {
5940                        btrfs_set_path_blocking(path);
5941                        ret = btrfs_prev_leaf(root, path);
5942                        if (ret != 0)
5943                                return ret;
5944                } else {
5945                        path->slots[0]--;
5946                }
5947                leaf = path->nodes[0];
5948                nritems = btrfs_header_nritems(leaf);
5949                if (nritems == 0)
5950                        return 1;
5951                if (path->slots[0] == nritems)
5952                        path->slots[0]--;
5953
5954                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5955                if (found_key.objectid < min_objectid)
5956                        break;
5957                if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5958                    found_key.type == BTRFS_METADATA_ITEM_KEY)
5959                        return 0;
5960                if (found_key.objectid == min_objectid &&
5961                    found_key.type < BTRFS_EXTENT_ITEM_KEY)
5962                        break;
5963        }
5964        return 1;
5965}
5966