linux/fs/exec.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/exec.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 * #!-checking implemented by tytso.
   9 */
  10/*
  11 * Demand-loading implemented 01.12.91 - no need to read anything but
  12 * the header into memory. The inode of the executable is put into
  13 * "current->executable", and page faults do the actual loading. Clean.
  14 *
  15 * Once more I can proudly say that linux stood up to being changed: it
  16 * was less than 2 hours work to get demand-loading completely implemented.
  17 *
  18 * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
  19 * current->executable is only used by the procfs.  This allows a dispatch
  20 * table to check for several different types  of binary formats.  We keep
  21 * trying until we recognize the file or we run out of supported binary
  22 * formats. 
  23 */
  24
  25#include <linux/slab.h>
  26#include <linux/file.h>
  27#include <linux/fdtable.h>
  28#include <linux/mm.h>
  29#include <linux/vmacache.h>
  30#include <linux/stat.h>
  31#include <linux/fcntl.h>
  32#include <linux/swap.h>
  33#include <linux/string.h>
  34#include <linux/init.h>
  35#include <linux/pagemap.h>
  36#include <linux/perf_event.h>
  37#include <linux/highmem.h>
  38#include <linux/spinlock.h>
  39#include <linux/key.h>
  40#include <linux/personality.h>
  41#include <linux/binfmts.h>
  42#include <linux/utsname.h>
  43#include <linux/pid_namespace.h>
  44#include <linux/module.h>
  45#include <linux/namei.h>
  46#include <linux/mount.h>
  47#include <linux/security.h>
  48#include <linux/syscalls.h>
  49#include <linux/tsacct_kern.h>
  50#include <linux/cn_proc.h>
  51#include <linux/audit.h>
  52#include <linux/tracehook.h>
  53#include <linux/kmod.h>
  54#include <linux/fsnotify.h>
  55#include <linux/fs_struct.h>
  56#include <linux/pipe_fs_i.h>
  57#include <linux/oom.h>
  58#include <linux/compat.h>
  59#include <linux/vmalloc.h>
  60
  61#include <asm/uaccess.h>
  62#include <asm/mmu_context.h>
  63#include <asm/tlb.h>
  64
  65#include <trace/events/task.h>
  66#include "internal.h"
  67
  68#include <trace/events/sched.h>
  69
  70int suid_dumpable = 0;
  71
  72static LIST_HEAD(formats);
  73static DEFINE_RWLOCK(binfmt_lock);
  74
  75void __register_binfmt(struct linux_binfmt * fmt, int insert)
  76{
  77        BUG_ON(!fmt);
  78        if (WARN_ON(!fmt->load_binary))
  79                return;
  80        write_lock(&binfmt_lock);
  81        insert ? list_add(&fmt->lh, &formats) :
  82                 list_add_tail(&fmt->lh, &formats);
  83        write_unlock(&binfmt_lock);
  84}
  85
  86EXPORT_SYMBOL(__register_binfmt);
  87
  88void unregister_binfmt(struct linux_binfmt * fmt)
  89{
  90        write_lock(&binfmt_lock);
  91        list_del(&fmt->lh);
  92        write_unlock(&binfmt_lock);
  93}
  94
  95EXPORT_SYMBOL(unregister_binfmt);
  96
  97static inline void put_binfmt(struct linux_binfmt * fmt)
  98{
  99        module_put(fmt->module);
 100}
 101
 102bool path_noexec(const struct path *path)
 103{
 104        return (path->mnt->mnt_flags & MNT_NOEXEC) ||
 105               (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
 106}
 107
 108#ifdef CONFIG_USELIB
 109/*
 110 * Note that a shared library must be both readable and executable due to
 111 * security reasons.
 112 *
 113 * Also note that we take the address to load from from the file itself.
 114 */
 115SYSCALL_DEFINE1(uselib, const char __user *, library)
 116{
 117        struct linux_binfmt *fmt;
 118        struct file *file;
 119        struct filename *tmp = getname(library);
 120        int error = PTR_ERR(tmp);
 121        static const struct open_flags uselib_flags = {
 122                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 123                .acc_mode = MAY_READ | MAY_EXEC,
 124                .intent = LOOKUP_OPEN,
 125                .lookup_flags = LOOKUP_FOLLOW,
 126        };
 127
 128        if (IS_ERR(tmp))
 129                goto out;
 130
 131        file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
 132        putname(tmp);
 133        error = PTR_ERR(file);
 134        if (IS_ERR(file))
 135                goto out;
 136
 137        error = -EINVAL;
 138        if (!S_ISREG(file_inode(file)->i_mode))
 139                goto exit;
 140
 141        error = -EACCES;
 142        if (path_noexec(&file->f_path))
 143                goto exit;
 144
 145        fsnotify_open(file);
 146
 147        error = -ENOEXEC;
 148
 149        read_lock(&binfmt_lock);
 150        list_for_each_entry(fmt, &formats, lh) {
 151                if (!fmt->load_shlib)
 152                        continue;
 153                if (!try_module_get(fmt->module))
 154                        continue;
 155                read_unlock(&binfmt_lock);
 156                error = fmt->load_shlib(file);
 157                read_lock(&binfmt_lock);
 158                put_binfmt(fmt);
 159                if (error != -ENOEXEC)
 160                        break;
 161        }
 162        read_unlock(&binfmt_lock);
 163exit:
 164        fput(file);
 165out:
 166        return error;
 167}
 168#endif /* #ifdef CONFIG_USELIB */
 169
 170#ifdef CONFIG_MMU
 171/*
 172 * The nascent bprm->mm is not visible until exec_mmap() but it can
 173 * use a lot of memory, account these pages in current->mm temporary
 174 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
 175 * change the counter back via acct_arg_size(0).
 176 */
 177static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 178{
 179        struct mm_struct *mm = current->mm;
 180        long diff = (long)(pages - bprm->vma_pages);
 181
 182        if (!mm || !diff)
 183                return;
 184
 185        bprm->vma_pages = pages;
 186        add_mm_counter(mm, MM_ANONPAGES, diff);
 187}
 188
 189static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 190                int write)
 191{
 192        struct page *page;
 193        int ret;
 194
 195#ifdef CONFIG_STACK_GROWSUP
 196        if (write) {
 197                ret = expand_downwards(bprm->vma, pos);
 198                if (ret < 0)
 199                        return NULL;
 200        }
 201#endif
 202        /*
 203         * We are doing an exec().  'current' is the process
 204         * doing the exec and bprm->mm is the new process's mm.
 205         */
 206        ret = get_user_pages_remote(current, bprm->mm, pos, 1, write,
 207                        1, &page, NULL);
 208        if (ret <= 0)
 209                return NULL;
 210
 211        if (write) {
 212                unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
 213                struct rlimit *rlim;
 214
 215                acct_arg_size(bprm, size / PAGE_SIZE);
 216
 217                /*
 218                 * We've historically supported up to 32 pages (ARG_MAX)
 219                 * of argument strings even with small stacks
 220                 */
 221                if (size <= ARG_MAX)
 222                        return page;
 223
 224                /*
 225                 * Limit to 1/4-th the stack size for the argv+env strings.
 226                 * This ensures that:
 227                 *  - the remaining binfmt code will not run out of stack space,
 228                 *  - the program will have a reasonable amount of stack left
 229                 *    to work from.
 230                 */
 231                rlim = current->signal->rlim;
 232                if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
 233                        put_page(page);
 234                        return NULL;
 235                }
 236        }
 237
 238        return page;
 239}
 240
 241static void put_arg_page(struct page *page)
 242{
 243        put_page(page);
 244}
 245
 246static void free_arg_pages(struct linux_binprm *bprm)
 247{
 248}
 249
 250static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 251                struct page *page)
 252{
 253        flush_cache_page(bprm->vma, pos, page_to_pfn(page));
 254}
 255
 256static int __bprm_mm_init(struct linux_binprm *bprm)
 257{
 258        int err;
 259        struct vm_area_struct *vma = NULL;
 260        struct mm_struct *mm = bprm->mm;
 261
 262        bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
 263        if (!vma)
 264                return -ENOMEM;
 265
 266        if (down_write_killable(&mm->mmap_sem)) {
 267                err = -EINTR;
 268                goto err_free;
 269        }
 270        vma->vm_mm = mm;
 271
 272        /*
 273         * Place the stack at the largest stack address the architecture
 274         * supports. Later, we'll move this to an appropriate place. We don't
 275         * use STACK_TOP because that can depend on attributes which aren't
 276         * configured yet.
 277         */
 278        BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
 279        vma->vm_end = STACK_TOP_MAX;
 280        vma->vm_start = vma->vm_end - PAGE_SIZE;
 281        vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
 282        vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
 283        INIT_LIST_HEAD(&vma->anon_vma_chain);
 284
 285        err = insert_vm_struct(mm, vma);
 286        if (err)
 287                goto err;
 288
 289        mm->stack_vm = mm->total_vm = 1;
 290        arch_bprm_mm_init(mm, vma);
 291        up_write(&mm->mmap_sem);
 292        bprm->p = vma->vm_end - sizeof(void *);
 293        return 0;
 294err:
 295        up_write(&mm->mmap_sem);
 296err_free:
 297        bprm->vma = NULL;
 298        kmem_cache_free(vm_area_cachep, vma);
 299        return err;
 300}
 301
 302static bool valid_arg_len(struct linux_binprm *bprm, long len)
 303{
 304        return len <= MAX_ARG_STRLEN;
 305}
 306
 307#else
 308
 309static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
 310{
 311}
 312
 313static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
 314                int write)
 315{
 316        struct page *page;
 317
 318        page = bprm->page[pos / PAGE_SIZE];
 319        if (!page && write) {
 320                page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
 321                if (!page)
 322                        return NULL;
 323                bprm->page[pos / PAGE_SIZE] = page;
 324        }
 325
 326        return page;
 327}
 328
 329static void put_arg_page(struct page *page)
 330{
 331}
 332
 333static void free_arg_page(struct linux_binprm *bprm, int i)
 334{
 335        if (bprm->page[i]) {
 336                __free_page(bprm->page[i]);
 337                bprm->page[i] = NULL;
 338        }
 339}
 340
 341static void free_arg_pages(struct linux_binprm *bprm)
 342{
 343        int i;
 344
 345        for (i = 0; i < MAX_ARG_PAGES; i++)
 346                free_arg_page(bprm, i);
 347}
 348
 349static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
 350                struct page *page)
 351{
 352}
 353
 354static int __bprm_mm_init(struct linux_binprm *bprm)
 355{
 356        bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
 357        return 0;
 358}
 359
 360static bool valid_arg_len(struct linux_binprm *bprm, long len)
 361{
 362        return len <= bprm->p;
 363}
 364
 365#endif /* CONFIG_MMU */
 366
 367/*
 368 * Create a new mm_struct and populate it with a temporary stack
 369 * vm_area_struct.  We don't have enough context at this point to set the stack
 370 * flags, permissions, and offset, so we use temporary values.  We'll update
 371 * them later in setup_arg_pages().
 372 */
 373static int bprm_mm_init(struct linux_binprm *bprm)
 374{
 375        int err;
 376        struct mm_struct *mm = NULL;
 377
 378        bprm->mm = mm = mm_alloc();
 379        err = -ENOMEM;
 380        if (!mm)
 381                goto err;
 382
 383        err = __bprm_mm_init(bprm);
 384        if (err)
 385                goto err;
 386
 387        return 0;
 388
 389err:
 390        if (mm) {
 391                bprm->mm = NULL;
 392                mmdrop(mm);
 393        }
 394
 395        return err;
 396}
 397
 398struct user_arg_ptr {
 399#ifdef CONFIG_COMPAT
 400        bool is_compat;
 401#endif
 402        union {
 403                const char __user *const __user *native;
 404#ifdef CONFIG_COMPAT
 405                const compat_uptr_t __user *compat;
 406#endif
 407        } ptr;
 408};
 409
 410static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
 411{
 412        const char __user *native;
 413
 414#ifdef CONFIG_COMPAT
 415        if (unlikely(argv.is_compat)) {
 416                compat_uptr_t compat;
 417
 418                if (get_user(compat, argv.ptr.compat + nr))
 419                        return ERR_PTR(-EFAULT);
 420
 421                return compat_ptr(compat);
 422        }
 423#endif
 424
 425        if (get_user(native, argv.ptr.native + nr))
 426                return ERR_PTR(-EFAULT);
 427
 428        return native;
 429}
 430
 431/*
 432 * count() counts the number of strings in array ARGV.
 433 */
 434static int count(struct user_arg_ptr argv, int max)
 435{
 436        int i = 0;
 437
 438        if (argv.ptr.native != NULL) {
 439                for (;;) {
 440                        const char __user *p = get_user_arg_ptr(argv, i);
 441
 442                        if (!p)
 443                                break;
 444
 445                        if (IS_ERR(p))
 446                                return -EFAULT;
 447
 448                        if (i >= max)
 449                                return -E2BIG;
 450                        ++i;
 451
 452                        if (fatal_signal_pending(current))
 453                                return -ERESTARTNOHAND;
 454                        cond_resched();
 455                }
 456        }
 457        return i;
 458}
 459
 460/*
 461 * 'copy_strings()' copies argument/environment strings from the old
 462 * processes's memory to the new process's stack.  The call to get_user_pages()
 463 * ensures the destination page is created and not swapped out.
 464 */
 465static int copy_strings(int argc, struct user_arg_ptr argv,
 466                        struct linux_binprm *bprm)
 467{
 468        struct page *kmapped_page = NULL;
 469        char *kaddr = NULL;
 470        unsigned long kpos = 0;
 471        int ret;
 472
 473        while (argc-- > 0) {
 474                const char __user *str;
 475                int len;
 476                unsigned long pos;
 477
 478                ret = -EFAULT;
 479                str = get_user_arg_ptr(argv, argc);
 480                if (IS_ERR(str))
 481                        goto out;
 482
 483                len = strnlen_user(str, MAX_ARG_STRLEN);
 484                if (!len)
 485                        goto out;
 486
 487                ret = -E2BIG;
 488                if (!valid_arg_len(bprm, len))
 489                        goto out;
 490
 491                /* We're going to work our way backwords. */
 492                pos = bprm->p;
 493                str += len;
 494                bprm->p -= len;
 495
 496                while (len > 0) {
 497                        int offset, bytes_to_copy;
 498
 499                        if (fatal_signal_pending(current)) {
 500                                ret = -ERESTARTNOHAND;
 501                                goto out;
 502                        }
 503                        cond_resched();
 504
 505                        offset = pos % PAGE_SIZE;
 506                        if (offset == 0)
 507                                offset = PAGE_SIZE;
 508
 509                        bytes_to_copy = offset;
 510                        if (bytes_to_copy > len)
 511                                bytes_to_copy = len;
 512
 513                        offset -= bytes_to_copy;
 514                        pos -= bytes_to_copy;
 515                        str -= bytes_to_copy;
 516                        len -= bytes_to_copy;
 517
 518                        if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
 519                                struct page *page;
 520
 521                                page = get_arg_page(bprm, pos, 1);
 522                                if (!page) {
 523                                        ret = -E2BIG;
 524                                        goto out;
 525                                }
 526
 527                                if (kmapped_page) {
 528                                        flush_kernel_dcache_page(kmapped_page);
 529                                        kunmap(kmapped_page);
 530                                        put_arg_page(kmapped_page);
 531                                }
 532                                kmapped_page = page;
 533                                kaddr = kmap(kmapped_page);
 534                                kpos = pos & PAGE_MASK;
 535                                flush_arg_page(bprm, kpos, kmapped_page);
 536                        }
 537                        if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
 538                                ret = -EFAULT;
 539                                goto out;
 540                        }
 541                }
 542        }
 543        ret = 0;
 544out:
 545        if (kmapped_page) {
 546                flush_kernel_dcache_page(kmapped_page);
 547                kunmap(kmapped_page);
 548                put_arg_page(kmapped_page);
 549        }
 550        return ret;
 551}
 552
 553/*
 554 * Like copy_strings, but get argv and its values from kernel memory.
 555 */
 556int copy_strings_kernel(int argc, const char *const *__argv,
 557                        struct linux_binprm *bprm)
 558{
 559        int r;
 560        mm_segment_t oldfs = get_fs();
 561        struct user_arg_ptr argv = {
 562                .ptr.native = (const char __user *const  __user *)__argv,
 563        };
 564
 565        set_fs(KERNEL_DS);
 566        r = copy_strings(argc, argv, bprm);
 567        set_fs(oldfs);
 568
 569        return r;
 570}
 571EXPORT_SYMBOL(copy_strings_kernel);
 572
 573#ifdef CONFIG_MMU
 574
 575/*
 576 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
 577 * the binfmt code determines where the new stack should reside, we shift it to
 578 * its final location.  The process proceeds as follows:
 579 *
 580 * 1) Use shift to calculate the new vma endpoints.
 581 * 2) Extend vma to cover both the old and new ranges.  This ensures the
 582 *    arguments passed to subsequent functions are consistent.
 583 * 3) Move vma's page tables to the new range.
 584 * 4) Free up any cleared pgd range.
 585 * 5) Shrink the vma to cover only the new range.
 586 */
 587static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
 588{
 589        struct mm_struct *mm = vma->vm_mm;
 590        unsigned long old_start = vma->vm_start;
 591        unsigned long old_end = vma->vm_end;
 592        unsigned long length = old_end - old_start;
 593        unsigned long new_start = old_start - shift;
 594        unsigned long new_end = old_end - shift;
 595        struct mmu_gather tlb;
 596
 597        BUG_ON(new_start > new_end);
 598
 599        /*
 600         * ensure there are no vmas between where we want to go
 601         * and where we are
 602         */
 603        if (vma != find_vma(mm, new_start))
 604                return -EFAULT;
 605
 606        /*
 607         * cover the whole range: [new_start, old_end)
 608         */
 609        if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
 610                return -ENOMEM;
 611
 612        /*
 613         * move the page tables downwards, on failure we rely on
 614         * process cleanup to remove whatever mess we made.
 615         */
 616        if (length != move_page_tables(vma, old_start,
 617                                       vma, new_start, length, false))
 618                return -ENOMEM;
 619
 620        lru_add_drain();
 621        tlb_gather_mmu(&tlb, mm, old_start, old_end);
 622        if (new_end > old_start) {
 623                /*
 624                 * when the old and new regions overlap clear from new_end.
 625                 */
 626                free_pgd_range(&tlb, new_end, old_end, new_end,
 627                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 628        } else {
 629                /*
 630                 * otherwise, clean from old_start; this is done to not touch
 631                 * the address space in [new_end, old_start) some architectures
 632                 * have constraints on va-space that make this illegal (IA64) -
 633                 * for the others its just a little faster.
 634                 */
 635                free_pgd_range(&tlb, old_start, old_end, new_end,
 636                        vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
 637        }
 638        tlb_finish_mmu(&tlb, old_start, old_end);
 639
 640        /*
 641         * Shrink the vma to just the new range.  Always succeeds.
 642         */
 643        vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
 644
 645        return 0;
 646}
 647
 648/*
 649 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
 650 * the stack is optionally relocated, and some extra space is added.
 651 */
 652int setup_arg_pages(struct linux_binprm *bprm,
 653                    unsigned long stack_top,
 654                    int executable_stack)
 655{
 656        unsigned long ret;
 657        unsigned long stack_shift;
 658        struct mm_struct *mm = current->mm;
 659        struct vm_area_struct *vma = bprm->vma;
 660        struct vm_area_struct *prev = NULL;
 661        unsigned long vm_flags;
 662        unsigned long stack_base;
 663        unsigned long stack_size;
 664        unsigned long stack_expand;
 665        unsigned long rlim_stack;
 666
 667#ifdef CONFIG_STACK_GROWSUP
 668        /* Limit stack size */
 669        stack_base = rlimit_max(RLIMIT_STACK);
 670        if (stack_base > STACK_SIZE_MAX)
 671                stack_base = STACK_SIZE_MAX;
 672
 673        /* Add space for stack randomization. */
 674        stack_base += (STACK_RND_MASK << PAGE_SHIFT);
 675
 676        /* Make sure we didn't let the argument array grow too large. */
 677        if (vma->vm_end - vma->vm_start > stack_base)
 678                return -ENOMEM;
 679
 680        stack_base = PAGE_ALIGN(stack_top - stack_base);
 681
 682        stack_shift = vma->vm_start - stack_base;
 683        mm->arg_start = bprm->p - stack_shift;
 684        bprm->p = vma->vm_end - stack_shift;
 685#else
 686        stack_top = arch_align_stack(stack_top);
 687        stack_top = PAGE_ALIGN(stack_top);
 688
 689        if (unlikely(stack_top < mmap_min_addr) ||
 690            unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
 691                return -ENOMEM;
 692
 693        stack_shift = vma->vm_end - stack_top;
 694
 695        bprm->p -= stack_shift;
 696        mm->arg_start = bprm->p;
 697#endif
 698
 699        if (bprm->loader)
 700                bprm->loader -= stack_shift;
 701        bprm->exec -= stack_shift;
 702
 703        if (down_write_killable(&mm->mmap_sem))
 704                return -EINTR;
 705
 706        vm_flags = VM_STACK_FLAGS;
 707
 708        /*
 709         * Adjust stack execute permissions; explicitly enable for
 710         * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
 711         * (arch default) otherwise.
 712         */
 713        if (unlikely(executable_stack == EXSTACK_ENABLE_X))
 714                vm_flags |= VM_EXEC;
 715        else if (executable_stack == EXSTACK_DISABLE_X)
 716                vm_flags &= ~VM_EXEC;
 717        vm_flags |= mm->def_flags;
 718        vm_flags |= VM_STACK_INCOMPLETE_SETUP;
 719
 720        ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
 721                        vm_flags);
 722        if (ret)
 723                goto out_unlock;
 724        BUG_ON(prev != vma);
 725
 726        /* Move stack pages down in memory. */
 727        if (stack_shift) {
 728                ret = shift_arg_pages(vma, stack_shift);
 729                if (ret)
 730                        goto out_unlock;
 731        }
 732
 733        /* mprotect_fixup is overkill to remove the temporary stack flags */
 734        vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
 735
 736        stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
 737        stack_size = vma->vm_end - vma->vm_start;
 738        /*
 739         * Align this down to a page boundary as expand_stack
 740         * will align it up.
 741         */
 742        rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
 743#ifdef CONFIG_STACK_GROWSUP
 744        if (stack_size + stack_expand > rlim_stack)
 745                stack_base = vma->vm_start + rlim_stack;
 746        else
 747                stack_base = vma->vm_end + stack_expand;
 748#else
 749        if (stack_size + stack_expand > rlim_stack)
 750                stack_base = vma->vm_end - rlim_stack;
 751        else
 752                stack_base = vma->vm_start - stack_expand;
 753#endif
 754        current->mm->start_stack = bprm->p;
 755        ret = expand_stack(vma, stack_base);
 756        if (ret)
 757                ret = -EFAULT;
 758
 759out_unlock:
 760        up_write(&mm->mmap_sem);
 761        return ret;
 762}
 763EXPORT_SYMBOL(setup_arg_pages);
 764
 765#else
 766
 767/*
 768 * Transfer the program arguments and environment from the holding pages
 769 * onto the stack. The provided stack pointer is adjusted accordingly.
 770 */
 771int transfer_args_to_stack(struct linux_binprm *bprm,
 772                           unsigned long *sp_location)
 773{
 774        unsigned long index, stop, sp;
 775        int ret = 0;
 776
 777        stop = bprm->p >> PAGE_SHIFT;
 778        sp = *sp_location;
 779
 780        for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
 781                unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
 782                char *src = kmap(bprm->page[index]) + offset;
 783                sp -= PAGE_SIZE - offset;
 784                if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
 785                        ret = -EFAULT;
 786                kunmap(bprm->page[index]);
 787                if (ret)
 788                        goto out;
 789        }
 790
 791        *sp_location = sp;
 792
 793out:
 794        return ret;
 795}
 796EXPORT_SYMBOL(transfer_args_to_stack);
 797
 798#endif /* CONFIG_MMU */
 799
 800static struct file *do_open_execat(int fd, struct filename *name, int flags)
 801{
 802        struct file *file;
 803        int err;
 804        struct open_flags open_exec_flags = {
 805                .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
 806                .acc_mode = MAY_EXEC,
 807                .intent = LOOKUP_OPEN,
 808                .lookup_flags = LOOKUP_FOLLOW,
 809        };
 810
 811        if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
 812                return ERR_PTR(-EINVAL);
 813        if (flags & AT_SYMLINK_NOFOLLOW)
 814                open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
 815        if (flags & AT_EMPTY_PATH)
 816                open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
 817
 818        file = do_filp_open(fd, name, &open_exec_flags);
 819        if (IS_ERR(file))
 820                goto out;
 821
 822        err = -EACCES;
 823        if (!S_ISREG(file_inode(file)->i_mode))
 824                goto exit;
 825
 826        if (path_noexec(&file->f_path))
 827                goto exit;
 828
 829        err = deny_write_access(file);
 830        if (err)
 831                goto exit;
 832
 833        if (name->name[0] != '\0')
 834                fsnotify_open(file);
 835
 836out:
 837        return file;
 838
 839exit:
 840        fput(file);
 841        return ERR_PTR(err);
 842}
 843
 844struct file *open_exec(const char *name)
 845{
 846        struct filename *filename = getname_kernel(name);
 847        struct file *f = ERR_CAST(filename);
 848
 849        if (!IS_ERR(filename)) {
 850                f = do_open_execat(AT_FDCWD, filename, 0);
 851                putname(filename);
 852        }
 853        return f;
 854}
 855EXPORT_SYMBOL(open_exec);
 856
 857int kernel_read(struct file *file, loff_t offset,
 858                char *addr, unsigned long count)
 859{
 860        mm_segment_t old_fs;
 861        loff_t pos = offset;
 862        int result;
 863
 864        old_fs = get_fs();
 865        set_fs(get_ds());
 866        /* The cast to a user pointer is valid due to the set_fs() */
 867        result = vfs_read(file, (void __user *)addr, count, &pos);
 868        set_fs(old_fs);
 869        return result;
 870}
 871
 872EXPORT_SYMBOL(kernel_read);
 873
 874int kernel_read_file(struct file *file, void **buf, loff_t *size,
 875                     loff_t max_size, enum kernel_read_file_id id)
 876{
 877        loff_t i_size, pos;
 878        ssize_t bytes = 0;
 879        int ret;
 880
 881        if (!S_ISREG(file_inode(file)->i_mode) || max_size < 0)
 882                return -EINVAL;
 883
 884        ret = security_kernel_read_file(file, id);
 885        if (ret)
 886                return ret;
 887
 888        ret = deny_write_access(file);
 889        if (ret)
 890                return ret;
 891
 892        i_size = i_size_read(file_inode(file));
 893        if (max_size > 0 && i_size > max_size) {
 894                ret = -EFBIG;
 895                goto out;
 896        }
 897        if (i_size <= 0) {
 898                ret = -EINVAL;
 899                goto out;
 900        }
 901
 902        if (id != READING_FIRMWARE_PREALLOC_BUFFER)
 903                *buf = vmalloc(i_size);
 904        if (!*buf) {
 905                ret = -ENOMEM;
 906                goto out;
 907        }
 908
 909        pos = 0;
 910        while (pos < i_size) {
 911                bytes = kernel_read(file, pos, (char *)(*buf) + pos,
 912                                    i_size - pos);
 913                if (bytes < 0) {
 914                        ret = bytes;
 915                        goto out;
 916                }
 917
 918                if (bytes == 0)
 919                        break;
 920                pos += bytes;
 921        }
 922
 923        if (pos != i_size) {
 924                ret = -EIO;
 925                goto out_free;
 926        }
 927
 928        ret = security_kernel_post_read_file(file, *buf, i_size, id);
 929        if (!ret)
 930                *size = pos;
 931
 932out_free:
 933        if (ret < 0) {
 934                if (id != READING_FIRMWARE_PREALLOC_BUFFER) {
 935                        vfree(*buf);
 936                        *buf = NULL;
 937                }
 938        }
 939
 940out:
 941        allow_write_access(file);
 942        return ret;
 943}
 944EXPORT_SYMBOL_GPL(kernel_read_file);
 945
 946int kernel_read_file_from_path(char *path, void **buf, loff_t *size,
 947                               loff_t max_size, enum kernel_read_file_id id)
 948{
 949        struct file *file;
 950        int ret;
 951
 952        if (!path || !*path)
 953                return -EINVAL;
 954
 955        file = filp_open(path, O_RDONLY, 0);
 956        if (IS_ERR(file))
 957                return PTR_ERR(file);
 958
 959        ret = kernel_read_file(file, buf, size, max_size, id);
 960        fput(file);
 961        return ret;
 962}
 963EXPORT_SYMBOL_GPL(kernel_read_file_from_path);
 964
 965int kernel_read_file_from_fd(int fd, void **buf, loff_t *size, loff_t max_size,
 966                             enum kernel_read_file_id id)
 967{
 968        struct fd f = fdget(fd);
 969        int ret = -EBADF;
 970
 971        if (!f.file)
 972                goto out;
 973
 974        ret = kernel_read_file(f.file, buf, size, max_size, id);
 975out:
 976        fdput(f);
 977        return ret;
 978}
 979EXPORT_SYMBOL_GPL(kernel_read_file_from_fd);
 980
 981ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
 982{
 983        ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
 984        if (res > 0)
 985                flush_icache_range(addr, addr + len);
 986        return res;
 987}
 988EXPORT_SYMBOL(read_code);
 989
 990static int exec_mmap(struct mm_struct *mm)
 991{
 992        struct task_struct *tsk;
 993        struct mm_struct *old_mm, *active_mm;
 994
 995        /* Notify parent that we're no longer interested in the old VM */
 996        tsk = current;
 997        old_mm = current->mm;
 998        mm_release(tsk, old_mm);
 999
1000        if (old_mm) {
1001                sync_mm_rss(old_mm);
1002                /*
1003                 * Make sure that if there is a core dump in progress
1004                 * for the old mm, we get out and die instead of going
1005                 * through with the exec.  We must hold mmap_sem around
1006                 * checking core_state and changing tsk->mm.
1007                 */
1008                down_read(&old_mm->mmap_sem);
1009                if (unlikely(old_mm->core_state)) {
1010                        up_read(&old_mm->mmap_sem);
1011                        return -EINTR;
1012                }
1013        }
1014        task_lock(tsk);
1015        active_mm = tsk->active_mm;
1016        tsk->mm = mm;
1017        tsk->active_mm = mm;
1018        activate_mm(active_mm, mm);
1019        tsk->mm->vmacache_seqnum = 0;
1020        vmacache_flush(tsk);
1021        task_unlock(tsk);
1022        if (old_mm) {
1023                up_read(&old_mm->mmap_sem);
1024                BUG_ON(active_mm != old_mm);
1025                setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1026                mm_update_next_owner(old_mm);
1027                mmput(old_mm);
1028                return 0;
1029        }
1030        mmdrop(active_mm);
1031        return 0;
1032}
1033
1034/*
1035 * This function makes sure the current process has its own signal table,
1036 * so that flush_signal_handlers can later reset the handlers without
1037 * disturbing other processes.  (Other processes might share the signal
1038 * table via the CLONE_SIGHAND option to clone().)
1039 */
1040static int de_thread(struct task_struct *tsk)
1041{
1042        struct signal_struct *sig = tsk->signal;
1043        struct sighand_struct *oldsighand = tsk->sighand;
1044        spinlock_t *lock = &oldsighand->siglock;
1045
1046        if (thread_group_empty(tsk))
1047                goto no_thread_group;
1048
1049        /*
1050         * Kill all other threads in the thread group.
1051         */
1052        spin_lock_irq(lock);
1053        if (signal_group_exit(sig)) {
1054                /*
1055                 * Another group action in progress, just
1056                 * return so that the signal is processed.
1057                 */
1058                spin_unlock_irq(lock);
1059                return -EAGAIN;
1060        }
1061
1062        sig->group_exit_task = tsk;
1063        sig->notify_count = zap_other_threads(tsk);
1064        if (!thread_group_leader(tsk))
1065                sig->notify_count--;
1066
1067        while (sig->notify_count) {
1068                __set_current_state(TASK_KILLABLE);
1069                spin_unlock_irq(lock);
1070                schedule();
1071                if (unlikely(__fatal_signal_pending(tsk)))
1072                        goto killed;
1073                spin_lock_irq(lock);
1074        }
1075        spin_unlock_irq(lock);
1076
1077        /*
1078         * At this point all other threads have exited, all we have to
1079         * do is to wait for the thread group leader to become inactive,
1080         * and to assume its PID:
1081         */
1082        if (!thread_group_leader(tsk)) {
1083                struct task_struct *leader = tsk->group_leader;
1084
1085                for (;;) {
1086                        threadgroup_change_begin(tsk);
1087                        write_lock_irq(&tasklist_lock);
1088                        /*
1089                         * Do this under tasklist_lock to ensure that
1090                         * exit_notify() can't miss ->group_exit_task
1091                         */
1092                        sig->notify_count = -1;
1093                        if (likely(leader->exit_state))
1094                                break;
1095                        __set_current_state(TASK_KILLABLE);
1096                        write_unlock_irq(&tasklist_lock);
1097                        threadgroup_change_end(tsk);
1098                        schedule();
1099                        if (unlikely(__fatal_signal_pending(tsk)))
1100                                goto killed;
1101                }
1102
1103                /*
1104                 * The only record we have of the real-time age of a
1105                 * process, regardless of execs it's done, is start_time.
1106                 * All the past CPU time is accumulated in signal_struct
1107                 * from sister threads now dead.  But in this non-leader
1108                 * exec, nothing survives from the original leader thread,
1109                 * whose birth marks the true age of this process now.
1110                 * When we take on its identity by switching to its PID, we
1111                 * also take its birthdate (always earlier than our own).
1112                 */
1113                tsk->start_time = leader->start_time;
1114                tsk->real_start_time = leader->real_start_time;
1115
1116                BUG_ON(!same_thread_group(leader, tsk));
1117                BUG_ON(has_group_leader_pid(tsk));
1118                /*
1119                 * An exec() starts a new thread group with the
1120                 * TGID of the previous thread group. Rehash the
1121                 * two threads with a switched PID, and release
1122                 * the former thread group leader:
1123                 */
1124
1125                /* Become a process group leader with the old leader's pid.
1126                 * The old leader becomes a thread of the this thread group.
1127                 * Note: The old leader also uses this pid until release_task
1128                 *       is called.  Odd but simple and correct.
1129                 */
1130                tsk->pid = leader->pid;
1131                change_pid(tsk, PIDTYPE_PID, task_pid(leader));
1132                transfer_pid(leader, tsk, PIDTYPE_PGID);
1133                transfer_pid(leader, tsk, PIDTYPE_SID);
1134
1135                list_replace_rcu(&leader->tasks, &tsk->tasks);
1136                list_replace_init(&leader->sibling, &tsk->sibling);
1137
1138                tsk->group_leader = tsk;
1139                leader->group_leader = tsk;
1140
1141                tsk->exit_signal = SIGCHLD;
1142                leader->exit_signal = -1;
1143
1144                BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1145                leader->exit_state = EXIT_DEAD;
1146
1147                /*
1148                 * We are going to release_task()->ptrace_unlink() silently,
1149                 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1150                 * the tracer wont't block again waiting for this thread.
1151                 */
1152                if (unlikely(leader->ptrace))
1153                        __wake_up_parent(leader, leader->parent);
1154                write_unlock_irq(&tasklist_lock);
1155                threadgroup_change_end(tsk);
1156
1157                release_task(leader);
1158        }
1159
1160        sig->group_exit_task = NULL;
1161        sig->notify_count = 0;
1162
1163no_thread_group:
1164        /* we have changed execution domain */
1165        tsk->exit_signal = SIGCHLD;
1166
1167        exit_itimers(sig);
1168        flush_itimer_signals();
1169
1170        if (atomic_read(&oldsighand->count) != 1) {
1171                struct sighand_struct *newsighand;
1172                /*
1173                 * This ->sighand is shared with the CLONE_SIGHAND
1174                 * but not CLONE_THREAD task, switch to the new one.
1175                 */
1176                newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1177                if (!newsighand)
1178                        return -ENOMEM;
1179
1180                atomic_set(&newsighand->count, 1);
1181                memcpy(newsighand->action, oldsighand->action,
1182                       sizeof(newsighand->action));
1183
1184                write_lock_irq(&tasklist_lock);
1185                spin_lock(&oldsighand->siglock);
1186                rcu_assign_pointer(tsk->sighand, newsighand);
1187                spin_unlock(&oldsighand->siglock);
1188                write_unlock_irq(&tasklist_lock);
1189
1190                __cleanup_sighand(oldsighand);
1191        }
1192
1193        BUG_ON(!thread_group_leader(tsk));
1194        return 0;
1195
1196killed:
1197        /* protects against exit_notify() and __exit_signal() */
1198        read_lock(&tasklist_lock);
1199        sig->group_exit_task = NULL;
1200        sig->notify_count = 0;
1201        read_unlock(&tasklist_lock);
1202        return -EAGAIN;
1203}
1204
1205char *get_task_comm(char *buf, struct task_struct *tsk)
1206{
1207        /* buf must be at least sizeof(tsk->comm) in size */
1208        task_lock(tsk);
1209        strncpy(buf, tsk->comm, sizeof(tsk->comm));
1210        task_unlock(tsk);
1211        return buf;
1212}
1213EXPORT_SYMBOL_GPL(get_task_comm);
1214
1215/*
1216 * These functions flushes out all traces of the currently running executable
1217 * so that a new one can be started
1218 */
1219
1220void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1221{
1222        task_lock(tsk);
1223        trace_task_rename(tsk, buf);
1224        strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1225        task_unlock(tsk);
1226        perf_event_comm(tsk, exec);
1227}
1228
1229int flush_old_exec(struct linux_binprm * bprm)
1230{
1231        int retval;
1232
1233        /*
1234         * Make sure we have a private signal table and that
1235         * we are unassociated from the previous thread group.
1236         */
1237        retval = de_thread(current);
1238        if (retval)
1239                goto out;
1240
1241        /*
1242         * Must be called _before_ exec_mmap() as bprm->mm is
1243         * not visibile until then. This also enables the update
1244         * to be lockless.
1245         */
1246        set_mm_exe_file(bprm->mm, bprm->file);
1247
1248        /*
1249         * Release all of the old mmap stuff
1250         */
1251        acct_arg_size(bprm, 0);
1252        retval = exec_mmap(bprm->mm);
1253        if (retval)
1254                goto out;
1255
1256        bprm->mm = NULL;                /* We're using it now */
1257
1258        set_fs(USER_DS);
1259        current->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1260                                        PF_NOFREEZE | PF_NO_SETAFFINITY);
1261        flush_thread();
1262        current->personality &= ~bprm->per_clear;
1263
1264        return 0;
1265
1266out:
1267        return retval;
1268}
1269EXPORT_SYMBOL(flush_old_exec);
1270
1271void would_dump(struct linux_binprm *bprm, struct file *file)
1272{
1273        if (inode_permission(file_inode(file), MAY_READ) < 0)
1274                bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1275}
1276EXPORT_SYMBOL(would_dump);
1277
1278void setup_new_exec(struct linux_binprm * bprm)
1279{
1280        arch_pick_mmap_layout(current->mm);
1281
1282        /* This is the point of no return */
1283        current->sas_ss_sp = current->sas_ss_size = 0;
1284
1285        if (uid_eq(current_euid(), current_uid()) && gid_eq(current_egid(), current_gid()))
1286                set_dumpable(current->mm, SUID_DUMP_USER);
1287        else
1288                set_dumpable(current->mm, suid_dumpable);
1289
1290        perf_event_exec();
1291        __set_task_comm(current, kbasename(bprm->filename), true);
1292
1293        /* Set the new mm task size. We have to do that late because it may
1294         * depend on TIF_32BIT which is only updated in flush_thread() on
1295         * some architectures like powerpc
1296         */
1297        current->mm->task_size = TASK_SIZE;
1298
1299        /* install the new credentials */
1300        if (!uid_eq(bprm->cred->uid, current_euid()) ||
1301            !gid_eq(bprm->cred->gid, current_egid())) {
1302                current->pdeath_signal = 0;
1303        } else {
1304                would_dump(bprm, bprm->file);
1305                if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)
1306                        set_dumpable(current->mm, suid_dumpable);
1307        }
1308
1309        /* An exec changes our domain. We are no longer part of the thread
1310           group */
1311        current->self_exec_id++;
1312        flush_signal_handlers(current, 0);
1313        do_close_on_exec(current->files);
1314}
1315EXPORT_SYMBOL(setup_new_exec);
1316
1317/*
1318 * Prepare credentials and lock ->cred_guard_mutex.
1319 * install_exec_creds() commits the new creds and drops the lock.
1320 * Or, if exec fails before, free_bprm() should release ->cred and
1321 * and unlock.
1322 */
1323int prepare_bprm_creds(struct linux_binprm *bprm)
1324{
1325        if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1326                return -ERESTARTNOINTR;
1327
1328        bprm->cred = prepare_exec_creds();
1329        if (likely(bprm->cred))
1330                return 0;
1331
1332        mutex_unlock(&current->signal->cred_guard_mutex);
1333        return -ENOMEM;
1334}
1335
1336static void free_bprm(struct linux_binprm *bprm)
1337{
1338        free_arg_pages(bprm);
1339        if (bprm->cred) {
1340                mutex_unlock(&current->signal->cred_guard_mutex);
1341                abort_creds(bprm->cred);
1342        }
1343        if (bprm->file) {
1344                allow_write_access(bprm->file);
1345                fput(bprm->file);
1346        }
1347        /* If a binfmt changed the interp, free it. */
1348        if (bprm->interp != bprm->filename)
1349                kfree(bprm->interp);
1350        kfree(bprm);
1351}
1352
1353int bprm_change_interp(char *interp, struct linux_binprm *bprm)
1354{
1355        /* If a binfmt changed the interp, free it first. */
1356        if (bprm->interp != bprm->filename)
1357                kfree(bprm->interp);
1358        bprm->interp = kstrdup(interp, GFP_KERNEL);
1359        if (!bprm->interp)
1360                return -ENOMEM;
1361        return 0;
1362}
1363EXPORT_SYMBOL(bprm_change_interp);
1364
1365/*
1366 * install the new credentials for this executable
1367 */
1368void install_exec_creds(struct linux_binprm *bprm)
1369{
1370        security_bprm_committing_creds(bprm);
1371
1372        commit_creds(bprm->cred);
1373        bprm->cred = NULL;
1374
1375        /*
1376         * Disable monitoring for regular users
1377         * when executing setuid binaries. Must
1378         * wait until new credentials are committed
1379         * by commit_creds() above
1380         */
1381        if (get_dumpable(current->mm) != SUID_DUMP_USER)
1382                perf_event_exit_task(current);
1383        /*
1384         * cred_guard_mutex must be held at least to this point to prevent
1385         * ptrace_attach() from altering our determination of the task's
1386         * credentials; any time after this it may be unlocked.
1387         */
1388        security_bprm_committed_creds(bprm);
1389        mutex_unlock(&current->signal->cred_guard_mutex);
1390}
1391EXPORT_SYMBOL(install_exec_creds);
1392
1393/*
1394 * determine how safe it is to execute the proposed program
1395 * - the caller must hold ->cred_guard_mutex to protect against
1396 *   PTRACE_ATTACH or seccomp thread-sync
1397 */
1398static void check_unsafe_exec(struct linux_binprm *bprm)
1399{
1400        struct task_struct *p = current, *t;
1401        unsigned n_fs;
1402
1403        if (p->ptrace) {
1404                if (p->ptrace & PT_PTRACE_CAP)
1405                        bprm->unsafe |= LSM_UNSAFE_PTRACE_CAP;
1406                else
1407                        bprm->unsafe |= LSM_UNSAFE_PTRACE;
1408        }
1409
1410        /*
1411         * This isn't strictly necessary, but it makes it harder for LSMs to
1412         * mess up.
1413         */
1414        if (task_no_new_privs(current))
1415                bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1416
1417        t = p;
1418        n_fs = 1;
1419        spin_lock(&p->fs->lock);
1420        rcu_read_lock();
1421        while_each_thread(p, t) {
1422                if (t->fs == p->fs)
1423                        n_fs++;
1424        }
1425        rcu_read_unlock();
1426
1427        if (p->fs->users > n_fs)
1428                bprm->unsafe |= LSM_UNSAFE_SHARE;
1429        else
1430                p->fs->in_exec = 1;
1431        spin_unlock(&p->fs->lock);
1432}
1433
1434static void bprm_fill_uid(struct linux_binprm *bprm)
1435{
1436        struct inode *inode;
1437        unsigned int mode;
1438        kuid_t uid;
1439        kgid_t gid;
1440
1441        /*
1442         * Since this can be called multiple times (via prepare_binprm),
1443         * we must clear any previous work done when setting set[ug]id
1444         * bits from any earlier bprm->file uses (for example when run
1445         * first for a setuid script then again for its interpreter).
1446         */
1447        bprm->cred->euid = current_euid();
1448        bprm->cred->egid = current_egid();
1449
1450        if (!mnt_may_suid(bprm->file->f_path.mnt))
1451                return;
1452
1453        if (task_no_new_privs(current))
1454                return;
1455
1456        inode = file_inode(bprm->file);
1457        mode = READ_ONCE(inode->i_mode);
1458        if (!(mode & (S_ISUID|S_ISGID)))
1459                return;
1460
1461        /* Be careful if suid/sgid is set */
1462        inode_lock(inode);
1463
1464        /* reload atomically mode/uid/gid now that lock held */
1465        mode = inode->i_mode;
1466        uid = inode->i_uid;
1467        gid = inode->i_gid;
1468        inode_unlock(inode);
1469
1470        /* We ignore suid/sgid if there are no mappings for them in the ns */
1471        if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1472                 !kgid_has_mapping(bprm->cred->user_ns, gid))
1473                return;
1474
1475        if (mode & S_ISUID) {
1476                bprm->per_clear |= PER_CLEAR_ON_SETID;
1477                bprm->cred->euid = uid;
1478        }
1479
1480        if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1481                bprm->per_clear |= PER_CLEAR_ON_SETID;
1482                bprm->cred->egid = gid;
1483        }
1484}
1485
1486/*
1487 * Fill the binprm structure from the inode.
1488 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
1489 *
1490 * This may be called multiple times for binary chains (scripts for example).
1491 */
1492int prepare_binprm(struct linux_binprm *bprm)
1493{
1494        int retval;
1495
1496        bprm_fill_uid(bprm);
1497
1498        /* fill in binprm security blob */
1499        retval = security_bprm_set_creds(bprm);
1500        if (retval)
1501                return retval;
1502        bprm->cred_prepared = 1;
1503
1504        memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1505        return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1506}
1507
1508EXPORT_SYMBOL(prepare_binprm);
1509
1510/*
1511 * Arguments are '\0' separated strings found at the location bprm->p
1512 * points to; chop off the first by relocating brpm->p to right after
1513 * the first '\0' encountered.
1514 */
1515int remove_arg_zero(struct linux_binprm *bprm)
1516{
1517        int ret = 0;
1518        unsigned long offset;
1519        char *kaddr;
1520        struct page *page;
1521
1522        if (!bprm->argc)
1523                return 0;
1524
1525        do {
1526                offset = bprm->p & ~PAGE_MASK;
1527                page = get_arg_page(bprm, bprm->p, 0);
1528                if (!page) {
1529                        ret = -EFAULT;
1530                        goto out;
1531                }
1532                kaddr = kmap_atomic(page);
1533
1534                for (; offset < PAGE_SIZE && kaddr[offset];
1535                                offset++, bprm->p++)
1536                        ;
1537
1538                kunmap_atomic(kaddr);
1539                put_arg_page(page);
1540        } while (offset == PAGE_SIZE);
1541
1542        bprm->p++;
1543        bprm->argc--;
1544        ret = 0;
1545
1546out:
1547        return ret;
1548}
1549EXPORT_SYMBOL(remove_arg_zero);
1550
1551#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1552/*
1553 * cycle the list of binary formats handler, until one recognizes the image
1554 */
1555int search_binary_handler(struct linux_binprm *bprm)
1556{
1557        bool need_retry = IS_ENABLED(CONFIG_MODULES);
1558        struct linux_binfmt *fmt;
1559        int retval;
1560
1561        /* This allows 4 levels of binfmt rewrites before failing hard. */
1562        if (bprm->recursion_depth > 5)
1563                return -ELOOP;
1564
1565        retval = security_bprm_check(bprm);
1566        if (retval)
1567                return retval;
1568
1569        retval = -ENOENT;
1570 retry:
1571        read_lock(&binfmt_lock);
1572        list_for_each_entry(fmt, &formats, lh) {
1573                if (!try_module_get(fmt->module))
1574                        continue;
1575                read_unlock(&binfmt_lock);
1576                bprm->recursion_depth++;
1577                retval = fmt->load_binary(bprm);
1578                read_lock(&binfmt_lock);
1579                put_binfmt(fmt);
1580                bprm->recursion_depth--;
1581                if (retval < 0 && !bprm->mm) {
1582                        /* we got to flush_old_exec() and failed after it */
1583                        read_unlock(&binfmt_lock);
1584                        force_sigsegv(SIGSEGV, current);
1585                        return retval;
1586                }
1587                if (retval != -ENOEXEC || !bprm->file) {
1588                        read_unlock(&binfmt_lock);
1589                        return retval;
1590                }
1591        }
1592        read_unlock(&binfmt_lock);
1593
1594        if (need_retry) {
1595                if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1596                    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1597                        return retval;
1598                if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1599                        return retval;
1600                need_retry = false;
1601                goto retry;
1602        }
1603
1604        return retval;
1605}
1606EXPORT_SYMBOL(search_binary_handler);
1607
1608static int exec_binprm(struct linux_binprm *bprm)
1609{
1610        pid_t old_pid, old_vpid;
1611        int ret;
1612
1613        /* Need to fetch pid before load_binary changes it */
1614        old_pid = current->pid;
1615        rcu_read_lock();
1616        old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1617        rcu_read_unlock();
1618
1619        ret = search_binary_handler(bprm);
1620        if (ret >= 0) {
1621                audit_bprm(bprm);
1622                trace_sched_process_exec(current, old_pid, bprm);
1623                ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1624                proc_exec_connector(current);
1625        }
1626
1627        return ret;
1628}
1629
1630/*
1631 * sys_execve() executes a new program.
1632 */
1633static int do_execveat_common(int fd, struct filename *filename,
1634                              struct user_arg_ptr argv,
1635                              struct user_arg_ptr envp,
1636                              int flags)
1637{
1638        char *pathbuf = NULL;
1639        struct linux_binprm *bprm;
1640        struct file *file;
1641        struct files_struct *displaced;
1642        int retval;
1643
1644        if (IS_ERR(filename))
1645                return PTR_ERR(filename);
1646
1647        /*
1648         * We move the actual failure in case of RLIMIT_NPROC excess from
1649         * set*uid() to execve() because too many poorly written programs
1650         * don't check setuid() return code.  Here we additionally recheck
1651         * whether NPROC limit is still exceeded.
1652         */
1653        if ((current->flags & PF_NPROC_EXCEEDED) &&
1654            atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1655                retval = -EAGAIN;
1656                goto out_ret;
1657        }
1658
1659        /* We're below the limit (still or again), so we don't want to make
1660         * further execve() calls fail. */
1661        current->flags &= ~PF_NPROC_EXCEEDED;
1662
1663        retval = unshare_files(&displaced);
1664        if (retval)
1665                goto out_ret;
1666
1667        retval = -ENOMEM;
1668        bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1669        if (!bprm)
1670                goto out_files;
1671
1672        retval = prepare_bprm_creds(bprm);
1673        if (retval)
1674                goto out_free;
1675
1676        check_unsafe_exec(bprm);
1677        current->in_execve = 1;
1678
1679        file = do_open_execat(fd, filename, flags);
1680        retval = PTR_ERR(file);
1681        if (IS_ERR(file))
1682                goto out_unmark;
1683
1684        sched_exec();
1685
1686        bprm->file = file;
1687        if (fd == AT_FDCWD || filename->name[0] == '/') {
1688                bprm->filename = filename->name;
1689        } else {
1690                if (filename->name[0] == '\0')
1691                        pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d", fd);
1692                else
1693                        pathbuf = kasprintf(GFP_TEMPORARY, "/dev/fd/%d/%s",
1694                                            fd, filename->name);
1695                if (!pathbuf) {
1696                        retval = -ENOMEM;
1697                        goto out_unmark;
1698                }
1699                /*
1700                 * Record that a name derived from an O_CLOEXEC fd will be
1701                 * inaccessible after exec. Relies on having exclusive access to
1702                 * current->files (due to unshare_files above).
1703                 */
1704                if (close_on_exec(fd, rcu_dereference_raw(current->files->fdt)))
1705                        bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1706                bprm->filename = pathbuf;
1707        }
1708        bprm->interp = bprm->filename;
1709
1710        retval = bprm_mm_init(bprm);
1711        if (retval)
1712                goto out_unmark;
1713
1714        bprm->argc = count(argv, MAX_ARG_STRINGS);
1715        if ((retval = bprm->argc) < 0)
1716                goto out;
1717
1718        bprm->envc = count(envp, MAX_ARG_STRINGS);
1719        if ((retval = bprm->envc) < 0)
1720                goto out;
1721
1722        retval = prepare_binprm(bprm);
1723        if (retval < 0)
1724                goto out;
1725
1726        retval = copy_strings_kernel(1, &bprm->filename, bprm);
1727        if (retval < 0)
1728                goto out;
1729
1730        bprm->exec = bprm->p;
1731        retval = copy_strings(bprm->envc, envp, bprm);
1732        if (retval < 0)
1733                goto out;
1734
1735        retval = copy_strings(bprm->argc, argv, bprm);
1736        if (retval < 0)
1737                goto out;
1738
1739        retval = exec_binprm(bprm);
1740        if (retval < 0)
1741                goto out;
1742
1743        /* execve succeeded */
1744        current->fs->in_exec = 0;
1745        current->in_execve = 0;
1746        acct_update_integrals(current);
1747        task_numa_free(current);
1748        free_bprm(bprm);
1749        kfree(pathbuf);
1750        putname(filename);
1751        if (displaced)
1752                put_files_struct(displaced);
1753        return retval;
1754
1755out:
1756        if (bprm->mm) {
1757                acct_arg_size(bprm, 0);
1758                mmput(bprm->mm);
1759        }
1760
1761out_unmark:
1762        current->fs->in_exec = 0;
1763        current->in_execve = 0;
1764
1765out_free:
1766        free_bprm(bprm);
1767        kfree(pathbuf);
1768
1769out_files:
1770        if (displaced)
1771                reset_files_struct(displaced);
1772out_ret:
1773        putname(filename);
1774        return retval;
1775}
1776
1777int do_execve(struct filename *filename,
1778        const char __user *const __user *__argv,
1779        const char __user *const __user *__envp)
1780{
1781        struct user_arg_ptr argv = { .ptr.native = __argv };
1782        struct user_arg_ptr envp = { .ptr.native = __envp };
1783        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1784}
1785
1786int do_execveat(int fd, struct filename *filename,
1787                const char __user *const __user *__argv,
1788                const char __user *const __user *__envp,
1789                int flags)
1790{
1791        struct user_arg_ptr argv = { .ptr.native = __argv };
1792        struct user_arg_ptr envp = { .ptr.native = __envp };
1793
1794        return do_execveat_common(fd, filename, argv, envp, flags);
1795}
1796
1797#ifdef CONFIG_COMPAT
1798static int compat_do_execve(struct filename *filename,
1799        const compat_uptr_t __user *__argv,
1800        const compat_uptr_t __user *__envp)
1801{
1802        struct user_arg_ptr argv = {
1803                .is_compat = true,
1804                .ptr.compat = __argv,
1805        };
1806        struct user_arg_ptr envp = {
1807                .is_compat = true,
1808                .ptr.compat = __envp,
1809        };
1810        return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
1811}
1812
1813static int compat_do_execveat(int fd, struct filename *filename,
1814                              const compat_uptr_t __user *__argv,
1815                              const compat_uptr_t __user *__envp,
1816                              int flags)
1817{
1818        struct user_arg_ptr argv = {
1819                .is_compat = true,
1820                .ptr.compat = __argv,
1821        };
1822        struct user_arg_ptr envp = {
1823                .is_compat = true,
1824                .ptr.compat = __envp,
1825        };
1826        return do_execveat_common(fd, filename, argv, envp, flags);
1827}
1828#endif
1829
1830void set_binfmt(struct linux_binfmt *new)
1831{
1832        struct mm_struct *mm = current->mm;
1833
1834        if (mm->binfmt)
1835                module_put(mm->binfmt->module);
1836
1837        mm->binfmt = new;
1838        if (new)
1839                __module_get(new->module);
1840}
1841EXPORT_SYMBOL(set_binfmt);
1842
1843/*
1844 * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
1845 */
1846void set_dumpable(struct mm_struct *mm, int value)
1847{
1848        unsigned long old, new;
1849
1850        if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
1851                return;
1852
1853        do {
1854                old = ACCESS_ONCE(mm->flags);
1855                new = (old & ~MMF_DUMPABLE_MASK) | value;
1856        } while (cmpxchg(&mm->flags, old, new) != old);
1857}
1858
1859SYSCALL_DEFINE3(execve,
1860                const char __user *, filename,
1861                const char __user *const __user *, argv,
1862                const char __user *const __user *, envp)
1863{
1864        return do_execve(getname(filename), argv, envp);
1865}
1866
1867SYSCALL_DEFINE5(execveat,
1868                int, fd, const char __user *, filename,
1869                const char __user *const __user *, argv,
1870                const char __user *const __user *, envp,
1871                int, flags)
1872{
1873        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1874
1875        return do_execveat(fd,
1876                           getname_flags(filename, lookup_flags, NULL),
1877                           argv, envp, flags);
1878}
1879
1880#ifdef CONFIG_COMPAT
1881COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
1882        const compat_uptr_t __user *, argv,
1883        const compat_uptr_t __user *, envp)
1884{
1885        return compat_do_execve(getname(filename), argv, envp);
1886}
1887
1888COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
1889                       const char __user *, filename,
1890                       const compat_uptr_t __user *, argv,
1891                       const compat_uptr_t __user *, envp,
1892                       int,  flags)
1893{
1894        int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
1895
1896        return compat_do_execveat(fd,
1897                                  getname_flags(filename, lookup_flags, NULL),
1898                                  argv, envp, flags);
1899}
1900#endif
1901