linux/fs/ext4/indirect.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext4/indirect.c
   3 *
   4 *  from
   5 *
   6 *  linux/fs/ext4/inode.c
   7 *
   8 * Copyright (C) 1992, 1993, 1994, 1995
   9 * Remy Card (card@masi.ibp.fr)
  10 * Laboratoire MASI - Institut Blaise Pascal
  11 * Universite Pierre et Marie Curie (Paris VI)
  12 *
  13 *  from
  14 *
  15 *  linux/fs/minix/inode.c
  16 *
  17 *  Copyright (C) 1991, 1992  Linus Torvalds
  18 *
  19 *  Goal-directed block allocation by Stephen Tweedie
  20 *      (sct@redhat.com), 1993, 1998
  21 */
  22
  23#include "ext4_jbd2.h"
  24#include "truncate.h"
  25#include <linux/dax.h>
  26#include <linux/uio.h>
  27
  28#include <trace/events/ext4.h>
  29
  30typedef struct {
  31        __le32  *p;
  32        __le32  key;
  33        struct buffer_head *bh;
  34} Indirect;
  35
  36static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
  37{
  38        p->key = *(p->p = v);
  39        p->bh = bh;
  40}
  41
  42/**
  43 *      ext4_block_to_path - parse the block number into array of offsets
  44 *      @inode: inode in question (we are only interested in its superblock)
  45 *      @i_block: block number to be parsed
  46 *      @offsets: array to store the offsets in
  47 *      @boundary: set this non-zero if the referred-to block is likely to be
  48 *             followed (on disk) by an indirect block.
  49 *
  50 *      To store the locations of file's data ext4 uses a data structure common
  51 *      for UNIX filesystems - tree of pointers anchored in the inode, with
  52 *      data blocks at leaves and indirect blocks in intermediate nodes.
  53 *      This function translates the block number into path in that tree -
  54 *      return value is the path length and @offsets[n] is the offset of
  55 *      pointer to (n+1)th node in the nth one. If @block is out of range
  56 *      (negative or too large) warning is printed and zero returned.
  57 *
  58 *      Note: function doesn't find node addresses, so no IO is needed. All
  59 *      we need to know is the capacity of indirect blocks (taken from the
  60 *      inode->i_sb).
  61 */
  62
  63/*
  64 * Portability note: the last comparison (check that we fit into triple
  65 * indirect block) is spelled differently, because otherwise on an
  66 * architecture with 32-bit longs and 8Kb pages we might get into trouble
  67 * if our filesystem had 8Kb blocks. We might use long long, but that would
  68 * kill us on x86. Oh, well, at least the sign propagation does not matter -
  69 * i_block would have to be negative in the very beginning, so we would not
  70 * get there at all.
  71 */
  72
  73static int ext4_block_to_path(struct inode *inode,
  74                              ext4_lblk_t i_block,
  75                              ext4_lblk_t offsets[4], int *boundary)
  76{
  77        int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
  78        int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
  79        const long direct_blocks = EXT4_NDIR_BLOCKS,
  80                indirect_blocks = ptrs,
  81                double_blocks = (1 << (ptrs_bits * 2));
  82        int n = 0;
  83        int final = 0;
  84
  85        if (i_block < direct_blocks) {
  86                offsets[n++] = i_block;
  87                final = direct_blocks;
  88        } else if ((i_block -= direct_blocks) < indirect_blocks) {
  89                offsets[n++] = EXT4_IND_BLOCK;
  90                offsets[n++] = i_block;
  91                final = ptrs;
  92        } else if ((i_block -= indirect_blocks) < double_blocks) {
  93                offsets[n++] = EXT4_DIND_BLOCK;
  94                offsets[n++] = i_block >> ptrs_bits;
  95                offsets[n++] = i_block & (ptrs - 1);
  96                final = ptrs;
  97        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
  98                offsets[n++] = EXT4_TIND_BLOCK;
  99                offsets[n++] = i_block >> (ptrs_bits * 2);
 100                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 101                offsets[n++] = i_block & (ptrs - 1);
 102                final = ptrs;
 103        } else {
 104                ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
 105                             i_block + direct_blocks +
 106                             indirect_blocks + double_blocks, inode->i_ino);
 107        }
 108        if (boundary)
 109                *boundary = final - 1 - (i_block & (ptrs - 1));
 110        return n;
 111}
 112
 113/**
 114 *      ext4_get_branch - read the chain of indirect blocks leading to data
 115 *      @inode: inode in question
 116 *      @depth: depth of the chain (1 - direct pointer, etc.)
 117 *      @offsets: offsets of pointers in inode/indirect blocks
 118 *      @chain: place to store the result
 119 *      @err: here we store the error value
 120 *
 121 *      Function fills the array of triples <key, p, bh> and returns %NULL
 122 *      if everything went OK or the pointer to the last filled triple
 123 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 124 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 125 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 126 *      number (it points into struct inode for i==0 and into the bh->b_data
 127 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 128 *      block for i>0 and NULL for i==0. In other words, it holds the block
 129 *      numbers of the chain, addresses they were taken from (and where we can
 130 *      verify that chain did not change) and buffer_heads hosting these
 131 *      numbers.
 132 *
 133 *      Function stops when it stumbles upon zero pointer (absent block)
 134 *              (pointer to last triple returned, *@err == 0)
 135 *      or when it gets an IO error reading an indirect block
 136 *              (ditto, *@err == -EIO)
 137 *      or when it reads all @depth-1 indirect blocks successfully and finds
 138 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 139 *
 140 *      Need to be called with
 141 *      down_read(&EXT4_I(inode)->i_data_sem)
 142 */
 143static Indirect *ext4_get_branch(struct inode *inode, int depth,
 144                                 ext4_lblk_t  *offsets,
 145                                 Indirect chain[4], int *err)
 146{
 147        struct super_block *sb = inode->i_sb;
 148        Indirect *p = chain;
 149        struct buffer_head *bh;
 150        int ret = -EIO;
 151
 152        *err = 0;
 153        /* i_data is not going away, no lock needed */
 154        add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
 155        if (!p->key)
 156                goto no_block;
 157        while (--depth) {
 158                bh = sb_getblk(sb, le32_to_cpu(p->key));
 159                if (unlikely(!bh)) {
 160                        ret = -ENOMEM;
 161                        goto failure;
 162                }
 163
 164                if (!bh_uptodate_or_lock(bh)) {
 165                        if (bh_submit_read(bh) < 0) {
 166                                put_bh(bh);
 167                                goto failure;
 168                        }
 169                        /* validate block references */
 170                        if (ext4_check_indirect_blockref(inode, bh)) {
 171                                put_bh(bh);
 172                                goto failure;
 173                        }
 174                }
 175
 176                add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
 177                /* Reader: end */
 178                if (!p->key)
 179                        goto no_block;
 180        }
 181        return NULL;
 182
 183failure:
 184        *err = ret;
 185no_block:
 186        return p;
 187}
 188
 189/**
 190 *      ext4_find_near - find a place for allocation with sufficient locality
 191 *      @inode: owner
 192 *      @ind: descriptor of indirect block.
 193 *
 194 *      This function returns the preferred place for block allocation.
 195 *      It is used when heuristic for sequential allocation fails.
 196 *      Rules are:
 197 *        + if there is a block to the left of our position - allocate near it.
 198 *        + if pointer will live in indirect block - allocate near that block.
 199 *        + if pointer will live in inode - allocate in the same
 200 *          cylinder group.
 201 *
 202 * In the latter case we colour the starting block by the callers PID to
 203 * prevent it from clashing with concurrent allocations for a different inode
 204 * in the same block group.   The PID is used here so that functionally related
 205 * files will be close-by on-disk.
 206 *
 207 *      Caller must make sure that @ind is valid and will stay that way.
 208 */
 209static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
 210{
 211        struct ext4_inode_info *ei = EXT4_I(inode);
 212        __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
 213        __le32 *p;
 214
 215        /* Try to find previous block */
 216        for (p = ind->p - 1; p >= start; p--) {
 217                if (*p)
 218                        return le32_to_cpu(*p);
 219        }
 220
 221        /* No such thing, so let's try location of indirect block */
 222        if (ind->bh)
 223                return ind->bh->b_blocknr;
 224
 225        /*
 226         * It is going to be referred to from the inode itself? OK, just put it
 227         * into the same cylinder group then.
 228         */
 229        return ext4_inode_to_goal_block(inode);
 230}
 231
 232/**
 233 *      ext4_find_goal - find a preferred place for allocation.
 234 *      @inode: owner
 235 *      @block:  block we want
 236 *      @partial: pointer to the last triple within a chain
 237 *
 238 *      Normally this function find the preferred place for block allocation,
 239 *      returns it.
 240 *      Because this is only used for non-extent files, we limit the block nr
 241 *      to 32 bits.
 242 */
 243static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
 244                                   Indirect *partial)
 245{
 246        ext4_fsblk_t goal;
 247
 248        /*
 249         * XXX need to get goal block from mballoc's data structures
 250         */
 251
 252        goal = ext4_find_near(inode, partial);
 253        goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
 254        return goal;
 255}
 256
 257/**
 258 *      ext4_blks_to_allocate - Look up the block map and count the number
 259 *      of direct blocks need to be allocated for the given branch.
 260 *
 261 *      @branch: chain of indirect blocks
 262 *      @k: number of blocks need for indirect blocks
 263 *      @blks: number of data blocks to be mapped.
 264 *      @blocks_to_boundary:  the offset in the indirect block
 265 *
 266 *      return the total number of blocks to be allocate, including the
 267 *      direct and indirect blocks.
 268 */
 269static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
 270                                 int blocks_to_boundary)
 271{
 272        unsigned int count = 0;
 273
 274        /*
 275         * Simple case, [t,d]Indirect block(s) has not allocated yet
 276         * then it's clear blocks on that path have not allocated
 277         */
 278        if (k > 0) {
 279                /* right now we don't handle cross boundary allocation */
 280                if (blks < blocks_to_boundary + 1)
 281                        count += blks;
 282                else
 283                        count += blocks_to_boundary + 1;
 284                return count;
 285        }
 286
 287        count++;
 288        while (count < blks && count <= blocks_to_boundary &&
 289                le32_to_cpu(*(branch[0].p + count)) == 0) {
 290                count++;
 291        }
 292        return count;
 293}
 294
 295/**
 296 *      ext4_alloc_branch - allocate and set up a chain of blocks.
 297 *      @handle: handle for this transaction
 298 *      @inode: owner
 299 *      @indirect_blks: number of allocated indirect blocks
 300 *      @blks: number of allocated direct blocks
 301 *      @goal: preferred place for allocation
 302 *      @offsets: offsets (in the blocks) to store the pointers to next.
 303 *      @branch: place to store the chain in.
 304 *
 305 *      This function allocates blocks, zeroes out all but the last one,
 306 *      links them into chain and (if we are synchronous) writes them to disk.
 307 *      In other words, it prepares a branch that can be spliced onto the
 308 *      inode. It stores the information about that chain in the branch[], in
 309 *      the same format as ext4_get_branch() would do. We are calling it after
 310 *      we had read the existing part of chain and partial points to the last
 311 *      triple of that (one with zero ->key). Upon the exit we have the same
 312 *      picture as after the successful ext4_get_block(), except that in one
 313 *      place chain is disconnected - *branch->p is still zero (we did not
 314 *      set the last link), but branch->key contains the number that should
 315 *      be placed into *branch->p to fill that gap.
 316 *
 317 *      If allocation fails we free all blocks we've allocated (and forget
 318 *      their buffer_heads) and return the error value the from failed
 319 *      ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 320 *      as described above and return 0.
 321 */
 322static int ext4_alloc_branch(handle_t *handle,
 323                             struct ext4_allocation_request *ar,
 324                             int indirect_blks, ext4_lblk_t *offsets,
 325                             Indirect *branch)
 326{
 327        struct buffer_head *            bh;
 328        ext4_fsblk_t                    b, new_blocks[4];
 329        __le32                          *p;
 330        int                             i, j, err, len = 1;
 331
 332        for (i = 0; i <= indirect_blks; i++) {
 333                if (i == indirect_blks) {
 334                        new_blocks[i] = ext4_mb_new_blocks(handle, ar, &err);
 335                } else
 336                        ar->goal = new_blocks[i] = ext4_new_meta_blocks(handle,
 337                                        ar->inode, ar->goal,
 338                                        ar->flags & EXT4_MB_DELALLOC_RESERVED,
 339                                        NULL, &err);
 340                if (err) {
 341                        i--;
 342                        goto failed;
 343                }
 344                branch[i].key = cpu_to_le32(new_blocks[i]);
 345                if (i == 0)
 346                        continue;
 347
 348                bh = branch[i].bh = sb_getblk(ar->inode->i_sb, new_blocks[i-1]);
 349                if (unlikely(!bh)) {
 350                        err = -ENOMEM;
 351                        goto failed;
 352                }
 353                lock_buffer(bh);
 354                BUFFER_TRACE(bh, "call get_create_access");
 355                err = ext4_journal_get_create_access(handle, bh);
 356                if (err) {
 357                        unlock_buffer(bh);
 358                        goto failed;
 359                }
 360
 361                memset(bh->b_data, 0, bh->b_size);
 362                p = branch[i].p = (__le32 *) bh->b_data + offsets[i];
 363                b = new_blocks[i];
 364
 365                if (i == indirect_blks)
 366                        len = ar->len;
 367                for (j = 0; j < len; j++)
 368                        *p++ = cpu_to_le32(b++);
 369
 370                BUFFER_TRACE(bh, "marking uptodate");
 371                set_buffer_uptodate(bh);
 372                unlock_buffer(bh);
 373
 374                BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 375                err = ext4_handle_dirty_metadata(handle, ar->inode, bh);
 376                if (err)
 377                        goto failed;
 378        }
 379        return 0;
 380failed:
 381        for (; i >= 0; i--) {
 382                /*
 383                 * We want to ext4_forget() only freshly allocated indirect
 384                 * blocks.  Buffer for new_blocks[i-1] is at branch[i].bh and
 385                 * buffer at branch[0].bh is indirect block / inode already
 386                 * existing before ext4_alloc_branch() was called.
 387                 */
 388                if (i > 0 && i != indirect_blks && branch[i].bh)
 389                        ext4_forget(handle, 1, ar->inode, branch[i].bh,
 390                                    branch[i].bh->b_blocknr);
 391                ext4_free_blocks(handle, ar->inode, NULL, new_blocks[i],
 392                                 (i == indirect_blks) ? ar->len : 1, 0);
 393        }
 394        return err;
 395}
 396
 397/**
 398 * ext4_splice_branch - splice the allocated branch onto inode.
 399 * @handle: handle for this transaction
 400 * @inode: owner
 401 * @block: (logical) number of block we are adding
 402 * @chain: chain of indirect blocks (with a missing link - see
 403 *      ext4_alloc_branch)
 404 * @where: location of missing link
 405 * @num:   number of indirect blocks we are adding
 406 * @blks:  number of direct blocks we are adding
 407 *
 408 * This function fills the missing link and does all housekeeping needed in
 409 * inode (->i_blocks, etc.). In case of success we end up with the full
 410 * chain to new block and return 0.
 411 */
 412static int ext4_splice_branch(handle_t *handle,
 413                              struct ext4_allocation_request *ar,
 414                              Indirect *where, int num)
 415{
 416        int i;
 417        int err = 0;
 418        ext4_fsblk_t current_block;
 419
 420        /*
 421         * If we're splicing into a [td]indirect block (as opposed to the
 422         * inode) then we need to get write access to the [td]indirect block
 423         * before the splice.
 424         */
 425        if (where->bh) {
 426                BUFFER_TRACE(where->bh, "get_write_access");
 427                err = ext4_journal_get_write_access(handle, where->bh);
 428                if (err)
 429                        goto err_out;
 430        }
 431        /* That's it */
 432
 433        *where->p = where->key;
 434
 435        /*
 436         * Update the host buffer_head or inode to point to more just allocated
 437         * direct blocks blocks
 438         */
 439        if (num == 0 && ar->len > 1) {
 440                current_block = le32_to_cpu(where->key) + 1;
 441                for (i = 1; i < ar->len; i++)
 442                        *(where->p + i) = cpu_to_le32(current_block++);
 443        }
 444
 445        /* We are done with atomic stuff, now do the rest of housekeeping */
 446        /* had we spliced it onto indirect block? */
 447        if (where->bh) {
 448                /*
 449                 * If we spliced it onto an indirect block, we haven't
 450                 * altered the inode.  Note however that if it is being spliced
 451                 * onto an indirect block at the very end of the file (the
 452                 * file is growing) then we *will* alter the inode to reflect
 453                 * the new i_size.  But that is not done here - it is done in
 454                 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
 455                 */
 456                jbd_debug(5, "splicing indirect only\n");
 457                BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
 458                err = ext4_handle_dirty_metadata(handle, ar->inode, where->bh);
 459                if (err)
 460                        goto err_out;
 461        } else {
 462                /*
 463                 * OK, we spliced it into the inode itself on a direct block.
 464                 */
 465                ext4_mark_inode_dirty(handle, ar->inode);
 466                jbd_debug(5, "splicing direct\n");
 467        }
 468        return err;
 469
 470err_out:
 471        for (i = 1; i <= num; i++) {
 472                /*
 473                 * branch[i].bh is newly allocated, so there is no
 474                 * need to revoke the block, which is why we don't
 475                 * need to set EXT4_FREE_BLOCKS_METADATA.
 476                 */
 477                ext4_free_blocks(handle, ar->inode, where[i].bh, 0, 1,
 478                                 EXT4_FREE_BLOCKS_FORGET);
 479        }
 480        ext4_free_blocks(handle, ar->inode, NULL, le32_to_cpu(where[num].key),
 481                         ar->len, 0);
 482
 483        return err;
 484}
 485
 486/*
 487 * The ext4_ind_map_blocks() function handles non-extents inodes
 488 * (i.e., using the traditional indirect/double-indirect i_blocks
 489 * scheme) for ext4_map_blocks().
 490 *
 491 * Allocation strategy is simple: if we have to allocate something, we will
 492 * have to go the whole way to leaf. So let's do it before attaching anything
 493 * to tree, set linkage between the newborn blocks, write them if sync is
 494 * required, recheck the path, free and repeat if check fails, otherwise
 495 * set the last missing link (that will protect us from any truncate-generated
 496 * removals - all blocks on the path are immune now) and possibly force the
 497 * write on the parent block.
 498 * That has a nice additional property: no special recovery from the failed
 499 * allocations is needed - we simply release blocks and do not touch anything
 500 * reachable from inode.
 501 *
 502 * `handle' can be NULL if create == 0.
 503 *
 504 * return > 0, # of blocks mapped or allocated.
 505 * return = 0, if plain lookup failed.
 506 * return < 0, error case.
 507 *
 508 * The ext4_ind_get_blocks() function should be called with
 509 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
 510 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
 511 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
 512 * blocks.
 513 */
 514int ext4_ind_map_blocks(handle_t *handle, struct inode *inode,
 515                        struct ext4_map_blocks *map,
 516                        int flags)
 517{
 518        struct ext4_allocation_request ar;
 519        int err = -EIO;
 520        ext4_lblk_t offsets[4];
 521        Indirect chain[4];
 522        Indirect *partial;
 523        int indirect_blks;
 524        int blocks_to_boundary = 0;
 525        int depth;
 526        int count = 0;
 527        ext4_fsblk_t first_block = 0;
 528
 529        trace_ext4_ind_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
 530        J_ASSERT(!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)));
 531        J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
 532        depth = ext4_block_to_path(inode, map->m_lblk, offsets,
 533                                   &blocks_to_boundary);
 534
 535        if (depth == 0)
 536                goto out;
 537
 538        partial = ext4_get_branch(inode, depth, offsets, chain, &err);
 539
 540        /* Simplest case - block found, no allocation needed */
 541        if (!partial) {
 542                first_block = le32_to_cpu(chain[depth - 1].key);
 543                count++;
 544                /*map more blocks*/
 545                while (count < map->m_len && count <= blocks_to_boundary) {
 546                        ext4_fsblk_t blk;
 547
 548                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 549
 550                        if (blk == first_block + count)
 551                                count++;
 552                        else
 553                                break;
 554                }
 555                goto got_it;
 556        }
 557
 558        /* Next simple case - plain lookup failed */
 559        if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
 560                unsigned epb = inode->i_sb->s_blocksize / sizeof(u32);
 561                int i;
 562
 563                /* Count number blocks in a subtree under 'partial' */
 564                count = 1;
 565                for (i = 0; partial + i != chain + depth - 1; i++)
 566                        count *= epb;
 567                /* Fill in size of a hole we found */
 568                map->m_pblk = 0;
 569                map->m_len = min_t(unsigned int, map->m_len, count);
 570                goto cleanup;
 571        }
 572
 573        /* Failed read of indirect block */
 574        if (err == -EIO)
 575                goto cleanup;
 576
 577        /*
 578         * Okay, we need to do block allocation.
 579        */
 580        if (ext4_has_feature_bigalloc(inode->i_sb)) {
 581                EXT4_ERROR_INODE(inode, "Can't allocate blocks for "
 582                                 "non-extent mapped inodes with bigalloc");
 583                return -EFSCORRUPTED;
 584        }
 585
 586        /* Set up for the direct block allocation */
 587        memset(&ar, 0, sizeof(ar));
 588        ar.inode = inode;
 589        ar.logical = map->m_lblk;
 590        if (S_ISREG(inode->i_mode))
 591                ar.flags = EXT4_MB_HINT_DATA;
 592        if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 593                ar.flags |= EXT4_MB_DELALLOC_RESERVED;
 594        if (flags & EXT4_GET_BLOCKS_METADATA_NOFAIL)
 595                ar.flags |= EXT4_MB_USE_RESERVED;
 596
 597        ar.goal = ext4_find_goal(inode, map->m_lblk, partial);
 598
 599        /* the number of blocks need to allocate for [d,t]indirect blocks */
 600        indirect_blks = (chain + depth) - partial - 1;
 601
 602        /*
 603         * Next look up the indirect map to count the totoal number of
 604         * direct blocks to allocate for this branch.
 605         */
 606        ar.len = ext4_blks_to_allocate(partial, indirect_blks,
 607                                       map->m_len, blocks_to_boundary);
 608
 609        /*
 610         * Block out ext4_truncate while we alter the tree
 611         */
 612        err = ext4_alloc_branch(handle, &ar, indirect_blks,
 613                                offsets + (partial - chain), partial);
 614
 615        /*
 616         * The ext4_splice_branch call will free and forget any buffers
 617         * on the new chain if there is a failure, but that risks using
 618         * up transaction credits, especially for bitmaps where the
 619         * credits cannot be returned.  Can we handle this somehow?  We
 620         * may need to return -EAGAIN upwards in the worst case.  --sct
 621         */
 622        if (!err)
 623                err = ext4_splice_branch(handle, &ar, partial, indirect_blks);
 624        if (err)
 625                goto cleanup;
 626
 627        map->m_flags |= EXT4_MAP_NEW;
 628
 629        ext4_update_inode_fsync_trans(handle, inode, 1);
 630        count = ar.len;
 631got_it:
 632        map->m_flags |= EXT4_MAP_MAPPED;
 633        map->m_pblk = le32_to_cpu(chain[depth-1].key);
 634        map->m_len = count;
 635        if (count > blocks_to_boundary)
 636                map->m_flags |= EXT4_MAP_BOUNDARY;
 637        err = count;
 638        /* Clean up and exit */
 639        partial = chain + depth - 1;    /* the whole chain */
 640cleanup:
 641        while (partial > chain) {
 642                BUFFER_TRACE(partial->bh, "call brelse");
 643                brelse(partial->bh);
 644                partial--;
 645        }
 646out:
 647        trace_ext4_ind_map_blocks_exit(inode, flags, map, err);
 648        return err;
 649}
 650
 651/*
 652 * Calculate the number of metadata blocks need to reserve
 653 * to allocate a new block at @lblocks for non extent file based file
 654 */
 655int ext4_ind_calc_metadata_amount(struct inode *inode, sector_t lblock)
 656{
 657        struct ext4_inode_info *ei = EXT4_I(inode);
 658        sector_t dind_mask = ~((sector_t)EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1);
 659        int blk_bits;
 660
 661        if (lblock < EXT4_NDIR_BLOCKS)
 662                return 0;
 663
 664        lblock -= EXT4_NDIR_BLOCKS;
 665
 666        if (ei->i_da_metadata_calc_len &&
 667            (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
 668                ei->i_da_metadata_calc_len++;
 669                return 0;
 670        }
 671        ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
 672        ei->i_da_metadata_calc_len = 1;
 673        blk_bits = order_base_2(lblock);
 674        return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
 675}
 676
 677/*
 678 * Calculate number of indirect blocks touched by mapping @nrblocks logically
 679 * contiguous blocks
 680 */
 681int ext4_ind_trans_blocks(struct inode *inode, int nrblocks)
 682{
 683        /*
 684         * With N contiguous data blocks, we need at most
 685         * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) + 1 indirect blocks,
 686         * 2 dindirect blocks, and 1 tindirect block
 687         */
 688        return DIV_ROUND_UP(nrblocks, EXT4_ADDR_PER_BLOCK(inode->i_sb)) + 4;
 689}
 690
 691/*
 692 * Truncate transactions can be complex and absolutely huge.  So we need to
 693 * be able to restart the transaction at a conventient checkpoint to make
 694 * sure we don't overflow the journal.
 695 *
 696 * Try to extend this transaction for the purposes of truncation.  If
 697 * extend fails, we need to propagate the failure up and restart the
 698 * transaction in the top-level truncate loop. --sct
 699 *
 700 * Returns 0 if we managed to create more room.  If we can't create more
 701 * room, and the transaction must be restarted we return 1.
 702 */
 703static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 704{
 705        if (!ext4_handle_valid(handle))
 706                return 0;
 707        if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
 708                return 0;
 709        if (!ext4_journal_extend(handle, ext4_blocks_for_truncate(inode)))
 710                return 0;
 711        return 1;
 712}
 713
 714/*
 715 * Probably it should be a library function... search for first non-zero word
 716 * or memcmp with zero_page, whatever is better for particular architecture.
 717 * Linus?
 718 */
 719static inline int all_zeroes(__le32 *p, __le32 *q)
 720{
 721        while (p < q)
 722                if (*p++)
 723                        return 0;
 724        return 1;
 725}
 726
 727/**
 728 *      ext4_find_shared - find the indirect blocks for partial truncation.
 729 *      @inode:   inode in question
 730 *      @depth:   depth of the affected branch
 731 *      @offsets: offsets of pointers in that branch (see ext4_block_to_path)
 732 *      @chain:   place to store the pointers to partial indirect blocks
 733 *      @top:     place to the (detached) top of branch
 734 *
 735 *      This is a helper function used by ext4_truncate().
 736 *
 737 *      When we do truncate() we may have to clean the ends of several
 738 *      indirect blocks but leave the blocks themselves alive. Block is
 739 *      partially truncated if some data below the new i_size is referred
 740 *      from it (and it is on the path to the first completely truncated
 741 *      data block, indeed).  We have to free the top of that path along
 742 *      with everything to the right of the path. Since no allocation
 743 *      past the truncation point is possible until ext4_truncate()
 744 *      finishes, we may safely do the latter, but top of branch may
 745 *      require special attention - pageout below the truncation point
 746 *      might try to populate it.
 747 *
 748 *      We atomically detach the top of branch from the tree, store the
 749 *      block number of its root in *@top, pointers to buffer_heads of
 750 *      partially truncated blocks - in @chain[].bh and pointers to
 751 *      their last elements that should not be removed - in
 752 *      @chain[].p. Return value is the pointer to last filled element
 753 *      of @chain.
 754 *
 755 *      The work left to caller to do the actual freeing of subtrees:
 756 *              a) free the subtree starting from *@top
 757 *              b) free the subtrees whose roots are stored in
 758 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
 759 *              c) free the subtrees growing from the inode past the @chain[0].
 760 *                      (no partially truncated stuff there).  */
 761
 762static Indirect *ext4_find_shared(struct inode *inode, int depth,
 763                                  ext4_lblk_t offsets[4], Indirect chain[4],
 764                                  __le32 *top)
 765{
 766        Indirect *partial, *p;
 767        int k, err;
 768
 769        *top = 0;
 770        /* Make k index the deepest non-null offset + 1 */
 771        for (k = depth; k > 1 && !offsets[k-1]; k--)
 772                ;
 773        partial = ext4_get_branch(inode, k, offsets, chain, &err);
 774        /* Writer: pointers */
 775        if (!partial)
 776                partial = chain + k-1;
 777        /*
 778         * If the branch acquired continuation since we've looked at it -
 779         * fine, it should all survive and (new) top doesn't belong to us.
 780         */
 781        if (!partial->key && *partial->p)
 782                /* Writer: end */
 783                goto no_top;
 784        for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
 785                ;
 786        /*
 787         * OK, we've found the last block that must survive. The rest of our
 788         * branch should be detached before unlocking. However, if that rest
 789         * of branch is all ours and does not grow immediately from the inode
 790         * it's easier to cheat and just decrement partial->p.
 791         */
 792        if (p == chain + k - 1 && p > chain) {
 793                p->p--;
 794        } else {
 795                *top = *p->p;
 796                /* Nope, don't do this in ext4.  Must leave the tree intact */
 797#if 0
 798                *p->p = 0;
 799#endif
 800        }
 801        /* Writer: end */
 802
 803        while (partial > p) {
 804                brelse(partial->bh);
 805                partial--;
 806        }
 807no_top:
 808        return partial;
 809}
 810
 811/*
 812 * Zero a number of block pointers in either an inode or an indirect block.
 813 * If we restart the transaction we must again get write access to the
 814 * indirect block for further modification.
 815 *
 816 * We release `count' blocks on disk, but (last - first) may be greater
 817 * than `count' because there can be holes in there.
 818 *
 819 * Return 0 on success, 1 on invalid block range
 820 * and < 0 on fatal error.
 821 */
 822static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
 823                             struct buffer_head *bh,
 824                             ext4_fsblk_t block_to_free,
 825                             unsigned long count, __le32 *first,
 826                             __le32 *last)
 827{
 828        __le32 *p;
 829        int     flags = EXT4_FREE_BLOCKS_VALIDATED;
 830        int     err;
 831
 832        if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
 833                flags |= EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_METADATA;
 834        else if (ext4_should_journal_data(inode))
 835                flags |= EXT4_FREE_BLOCKS_FORGET;
 836
 837        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
 838                                   count)) {
 839                EXT4_ERROR_INODE(inode, "attempt to clear invalid "
 840                                 "blocks %llu len %lu",
 841                                 (unsigned long long) block_to_free, count);
 842                return 1;
 843        }
 844
 845        if (try_to_extend_transaction(handle, inode)) {
 846                if (bh) {
 847                        BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 848                        err = ext4_handle_dirty_metadata(handle, inode, bh);
 849                        if (unlikely(err))
 850                                goto out_err;
 851                }
 852                err = ext4_mark_inode_dirty(handle, inode);
 853                if (unlikely(err))
 854                        goto out_err;
 855                err = ext4_truncate_restart_trans(handle, inode,
 856                                        ext4_blocks_for_truncate(inode));
 857                if (unlikely(err))
 858                        goto out_err;
 859                if (bh) {
 860                        BUFFER_TRACE(bh, "retaking write access");
 861                        err = ext4_journal_get_write_access(handle, bh);
 862                        if (unlikely(err))
 863                                goto out_err;
 864                }
 865        }
 866
 867        for (p = first; p < last; p++)
 868                *p = 0;
 869
 870        ext4_free_blocks(handle, inode, NULL, block_to_free, count, flags);
 871        return 0;
 872out_err:
 873        ext4_std_error(inode->i_sb, err);
 874        return err;
 875}
 876
 877/**
 878 * ext4_free_data - free a list of data blocks
 879 * @handle:     handle for this transaction
 880 * @inode:      inode we are dealing with
 881 * @this_bh:    indirect buffer_head which contains *@first and *@last
 882 * @first:      array of block numbers
 883 * @last:       points immediately past the end of array
 884 *
 885 * We are freeing all blocks referred from that array (numbers are stored as
 886 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
 887 *
 888 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
 889 * blocks are contiguous then releasing them at one time will only affect one
 890 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
 891 * actually use a lot of journal space.
 892 *
 893 * @this_bh will be %NULL if @first and @last point into the inode's direct
 894 * block pointers.
 895 */
 896static void ext4_free_data(handle_t *handle, struct inode *inode,
 897                           struct buffer_head *this_bh,
 898                           __le32 *first, __le32 *last)
 899{
 900        ext4_fsblk_t block_to_free = 0;    /* Starting block # of a run */
 901        unsigned long count = 0;            /* Number of blocks in the run */
 902        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
 903                                               corresponding to
 904                                               block_to_free */
 905        ext4_fsblk_t nr;                    /* Current block # */
 906        __le32 *p;                          /* Pointer into inode/ind
 907                                               for current block */
 908        int err = 0;
 909
 910        if (this_bh) {                          /* For indirect block */
 911                BUFFER_TRACE(this_bh, "get_write_access");
 912                err = ext4_journal_get_write_access(handle, this_bh);
 913                /* Important: if we can't update the indirect pointers
 914                 * to the blocks, we can't free them. */
 915                if (err)
 916                        return;
 917        }
 918
 919        for (p = first; p < last; p++) {
 920                nr = le32_to_cpu(*p);
 921                if (nr) {
 922                        /* accumulate blocks to free if they're contiguous */
 923                        if (count == 0) {
 924                                block_to_free = nr;
 925                                block_to_free_p = p;
 926                                count = 1;
 927                        } else if (nr == block_to_free + count) {
 928                                count++;
 929                        } else {
 930                                err = ext4_clear_blocks(handle, inode, this_bh,
 931                                                        block_to_free, count,
 932                                                        block_to_free_p, p);
 933                                if (err)
 934                                        break;
 935                                block_to_free = nr;
 936                                block_to_free_p = p;
 937                                count = 1;
 938                        }
 939                }
 940        }
 941
 942        if (!err && count > 0)
 943                err = ext4_clear_blocks(handle, inode, this_bh, block_to_free,
 944                                        count, block_to_free_p, p);
 945        if (err < 0)
 946                /* fatal error */
 947                return;
 948
 949        if (this_bh) {
 950                BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
 951
 952                /*
 953                 * The buffer head should have an attached journal head at this
 954                 * point. However, if the data is corrupted and an indirect
 955                 * block pointed to itself, it would have been detached when
 956                 * the block was cleared. Check for this instead of OOPSing.
 957                 */
 958                if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
 959                        ext4_handle_dirty_metadata(handle, inode, this_bh);
 960                else
 961                        EXT4_ERROR_INODE(inode,
 962                                         "circular indirect block detected at "
 963                                         "block %llu",
 964                                (unsigned long long) this_bh->b_blocknr);
 965        }
 966}
 967
 968/**
 969 *      ext4_free_branches - free an array of branches
 970 *      @handle: JBD handle for this transaction
 971 *      @inode: inode we are dealing with
 972 *      @parent_bh: the buffer_head which contains *@first and *@last
 973 *      @first: array of block numbers
 974 *      @last:  pointer immediately past the end of array
 975 *      @depth: depth of the branches to free
 976 *
 977 *      We are freeing all blocks referred from these branches (numbers are
 978 *      stored as little-endian 32-bit) and updating @inode->i_blocks
 979 *      appropriately.
 980 */
 981static void ext4_free_branches(handle_t *handle, struct inode *inode,
 982                               struct buffer_head *parent_bh,
 983                               __le32 *first, __le32 *last, int depth)
 984{
 985        ext4_fsblk_t nr;
 986        __le32 *p;
 987
 988        if (ext4_handle_is_aborted(handle))
 989                return;
 990
 991        if (depth--) {
 992                struct buffer_head *bh;
 993                int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
 994                p = last;
 995                while (--p >= first) {
 996                        nr = le32_to_cpu(*p);
 997                        if (!nr)
 998                                continue;               /* A hole */
 999
1000                        if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
1001                                                   nr, 1)) {
1002                                EXT4_ERROR_INODE(inode,
1003                                                 "invalid indirect mapped "
1004                                                 "block %lu (level %d)",
1005                                                 (unsigned long) nr, depth);
1006                                break;
1007                        }
1008
1009                        /* Go read the buffer for the next level down */
1010                        bh = sb_bread(inode->i_sb, nr);
1011
1012                        /*
1013                         * A read failure? Report error and clear slot
1014                         * (should be rare).
1015                         */
1016                        if (!bh) {
1017                                EXT4_ERROR_INODE_BLOCK(inode, nr,
1018                                                       "Read failure");
1019                                continue;
1020                        }
1021
1022                        /* This zaps the entire block.  Bottom up. */
1023                        BUFFER_TRACE(bh, "free child branches");
1024                        ext4_free_branches(handle, inode, bh,
1025                                        (__le32 *) bh->b_data,
1026                                        (__le32 *) bh->b_data + addr_per_block,
1027                                        depth);
1028                        brelse(bh);
1029
1030                        /*
1031                         * Everything below this this pointer has been
1032                         * released.  Now let this top-of-subtree go.
1033                         *
1034                         * We want the freeing of this indirect block to be
1035                         * atomic in the journal with the updating of the
1036                         * bitmap block which owns it.  So make some room in
1037                         * the journal.
1038                         *
1039                         * We zero the parent pointer *after* freeing its
1040                         * pointee in the bitmaps, so if extend_transaction()
1041                         * for some reason fails to put the bitmap changes and
1042                         * the release into the same transaction, recovery
1043                         * will merely complain about releasing a free block,
1044                         * rather than leaking blocks.
1045                         */
1046                        if (ext4_handle_is_aborted(handle))
1047                                return;
1048                        if (try_to_extend_transaction(handle, inode)) {
1049                                ext4_mark_inode_dirty(handle, inode);
1050                                ext4_truncate_restart_trans(handle, inode,
1051                                            ext4_blocks_for_truncate(inode));
1052                        }
1053
1054                        /*
1055                         * The forget flag here is critical because if
1056                         * we are journaling (and not doing data
1057                         * journaling), we have to make sure a revoke
1058                         * record is written to prevent the journal
1059                         * replay from overwriting the (former)
1060                         * indirect block if it gets reallocated as a
1061                         * data block.  This must happen in the same
1062                         * transaction where the data blocks are
1063                         * actually freed.
1064                         */
1065                        ext4_free_blocks(handle, inode, NULL, nr, 1,
1066                                         EXT4_FREE_BLOCKS_METADATA|
1067                                         EXT4_FREE_BLOCKS_FORGET);
1068
1069                        if (parent_bh) {
1070                                /*
1071                                 * The block which we have just freed is
1072                                 * pointed to by an indirect block: journal it
1073                                 */
1074                                BUFFER_TRACE(parent_bh, "get_write_access");
1075                                if (!ext4_journal_get_write_access(handle,
1076                                                                   parent_bh)){
1077                                        *p = 0;
1078                                        BUFFER_TRACE(parent_bh,
1079                                        "call ext4_handle_dirty_metadata");
1080                                        ext4_handle_dirty_metadata(handle,
1081                                                                   inode,
1082                                                                   parent_bh);
1083                                }
1084                        }
1085                }
1086        } else {
1087                /* We have reached the bottom of the tree. */
1088                BUFFER_TRACE(parent_bh, "free data blocks");
1089                ext4_free_data(handle, inode, parent_bh, first, last);
1090        }
1091}
1092
1093void ext4_ind_truncate(handle_t *handle, struct inode *inode)
1094{
1095        struct ext4_inode_info *ei = EXT4_I(inode);
1096        __le32 *i_data = ei->i_data;
1097        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1098        ext4_lblk_t offsets[4];
1099        Indirect chain[4];
1100        Indirect *partial;
1101        __le32 nr = 0;
1102        int n = 0;
1103        ext4_lblk_t last_block, max_block;
1104        unsigned blocksize = inode->i_sb->s_blocksize;
1105
1106        last_block = (inode->i_size + blocksize-1)
1107                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1108        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1109                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1110
1111        if (last_block != max_block) {
1112                n = ext4_block_to_path(inode, last_block, offsets, NULL);
1113                if (n == 0)
1114                        return;
1115        }
1116
1117        ext4_es_remove_extent(inode, last_block, EXT_MAX_BLOCKS - last_block);
1118
1119        /*
1120         * The orphan list entry will now protect us from any crash which
1121         * occurs before the truncate completes, so it is now safe to propagate
1122         * the new, shorter inode size (held for now in i_size) into the
1123         * on-disk inode. We do this via i_disksize, which is the value which
1124         * ext4 *really* writes onto the disk inode.
1125         */
1126        ei->i_disksize = inode->i_size;
1127
1128        if (last_block == max_block) {
1129                /*
1130                 * It is unnecessary to free any data blocks if last_block is
1131                 * equal to the indirect block limit.
1132                 */
1133                return;
1134        } else if (n == 1) {            /* direct blocks */
1135                ext4_free_data(handle, inode, NULL, i_data+offsets[0],
1136                               i_data + EXT4_NDIR_BLOCKS);
1137                goto do_indirects;
1138        }
1139
1140        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1141        /* Kill the top of shared branch (not detached) */
1142        if (nr) {
1143                if (partial == chain) {
1144                        /* Shared branch grows from the inode */
1145                        ext4_free_branches(handle, inode, NULL,
1146                                           &nr, &nr+1, (chain+n-1) - partial);
1147                        *partial->p = 0;
1148                        /*
1149                         * We mark the inode dirty prior to restart,
1150                         * and prior to stop.  No need for it here.
1151                         */
1152                } else {
1153                        /* Shared branch grows from an indirect block */
1154                        BUFFER_TRACE(partial->bh, "get_write_access");
1155                        ext4_free_branches(handle, inode, partial->bh,
1156                                        partial->p,
1157                                        partial->p+1, (chain+n-1) - partial);
1158                }
1159        }
1160        /* Clear the ends of indirect blocks on the shared branch */
1161        while (partial > chain) {
1162                ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
1163                                   (__le32*)partial->bh->b_data+addr_per_block,
1164                                   (chain+n-1) - partial);
1165                BUFFER_TRACE(partial->bh, "call brelse");
1166                brelse(partial->bh);
1167                partial--;
1168        }
1169do_indirects:
1170        /* Kill the remaining (whole) subtrees */
1171        switch (offsets[0]) {
1172        default:
1173                nr = i_data[EXT4_IND_BLOCK];
1174                if (nr) {
1175                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1176                        i_data[EXT4_IND_BLOCK] = 0;
1177                }
1178        case EXT4_IND_BLOCK:
1179                nr = i_data[EXT4_DIND_BLOCK];
1180                if (nr) {
1181                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1182                        i_data[EXT4_DIND_BLOCK] = 0;
1183                }
1184        case EXT4_DIND_BLOCK:
1185                nr = i_data[EXT4_TIND_BLOCK];
1186                if (nr) {
1187                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1188                        i_data[EXT4_TIND_BLOCK] = 0;
1189                }
1190        case EXT4_TIND_BLOCK:
1191                ;
1192        }
1193}
1194
1195/**
1196 *      ext4_ind_remove_space - remove space from the range
1197 *      @handle: JBD handle for this transaction
1198 *      @inode: inode we are dealing with
1199 *      @start: First block to remove
1200 *      @end:   One block after the last block to remove (exclusive)
1201 *
1202 *      Free the blocks in the defined range (end is exclusive endpoint of
1203 *      range). This is used by ext4_punch_hole().
1204 */
1205int ext4_ind_remove_space(handle_t *handle, struct inode *inode,
1206                          ext4_lblk_t start, ext4_lblk_t end)
1207{
1208        struct ext4_inode_info *ei = EXT4_I(inode);
1209        __le32 *i_data = ei->i_data;
1210        int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
1211        ext4_lblk_t offsets[4], offsets2[4];
1212        Indirect chain[4], chain2[4];
1213        Indirect *partial, *partial2;
1214        ext4_lblk_t max_block;
1215        __le32 nr = 0, nr2 = 0;
1216        int n = 0, n2 = 0;
1217        unsigned blocksize = inode->i_sb->s_blocksize;
1218
1219        max_block = (EXT4_SB(inode->i_sb)->s_bitmap_maxbytes + blocksize-1)
1220                                        >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
1221        if (end >= max_block)
1222                end = max_block;
1223        if ((start >= end) || (start > max_block))
1224                return 0;
1225
1226        n = ext4_block_to_path(inode, start, offsets, NULL);
1227        n2 = ext4_block_to_path(inode, end, offsets2, NULL);
1228
1229        BUG_ON(n > n2);
1230
1231        if ((n == 1) && (n == n2)) {
1232                /* We're punching only within direct block range */
1233                ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1234                               i_data + offsets2[0]);
1235                return 0;
1236        } else if (n2 > n) {
1237                /*
1238                 * Start and end are on a different levels so we're going to
1239                 * free partial block at start, and partial block at end of
1240                 * the range. If there are some levels in between then
1241                 * do_indirects label will take care of that.
1242                 */
1243
1244                if (n == 1) {
1245                        /*
1246                         * Start is at the direct block level, free
1247                         * everything to the end of the level.
1248                         */
1249                        ext4_free_data(handle, inode, NULL, i_data + offsets[0],
1250                                       i_data + EXT4_NDIR_BLOCKS);
1251                        goto end_range;
1252                }
1253
1254
1255                partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1256                if (nr) {
1257                        if (partial == chain) {
1258                                /* Shared branch grows from the inode */
1259                                ext4_free_branches(handle, inode, NULL,
1260                                           &nr, &nr+1, (chain+n-1) - partial);
1261                                *partial->p = 0;
1262                        } else {
1263                                /* Shared branch grows from an indirect block */
1264                                BUFFER_TRACE(partial->bh, "get_write_access");
1265                                ext4_free_branches(handle, inode, partial->bh,
1266                                        partial->p,
1267                                        partial->p+1, (chain+n-1) - partial);
1268                        }
1269                }
1270
1271                /*
1272                 * Clear the ends of indirect blocks on the shared branch
1273                 * at the start of the range
1274                 */
1275                while (partial > chain) {
1276                        ext4_free_branches(handle, inode, partial->bh,
1277                                partial->p + 1,
1278                                (__le32 *)partial->bh->b_data+addr_per_block,
1279                                (chain+n-1) - partial);
1280                        BUFFER_TRACE(partial->bh, "call brelse");
1281                        brelse(partial->bh);
1282                        partial--;
1283                }
1284
1285end_range:
1286                partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1287                if (nr2) {
1288                        if (partial2 == chain2) {
1289                                /*
1290                                 * Remember, end is exclusive so here we're at
1291                                 * the start of the next level we're not going
1292                                 * to free. Everything was covered by the start
1293                                 * of the range.
1294                                 */
1295                                goto do_indirects;
1296                        }
1297                } else {
1298                        /*
1299                         * ext4_find_shared returns Indirect structure which
1300                         * points to the last element which should not be
1301                         * removed by truncate. But this is end of the range
1302                         * in punch_hole so we need to point to the next element
1303                         */
1304                        partial2->p++;
1305                }
1306
1307                /*
1308                 * Clear the ends of indirect blocks on the shared branch
1309                 * at the end of the range
1310                 */
1311                while (partial2 > chain2) {
1312                        ext4_free_branches(handle, inode, partial2->bh,
1313                                           (__le32 *)partial2->bh->b_data,
1314                                           partial2->p,
1315                                           (chain2+n2-1) - partial2);
1316                        BUFFER_TRACE(partial2->bh, "call brelse");
1317                        brelse(partial2->bh);
1318                        partial2--;
1319                }
1320                goto do_indirects;
1321        }
1322
1323        /* Punch happened within the same level (n == n2) */
1324        partial = ext4_find_shared(inode, n, offsets, chain, &nr);
1325        partial2 = ext4_find_shared(inode, n2, offsets2, chain2, &nr2);
1326
1327        /* Free top, but only if partial2 isn't its subtree. */
1328        if (nr) {
1329                int level = min(partial - chain, partial2 - chain2);
1330                int i;
1331                int subtree = 1;
1332
1333                for (i = 0; i <= level; i++) {
1334                        if (offsets[i] != offsets2[i]) {
1335                                subtree = 0;
1336                                break;
1337                        }
1338                }
1339
1340                if (!subtree) {
1341                        if (partial == chain) {
1342                                /* Shared branch grows from the inode */
1343                                ext4_free_branches(handle, inode, NULL,
1344                                                   &nr, &nr+1,
1345                                                   (chain+n-1) - partial);
1346                                *partial->p = 0;
1347                        } else {
1348                                /* Shared branch grows from an indirect block */
1349                                BUFFER_TRACE(partial->bh, "get_write_access");
1350                                ext4_free_branches(handle, inode, partial->bh,
1351                                                   partial->p,
1352                                                   partial->p+1,
1353                                                   (chain+n-1) - partial);
1354                        }
1355                }
1356        }
1357
1358        if (!nr2) {
1359                /*
1360                 * ext4_find_shared returns Indirect structure which
1361                 * points to the last element which should not be
1362                 * removed by truncate. But this is end of the range
1363                 * in punch_hole so we need to point to the next element
1364                 */
1365                partial2->p++;
1366        }
1367
1368        while (partial > chain || partial2 > chain2) {
1369                int depth = (chain+n-1) - partial;
1370                int depth2 = (chain2+n2-1) - partial2;
1371
1372                if (partial > chain && partial2 > chain2 &&
1373                    partial->bh->b_blocknr == partial2->bh->b_blocknr) {
1374                        /*
1375                         * We've converged on the same block. Clear the range,
1376                         * then we're done.
1377                         */
1378                        ext4_free_branches(handle, inode, partial->bh,
1379                                           partial->p + 1,
1380                                           partial2->p,
1381                                           (chain+n-1) - partial);
1382                        BUFFER_TRACE(partial->bh, "call brelse");
1383                        brelse(partial->bh);
1384                        BUFFER_TRACE(partial2->bh, "call brelse");
1385                        brelse(partial2->bh);
1386                        return 0;
1387                }
1388
1389                /*
1390                 * The start and end partial branches may not be at the same
1391                 * level even though the punch happened within one level. So, we
1392                 * give them a chance to arrive at the same level, then walk
1393                 * them in step with each other until we converge on the same
1394                 * block.
1395                 */
1396                if (partial > chain && depth <= depth2) {
1397                        ext4_free_branches(handle, inode, partial->bh,
1398                                           partial->p + 1,
1399                                           (__le32 *)partial->bh->b_data+addr_per_block,
1400                                           (chain+n-1) - partial);
1401                        BUFFER_TRACE(partial->bh, "call brelse");
1402                        brelse(partial->bh);
1403                        partial--;
1404                }
1405                if (partial2 > chain2 && depth2 <= depth) {
1406                        ext4_free_branches(handle, inode, partial2->bh,
1407                                           (__le32 *)partial2->bh->b_data,
1408                                           partial2->p,
1409                                           (chain2+n2-1) - partial2);
1410                        BUFFER_TRACE(partial2->bh, "call brelse");
1411                        brelse(partial2->bh);
1412                        partial2--;
1413                }
1414        }
1415        return 0;
1416
1417do_indirects:
1418        /* Kill the remaining (whole) subtrees */
1419        switch (offsets[0]) {
1420        default:
1421                if (++n >= n2)
1422                        return 0;
1423                nr = i_data[EXT4_IND_BLOCK];
1424                if (nr) {
1425                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
1426                        i_data[EXT4_IND_BLOCK] = 0;
1427                }
1428        case EXT4_IND_BLOCK:
1429                if (++n >= n2)
1430                        return 0;
1431                nr = i_data[EXT4_DIND_BLOCK];
1432                if (nr) {
1433                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
1434                        i_data[EXT4_DIND_BLOCK] = 0;
1435                }
1436        case EXT4_DIND_BLOCK:
1437                if (++n >= n2)
1438                        return 0;
1439                nr = i_data[EXT4_TIND_BLOCK];
1440                if (nr) {
1441                        ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
1442                        i_data[EXT4_TIND_BLOCK] = 0;
1443                }
1444        case EXT4_TIND_BLOCK:
1445                ;
1446        }
1447        return 0;
1448}
1449