linux/fs/f2fs/segment.c
<<
>>
Prefs
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34        unsigned long tmp = 0;
  35        int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38        shift = 56;
  39#endif
  40        while (shift >= 0) {
  41                tmp |= (unsigned long)str[idx++] << shift;
  42                shift -= BITS_PER_BYTE;
  43        }
  44        return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53        int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56        if ((word & 0xffffffff00000000UL) == 0)
  57                num += 32;
  58        else
  59                word >>= 32;
  60#endif
  61        if ((word & 0xffff0000) == 0)
  62                num += 16;
  63        else
  64                word >>= 16;
  65
  66        if ((word & 0xff00) == 0)
  67                num += 8;
  68        else
  69                word >>= 8;
  70
  71        if ((word & 0xf0) == 0)
  72                num += 4;
  73        else
  74                word >>= 4;
  75
  76        if ((word & 0xc) == 0)
  77                num += 2;
  78        else
  79                word >>= 2;
  80
  81        if ((word & 0x2) == 0)
  82                num += 1;
  83        return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96                        unsigned long size, unsigned long offset)
  97{
  98        const unsigned long *p = addr + BIT_WORD(offset);
  99        unsigned long result = size;
 100        unsigned long tmp;
 101
 102        if (offset >= size)
 103                return size;
 104
 105        size -= (offset & ~(BITS_PER_LONG - 1));
 106        offset %= BITS_PER_LONG;
 107
 108        while (1) {
 109                if (*p == 0)
 110                        goto pass;
 111
 112                tmp = __reverse_ulong((unsigned char *)p);
 113
 114                tmp &= ~0UL >> offset;
 115                if (size < BITS_PER_LONG)
 116                        tmp &= (~0UL << (BITS_PER_LONG - size));
 117                if (tmp)
 118                        goto found;
 119pass:
 120                if (size <= BITS_PER_LONG)
 121                        break;
 122                size -= BITS_PER_LONG;
 123                offset = 0;
 124                p++;
 125        }
 126        return result;
 127found:
 128        return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132                        unsigned long size, unsigned long offset)
 133{
 134        const unsigned long *p = addr + BIT_WORD(offset);
 135        unsigned long result = size;
 136        unsigned long tmp;
 137
 138        if (offset >= size)
 139                return size;
 140
 141        size -= (offset & ~(BITS_PER_LONG - 1));
 142        offset %= BITS_PER_LONG;
 143
 144        while (1) {
 145                if (*p == ~0UL)
 146                        goto pass;
 147
 148                tmp = __reverse_ulong((unsigned char *)p);
 149
 150                if (offset)
 151                        tmp |= ~0UL << (BITS_PER_LONG - offset);
 152                if (size < BITS_PER_LONG)
 153                        tmp |= ~0UL >> size;
 154                if (tmp != ~0UL)
 155                        goto found;
 156pass:
 157                if (size <= BITS_PER_LONG)
 158                        break;
 159                size -= BITS_PER_LONG;
 160                offset = 0;
 161                p++;
 162        }
 163        return result;
 164found:
 165        return result - size + __reverse_ffz(tmp);
 166}
 167
 168void register_inmem_page(struct inode *inode, struct page *page)
 169{
 170        struct f2fs_inode_info *fi = F2FS_I(inode);
 171        struct inmem_pages *new;
 172
 173        f2fs_trace_pid(page);
 174
 175        set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 176        SetPagePrivate(page);
 177
 178        new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 179
 180        /* add atomic page indices to the list */
 181        new->page = page;
 182        INIT_LIST_HEAD(&new->list);
 183
 184        /* increase reference count with clean state */
 185        mutex_lock(&fi->inmem_lock);
 186        get_page(page);
 187        list_add_tail(&new->list, &fi->inmem_pages);
 188        inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 189        mutex_unlock(&fi->inmem_lock);
 190
 191        trace_f2fs_register_inmem_page(page, INMEM);
 192}
 193
 194static int __revoke_inmem_pages(struct inode *inode,
 195                                struct list_head *head, bool drop, bool recover)
 196{
 197        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198        struct inmem_pages *cur, *tmp;
 199        int err = 0;
 200
 201        list_for_each_entry_safe(cur, tmp, head, list) {
 202                struct page *page = cur->page;
 203
 204                if (drop)
 205                        trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 206
 207                lock_page(page);
 208
 209                if (recover) {
 210                        struct dnode_of_data dn;
 211                        struct node_info ni;
 212
 213                        trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 214
 215                        set_new_dnode(&dn, inode, NULL, NULL, 0);
 216                        if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 217                                err = -EAGAIN;
 218                                goto next;
 219                        }
 220                        get_node_info(sbi, dn.nid, &ni);
 221                        f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 222                                        cur->old_addr, ni.version, true, true);
 223                        f2fs_put_dnode(&dn);
 224                }
 225next:
 226                /* we don't need to invalidate this in the sccessful status */
 227                if (drop || recover)
 228                        ClearPageUptodate(page);
 229                set_page_private(page, 0);
 230                ClearPagePrivate(page);
 231                f2fs_put_page(page, 1);
 232
 233                list_del(&cur->list);
 234                kmem_cache_free(inmem_entry_slab, cur);
 235                dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 236        }
 237        return err;
 238}
 239
 240void drop_inmem_pages(struct inode *inode)
 241{
 242        struct f2fs_inode_info *fi = F2FS_I(inode);
 243
 244        clear_inode_flag(inode, FI_ATOMIC_FILE);
 245
 246        mutex_lock(&fi->inmem_lock);
 247        __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 248        mutex_unlock(&fi->inmem_lock);
 249}
 250
 251static int __commit_inmem_pages(struct inode *inode,
 252                                        struct list_head *revoke_list)
 253{
 254        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 255        struct f2fs_inode_info *fi = F2FS_I(inode);
 256        struct inmem_pages *cur, *tmp;
 257        struct f2fs_io_info fio = {
 258                .sbi = sbi,
 259                .type = DATA,
 260                .op = REQ_OP_WRITE,
 261                .op_flags = WRITE_SYNC | REQ_PRIO,
 262                .encrypted_page = NULL,
 263        };
 264        bool submit_bio = false;
 265        int err = 0;
 266
 267        list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 268                struct page *page = cur->page;
 269
 270                lock_page(page);
 271                if (page->mapping == inode->i_mapping) {
 272                        trace_f2fs_commit_inmem_page(page, INMEM);
 273
 274                        set_page_dirty(page);
 275                        f2fs_wait_on_page_writeback(page, DATA, true);
 276                        if (clear_page_dirty_for_io(page))
 277                                inode_dec_dirty_pages(inode);
 278
 279                        fio.page = page;
 280                        err = do_write_data_page(&fio);
 281                        if (err) {
 282                                unlock_page(page);
 283                                break;
 284                        }
 285
 286                        /* record old blkaddr for revoking */
 287                        cur->old_addr = fio.old_blkaddr;
 288
 289                        clear_cold_data(page);
 290                        submit_bio = true;
 291                }
 292                unlock_page(page);
 293                list_move_tail(&cur->list, revoke_list);
 294        }
 295
 296        if (submit_bio)
 297                f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 298
 299        if (!err)
 300                __revoke_inmem_pages(inode, revoke_list, false, false);
 301
 302        return err;
 303}
 304
 305int commit_inmem_pages(struct inode *inode)
 306{
 307        struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 308        struct f2fs_inode_info *fi = F2FS_I(inode);
 309        struct list_head revoke_list;
 310        int err;
 311
 312        INIT_LIST_HEAD(&revoke_list);
 313        f2fs_balance_fs(sbi, true);
 314        f2fs_lock_op(sbi);
 315
 316        mutex_lock(&fi->inmem_lock);
 317        err = __commit_inmem_pages(inode, &revoke_list);
 318        if (err) {
 319                int ret;
 320                /*
 321                 * try to revoke all committed pages, but still we could fail
 322                 * due to no memory or other reason, if that happened, EAGAIN
 323                 * will be returned, which means in such case, transaction is
 324                 * already not integrity, caller should use journal to do the
 325                 * recovery or rewrite & commit last transaction. For other
 326                 * error number, revoking was done by filesystem itself.
 327                 */
 328                ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 329                if (ret)
 330                        err = ret;
 331
 332                /* drop all uncommitted pages */
 333                __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 334        }
 335        mutex_unlock(&fi->inmem_lock);
 336
 337        f2fs_unlock_op(sbi);
 338        return err;
 339}
 340
 341/*
 342 * This function balances dirty node and dentry pages.
 343 * In addition, it controls garbage collection.
 344 */
 345void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 346{
 347        if (!need)
 348                return;
 349
 350        /* balance_fs_bg is able to be pending */
 351        if (excess_cached_nats(sbi))
 352                f2fs_balance_fs_bg(sbi);
 353
 354        /*
 355         * We should do GC or end up with checkpoint, if there are so many dirty
 356         * dir/node pages without enough free segments.
 357         */
 358        if (has_not_enough_free_secs(sbi, 0)) {
 359                mutex_lock(&sbi->gc_mutex);
 360                f2fs_gc(sbi, false);
 361        }
 362}
 363
 364void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 365{
 366        /* try to shrink extent cache when there is no enough memory */
 367        if (!available_free_memory(sbi, EXTENT_CACHE))
 368                f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 369
 370        /* check the # of cached NAT entries */
 371        if (!available_free_memory(sbi, NAT_ENTRIES))
 372                try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 373
 374        if (!available_free_memory(sbi, FREE_NIDS))
 375                try_to_free_nids(sbi, MAX_FREE_NIDS);
 376        else
 377                build_free_nids(sbi);
 378
 379        /* checkpoint is the only way to shrink partial cached entries */
 380        if (!available_free_memory(sbi, NAT_ENTRIES) ||
 381                        !available_free_memory(sbi, INO_ENTRIES) ||
 382                        excess_prefree_segs(sbi) ||
 383                        excess_dirty_nats(sbi) ||
 384                        (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 385                if (test_opt(sbi, DATA_FLUSH)) {
 386                        struct blk_plug plug;
 387
 388                        blk_start_plug(&plug);
 389                        sync_dirty_inodes(sbi, FILE_INODE);
 390                        blk_finish_plug(&plug);
 391                }
 392                f2fs_sync_fs(sbi->sb, true);
 393                stat_inc_bg_cp_count(sbi->stat_info);
 394        }
 395}
 396
 397static int issue_flush_thread(void *data)
 398{
 399        struct f2fs_sb_info *sbi = data;
 400        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 401        wait_queue_head_t *q = &fcc->flush_wait_queue;
 402repeat:
 403        if (kthread_should_stop())
 404                return 0;
 405
 406        if (!llist_empty(&fcc->issue_list)) {
 407                struct bio *bio;
 408                struct flush_cmd *cmd, *next;
 409                int ret;
 410
 411                bio = f2fs_bio_alloc(0);
 412
 413                fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 414                fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 415
 416                bio->bi_bdev = sbi->sb->s_bdev;
 417                bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
 418                ret = submit_bio_wait(bio);
 419
 420                llist_for_each_entry_safe(cmd, next,
 421                                          fcc->dispatch_list, llnode) {
 422                        cmd->ret = ret;
 423                        complete(&cmd->wait);
 424                }
 425                bio_put(bio);
 426                fcc->dispatch_list = NULL;
 427        }
 428
 429        wait_event_interruptible(*q,
 430                kthread_should_stop() || !llist_empty(&fcc->issue_list));
 431        goto repeat;
 432}
 433
 434int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 435{
 436        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 437        struct flush_cmd cmd;
 438
 439        trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 440                                        test_opt(sbi, FLUSH_MERGE));
 441
 442        if (test_opt(sbi, NOBARRIER))
 443                return 0;
 444
 445        if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
 446                struct bio *bio = f2fs_bio_alloc(0);
 447                int ret;
 448
 449                atomic_inc(&fcc->submit_flush);
 450                bio->bi_bdev = sbi->sb->s_bdev;
 451                bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
 452                ret = submit_bio_wait(bio);
 453                atomic_dec(&fcc->submit_flush);
 454                bio_put(bio);
 455                return ret;
 456        }
 457
 458        init_completion(&cmd.wait);
 459
 460        atomic_inc(&fcc->submit_flush);
 461        llist_add(&cmd.llnode, &fcc->issue_list);
 462
 463        if (!fcc->dispatch_list)
 464                wake_up(&fcc->flush_wait_queue);
 465
 466        wait_for_completion(&cmd.wait);
 467        atomic_dec(&fcc->submit_flush);
 468
 469        return cmd.ret;
 470}
 471
 472int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 473{
 474        dev_t dev = sbi->sb->s_bdev->bd_dev;
 475        struct flush_cmd_control *fcc;
 476        int err = 0;
 477
 478        fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 479        if (!fcc)
 480                return -ENOMEM;
 481        atomic_set(&fcc->submit_flush, 0);
 482        init_waitqueue_head(&fcc->flush_wait_queue);
 483        init_llist_head(&fcc->issue_list);
 484        SM_I(sbi)->cmd_control_info = fcc;
 485        fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 486                                "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 487        if (IS_ERR(fcc->f2fs_issue_flush)) {
 488                err = PTR_ERR(fcc->f2fs_issue_flush);
 489                kfree(fcc);
 490                SM_I(sbi)->cmd_control_info = NULL;
 491                return err;
 492        }
 493
 494        return err;
 495}
 496
 497void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 498{
 499        struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 500
 501        if (fcc && fcc->f2fs_issue_flush)
 502                kthread_stop(fcc->f2fs_issue_flush);
 503        kfree(fcc);
 504        SM_I(sbi)->cmd_control_info = NULL;
 505}
 506
 507static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 508                enum dirty_type dirty_type)
 509{
 510        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 511
 512        /* need not be added */
 513        if (IS_CURSEG(sbi, segno))
 514                return;
 515
 516        if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 517                dirty_i->nr_dirty[dirty_type]++;
 518
 519        if (dirty_type == DIRTY) {
 520                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 521                enum dirty_type t = sentry->type;
 522
 523                if (unlikely(t >= DIRTY)) {
 524                        f2fs_bug_on(sbi, 1);
 525                        return;
 526                }
 527                if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 528                        dirty_i->nr_dirty[t]++;
 529        }
 530}
 531
 532static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 533                enum dirty_type dirty_type)
 534{
 535        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 536
 537        if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 538                dirty_i->nr_dirty[dirty_type]--;
 539
 540        if (dirty_type == DIRTY) {
 541                struct seg_entry *sentry = get_seg_entry(sbi, segno);
 542                enum dirty_type t = sentry->type;
 543
 544                if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 545                        dirty_i->nr_dirty[t]--;
 546
 547                if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 548                        clear_bit(GET_SECNO(sbi, segno),
 549                                                dirty_i->victim_secmap);
 550        }
 551}
 552
 553/*
 554 * Should not occur error such as -ENOMEM.
 555 * Adding dirty entry into seglist is not critical operation.
 556 * If a given segment is one of current working segments, it won't be added.
 557 */
 558static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 559{
 560        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 561        unsigned short valid_blocks;
 562
 563        if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 564                return;
 565
 566        mutex_lock(&dirty_i->seglist_lock);
 567
 568        valid_blocks = get_valid_blocks(sbi, segno, 0);
 569
 570        if (valid_blocks == 0) {
 571                __locate_dirty_segment(sbi, segno, PRE);
 572                __remove_dirty_segment(sbi, segno, DIRTY);
 573        } else if (valid_blocks < sbi->blocks_per_seg) {
 574                __locate_dirty_segment(sbi, segno, DIRTY);
 575        } else {
 576                /* Recovery routine with SSR needs this */
 577                __remove_dirty_segment(sbi, segno, DIRTY);
 578        }
 579
 580        mutex_unlock(&dirty_i->seglist_lock);
 581}
 582
 583static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 584                                block_t blkstart, block_t blklen)
 585{
 586        sector_t start = SECTOR_FROM_BLOCK(blkstart);
 587        sector_t len = SECTOR_FROM_BLOCK(blklen);
 588        struct seg_entry *se;
 589        unsigned int offset;
 590        block_t i;
 591
 592        for (i = blkstart; i < blkstart + blklen; i++) {
 593                se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 594                offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 595
 596                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 597                        sbi->discard_blks--;
 598        }
 599        trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 600        return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 601}
 602
 603bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 604{
 605        int err = -EOPNOTSUPP;
 606
 607        if (test_opt(sbi, DISCARD)) {
 608                struct seg_entry *se = get_seg_entry(sbi,
 609                                GET_SEGNO(sbi, blkaddr));
 610                unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 611
 612                if (f2fs_test_bit(offset, se->discard_map))
 613                        return false;
 614
 615                err = f2fs_issue_discard(sbi, blkaddr, 1);
 616        }
 617
 618        if (err) {
 619                update_meta_page(sbi, NULL, blkaddr);
 620                return true;
 621        }
 622        return false;
 623}
 624
 625static void __add_discard_entry(struct f2fs_sb_info *sbi,
 626                struct cp_control *cpc, struct seg_entry *se,
 627                unsigned int start, unsigned int end)
 628{
 629        struct list_head *head = &SM_I(sbi)->discard_list;
 630        struct discard_entry *new, *last;
 631
 632        if (!list_empty(head)) {
 633                last = list_last_entry(head, struct discard_entry, list);
 634                if (START_BLOCK(sbi, cpc->trim_start) + start ==
 635                                                last->blkaddr + last->len) {
 636                        last->len += end - start;
 637                        goto done;
 638                }
 639        }
 640
 641        new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 642        INIT_LIST_HEAD(&new->list);
 643        new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 644        new->len = end - start;
 645        list_add_tail(&new->list, head);
 646done:
 647        SM_I(sbi)->nr_discards += end - start;
 648}
 649
 650static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 651{
 652        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 653        int max_blocks = sbi->blocks_per_seg;
 654        struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 655        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 656        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 657        unsigned long *discard_map = (unsigned long *)se->discard_map;
 658        unsigned long *dmap = SIT_I(sbi)->tmp_map;
 659        unsigned int start = 0, end = -1;
 660        bool force = (cpc->reason == CP_DISCARD);
 661        int i;
 662
 663        if (se->valid_blocks == max_blocks)
 664                return;
 665
 666        if (!force) {
 667                if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 668                    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 669                        return;
 670        }
 671
 672        /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 673        for (i = 0; i < entries; i++)
 674                dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 675                                (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 676
 677        while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 678                start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 679                if (start >= max_blocks)
 680                        break;
 681
 682                end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 683                if (force && start && end != max_blocks
 684                                        && (end - start) < cpc->trim_minlen)
 685                        continue;
 686
 687                __add_discard_entry(sbi, cpc, se, start, end);
 688        }
 689}
 690
 691void release_discard_addrs(struct f2fs_sb_info *sbi)
 692{
 693        struct list_head *head = &(SM_I(sbi)->discard_list);
 694        struct discard_entry *entry, *this;
 695
 696        /* drop caches */
 697        list_for_each_entry_safe(entry, this, head, list) {
 698                list_del(&entry->list);
 699                kmem_cache_free(discard_entry_slab, entry);
 700        }
 701}
 702
 703/*
 704 * Should call clear_prefree_segments after checkpoint is done.
 705 */
 706static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 707{
 708        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 709        unsigned int segno;
 710
 711        mutex_lock(&dirty_i->seglist_lock);
 712        for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 713                __set_test_and_free(sbi, segno);
 714        mutex_unlock(&dirty_i->seglist_lock);
 715}
 716
 717void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 718{
 719        struct list_head *head = &(SM_I(sbi)->discard_list);
 720        struct discard_entry *entry, *this;
 721        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 722        unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 723        unsigned int start = 0, end = -1;
 724        unsigned int secno, start_segno;
 725        bool force = (cpc->reason == CP_DISCARD);
 726
 727        mutex_lock(&dirty_i->seglist_lock);
 728
 729        while (1) {
 730                int i;
 731                start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 732                if (start >= MAIN_SEGS(sbi))
 733                        break;
 734                end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 735                                                                start + 1);
 736
 737                for (i = start; i < end; i++)
 738                        clear_bit(i, prefree_map);
 739
 740                dirty_i->nr_dirty[PRE] -= end - start;
 741
 742                if (force || !test_opt(sbi, DISCARD))
 743                        continue;
 744
 745                if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
 746                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 747                                (end - start) << sbi->log_blocks_per_seg);
 748                        continue;
 749                }
 750next:
 751                secno = GET_SECNO(sbi, start);
 752                start_segno = secno * sbi->segs_per_sec;
 753                if (!IS_CURSEC(sbi, secno) &&
 754                        !get_valid_blocks(sbi, start, sbi->segs_per_sec))
 755                        f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
 756                                sbi->segs_per_sec << sbi->log_blocks_per_seg);
 757
 758                start = start_segno + sbi->segs_per_sec;
 759                if (start < end)
 760                        goto next;
 761        }
 762        mutex_unlock(&dirty_i->seglist_lock);
 763
 764        /* send small discards */
 765        list_for_each_entry_safe(entry, this, head, list) {
 766                if (force && entry->len < cpc->trim_minlen)
 767                        goto skip;
 768                f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 769                cpc->trimmed += entry->len;
 770skip:
 771                list_del(&entry->list);
 772                SM_I(sbi)->nr_discards -= entry->len;
 773                kmem_cache_free(discard_entry_slab, entry);
 774        }
 775}
 776
 777static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 778{
 779        struct sit_info *sit_i = SIT_I(sbi);
 780
 781        if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 782                sit_i->dirty_sentries++;
 783                return false;
 784        }
 785
 786        return true;
 787}
 788
 789static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 790                                        unsigned int segno, int modified)
 791{
 792        struct seg_entry *se = get_seg_entry(sbi, segno);
 793        se->type = type;
 794        if (modified)
 795                __mark_sit_entry_dirty(sbi, segno);
 796}
 797
 798static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 799{
 800        struct seg_entry *se;
 801        unsigned int segno, offset;
 802        long int new_vblocks;
 803
 804        segno = GET_SEGNO(sbi, blkaddr);
 805
 806        se = get_seg_entry(sbi, segno);
 807        new_vblocks = se->valid_blocks + del;
 808        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 809
 810        f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 811                                (new_vblocks > sbi->blocks_per_seg)));
 812
 813        se->valid_blocks = new_vblocks;
 814        se->mtime = get_mtime(sbi);
 815        SIT_I(sbi)->max_mtime = se->mtime;
 816
 817        /* Update valid block bitmap */
 818        if (del > 0) {
 819                if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 820                        f2fs_bug_on(sbi, 1);
 821                if (!f2fs_test_and_set_bit(offset, se->discard_map))
 822                        sbi->discard_blks--;
 823        } else {
 824                if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 825                        f2fs_bug_on(sbi, 1);
 826                if (f2fs_test_and_clear_bit(offset, se->discard_map))
 827                        sbi->discard_blks++;
 828        }
 829        if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 830                se->ckpt_valid_blocks += del;
 831
 832        __mark_sit_entry_dirty(sbi, segno);
 833
 834        /* update total number of valid blocks to be written in ckpt area */
 835        SIT_I(sbi)->written_valid_blocks += del;
 836
 837        if (sbi->segs_per_sec > 1)
 838                get_sec_entry(sbi, segno)->valid_blocks += del;
 839}
 840
 841void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 842{
 843        update_sit_entry(sbi, new, 1);
 844        if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 845                update_sit_entry(sbi, old, -1);
 846
 847        locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 848        locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 849}
 850
 851void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 852{
 853        unsigned int segno = GET_SEGNO(sbi, addr);
 854        struct sit_info *sit_i = SIT_I(sbi);
 855
 856        f2fs_bug_on(sbi, addr == NULL_ADDR);
 857        if (addr == NEW_ADDR)
 858                return;
 859
 860        /* add it into sit main buffer */
 861        mutex_lock(&sit_i->sentry_lock);
 862
 863        update_sit_entry(sbi, addr, -1);
 864
 865        /* add it into dirty seglist */
 866        locate_dirty_segment(sbi, segno);
 867
 868        mutex_unlock(&sit_i->sentry_lock);
 869}
 870
 871bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 872{
 873        struct sit_info *sit_i = SIT_I(sbi);
 874        unsigned int segno, offset;
 875        struct seg_entry *se;
 876        bool is_cp = false;
 877
 878        if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 879                return true;
 880
 881        mutex_lock(&sit_i->sentry_lock);
 882
 883        segno = GET_SEGNO(sbi, blkaddr);
 884        se = get_seg_entry(sbi, segno);
 885        offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 886
 887        if (f2fs_test_bit(offset, se->ckpt_valid_map))
 888                is_cp = true;
 889
 890        mutex_unlock(&sit_i->sentry_lock);
 891
 892        return is_cp;
 893}
 894
 895/*
 896 * This function should be resided under the curseg_mutex lock
 897 */
 898static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 899                                        struct f2fs_summary *sum)
 900{
 901        struct curseg_info *curseg = CURSEG_I(sbi, type);
 902        void *addr = curseg->sum_blk;
 903        addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 904        memcpy(addr, sum, sizeof(struct f2fs_summary));
 905}
 906
 907/*
 908 * Calculate the number of current summary pages for writing
 909 */
 910int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 911{
 912        int valid_sum_count = 0;
 913        int i, sum_in_page;
 914
 915        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 916                if (sbi->ckpt->alloc_type[i] == SSR)
 917                        valid_sum_count += sbi->blocks_per_seg;
 918                else {
 919                        if (for_ra)
 920                                valid_sum_count += le16_to_cpu(
 921                                        F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 922                        else
 923                                valid_sum_count += curseg_blkoff(sbi, i);
 924                }
 925        }
 926
 927        sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 928                        SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 929        if (valid_sum_count <= sum_in_page)
 930                return 1;
 931        else if ((valid_sum_count - sum_in_page) <=
 932                (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 933                return 2;
 934        return 3;
 935}
 936
 937/*
 938 * Caller should put this summary page
 939 */
 940struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 941{
 942        return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 943}
 944
 945void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 946{
 947        struct page *page = grab_meta_page(sbi, blk_addr);
 948        void *dst = page_address(page);
 949
 950        if (src)
 951                memcpy(dst, src, PAGE_SIZE);
 952        else
 953                memset(dst, 0, PAGE_SIZE);
 954        set_page_dirty(page);
 955        f2fs_put_page(page, 1);
 956}
 957
 958static void write_sum_page(struct f2fs_sb_info *sbi,
 959                        struct f2fs_summary_block *sum_blk, block_t blk_addr)
 960{
 961        update_meta_page(sbi, (void *)sum_blk, blk_addr);
 962}
 963
 964static void write_current_sum_page(struct f2fs_sb_info *sbi,
 965                                                int type, block_t blk_addr)
 966{
 967        struct curseg_info *curseg = CURSEG_I(sbi, type);
 968        struct page *page = grab_meta_page(sbi, blk_addr);
 969        struct f2fs_summary_block *src = curseg->sum_blk;
 970        struct f2fs_summary_block *dst;
 971
 972        dst = (struct f2fs_summary_block *)page_address(page);
 973
 974        mutex_lock(&curseg->curseg_mutex);
 975
 976        down_read(&curseg->journal_rwsem);
 977        memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 978        up_read(&curseg->journal_rwsem);
 979
 980        memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 981        memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 982
 983        mutex_unlock(&curseg->curseg_mutex);
 984
 985        set_page_dirty(page);
 986        f2fs_put_page(page, 1);
 987}
 988
 989static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 990{
 991        struct curseg_info *curseg = CURSEG_I(sbi, type);
 992        unsigned int segno = curseg->segno + 1;
 993        struct free_segmap_info *free_i = FREE_I(sbi);
 994
 995        if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 996                return !test_bit(segno, free_i->free_segmap);
 997        return 0;
 998}
 999
1000/*
1001 * Find a new segment from the free segments bitmap to right order
1002 * This function should be returned with success, otherwise BUG
1003 */
1004static void get_new_segment(struct f2fs_sb_info *sbi,
1005                        unsigned int *newseg, bool new_sec, int dir)
1006{
1007        struct free_segmap_info *free_i = FREE_I(sbi);
1008        unsigned int segno, secno, zoneno;
1009        unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1010        unsigned int hint = *newseg / sbi->segs_per_sec;
1011        unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1012        unsigned int left_start = hint;
1013        bool init = true;
1014        int go_left = 0;
1015        int i;
1016
1017        spin_lock(&free_i->segmap_lock);
1018
1019        if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1020                segno = find_next_zero_bit(free_i->free_segmap,
1021                                (hint + 1) * sbi->segs_per_sec, *newseg + 1);
1022                if (segno < (hint + 1) * sbi->segs_per_sec)
1023                        goto got_it;
1024        }
1025find_other_zone:
1026        secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1027        if (secno >= MAIN_SECS(sbi)) {
1028                if (dir == ALLOC_RIGHT) {
1029                        secno = find_next_zero_bit(free_i->free_secmap,
1030                                                        MAIN_SECS(sbi), 0);
1031                        f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1032                } else {
1033                        go_left = 1;
1034                        left_start = hint - 1;
1035                }
1036        }
1037        if (go_left == 0)
1038                goto skip_left;
1039
1040        while (test_bit(left_start, free_i->free_secmap)) {
1041                if (left_start > 0) {
1042                        left_start--;
1043                        continue;
1044                }
1045                left_start = find_next_zero_bit(free_i->free_secmap,
1046                                                        MAIN_SECS(sbi), 0);
1047                f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1048                break;
1049        }
1050        secno = left_start;
1051skip_left:
1052        hint = secno;
1053        segno = secno * sbi->segs_per_sec;
1054        zoneno = secno / sbi->secs_per_zone;
1055
1056        /* give up on finding another zone */
1057        if (!init)
1058                goto got_it;
1059        if (sbi->secs_per_zone == 1)
1060                goto got_it;
1061        if (zoneno == old_zoneno)
1062                goto got_it;
1063        if (dir == ALLOC_LEFT) {
1064                if (!go_left && zoneno + 1 >= total_zones)
1065                        goto got_it;
1066                if (go_left && zoneno == 0)
1067                        goto got_it;
1068        }
1069        for (i = 0; i < NR_CURSEG_TYPE; i++)
1070                if (CURSEG_I(sbi, i)->zone == zoneno)
1071                        break;
1072
1073        if (i < NR_CURSEG_TYPE) {
1074                /* zone is in user, try another */
1075                if (go_left)
1076                        hint = zoneno * sbi->secs_per_zone - 1;
1077                else if (zoneno + 1 >= total_zones)
1078                        hint = 0;
1079                else
1080                        hint = (zoneno + 1) * sbi->secs_per_zone;
1081                init = false;
1082                goto find_other_zone;
1083        }
1084got_it:
1085        /* set it as dirty segment in free segmap */
1086        f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1087        __set_inuse(sbi, segno);
1088        *newseg = segno;
1089        spin_unlock(&free_i->segmap_lock);
1090}
1091
1092static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1093{
1094        struct curseg_info *curseg = CURSEG_I(sbi, type);
1095        struct summary_footer *sum_footer;
1096
1097        curseg->segno = curseg->next_segno;
1098        curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1099        curseg->next_blkoff = 0;
1100        curseg->next_segno = NULL_SEGNO;
1101
1102        sum_footer = &(curseg->sum_blk->footer);
1103        memset(sum_footer, 0, sizeof(struct summary_footer));
1104        if (IS_DATASEG(type))
1105                SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1106        if (IS_NODESEG(type))
1107                SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1108        __set_sit_entry_type(sbi, type, curseg->segno, modified);
1109}
1110
1111/*
1112 * Allocate a current working segment.
1113 * This function always allocates a free segment in LFS manner.
1114 */
1115static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1116{
1117        struct curseg_info *curseg = CURSEG_I(sbi, type);
1118        unsigned int segno = curseg->segno;
1119        int dir = ALLOC_LEFT;
1120
1121        write_sum_page(sbi, curseg->sum_blk,
1122                                GET_SUM_BLOCK(sbi, segno));
1123        if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1124                dir = ALLOC_RIGHT;
1125
1126        if (test_opt(sbi, NOHEAP))
1127                dir = ALLOC_RIGHT;
1128
1129        get_new_segment(sbi, &segno, new_sec, dir);
1130        curseg->next_segno = segno;
1131        reset_curseg(sbi, type, 1);
1132        curseg->alloc_type = LFS;
1133}
1134
1135static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1136                        struct curseg_info *seg, block_t start)
1137{
1138        struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1139        int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1140        unsigned long *target_map = SIT_I(sbi)->tmp_map;
1141        unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1142        unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1143        int i, pos;
1144
1145        for (i = 0; i < entries; i++)
1146                target_map[i] = ckpt_map[i] | cur_map[i];
1147
1148        pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1149
1150        seg->next_blkoff = pos;
1151}
1152
1153/*
1154 * If a segment is written by LFS manner, next block offset is just obtained
1155 * by increasing the current block offset. However, if a segment is written by
1156 * SSR manner, next block offset obtained by calling __next_free_blkoff
1157 */
1158static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1159                                struct curseg_info *seg)
1160{
1161        if (seg->alloc_type == SSR)
1162                __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1163        else
1164                seg->next_blkoff++;
1165}
1166
1167/*
1168 * This function always allocates a used segment(from dirty seglist) by SSR
1169 * manner, so it should recover the existing segment information of valid blocks
1170 */
1171static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1172{
1173        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1174        struct curseg_info *curseg = CURSEG_I(sbi, type);
1175        unsigned int new_segno = curseg->next_segno;
1176        struct f2fs_summary_block *sum_node;
1177        struct page *sum_page;
1178
1179        write_sum_page(sbi, curseg->sum_blk,
1180                                GET_SUM_BLOCK(sbi, curseg->segno));
1181        __set_test_and_inuse(sbi, new_segno);
1182
1183        mutex_lock(&dirty_i->seglist_lock);
1184        __remove_dirty_segment(sbi, new_segno, PRE);
1185        __remove_dirty_segment(sbi, new_segno, DIRTY);
1186        mutex_unlock(&dirty_i->seglist_lock);
1187
1188        reset_curseg(sbi, type, 1);
1189        curseg->alloc_type = SSR;
1190        __next_free_blkoff(sbi, curseg, 0);
1191
1192        if (reuse) {
1193                sum_page = get_sum_page(sbi, new_segno);
1194                sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1195                memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1196                f2fs_put_page(sum_page, 1);
1197        }
1198}
1199
1200static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1201{
1202        struct curseg_info *curseg = CURSEG_I(sbi, type);
1203        const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1204
1205        if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1206                return v_ops->get_victim(sbi,
1207                                &(curseg)->next_segno, BG_GC, type, SSR);
1208
1209        /* For data segments, let's do SSR more intensively */
1210        for (; type >= CURSEG_HOT_DATA; type--)
1211                if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1212                                                BG_GC, type, SSR))
1213                        return 1;
1214        return 0;
1215}
1216
1217/*
1218 * flush out current segment and replace it with new segment
1219 * This function should be returned with success, otherwise BUG
1220 */
1221static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1222                                                int type, bool force)
1223{
1224        struct curseg_info *curseg = CURSEG_I(sbi, type);
1225
1226        if (force)
1227                new_curseg(sbi, type, true);
1228        else if (type == CURSEG_WARM_NODE)
1229                new_curseg(sbi, type, false);
1230        else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1231                new_curseg(sbi, type, false);
1232        else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1233                change_curseg(sbi, type, true);
1234        else
1235                new_curseg(sbi, type, false);
1236
1237        stat_inc_seg_type(sbi, curseg);
1238}
1239
1240static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1241{
1242        struct curseg_info *curseg = CURSEG_I(sbi, type);
1243        unsigned int old_segno;
1244
1245        old_segno = curseg->segno;
1246        SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1247        locate_dirty_segment(sbi, old_segno);
1248}
1249
1250void allocate_new_segments(struct f2fs_sb_info *sbi)
1251{
1252        int i;
1253
1254        if (test_opt(sbi, LFS))
1255                return;
1256
1257        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1258                __allocate_new_segments(sbi, i);
1259}
1260
1261static const struct segment_allocation default_salloc_ops = {
1262        .allocate_segment = allocate_segment_by_default,
1263};
1264
1265int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1266{
1267        __u64 start = F2FS_BYTES_TO_BLK(range->start);
1268        __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1269        unsigned int start_segno, end_segno;
1270        struct cp_control cpc;
1271        int err = 0;
1272
1273        if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1274                return -EINVAL;
1275
1276        cpc.trimmed = 0;
1277        if (end <= MAIN_BLKADDR(sbi))
1278                goto out;
1279
1280        /* start/end segment number in main_area */
1281        start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1282        end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1283                                                GET_SEGNO(sbi, end);
1284        cpc.reason = CP_DISCARD;
1285        cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1286
1287        /* do checkpoint to issue discard commands safely */
1288        for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1289                cpc.trim_start = start_segno;
1290
1291                if (sbi->discard_blks == 0)
1292                        break;
1293                else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1294                        cpc.trim_end = end_segno;
1295                else
1296                        cpc.trim_end = min_t(unsigned int,
1297                                rounddown(start_segno +
1298                                BATCHED_TRIM_SEGMENTS(sbi),
1299                                sbi->segs_per_sec) - 1, end_segno);
1300
1301                mutex_lock(&sbi->gc_mutex);
1302                err = write_checkpoint(sbi, &cpc);
1303                mutex_unlock(&sbi->gc_mutex);
1304        }
1305out:
1306        range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1307        return err;
1308}
1309
1310static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1311{
1312        struct curseg_info *curseg = CURSEG_I(sbi, type);
1313        if (curseg->next_blkoff < sbi->blocks_per_seg)
1314                return true;
1315        return false;
1316}
1317
1318static int __get_segment_type_2(struct page *page, enum page_type p_type)
1319{
1320        if (p_type == DATA)
1321                return CURSEG_HOT_DATA;
1322        else
1323                return CURSEG_HOT_NODE;
1324}
1325
1326static int __get_segment_type_4(struct page *page, enum page_type p_type)
1327{
1328        if (p_type == DATA) {
1329                struct inode *inode = page->mapping->host;
1330
1331                if (S_ISDIR(inode->i_mode))
1332                        return CURSEG_HOT_DATA;
1333                else
1334                        return CURSEG_COLD_DATA;
1335        } else {
1336                if (IS_DNODE(page) && is_cold_node(page))
1337                        return CURSEG_WARM_NODE;
1338                else
1339                        return CURSEG_COLD_NODE;
1340        }
1341}
1342
1343static int __get_segment_type_6(struct page *page, enum page_type p_type)
1344{
1345        if (p_type == DATA) {
1346                struct inode *inode = page->mapping->host;
1347
1348                if (S_ISDIR(inode->i_mode))
1349                        return CURSEG_HOT_DATA;
1350                else if (is_cold_data(page) || file_is_cold(inode))
1351                        return CURSEG_COLD_DATA;
1352                else
1353                        return CURSEG_WARM_DATA;
1354        } else {
1355                if (IS_DNODE(page))
1356                        return is_cold_node(page) ? CURSEG_WARM_NODE :
1357                                                CURSEG_HOT_NODE;
1358                else
1359                        return CURSEG_COLD_NODE;
1360        }
1361}
1362
1363static int __get_segment_type(struct page *page, enum page_type p_type)
1364{
1365        switch (F2FS_P_SB(page)->active_logs) {
1366        case 2:
1367                return __get_segment_type_2(page, p_type);
1368        case 4:
1369                return __get_segment_type_4(page, p_type);
1370        }
1371        /* NR_CURSEG_TYPE(6) logs by default */
1372        f2fs_bug_on(F2FS_P_SB(page),
1373                F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1374        return __get_segment_type_6(page, p_type);
1375}
1376
1377void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1378                block_t old_blkaddr, block_t *new_blkaddr,
1379                struct f2fs_summary *sum, int type)
1380{
1381        struct sit_info *sit_i = SIT_I(sbi);
1382        struct curseg_info *curseg;
1383        bool direct_io = (type == CURSEG_DIRECT_IO);
1384
1385        type = direct_io ? CURSEG_WARM_DATA : type;
1386
1387        curseg = CURSEG_I(sbi, type);
1388
1389        mutex_lock(&curseg->curseg_mutex);
1390        mutex_lock(&sit_i->sentry_lock);
1391
1392        /* direct_io'ed data is aligned to the segment for better performance */
1393        if (direct_io && curseg->next_blkoff &&
1394                                !has_not_enough_free_secs(sbi, 0))
1395                __allocate_new_segments(sbi, type);
1396
1397        *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1398
1399        /*
1400         * __add_sum_entry should be resided under the curseg_mutex
1401         * because, this function updates a summary entry in the
1402         * current summary block.
1403         */
1404        __add_sum_entry(sbi, type, sum);
1405
1406        __refresh_next_blkoff(sbi, curseg);
1407
1408        stat_inc_block_count(sbi, curseg);
1409
1410        if (!__has_curseg_space(sbi, type))
1411                sit_i->s_ops->allocate_segment(sbi, type, false);
1412        /*
1413         * SIT information should be updated before segment allocation,
1414         * since SSR needs latest valid block information.
1415         */
1416        refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1417
1418        mutex_unlock(&sit_i->sentry_lock);
1419
1420        if (page && IS_NODESEG(type))
1421                fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1422
1423        mutex_unlock(&curseg->curseg_mutex);
1424}
1425
1426static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1427{
1428        int type = __get_segment_type(fio->page, fio->type);
1429
1430        if (fio->type == NODE || fio->type == DATA)
1431                mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1432
1433        allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1434                                        &fio->new_blkaddr, sum, type);
1435
1436        /* writeout dirty page into bdev */
1437        f2fs_submit_page_mbio(fio);
1438
1439        if (fio->type == NODE || fio->type == DATA)
1440                mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1441}
1442
1443void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1444{
1445        struct f2fs_io_info fio = {
1446                .sbi = sbi,
1447                .type = META,
1448                .op = REQ_OP_WRITE,
1449                .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1450                .old_blkaddr = page->index,
1451                .new_blkaddr = page->index,
1452                .page = page,
1453                .encrypted_page = NULL,
1454        };
1455
1456        if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1457                fio.op_flags &= ~REQ_META;
1458
1459        set_page_writeback(page);
1460        f2fs_submit_page_mbio(&fio);
1461}
1462
1463void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1464{
1465        struct f2fs_summary sum;
1466
1467        set_summary(&sum, nid, 0, 0);
1468        do_write_page(&sum, fio);
1469}
1470
1471void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1472{
1473        struct f2fs_sb_info *sbi = fio->sbi;
1474        struct f2fs_summary sum;
1475        struct node_info ni;
1476
1477        f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1478        get_node_info(sbi, dn->nid, &ni);
1479        set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1480        do_write_page(&sum, fio);
1481        f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1482}
1483
1484void rewrite_data_page(struct f2fs_io_info *fio)
1485{
1486        fio->new_blkaddr = fio->old_blkaddr;
1487        stat_inc_inplace_blocks(fio->sbi);
1488        f2fs_submit_page_mbio(fio);
1489}
1490
1491void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1492                                block_t old_blkaddr, block_t new_blkaddr,
1493                                bool recover_curseg, bool recover_newaddr)
1494{
1495        struct sit_info *sit_i = SIT_I(sbi);
1496        struct curseg_info *curseg;
1497        unsigned int segno, old_cursegno;
1498        struct seg_entry *se;
1499        int type;
1500        unsigned short old_blkoff;
1501
1502        segno = GET_SEGNO(sbi, new_blkaddr);
1503        se = get_seg_entry(sbi, segno);
1504        type = se->type;
1505
1506        if (!recover_curseg) {
1507                /* for recovery flow */
1508                if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1509                        if (old_blkaddr == NULL_ADDR)
1510                                type = CURSEG_COLD_DATA;
1511                        else
1512                                type = CURSEG_WARM_DATA;
1513                }
1514        } else {
1515                if (!IS_CURSEG(sbi, segno))
1516                        type = CURSEG_WARM_DATA;
1517        }
1518
1519        curseg = CURSEG_I(sbi, type);
1520
1521        mutex_lock(&curseg->curseg_mutex);
1522        mutex_lock(&sit_i->sentry_lock);
1523
1524        old_cursegno = curseg->segno;
1525        old_blkoff = curseg->next_blkoff;
1526
1527        /* change the current segment */
1528        if (segno != curseg->segno) {
1529                curseg->next_segno = segno;
1530                change_curseg(sbi, type, true);
1531        }
1532
1533        curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1534        __add_sum_entry(sbi, type, sum);
1535
1536        if (!recover_curseg || recover_newaddr)
1537                update_sit_entry(sbi, new_blkaddr, 1);
1538        if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1539                update_sit_entry(sbi, old_blkaddr, -1);
1540
1541        locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1542        locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1543
1544        locate_dirty_segment(sbi, old_cursegno);
1545
1546        if (recover_curseg) {
1547                if (old_cursegno != curseg->segno) {
1548                        curseg->next_segno = old_cursegno;
1549                        change_curseg(sbi, type, true);
1550                }
1551                curseg->next_blkoff = old_blkoff;
1552        }
1553
1554        mutex_unlock(&sit_i->sentry_lock);
1555        mutex_unlock(&curseg->curseg_mutex);
1556}
1557
1558void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1559                                block_t old_addr, block_t new_addr,
1560                                unsigned char version, bool recover_curseg,
1561                                bool recover_newaddr)
1562{
1563        struct f2fs_summary sum;
1564
1565        set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1566
1567        __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1568                                        recover_curseg, recover_newaddr);
1569
1570        f2fs_update_data_blkaddr(dn, new_addr);
1571}
1572
1573void f2fs_wait_on_page_writeback(struct page *page,
1574                                enum page_type type, bool ordered)
1575{
1576        if (PageWriteback(page)) {
1577                struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1578
1579                f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1580                if (ordered)
1581                        wait_on_page_writeback(page);
1582                else
1583                        wait_for_stable_page(page);
1584        }
1585}
1586
1587void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1588                                                        block_t blkaddr)
1589{
1590        struct page *cpage;
1591
1592        if (blkaddr == NEW_ADDR)
1593                return;
1594
1595        f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1596
1597        cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1598        if (cpage) {
1599                f2fs_wait_on_page_writeback(cpage, DATA, true);
1600                f2fs_put_page(cpage, 1);
1601        }
1602}
1603
1604static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1605{
1606        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1607        struct curseg_info *seg_i;
1608        unsigned char *kaddr;
1609        struct page *page;
1610        block_t start;
1611        int i, j, offset;
1612
1613        start = start_sum_block(sbi);
1614
1615        page = get_meta_page(sbi, start++);
1616        kaddr = (unsigned char *)page_address(page);
1617
1618        /* Step 1: restore nat cache */
1619        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1620        memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1621
1622        /* Step 2: restore sit cache */
1623        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1624        memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1625        offset = 2 * SUM_JOURNAL_SIZE;
1626
1627        /* Step 3: restore summary entries */
1628        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1629                unsigned short blk_off;
1630                unsigned int segno;
1631
1632                seg_i = CURSEG_I(sbi, i);
1633                segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1634                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1635                seg_i->next_segno = segno;
1636                reset_curseg(sbi, i, 0);
1637                seg_i->alloc_type = ckpt->alloc_type[i];
1638                seg_i->next_blkoff = blk_off;
1639
1640                if (seg_i->alloc_type == SSR)
1641                        blk_off = sbi->blocks_per_seg;
1642
1643                for (j = 0; j < blk_off; j++) {
1644                        struct f2fs_summary *s;
1645                        s = (struct f2fs_summary *)(kaddr + offset);
1646                        seg_i->sum_blk->entries[j] = *s;
1647                        offset += SUMMARY_SIZE;
1648                        if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1649                                                SUM_FOOTER_SIZE)
1650                                continue;
1651
1652                        f2fs_put_page(page, 1);
1653                        page = NULL;
1654
1655                        page = get_meta_page(sbi, start++);
1656                        kaddr = (unsigned char *)page_address(page);
1657                        offset = 0;
1658                }
1659        }
1660        f2fs_put_page(page, 1);
1661        return 0;
1662}
1663
1664static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1665{
1666        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1667        struct f2fs_summary_block *sum;
1668        struct curseg_info *curseg;
1669        struct page *new;
1670        unsigned short blk_off;
1671        unsigned int segno = 0;
1672        block_t blk_addr = 0;
1673
1674        /* get segment number and block addr */
1675        if (IS_DATASEG(type)) {
1676                segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1677                blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1678                                                        CURSEG_HOT_DATA]);
1679                if (__exist_node_summaries(sbi))
1680                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1681                else
1682                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1683        } else {
1684                segno = le32_to_cpu(ckpt->cur_node_segno[type -
1685                                                        CURSEG_HOT_NODE]);
1686                blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1687                                                        CURSEG_HOT_NODE]);
1688                if (__exist_node_summaries(sbi))
1689                        blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1690                                                        type - CURSEG_HOT_NODE);
1691                else
1692                        blk_addr = GET_SUM_BLOCK(sbi, segno);
1693        }
1694
1695        new = get_meta_page(sbi, blk_addr);
1696        sum = (struct f2fs_summary_block *)page_address(new);
1697
1698        if (IS_NODESEG(type)) {
1699                if (__exist_node_summaries(sbi)) {
1700                        struct f2fs_summary *ns = &sum->entries[0];
1701                        int i;
1702                        for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1703                                ns->version = 0;
1704                                ns->ofs_in_node = 0;
1705                        }
1706                } else {
1707                        int err;
1708
1709                        err = restore_node_summary(sbi, segno, sum);
1710                        if (err) {
1711                                f2fs_put_page(new, 1);
1712                                return err;
1713                        }
1714                }
1715        }
1716
1717        /* set uncompleted segment to curseg */
1718        curseg = CURSEG_I(sbi, type);
1719        mutex_lock(&curseg->curseg_mutex);
1720
1721        /* update journal info */
1722        down_write(&curseg->journal_rwsem);
1723        memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1724        up_write(&curseg->journal_rwsem);
1725
1726        memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1727        memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1728        curseg->next_segno = segno;
1729        reset_curseg(sbi, type, 0);
1730        curseg->alloc_type = ckpt->alloc_type[type];
1731        curseg->next_blkoff = blk_off;
1732        mutex_unlock(&curseg->curseg_mutex);
1733        f2fs_put_page(new, 1);
1734        return 0;
1735}
1736
1737static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1738{
1739        int type = CURSEG_HOT_DATA;
1740        int err;
1741
1742        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1743                int npages = npages_for_summary_flush(sbi, true);
1744
1745                if (npages >= 2)
1746                        ra_meta_pages(sbi, start_sum_block(sbi), npages,
1747                                                        META_CP, true);
1748
1749                /* restore for compacted data summary */
1750                if (read_compacted_summaries(sbi))
1751                        return -EINVAL;
1752                type = CURSEG_HOT_NODE;
1753        }
1754
1755        if (__exist_node_summaries(sbi))
1756                ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1757                                        NR_CURSEG_TYPE - type, META_CP, true);
1758
1759        for (; type <= CURSEG_COLD_NODE; type++) {
1760                err = read_normal_summaries(sbi, type);
1761                if (err)
1762                        return err;
1763        }
1764
1765        return 0;
1766}
1767
1768static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1769{
1770        struct page *page;
1771        unsigned char *kaddr;
1772        struct f2fs_summary *summary;
1773        struct curseg_info *seg_i;
1774        int written_size = 0;
1775        int i, j;
1776
1777        page = grab_meta_page(sbi, blkaddr++);
1778        kaddr = (unsigned char *)page_address(page);
1779
1780        /* Step 1: write nat cache */
1781        seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1782        memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1783        written_size += SUM_JOURNAL_SIZE;
1784
1785        /* Step 2: write sit cache */
1786        seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1787        memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1788        written_size += SUM_JOURNAL_SIZE;
1789
1790        /* Step 3: write summary entries */
1791        for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1792                unsigned short blkoff;
1793                seg_i = CURSEG_I(sbi, i);
1794                if (sbi->ckpt->alloc_type[i] == SSR)
1795                        blkoff = sbi->blocks_per_seg;
1796                else
1797                        blkoff = curseg_blkoff(sbi, i);
1798
1799                for (j = 0; j < blkoff; j++) {
1800                        if (!page) {
1801                                page = grab_meta_page(sbi, blkaddr++);
1802                                kaddr = (unsigned char *)page_address(page);
1803                                written_size = 0;
1804                        }
1805                        summary = (struct f2fs_summary *)(kaddr + written_size);
1806                        *summary = seg_i->sum_blk->entries[j];
1807                        written_size += SUMMARY_SIZE;
1808
1809                        if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1810                                                        SUM_FOOTER_SIZE)
1811                                continue;
1812
1813                        set_page_dirty(page);
1814                        f2fs_put_page(page, 1);
1815                        page = NULL;
1816                }
1817        }
1818        if (page) {
1819                set_page_dirty(page);
1820                f2fs_put_page(page, 1);
1821        }
1822}
1823
1824static void write_normal_summaries(struct f2fs_sb_info *sbi,
1825                                        block_t blkaddr, int type)
1826{
1827        int i, end;
1828        if (IS_DATASEG(type))
1829                end = type + NR_CURSEG_DATA_TYPE;
1830        else
1831                end = type + NR_CURSEG_NODE_TYPE;
1832
1833        for (i = type; i < end; i++)
1834                write_current_sum_page(sbi, i, blkaddr + (i - type));
1835}
1836
1837void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1838{
1839        if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1840                write_compacted_summaries(sbi, start_blk);
1841        else
1842                write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1843}
1844
1845void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1846{
1847        write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1848}
1849
1850int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1851                                        unsigned int val, int alloc)
1852{
1853        int i;
1854
1855        if (type == NAT_JOURNAL) {
1856                for (i = 0; i < nats_in_cursum(journal); i++) {
1857                        if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1858                                return i;
1859                }
1860                if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1861                        return update_nats_in_cursum(journal, 1);
1862        } else if (type == SIT_JOURNAL) {
1863                for (i = 0; i < sits_in_cursum(journal); i++)
1864                        if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1865                                return i;
1866                if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1867                        return update_sits_in_cursum(journal, 1);
1868        }
1869        return -1;
1870}
1871
1872static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1873                                        unsigned int segno)
1874{
1875        return get_meta_page(sbi, current_sit_addr(sbi, segno));
1876}
1877
1878static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1879                                        unsigned int start)
1880{
1881        struct sit_info *sit_i = SIT_I(sbi);
1882        struct page *src_page, *dst_page;
1883        pgoff_t src_off, dst_off;
1884        void *src_addr, *dst_addr;
1885
1886        src_off = current_sit_addr(sbi, start);
1887        dst_off = next_sit_addr(sbi, src_off);
1888
1889        /* get current sit block page without lock */
1890        src_page = get_meta_page(sbi, src_off);
1891        dst_page = grab_meta_page(sbi, dst_off);
1892        f2fs_bug_on(sbi, PageDirty(src_page));
1893
1894        src_addr = page_address(src_page);
1895        dst_addr = page_address(dst_page);
1896        memcpy(dst_addr, src_addr, PAGE_SIZE);
1897
1898        set_page_dirty(dst_page);
1899        f2fs_put_page(src_page, 1);
1900
1901        set_to_next_sit(sit_i, start);
1902
1903        return dst_page;
1904}
1905
1906static struct sit_entry_set *grab_sit_entry_set(void)
1907{
1908        struct sit_entry_set *ses =
1909                        f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1910
1911        ses->entry_cnt = 0;
1912        INIT_LIST_HEAD(&ses->set_list);
1913        return ses;
1914}
1915
1916static void release_sit_entry_set(struct sit_entry_set *ses)
1917{
1918        list_del(&ses->set_list);
1919        kmem_cache_free(sit_entry_set_slab, ses);
1920}
1921
1922static void adjust_sit_entry_set(struct sit_entry_set *ses,
1923                                                struct list_head *head)
1924{
1925        struct sit_entry_set *next = ses;
1926
1927        if (list_is_last(&ses->set_list, head))
1928                return;
1929
1930        list_for_each_entry_continue(next, head, set_list)
1931                if (ses->entry_cnt <= next->entry_cnt)
1932                        break;
1933
1934        list_move_tail(&ses->set_list, &next->set_list);
1935}
1936
1937static void add_sit_entry(unsigned int segno, struct list_head *head)
1938{
1939        struct sit_entry_set *ses;
1940        unsigned int start_segno = START_SEGNO(segno);
1941
1942        list_for_each_entry(ses, head, set_list) {
1943                if (ses->start_segno == start_segno) {
1944                        ses->entry_cnt++;
1945                        adjust_sit_entry_set(ses, head);
1946                        return;
1947                }
1948        }
1949
1950        ses = grab_sit_entry_set();
1951
1952        ses->start_segno = start_segno;
1953        ses->entry_cnt++;
1954        list_add(&ses->set_list, head);
1955}
1956
1957static void add_sits_in_set(struct f2fs_sb_info *sbi)
1958{
1959        struct f2fs_sm_info *sm_info = SM_I(sbi);
1960        struct list_head *set_list = &sm_info->sit_entry_set;
1961        unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1962        unsigned int segno;
1963
1964        for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1965                add_sit_entry(segno, set_list);
1966}
1967
1968static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1969{
1970        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1971        struct f2fs_journal *journal = curseg->journal;
1972        int i;
1973
1974        down_write(&curseg->journal_rwsem);
1975        for (i = 0; i < sits_in_cursum(journal); i++) {
1976                unsigned int segno;
1977                bool dirtied;
1978
1979                segno = le32_to_cpu(segno_in_journal(journal, i));
1980                dirtied = __mark_sit_entry_dirty(sbi, segno);
1981
1982                if (!dirtied)
1983                        add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1984        }
1985        update_sits_in_cursum(journal, -i);
1986        up_write(&curseg->journal_rwsem);
1987}
1988
1989/*
1990 * CP calls this function, which flushes SIT entries including sit_journal,
1991 * and moves prefree segs to free segs.
1992 */
1993void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1994{
1995        struct sit_info *sit_i = SIT_I(sbi);
1996        unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1997        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1998        struct f2fs_journal *journal = curseg->journal;
1999        struct sit_entry_set *ses, *tmp;
2000        struct list_head *head = &SM_I(sbi)->sit_entry_set;
2001        bool to_journal = true;
2002        struct seg_entry *se;
2003
2004        mutex_lock(&sit_i->sentry_lock);
2005
2006        if (!sit_i->dirty_sentries)
2007                goto out;
2008
2009        /*
2010         * add and account sit entries of dirty bitmap in sit entry
2011         * set temporarily
2012         */
2013        add_sits_in_set(sbi);
2014
2015        /*
2016         * if there are no enough space in journal to store dirty sit
2017         * entries, remove all entries from journal and add and account
2018         * them in sit entry set.
2019         */
2020        if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2021                remove_sits_in_journal(sbi);
2022
2023        /*
2024         * there are two steps to flush sit entries:
2025         * #1, flush sit entries to journal in current cold data summary block.
2026         * #2, flush sit entries to sit page.
2027         */
2028        list_for_each_entry_safe(ses, tmp, head, set_list) {
2029                struct page *page = NULL;
2030                struct f2fs_sit_block *raw_sit = NULL;
2031                unsigned int start_segno = ses->start_segno;
2032                unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2033                                                (unsigned long)MAIN_SEGS(sbi));
2034                unsigned int segno = start_segno;
2035
2036                if (to_journal &&
2037                        !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2038                        to_journal = false;
2039
2040                if (to_journal) {
2041                        down_write(&curseg->journal_rwsem);
2042                } else {
2043                        page = get_next_sit_page(sbi, start_segno);
2044                        raw_sit = page_address(page);
2045                }
2046
2047                /* flush dirty sit entries in region of current sit set */
2048                for_each_set_bit_from(segno, bitmap, end) {
2049                        int offset, sit_offset;
2050
2051                        se = get_seg_entry(sbi, segno);
2052
2053                        /* add discard candidates */
2054                        if (cpc->reason != CP_DISCARD) {
2055                                cpc->trim_start = segno;
2056                                add_discard_addrs(sbi, cpc);
2057                        }
2058
2059                        if (to_journal) {
2060                                offset = lookup_journal_in_cursum(journal,
2061                                                        SIT_JOURNAL, segno, 1);
2062                                f2fs_bug_on(sbi, offset < 0);
2063                                segno_in_journal(journal, offset) =
2064                                                        cpu_to_le32(segno);
2065                                seg_info_to_raw_sit(se,
2066                                        &sit_in_journal(journal, offset));
2067                        } else {
2068                                sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2069                                seg_info_to_raw_sit(se,
2070                                                &raw_sit->entries[sit_offset]);
2071                        }
2072
2073                        __clear_bit(segno, bitmap);
2074                        sit_i->dirty_sentries--;
2075                        ses->entry_cnt--;
2076                }
2077
2078                if (to_journal)
2079                        up_write(&curseg->journal_rwsem);
2080                else
2081                        f2fs_put_page(page, 1);
2082
2083                f2fs_bug_on(sbi, ses->entry_cnt);
2084                release_sit_entry_set(ses);
2085        }
2086
2087        f2fs_bug_on(sbi, !list_empty(head));
2088        f2fs_bug_on(sbi, sit_i->dirty_sentries);
2089out:
2090        if (cpc->reason == CP_DISCARD) {
2091                for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2092                        add_discard_addrs(sbi, cpc);
2093        }
2094        mutex_unlock(&sit_i->sentry_lock);
2095
2096        set_prefree_as_free_segments(sbi);
2097}
2098
2099static int build_sit_info(struct f2fs_sb_info *sbi)
2100{
2101        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2102        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2103        struct sit_info *sit_i;
2104        unsigned int sit_segs, start;
2105        char *src_bitmap, *dst_bitmap;
2106        unsigned int bitmap_size;
2107
2108        /* allocate memory for SIT information */
2109        sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2110        if (!sit_i)
2111                return -ENOMEM;
2112
2113        SM_I(sbi)->sit_info = sit_i;
2114
2115        sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2116                                        sizeof(struct seg_entry), GFP_KERNEL);
2117        if (!sit_i->sentries)
2118                return -ENOMEM;
2119
2120        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2121        sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2122        if (!sit_i->dirty_sentries_bitmap)
2123                return -ENOMEM;
2124
2125        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2126                sit_i->sentries[start].cur_valid_map
2127                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2128                sit_i->sentries[start].ckpt_valid_map
2129                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2130                sit_i->sentries[start].discard_map
2131                        = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2132                if (!sit_i->sentries[start].cur_valid_map ||
2133                                !sit_i->sentries[start].ckpt_valid_map ||
2134                                !sit_i->sentries[start].discard_map)
2135                        return -ENOMEM;
2136        }
2137
2138        sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2139        if (!sit_i->tmp_map)
2140                return -ENOMEM;
2141
2142        if (sbi->segs_per_sec > 1) {
2143                sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2144                                        sizeof(struct sec_entry), GFP_KERNEL);
2145                if (!sit_i->sec_entries)
2146                        return -ENOMEM;
2147        }
2148
2149        /* get information related with SIT */
2150        sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2151
2152        /* setup SIT bitmap from ckeckpoint pack */
2153        bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2154        src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2155
2156        dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2157        if (!dst_bitmap)
2158                return -ENOMEM;
2159
2160        /* init SIT information */
2161        sit_i->s_ops = &default_salloc_ops;
2162
2163        sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2164        sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2165        sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2166        sit_i->sit_bitmap = dst_bitmap;
2167        sit_i->bitmap_size = bitmap_size;
2168        sit_i->dirty_sentries = 0;
2169        sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2170        sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2171        sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2172        mutex_init(&sit_i->sentry_lock);
2173        return 0;
2174}
2175
2176static int build_free_segmap(struct f2fs_sb_info *sbi)
2177{
2178        struct free_segmap_info *free_i;
2179        unsigned int bitmap_size, sec_bitmap_size;
2180
2181        /* allocate memory for free segmap information */
2182        free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2183        if (!free_i)
2184                return -ENOMEM;
2185
2186        SM_I(sbi)->free_info = free_i;
2187
2188        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2189        free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2190        if (!free_i->free_segmap)
2191                return -ENOMEM;
2192
2193        sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2194        free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2195        if (!free_i->free_secmap)
2196                return -ENOMEM;
2197
2198        /* set all segments as dirty temporarily */
2199        memset(free_i->free_segmap, 0xff, bitmap_size);
2200        memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2201
2202        /* init free segmap information */
2203        free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2204        free_i->free_segments = 0;
2205        free_i->free_sections = 0;
2206        spin_lock_init(&free_i->segmap_lock);
2207        return 0;
2208}
2209
2210static int build_curseg(struct f2fs_sb_info *sbi)
2211{
2212        struct curseg_info *array;
2213        int i;
2214
2215        array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2216        if (!array)
2217                return -ENOMEM;
2218
2219        SM_I(sbi)->curseg_array = array;
2220
2221        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2222                mutex_init(&array[i].curseg_mutex);
2223                array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2224                if (!array[i].sum_blk)
2225                        return -ENOMEM;
2226                init_rwsem(&array[i].journal_rwsem);
2227                array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2228                                                        GFP_KERNEL);
2229                if (!array[i].journal)
2230                        return -ENOMEM;
2231                array[i].segno = NULL_SEGNO;
2232                array[i].next_blkoff = 0;
2233        }
2234        return restore_curseg_summaries(sbi);
2235}
2236
2237static void build_sit_entries(struct f2fs_sb_info *sbi)
2238{
2239        struct sit_info *sit_i = SIT_I(sbi);
2240        struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2241        struct f2fs_journal *journal = curseg->journal;
2242        int sit_blk_cnt = SIT_BLK_CNT(sbi);
2243        unsigned int i, start, end;
2244        unsigned int readed, start_blk = 0;
2245        int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2246
2247        do {
2248                readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2249
2250                start = start_blk * sit_i->sents_per_block;
2251                end = (start_blk + readed) * sit_i->sents_per_block;
2252
2253                for (; start < end && start < MAIN_SEGS(sbi); start++) {
2254                        struct seg_entry *se = &sit_i->sentries[start];
2255                        struct f2fs_sit_block *sit_blk;
2256                        struct f2fs_sit_entry sit;
2257                        struct page *page;
2258
2259                        down_read(&curseg->journal_rwsem);
2260                        for (i = 0; i < sits_in_cursum(journal); i++) {
2261                                if (le32_to_cpu(segno_in_journal(journal, i))
2262                                                                == start) {
2263                                        sit = sit_in_journal(journal, i);
2264                                        up_read(&curseg->journal_rwsem);
2265                                        goto got_it;
2266                                }
2267                        }
2268                        up_read(&curseg->journal_rwsem);
2269
2270                        page = get_current_sit_page(sbi, start);
2271                        sit_blk = (struct f2fs_sit_block *)page_address(page);
2272                        sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2273                        f2fs_put_page(page, 1);
2274got_it:
2275                        check_block_count(sbi, start, &sit);
2276                        seg_info_from_raw_sit(se, &sit);
2277
2278                        /* build discard map only one time */
2279                        memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2280                        sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2281
2282                        if (sbi->segs_per_sec > 1) {
2283                                struct sec_entry *e = get_sec_entry(sbi, start);
2284                                e->valid_blocks += se->valid_blocks;
2285                        }
2286                }
2287                start_blk += readed;
2288        } while (start_blk < sit_blk_cnt);
2289}
2290
2291static void init_free_segmap(struct f2fs_sb_info *sbi)
2292{
2293        unsigned int start;
2294        int type;
2295
2296        for (start = 0; start < MAIN_SEGS(sbi); start++) {
2297                struct seg_entry *sentry = get_seg_entry(sbi, start);
2298                if (!sentry->valid_blocks)
2299                        __set_free(sbi, start);
2300        }
2301
2302        /* set use the current segments */
2303        for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2304                struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2305                __set_test_and_inuse(sbi, curseg_t->segno);
2306        }
2307}
2308
2309static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2310{
2311        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2312        struct free_segmap_info *free_i = FREE_I(sbi);
2313        unsigned int segno = 0, offset = 0;
2314        unsigned short valid_blocks;
2315
2316        while (1) {
2317                /* find dirty segment based on free segmap */
2318                segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2319                if (segno >= MAIN_SEGS(sbi))
2320                        break;
2321                offset = segno + 1;
2322                valid_blocks = get_valid_blocks(sbi, segno, 0);
2323                if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2324                        continue;
2325                if (valid_blocks > sbi->blocks_per_seg) {
2326                        f2fs_bug_on(sbi, 1);
2327                        continue;
2328                }
2329                mutex_lock(&dirty_i->seglist_lock);
2330                __locate_dirty_segment(sbi, segno, DIRTY);
2331                mutex_unlock(&dirty_i->seglist_lock);
2332        }
2333}
2334
2335static int init_victim_secmap(struct f2fs_sb_info *sbi)
2336{
2337        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2338        unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2339
2340        dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2341        if (!dirty_i->victim_secmap)
2342                return -ENOMEM;
2343        return 0;
2344}
2345
2346static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2347{
2348        struct dirty_seglist_info *dirty_i;
2349        unsigned int bitmap_size, i;
2350
2351        /* allocate memory for dirty segments list information */
2352        dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2353        if (!dirty_i)
2354                return -ENOMEM;
2355
2356        SM_I(sbi)->dirty_info = dirty_i;
2357        mutex_init(&dirty_i->seglist_lock);
2358
2359        bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2360
2361        for (i = 0; i < NR_DIRTY_TYPE; i++) {
2362                dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2363                if (!dirty_i->dirty_segmap[i])
2364                        return -ENOMEM;
2365        }
2366
2367        init_dirty_segmap(sbi);
2368        return init_victim_secmap(sbi);
2369}
2370
2371/*
2372 * Update min, max modified time for cost-benefit GC algorithm
2373 */
2374static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2375{
2376        struct sit_info *sit_i = SIT_I(sbi);
2377        unsigned int segno;
2378
2379        mutex_lock(&sit_i->sentry_lock);
2380
2381        sit_i->min_mtime = LLONG_MAX;
2382
2383        for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2384                unsigned int i;
2385                unsigned long long mtime = 0;
2386
2387                for (i = 0; i < sbi->segs_per_sec; i++)
2388                        mtime += get_seg_entry(sbi, segno + i)->mtime;
2389
2390                mtime = div_u64(mtime, sbi->segs_per_sec);
2391
2392                if (sit_i->min_mtime > mtime)
2393                        sit_i->min_mtime = mtime;
2394        }
2395        sit_i->max_mtime = get_mtime(sbi);
2396        mutex_unlock(&sit_i->sentry_lock);
2397}
2398
2399int build_segment_manager(struct f2fs_sb_info *sbi)
2400{
2401        struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2402        struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2403        struct f2fs_sm_info *sm_info;
2404        int err;
2405
2406        sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2407        if (!sm_info)
2408                return -ENOMEM;
2409
2410        /* init sm info */
2411        sbi->sm_info = sm_info;
2412        sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2413        sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2414        sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2415        sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2416        sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2417        sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2418        sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2419        sm_info->rec_prefree_segments = sm_info->main_segments *
2420                                        DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2421        if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2422                sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2423
2424        if (!test_opt(sbi, LFS))
2425                sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2426        sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2427        sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2428
2429        INIT_LIST_HEAD(&sm_info->discard_list);
2430        sm_info->nr_discards = 0;
2431        sm_info->max_discards = 0;
2432
2433        sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2434
2435        INIT_LIST_HEAD(&sm_info->sit_entry_set);
2436
2437        if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2438                err = create_flush_cmd_control(sbi);
2439                if (err)
2440                        return err;
2441        }
2442
2443        err = build_sit_info(sbi);
2444        if (err)
2445                return err;
2446        err = build_free_segmap(sbi);
2447        if (err)
2448                return err;
2449        err = build_curseg(sbi);
2450        if (err)
2451                return err;
2452
2453        /* reinit free segmap based on SIT */
2454        build_sit_entries(sbi);
2455
2456        init_free_segmap(sbi);
2457        err = build_dirty_segmap(sbi);
2458        if (err)
2459                return err;
2460
2461        init_min_max_mtime(sbi);
2462        return 0;
2463}
2464
2465static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2466                enum dirty_type dirty_type)
2467{
2468        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2469
2470        mutex_lock(&dirty_i->seglist_lock);
2471        kvfree(dirty_i->dirty_segmap[dirty_type]);
2472        dirty_i->nr_dirty[dirty_type] = 0;
2473        mutex_unlock(&dirty_i->seglist_lock);
2474}
2475
2476static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2477{
2478        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2479        kvfree(dirty_i->victim_secmap);
2480}
2481
2482static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2483{
2484        struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2485        int i;
2486
2487        if (!dirty_i)
2488                return;
2489
2490        /* discard pre-free/dirty segments list */
2491        for (i = 0; i < NR_DIRTY_TYPE; i++)
2492                discard_dirty_segmap(sbi, i);
2493
2494        destroy_victim_secmap(sbi);
2495        SM_I(sbi)->dirty_info = NULL;
2496        kfree(dirty_i);
2497}
2498
2499static void destroy_curseg(struct f2fs_sb_info *sbi)
2500{
2501        struct curseg_info *array = SM_I(sbi)->curseg_array;
2502        int i;
2503
2504        if (!array)
2505                return;
2506        SM_I(sbi)->curseg_array = NULL;
2507        for (i = 0; i < NR_CURSEG_TYPE; i++) {
2508                kfree(array[i].sum_blk);
2509                kfree(array[i].journal);
2510        }
2511        kfree(array);
2512}
2513
2514static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2515{
2516        struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2517        if (!free_i)
2518                return;
2519        SM_I(sbi)->free_info = NULL;
2520        kvfree(free_i->free_segmap);
2521        kvfree(free_i->free_secmap);
2522        kfree(free_i);
2523}
2524
2525static void destroy_sit_info(struct f2fs_sb_info *sbi)
2526{
2527        struct sit_info *sit_i = SIT_I(sbi);
2528        unsigned int start;
2529
2530        if (!sit_i)
2531                return;
2532
2533        if (sit_i->sentries) {
2534                for (start = 0; start < MAIN_SEGS(sbi); start++) {
2535                        kfree(sit_i->sentries[start].cur_valid_map);
2536                        kfree(sit_i->sentries[start].ckpt_valid_map);
2537                        kfree(sit_i->sentries[start].discard_map);
2538                }
2539        }
2540        kfree(sit_i->tmp_map);
2541
2542        kvfree(sit_i->sentries);
2543        kvfree(sit_i->sec_entries);
2544        kvfree(sit_i->dirty_sentries_bitmap);
2545
2546        SM_I(sbi)->sit_info = NULL;
2547        kfree(sit_i->sit_bitmap);
2548        kfree(sit_i);
2549}
2550
2551void destroy_segment_manager(struct f2fs_sb_info *sbi)
2552{
2553        struct f2fs_sm_info *sm_info = SM_I(sbi);
2554
2555        if (!sm_info)
2556                return;
2557        destroy_flush_cmd_control(sbi);
2558        destroy_dirty_segmap(sbi);
2559        destroy_curseg(sbi);
2560        destroy_free_segmap(sbi);
2561        destroy_sit_info(sbi);
2562        sbi->sm_info = NULL;
2563        kfree(sm_info);
2564}
2565
2566int __init create_segment_manager_caches(void)
2567{
2568        discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2569                        sizeof(struct discard_entry));
2570        if (!discard_entry_slab)
2571                goto fail;
2572
2573        sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2574                        sizeof(struct sit_entry_set));
2575        if (!sit_entry_set_slab)
2576                goto destory_discard_entry;
2577
2578        inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2579                        sizeof(struct inmem_pages));
2580        if (!inmem_entry_slab)
2581                goto destroy_sit_entry_set;
2582        return 0;
2583
2584destroy_sit_entry_set:
2585        kmem_cache_destroy(sit_entry_set_slab);
2586destory_discard_entry:
2587        kmem_cache_destroy(discard_entry_slab);
2588fail:
2589        return -ENOMEM;
2590}
2591
2592void destroy_segment_manager_caches(void)
2593{
2594        kmem_cache_destroy(sit_entry_set_slab);
2595        kmem_cache_destroy(discard_entry_slab);
2596        kmem_cache_destroy(inmem_entry_slab);
2597}
2598