linux/fs/gfs2/rgrp.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/slab.h>
  13#include <linux/spinlock.h>
  14#include <linux/completion.h>
  15#include <linux/buffer_head.h>
  16#include <linux/fs.h>
  17#include <linux/gfs2_ondisk.h>
  18#include <linux/prefetch.h>
  19#include <linux/blkdev.h>
  20#include <linux/rbtree.h>
  21#include <linux/random.h>
  22
  23#include "gfs2.h"
  24#include "incore.h"
  25#include "glock.h"
  26#include "glops.h"
  27#include "lops.h"
  28#include "meta_io.h"
  29#include "quota.h"
  30#include "rgrp.h"
  31#include "super.h"
  32#include "trans.h"
  33#include "util.h"
  34#include "log.h"
  35#include "inode.h"
  36#include "trace_gfs2.h"
  37
  38#define BFITNOENT ((u32)~0)
  39#define NO_BLOCK ((u64)~0)
  40
  41#if BITS_PER_LONG == 32
  42#define LBITMASK   (0x55555555UL)
  43#define LBITSKIP55 (0x55555555UL)
  44#define LBITSKIP00 (0x00000000UL)
  45#else
  46#define LBITMASK   (0x5555555555555555UL)
  47#define LBITSKIP55 (0x5555555555555555UL)
  48#define LBITSKIP00 (0x0000000000000000UL)
  49#endif
  50
  51/*
  52 * These routines are used by the resource group routines (rgrp.c)
  53 * to keep track of block allocation.  Each block is represented by two
  54 * bits.  So, each byte represents GFS2_NBBY (i.e. 4) blocks.
  55 *
  56 * 0 = Free
  57 * 1 = Used (not metadata)
  58 * 2 = Unlinked (still in use) inode
  59 * 3 = Used (metadata)
  60 */
  61
  62struct gfs2_extent {
  63        struct gfs2_rbm rbm;
  64        u32 len;
  65};
  66
  67static const char valid_change[16] = {
  68                /* current */
  69        /* n */ 0, 1, 1, 1,
  70        /* e */ 1, 0, 0, 0,
  71        /* w */ 0, 0, 0, 1,
  72                1, 0, 0, 0
  73};
  74
  75static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
  76                         const struct gfs2_inode *ip, bool nowrap);
  77
  78
  79/**
  80 * gfs2_setbit - Set a bit in the bitmaps
  81 * @rbm: The position of the bit to set
  82 * @do_clone: Also set the clone bitmap, if it exists
  83 * @new_state: the new state of the block
  84 *
  85 */
  86
  87static inline void gfs2_setbit(const struct gfs2_rbm *rbm, bool do_clone,
  88                               unsigned char new_state)
  89{
  90        unsigned char *byte1, *byte2, *end, cur_state;
  91        struct gfs2_bitmap *bi = rbm_bi(rbm);
  92        unsigned int buflen = bi->bi_len;
  93        const unsigned int bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
  94
  95        byte1 = bi->bi_bh->b_data + bi->bi_offset + (rbm->offset / GFS2_NBBY);
  96        end = bi->bi_bh->b_data + bi->bi_offset + buflen;
  97
  98        BUG_ON(byte1 >= end);
  99
 100        cur_state = (*byte1 >> bit) & GFS2_BIT_MASK;
 101
 102        if (unlikely(!valid_change[new_state * 4 + cur_state])) {
 103                pr_warn("buf_blk = 0x%x old_state=%d, new_state=%d\n",
 104                        rbm->offset, cur_state, new_state);
 105                pr_warn("rgrp=0x%llx bi_start=0x%x\n",
 106                        (unsigned long long)rbm->rgd->rd_addr, bi->bi_start);
 107                pr_warn("bi_offset=0x%x bi_len=0x%x\n",
 108                        bi->bi_offset, bi->bi_len);
 109                dump_stack();
 110                gfs2_consist_rgrpd(rbm->rgd);
 111                return;
 112        }
 113        *byte1 ^= (cur_state ^ new_state) << bit;
 114
 115        if (do_clone && bi->bi_clone) {
 116                byte2 = bi->bi_clone + bi->bi_offset + (rbm->offset / GFS2_NBBY);
 117                cur_state = (*byte2 >> bit) & GFS2_BIT_MASK;
 118                *byte2 ^= (cur_state ^ new_state) << bit;
 119        }
 120}
 121
 122/**
 123 * gfs2_testbit - test a bit in the bitmaps
 124 * @rbm: The bit to test
 125 *
 126 * Returns: The two bit block state of the requested bit
 127 */
 128
 129static inline u8 gfs2_testbit(const struct gfs2_rbm *rbm)
 130{
 131        struct gfs2_bitmap *bi = rbm_bi(rbm);
 132        const u8 *buffer = bi->bi_bh->b_data + bi->bi_offset;
 133        const u8 *byte;
 134        unsigned int bit;
 135
 136        byte = buffer + (rbm->offset / GFS2_NBBY);
 137        bit = (rbm->offset % GFS2_NBBY) * GFS2_BIT_SIZE;
 138
 139        return (*byte >> bit) & GFS2_BIT_MASK;
 140}
 141
 142/**
 143 * gfs2_bit_search
 144 * @ptr: Pointer to bitmap data
 145 * @mask: Mask to use (normally 0x55555.... but adjusted for search start)
 146 * @state: The state we are searching for
 147 *
 148 * We xor the bitmap data with a patter which is the bitwise opposite
 149 * of what we are looking for, this gives rise to a pattern of ones
 150 * wherever there is a match. Since we have two bits per entry, we
 151 * take this pattern, shift it down by one place and then and it with
 152 * the original. All the even bit positions (0,2,4, etc) then represent
 153 * successful matches, so we mask with 0x55555..... to remove the unwanted
 154 * odd bit positions.
 155 *
 156 * This allows searching of a whole u64 at once (32 blocks) with a
 157 * single test (on 64 bit arches).
 158 */
 159
 160static inline u64 gfs2_bit_search(const __le64 *ptr, u64 mask, u8 state)
 161{
 162        u64 tmp;
 163        static const u64 search[] = {
 164                [0] = 0xffffffffffffffffULL,
 165                [1] = 0xaaaaaaaaaaaaaaaaULL,
 166                [2] = 0x5555555555555555ULL,
 167                [3] = 0x0000000000000000ULL,
 168        };
 169        tmp = le64_to_cpu(*ptr) ^ search[state];
 170        tmp &= (tmp >> 1);
 171        tmp &= mask;
 172        return tmp;
 173}
 174
 175/**
 176 * rs_cmp - multi-block reservation range compare
 177 * @blk: absolute file system block number of the new reservation
 178 * @len: number of blocks in the new reservation
 179 * @rs: existing reservation to compare against
 180 *
 181 * returns: 1 if the block range is beyond the reach of the reservation
 182 *         -1 if the block range is before the start of the reservation
 183 *          0 if the block range overlaps with the reservation
 184 */
 185static inline int rs_cmp(u64 blk, u32 len, struct gfs2_blkreserv *rs)
 186{
 187        u64 startblk = gfs2_rbm_to_block(&rs->rs_rbm);
 188
 189        if (blk >= startblk + rs->rs_free)
 190                return 1;
 191        if (blk + len - 1 < startblk)
 192                return -1;
 193        return 0;
 194}
 195
 196/**
 197 * gfs2_bitfit - Search an rgrp's bitmap buffer to find a bit-pair representing
 198 *       a block in a given allocation state.
 199 * @buf: the buffer that holds the bitmaps
 200 * @len: the length (in bytes) of the buffer
 201 * @goal: start search at this block's bit-pair (within @buffer)
 202 * @state: GFS2_BLKST_XXX the state of the block we're looking for.
 203 *
 204 * Scope of @goal and returned block number is only within this bitmap buffer,
 205 * not entire rgrp or filesystem.  @buffer will be offset from the actual
 206 * beginning of a bitmap block buffer, skipping any header structures, but
 207 * headers are always a multiple of 64 bits long so that the buffer is
 208 * always aligned to a 64 bit boundary.
 209 *
 210 * The size of the buffer is in bytes, but is it assumed that it is
 211 * always ok to read a complete multiple of 64 bits at the end
 212 * of the block in case the end is no aligned to a natural boundary.
 213 *
 214 * Return: the block number (bitmap buffer scope) that was found
 215 */
 216
 217static u32 gfs2_bitfit(const u8 *buf, const unsigned int len,
 218                       u32 goal, u8 state)
 219{
 220        u32 spoint = (goal << 1) & ((8*sizeof(u64)) - 1);
 221        const __le64 *ptr = ((__le64 *)buf) + (goal >> 5);
 222        const __le64 *end = (__le64 *)(buf + ALIGN(len, sizeof(u64)));
 223        u64 tmp;
 224        u64 mask = 0x5555555555555555ULL;
 225        u32 bit;
 226
 227        /* Mask off bits we don't care about at the start of the search */
 228        mask <<= spoint;
 229        tmp = gfs2_bit_search(ptr, mask, state);
 230        ptr++;
 231        while(tmp == 0 && ptr < end) {
 232                tmp = gfs2_bit_search(ptr, 0x5555555555555555ULL, state);
 233                ptr++;
 234        }
 235        /* Mask off any bits which are more than len bytes from the start */
 236        if (ptr == end && (len & (sizeof(u64) - 1)))
 237                tmp &= (((u64)~0) >> (64 - 8*(len & (sizeof(u64) - 1))));
 238        /* Didn't find anything, so return */
 239        if (tmp == 0)
 240                return BFITNOENT;
 241        ptr--;
 242        bit = __ffs64(tmp);
 243        bit /= 2;       /* two bits per entry in the bitmap */
 244        return (((const unsigned char *)ptr - buf) * GFS2_NBBY) + bit;
 245}
 246
 247/**
 248 * gfs2_rbm_from_block - Set the rbm based upon rgd and block number
 249 * @rbm: The rbm with rgd already set correctly
 250 * @block: The block number (filesystem relative)
 251 *
 252 * This sets the bi and offset members of an rbm based on a
 253 * resource group and a filesystem relative block number. The
 254 * resource group must be set in the rbm on entry, the bi and
 255 * offset members will be set by this function.
 256 *
 257 * Returns: 0 on success, or an error code
 258 */
 259
 260static int gfs2_rbm_from_block(struct gfs2_rbm *rbm, u64 block)
 261{
 262        u64 rblock = block - rbm->rgd->rd_data0;
 263
 264        if (WARN_ON_ONCE(rblock > UINT_MAX))
 265                return -EINVAL;
 266        if (block >= rbm->rgd->rd_data0 + rbm->rgd->rd_data)
 267                return -E2BIG;
 268
 269        rbm->bii = 0;
 270        rbm->offset = (u32)(rblock);
 271        /* Check if the block is within the first block */
 272        if (rbm->offset < rbm_bi(rbm)->bi_blocks)
 273                return 0;
 274
 275        /* Adjust for the size diff between gfs2_meta_header and gfs2_rgrp */
 276        rbm->offset += (sizeof(struct gfs2_rgrp) -
 277                        sizeof(struct gfs2_meta_header)) * GFS2_NBBY;
 278        rbm->bii = rbm->offset / rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 279        rbm->offset -= rbm->bii * rbm->rgd->rd_sbd->sd_blocks_per_bitmap;
 280        return 0;
 281}
 282
 283/**
 284 * gfs2_rbm_incr - increment an rbm structure
 285 * @rbm: The rbm with rgd already set correctly
 286 *
 287 * This function takes an existing rbm structure and increments it to the next
 288 * viable block offset.
 289 *
 290 * Returns: If incrementing the offset would cause the rbm to go past the
 291 *          end of the rgrp, true is returned, otherwise false.
 292 *
 293 */
 294
 295static bool gfs2_rbm_incr(struct gfs2_rbm *rbm)
 296{
 297        if (rbm->offset + 1 < rbm_bi(rbm)->bi_blocks) { /* in the same bitmap */
 298                rbm->offset++;
 299                return false;
 300        }
 301        if (rbm->bii == rbm->rgd->rd_length - 1) /* at the last bitmap */
 302                return true;
 303
 304        rbm->offset = 0;
 305        rbm->bii++;
 306        return false;
 307}
 308
 309/**
 310 * gfs2_unaligned_extlen - Look for free blocks which are not byte aligned
 311 * @rbm: Position to search (value/result)
 312 * @n_unaligned: Number of unaligned blocks to check
 313 * @len: Decremented for each block found (terminate on zero)
 314 *
 315 * Returns: true if a non-free block is encountered
 316 */
 317
 318static bool gfs2_unaligned_extlen(struct gfs2_rbm *rbm, u32 n_unaligned, u32 *len)
 319{
 320        u32 n;
 321        u8 res;
 322
 323        for (n = 0; n < n_unaligned; n++) {
 324                res = gfs2_testbit(rbm);
 325                if (res != GFS2_BLKST_FREE)
 326                        return true;
 327                (*len)--;
 328                if (*len == 0)
 329                        return true;
 330                if (gfs2_rbm_incr(rbm))
 331                        return true;
 332        }
 333
 334        return false;
 335}
 336
 337/**
 338 * gfs2_free_extlen - Return extent length of free blocks
 339 * @rrbm: Starting position
 340 * @len: Max length to check
 341 *
 342 * Starting at the block specified by the rbm, see how many free blocks
 343 * there are, not reading more than len blocks ahead. This can be done
 344 * using memchr_inv when the blocks are byte aligned, but has to be done
 345 * on a block by block basis in case of unaligned blocks. Also this
 346 * function can cope with bitmap boundaries (although it must stop on
 347 * a resource group boundary)
 348 *
 349 * Returns: Number of free blocks in the extent
 350 */
 351
 352static u32 gfs2_free_extlen(const struct gfs2_rbm *rrbm, u32 len)
 353{
 354        struct gfs2_rbm rbm = *rrbm;
 355        u32 n_unaligned = rbm.offset & 3;
 356        u32 size = len;
 357        u32 bytes;
 358        u32 chunk_size;
 359        u8 *ptr, *start, *end;
 360        u64 block;
 361        struct gfs2_bitmap *bi;
 362
 363        if (n_unaligned &&
 364            gfs2_unaligned_extlen(&rbm, 4 - n_unaligned, &len))
 365                goto out;
 366
 367        n_unaligned = len & 3;
 368        /* Start is now byte aligned */
 369        while (len > 3) {
 370                bi = rbm_bi(&rbm);
 371                start = bi->bi_bh->b_data;
 372                if (bi->bi_clone)
 373                        start = bi->bi_clone;
 374                end = start + bi->bi_bh->b_size;
 375                start += bi->bi_offset;
 376                BUG_ON(rbm.offset & 3);
 377                start += (rbm.offset / GFS2_NBBY);
 378                bytes = min_t(u32, len / GFS2_NBBY, (end - start));
 379                ptr = memchr_inv(start, 0, bytes);
 380                chunk_size = ((ptr == NULL) ? bytes : (ptr - start));
 381                chunk_size *= GFS2_NBBY;
 382                BUG_ON(len < chunk_size);
 383                len -= chunk_size;
 384                block = gfs2_rbm_to_block(&rbm);
 385                if (gfs2_rbm_from_block(&rbm, block + chunk_size)) {
 386                        n_unaligned = 0;
 387                        break;
 388                }
 389                if (ptr) {
 390                        n_unaligned = 3;
 391                        break;
 392                }
 393                n_unaligned = len & 3;
 394        }
 395
 396        /* Deal with any bits left over at the end */
 397        if (n_unaligned)
 398                gfs2_unaligned_extlen(&rbm, n_unaligned, &len);
 399out:
 400        return size - len;
 401}
 402
 403/**
 404 * gfs2_bitcount - count the number of bits in a certain state
 405 * @rgd: the resource group descriptor
 406 * @buffer: the buffer that holds the bitmaps
 407 * @buflen: the length (in bytes) of the buffer
 408 * @state: the state of the block we're looking for
 409 *
 410 * Returns: The number of bits
 411 */
 412
 413static u32 gfs2_bitcount(struct gfs2_rgrpd *rgd, const u8 *buffer,
 414                         unsigned int buflen, u8 state)
 415{
 416        const u8 *byte = buffer;
 417        const u8 *end = buffer + buflen;
 418        const u8 state1 = state << 2;
 419        const u8 state2 = state << 4;
 420        const u8 state3 = state << 6;
 421        u32 count = 0;
 422
 423        for (; byte < end; byte++) {
 424                if (((*byte) & 0x03) == state)
 425                        count++;
 426                if (((*byte) & 0x0C) == state1)
 427                        count++;
 428                if (((*byte) & 0x30) == state2)
 429                        count++;
 430                if (((*byte) & 0xC0) == state3)
 431                        count++;
 432        }
 433
 434        return count;
 435}
 436
 437/**
 438 * gfs2_rgrp_verify - Verify that a resource group is consistent
 439 * @rgd: the rgrp
 440 *
 441 */
 442
 443void gfs2_rgrp_verify(struct gfs2_rgrpd *rgd)
 444{
 445        struct gfs2_sbd *sdp = rgd->rd_sbd;
 446        struct gfs2_bitmap *bi = NULL;
 447        u32 length = rgd->rd_length;
 448        u32 count[4], tmp;
 449        int buf, x;
 450
 451        memset(count, 0, 4 * sizeof(u32));
 452
 453        /* Count # blocks in each of 4 possible allocation states */
 454        for (buf = 0; buf < length; buf++) {
 455                bi = rgd->rd_bits + buf;
 456                for (x = 0; x < 4; x++)
 457                        count[x] += gfs2_bitcount(rgd,
 458                                                  bi->bi_bh->b_data +
 459                                                  bi->bi_offset,
 460                                                  bi->bi_len, x);
 461        }
 462
 463        if (count[0] != rgd->rd_free) {
 464                if (gfs2_consist_rgrpd(rgd))
 465                        fs_err(sdp, "free data mismatch:  %u != %u\n",
 466                               count[0], rgd->rd_free);
 467                return;
 468        }
 469
 470        tmp = rgd->rd_data - rgd->rd_free - rgd->rd_dinodes;
 471        if (count[1] != tmp) {
 472                if (gfs2_consist_rgrpd(rgd))
 473                        fs_err(sdp, "used data mismatch:  %u != %u\n",
 474                               count[1], tmp);
 475                return;
 476        }
 477
 478        if (count[2] + count[3] != rgd->rd_dinodes) {
 479                if (gfs2_consist_rgrpd(rgd))
 480                        fs_err(sdp, "used metadata mismatch:  %u != %u\n",
 481                               count[2] + count[3], rgd->rd_dinodes);
 482                return;
 483        }
 484}
 485
 486static inline int rgrp_contains_block(struct gfs2_rgrpd *rgd, u64 block)
 487{
 488        u64 first = rgd->rd_data0;
 489        u64 last = first + rgd->rd_data;
 490        return first <= block && block < last;
 491}
 492
 493/**
 494 * gfs2_blk2rgrpd - Find resource group for a given data/meta block number
 495 * @sdp: The GFS2 superblock
 496 * @blk: The data block number
 497 * @exact: True if this needs to be an exact match
 498 *
 499 * Returns: The resource group, or NULL if not found
 500 */
 501
 502struct gfs2_rgrpd *gfs2_blk2rgrpd(struct gfs2_sbd *sdp, u64 blk, bool exact)
 503{
 504        struct rb_node *n, *next;
 505        struct gfs2_rgrpd *cur;
 506
 507        spin_lock(&sdp->sd_rindex_spin);
 508        n = sdp->sd_rindex_tree.rb_node;
 509        while (n) {
 510                cur = rb_entry(n, struct gfs2_rgrpd, rd_node);
 511                next = NULL;
 512                if (blk < cur->rd_addr)
 513                        next = n->rb_left;
 514                else if (blk >= cur->rd_data0 + cur->rd_data)
 515                        next = n->rb_right;
 516                if (next == NULL) {
 517                        spin_unlock(&sdp->sd_rindex_spin);
 518                        if (exact) {
 519                                if (blk < cur->rd_addr)
 520                                        return NULL;
 521                                if (blk >= cur->rd_data0 + cur->rd_data)
 522                                        return NULL;
 523                        }
 524                        return cur;
 525                }
 526                n = next;
 527        }
 528        spin_unlock(&sdp->sd_rindex_spin);
 529
 530        return NULL;
 531}
 532
 533/**
 534 * gfs2_rgrpd_get_first - get the first Resource Group in the filesystem
 535 * @sdp: The GFS2 superblock
 536 *
 537 * Returns: The first rgrp in the filesystem
 538 */
 539
 540struct gfs2_rgrpd *gfs2_rgrpd_get_first(struct gfs2_sbd *sdp)
 541{
 542        const struct rb_node *n;
 543        struct gfs2_rgrpd *rgd;
 544
 545        spin_lock(&sdp->sd_rindex_spin);
 546        n = rb_first(&sdp->sd_rindex_tree);
 547        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 548        spin_unlock(&sdp->sd_rindex_spin);
 549
 550        return rgd;
 551}
 552
 553/**
 554 * gfs2_rgrpd_get_next - get the next RG
 555 * @rgd: the resource group descriptor
 556 *
 557 * Returns: The next rgrp
 558 */
 559
 560struct gfs2_rgrpd *gfs2_rgrpd_get_next(struct gfs2_rgrpd *rgd)
 561{
 562        struct gfs2_sbd *sdp = rgd->rd_sbd;
 563        const struct rb_node *n;
 564
 565        spin_lock(&sdp->sd_rindex_spin);
 566        n = rb_next(&rgd->rd_node);
 567        if (n == NULL)
 568                n = rb_first(&sdp->sd_rindex_tree);
 569
 570        if (unlikely(&rgd->rd_node == n)) {
 571                spin_unlock(&sdp->sd_rindex_spin);
 572                return NULL;
 573        }
 574        rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 575        spin_unlock(&sdp->sd_rindex_spin);
 576        return rgd;
 577}
 578
 579void check_and_update_goal(struct gfs2_inode *ip)
 580{
 581        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 582        if (!ip->i_goal || gfs2_blk2rgrpd(sdp, ip->i_goal, 1) == NULL)
 583                ip->i_goal = ip->i_no_addr;
 584}
 585
 586void gfs2_free_clones(struct gfs2_rgrpd *rgd)
 587{
 588        int x;
 589
 590        for (x = 0; x < rgd->rd_length; x++) {
 591                struct gfs2_bitmap *bi = rgd->rd_bits + x;
 592                kfree(bi->bi_clone);
 593                bi->bi_clone = NULL;
 594        }
 595}
 596
 597/**
 598 * gfs2_rsqa_alloc - make sure we have a reservation assigned to the inode
 599 *                 plus a quota allocations data structure, if necessary
 600 * @ip: the inode for this reservation
 601 */
 602int gfs2_rsqa_alloc(struct gfs2_inode *ip)
 603{
 604        return gfs2_qa_alloc(ip);
 605}
 606
 607static void dump_rs(struct seq_file *seq, const struct gfs2_blkreserv *rs)
 608{
 609        gfs2_print_dbg(seq, "  B: n:%llu s:%llu b:%u f:%u\n",
 610                       (unsigned long long)rs->rs_inum,
 611                       (unsigned long long)gfs2_rbm_to_block(&rs->rs_rbm),
 612                       rs->rs_rbm.offset, rs->rs_free);
 613}
 614
 615/**
 616 * __rs_deltree - remove a multi-block reservation from the rgd tree
 617 * @rs: The reservation to remove
 618 *
 619 */
 620static void __rs_deltree(struct gfs2_blkreserv *rs)
 621{
 622        struct gfs2_rgrpd *rgd;
 623
 624        if (!gfs2_rs_active(rs))
 625                return;
 626
 627        rgd = rs->rs_rbm.rgd;
 628        trace_gfs2_rs(rs, TRACE_RS_TREEDEL);
 629        rb_erase(&rs->rs_node, &rgd->rd_rstree);
 630        RB_CLEAR_NODE(&rs->rs_node);
 631
 632        if (rs->rs_free) {
 633                struct gfs2_bitmap *bi = rbm_bi(&rs->rs_rbm);
 634
 635                /* return reserved blocks to the rgrp */
 636                BUG_ON(rs->rs_rbm.rgd->rd_reserved < rs->rs_free);
 637                rs->rs_rbm.rgd->rd_reserved -= rs->rs_free;
 638                /* The rgrp extent failure point is likely not to increase;
 639                   it will only do so if the freed blocks are somehow
 640                   contiguous with a span of free blocks that follows. Still,
 641                   it will force the number to be recalculated later. */
 642                rgd->rd_extfail_pt += rs->rs_free;
 643                rs->rs_free = 0;
 644                clear_bit(GBF_FULL, &bi->bi_flags);
 645        }
 646}
 647
 648/**
 649 * gfs2_rs_deltree - remove a multi-block reservation from the rgd tree
 650 * @rs: The reservation to remove
 651 *
 652 */
 653void gfs2_rs_deltree(struct gfs2_blkreserv *rs)
 654{
 655        struct gfs2_rgrpd *rgd;
 656
 657        rgd = rs->rs_rbm.rgd;
 658        if (rgd) {
 659                spin_lock(&rgd->rd_rsspin);
 660                __rs_deltree(rs);
 661                BUG_ON(rs->rs_free);
 662                spin_unlock(&rgd->rd_rsspin);
 663        }
 664}
 665
 666/**
 667 * gfs2_rsqa_delete - delete a multi-block reservation and quota allocation
 668 * @ip: The inode for this reservation
 669 * @wcount: The inode's write count, or NULL
 670 *
 671 */
 672void gfs2_rsqa_delete(struct gfs2_inode *ip, atomic_t *wcount)
 673{
 674        down_write(&ip->i_rw_mutex);
 675        if ((wcount == NULL) || (atomic_read(wcount) <= 1))
 676                gfs2_rs_deltree(&ip->i_res);
 677        up_write(&ip->i_rw_mutex);
 678        gfs2_qa_delete(ip, wcount);
 679}
 680
 681/**
 682 * return_all_reservations - return all reserved blocks back to the rgrp.
 683 * @rgd: the rgrp that needs its space back
 684 *
 685 * We previously reserved a bunch of blocks for allocation. Now we need to
 686 * give them back. This leave the reservation structures in tact, but removes
 687 * all of their corresponding "no-fly zones".
 688 */
 689static void return_all_reservations(struct gfs2_rgrpd *rgd)
 690{
 691        struct rb_node *n;
 692        struct gfs2_blkreserv *rs;
 693
 694        spin_lock(&rgd->rd_rsspin);
 695        while ((n = rb_first(&rgd->rd_rstree))) {
 696                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
 697                __rs_deltree(rs);
 698        }
 699        spin_unlock(&rgd->rd_rsspin);
 700}
 701
 702void gfs2_clear_rgrpd(struct gfs2_sbd *sdp)
 703{
 704        struct rb_node *n;
 705        struct gfs2_rgrpd *rgd;
 706        struct gfs2_glock *gl;
 707
 708        while ((n = rb_first(&sdp->sd_rindex_tree))) {
 709                rgd = rb_entry(n, struct gfs2_rgrpd, rd_node);
 710                gl = rgd->rd_gl;
 711
 712                rb_erase(n, &sdp->sd_rindex_tree);
 713
 714                if (gl) {
 715                        spin_lock(&gl->gl_lockref.lock);
 716                        gl->gl_object = NULL;
 717                        spin_unlock(&gl->gl_lockref.lock);
 718                        gfs2_glock_add_to_lru(gl);
 719                        gfs2_glock_put(gl);
 720                }
 721
 722                gfs2_free_clones(rgd);
 723                kfree(rgd->rd_bits);
 724                rgd->rd_bits = NULL;
 725                return_all_reservations(rgd);
 726                kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 727        }
 728}
 729
 730static void gfs2_rindex_print(const struct gfs2_rgrpd *rgd)
 731{
 732        pr_info("ri_addr = %llu\n", (unsigned long long)rgd->rd_addr);
 733        pr_info("ri_length = %u\n", rgd->rd_length);
 734        pr_info("ri_data0 = %llu\n", (unsigned long long)rgd->rd_data0);
 735        pr_info("ri_data = %u\n", rgd->rd_data);
 736        pr_info("ri_bitbytes = %u\n", rgd->rd_bitbytes);
 737}
 738
 739/**
 740 * gfs2_compute_bitstructs - Compute the bitmap sizes
 741 * @rgd: The resource group descriptor
 742 *
 743 * Calculates bitmap descriptors, one for each block that contains bitmap data
 744 *
 745 * Returns: errno
 746 */
 747
 748static int compute_bitstructs(struct gfs2_rgrpd *rgd)
 749{
 750        struct gfs2_sbd *sdp = rgd->rd_sbd;
 751        struct gfs2_bitmap *bi;
 752        u32 length = rgd->rd_length; /* # blocks in hdr & bitmap */
 753        u32 bytes_left, bytes;
 754        int x;
 755
 756        if (!length)
 757                return -EINVAL;
 758
 759        rgd->rd_bits = kcalloc(length, sizeof(struct gfs2_bitmap), GFP_NOFS);
 760        if (!rgd->rd_bits)
 761                return -ENOMEM;
 762
 763        bytes_left = rgd->rd_bitbytes;
 764
 765        for (x = 0; x < length; x++) {
 766                bi = rgd->rd_bits + x;
 767
 768                bi->bi_flags = 0;
 769                /* small rgrp; bitmap stored completely in header block */
 770                if (length == 1) {
 771                        bytes = bytes_left;
 772                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 773                        bi->bi_start = 0;
 774                        bi->bi_len = bytes;
 775                        bi->bi_blocks = bytes * GFS2_NBBY;
 776                /* header block */
 777                } else if (x == 0) {
 778                        bytes = sdp->sd_sb.sb_bsize - sizeof(struct gfs2_rgrp);
 779                        bi->bi_offset = sizeof(struct gfs2_rgrp);
 780                        bi->bi_start = 0;
 781                        bi->bi_len = bytes;
 782                        bi->bi_blocks = bytes * GFS2_NBBY;
 783                /* last block */
 784                } else if (x + 1 == length) {
 785                        bytes = bytes_left;
 786                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 787                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 788                        bi->bi_len = bytes;
 789                        bi->bi_blocks = bytes * GFS2_NBBY;
 790                /* other blocks */
 791                } else {
 792                        bytes = sdp->sd_sb.sb_bsize -
 793                                sizeof(struct gfs2_meta_header);
 794                        bi->bi_offset = sizeof(struct gfs2_meta_header);
 795                        bi->bi_start = rgd->rd_bitbytes - bytes_left;
 796                        bi->bi_len = bytes;
 797                        bi->bi_blocks = bytes * GFS2_NBBY;
 798                }
 799
 800                bytes_left -= bytes;
 801        }
 802
 803        if (bytes_left) {
 804                gfs2_consist_rgrpd(rgd);
 805                return -EIO;
 806        }
 807        bi = rgd->rd_bits + (length - 1);
 808        if ((bi->bi_start + bi->bi_len) * GFS2_NBBY != rgd->rd_data) {
 809                if (gfs2_consist_rgrpd(rgd)) {
 810                        gfs2_rindex_print(rgd);
 811                        fs_err(sdp, "start=%u len=%u offset=%u\n",
 812                               bi->bi_start, bi->bi_len, bi->bi_offset);
 813                }
 814                return -EIO;
 815        }
 816
 817        return 0;
 818}
 819
 820/**
 821 * gfs2_ri_total - Total up the file system space, according to the rindex.
 822 * @sdp: the filesystem
 823 *
 824 */
 825u64 gfs2_ri_total(struct gfs2_sbd *sdp)
 826{
 827        u64 total_data = 0;     
 828        struct inode *inode = sdp->sd_rindex;
 829        struct gfs2_inode *ip = GFS2_I(inode);
 830        char buf[sizeof(struct gfs2_rindex)];
 831        int error, rgrps;
 832
 833        for (rgrps = 0;; rgrps++) {
 834                loff_t pos = rgrps * sizeof(struct gfs2_rindex);
 835
 836                if (pos + sizeof(struct gfs2_rindex) > i_size_read(inode))
 837                        break;
 838                error = gfs2_internal_read(ip, buf, &pos,
 839                                           sizeof(struct gfs2_rindex));
 840                if (error != sizeof(struct gfs2_rindex))
 841                        break;
 842                total_data += be32_to_cpu(((struct gfs2_rindex *)buf)->ri_data);
 843        }
 844        return total_data;
 845}
 846
 847static int rgd_insert(struct gfs2_rgrpd *rgd)
 848{
 849        struct gfs2_sbd *sdp = rgd->rd_sbd;
 850        struct rb_node **newn = &sdp->sd_rindex_tree.rb_node, *parent = NULL;
 851
 852        /* Figure out where to put new node */
 853        while (*newn) {
 854                struct gfs2_rgrpd *cur = rb_entry(*newn, struct gfs2_rgrpd,
 855                                                  rd_node);
 856
 857                parent = *newn;
 858                if (rgd->rd_addr < cur->rd_addr)
 859                        newn = &((*newn)->rb_left);
 860                else if (rgd->rd_addr > cur->rd_addr)
 861                        newn = &((*newn)->rb_right);
 862                else
 863                        return -EEXIST;
 864        }
 865
 866        rb_link_node(&rgd->rd_node, parent, newn);
 867        rb_insert_color(&rgd->rd_node, &sdp->sd_rindex_tree);
 868        sdp->sd_rgrps++;
 869        return 0;
 870}
 871
 872/**
 873 * read_rindex_entry - Pull in a new resource index entry from the disk
 874 * @ip: Pointer to the rindex inode
 875 *
 876 * Returns: 0 on success, > 0 on EOF, error code otherwise
 877 */
 878
 879static int read_rindex_entry(struct gfs2_inode *ip)
 880{
 881        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 882        const unsigned bsize = sdp->sd_sb.sb_bsize;
 883        loff_t pos = sdp->sd_rgrps * sizeof(struct gfs2_rindex);
 884        struct gfs2_rindex buf;
 885        int error;
 886        struct gfs2_rgrpd *rgd;
 887
 888        if (pos >= i_size_read(&ip->i_inode))
 889                return 1;
 890
 891        error = gfs2_internal_read(ip, (char *)&buf, &pos,
 892                                   sizeof(struct gfs2_rindex));
 893
 894        if (error != sizeof(struct gfs2_rindex))
 895                return (error == 0) ? 1 : error;
 896
 897        rgd = kmem_cache_zalloc(gfs2_rgrpd_cachep, GFP_NOFS);
 898        error = -ENOMEM;
 899        if (!rgd)
 900                return error;
 901
 902        rgd->rd_sbd = sdp;
 903        rgd->rd_addr = be64_to_cpu(buf.ri_addr);
 904        rgd->rd_length = be32_to_cpu(buf.ri_length);
 905        rgd->rd_data0 = be64_to_cpu(buf.ri_data0);
 906        rgd->rd_data = be32_to_cpu(buf.ri_data);
 907        rgd->rd_bitbytes = be32_to_cpu(buf.ri_bitbytes);
 908        spin_lock_init(&rgd->rd_rsspin);
 909
 910        error = compute_bitstructs(rgd);
 911        if (error)
 912                goto fail;
 913
 914        error = gfs2_glock_get(sdp, rgd->rd_addr,
 915                               &gfs2_rgrp_glops, CREATE, &rgd->rd_gl);
 916        if (error)
 917                goto fail;
 918
 919        rgd->rd_rgl = (struct gfs2_rgrp_lvb *)rgd->rd_gl->gl_lksb.sb_lvbptr;
 920        rgd->rd_flags &= ~(GFS2_RDF_UPTODATE | GFS2_RDF_PREFERRED);
 921        if (rgd->rd_data > sdp->sd_max_rg_data)
 922                sdp->sd_max_rg_data = rgd->rd_data;
 923        spin_lock(&sdp->sd_rindex_spin);
 924        error = rgd_insert(rgd);
 925        spin_unlock(&sdp->sd_rindex_spin);
 926        if (!error) {
 927                rgd->rd_gl->gl_object = rgd;
 928                rgd->rd_gl->gl_vm.start = (rgd->rd_addr * bsize) & PAGE_MASK;
 929                rgd->rd_gl->gl_vm.end = PAGE_ALIGN((rgd->rd_addr +
 930                                                    rgd->rd_length) * bsize) - 1;
 931                return 0;
 932        }
 933
 934        error = 0; /* someone else read in the rgrp; free it and ignore it */
 935        gfs2_glock_put(rgd->rd_gl);
 936
 937fail:
 938        kfree(rgd->rd_bits);
 939        rgd->rd_bits = NULL;
 940        kmem_cache_free(gfs2_rgrpd_cachep, rgd);
 941        return error;
 942}
 943
 944/**
 945 * set_rgrp_preferences - Run all the rgrps, selecting some we prefer to use
 946 * @sdp: the GFS2 superblock
 947 *
 948 * The purpose of this function is to select a subset of the resource groups
 949 * and mark them as PREFERRED. We do it in such a way that each node prefers
 950 * to use a unique set of rgrps to minimize glock contention.
 951 */
 952static void set_rgrp_preferences(struct gfs2_sbd *sdp)
 953{
 954        struct gfs2_rgrpd *rgd, *first;
 955        int i;
 956
 957        /* Skip an initial number of rgrps, based on this node's journal ID.
 958           That should start each node out on its own set. */
 959        rgd = gfs2_rgrpd_get_first(sdp);
 960        for (i = 0; i < sdp->sd_lockstruct.ls_jid; i++)
 961                rgd = gfs2_rgrpd_get_next(rgd);
 962        first = rgd;
 963
 964        do {
 965                rgd->rd_flags |= GFS2_RDF_PREFERRED;
 966                for (i = 0; i < sdp->sd_journals; i++) {
 967                        rgd = gfs2_rgrpd_get_next(rgd);
 968                        if (!rgd || rgd == first)
 969                                break;
 970                }
 971        } while (rgd && rgd != first);
 972}
 973
 974/**
 975 * gfs2_ri_update - Pull in a new resource index from the disk
 976 * @ip: pointer to the rindex inode
 977 *
 978 * Returns: 0 on successful update, error code otherwise
 979 */
 980
 981static int gfs2_ri_update(struct gfs2_inode *ip)
 982{
 983        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
 984        int error;
 985
 986        do {
 987                error = read_rindex_entry(ip);
 988        } while (error == 0);
 989
 990        if (error < 0)
 991                return error;
 992
 993        set_rgrp_preferences(sdp);
 994
 995        sdp->sd_rindex_uptodate = 1;
 996        return 0;
 997}
 998
 999/**
1000 * gfs2_rindex_update - Update the rindex if required
1001 * @sdp: The GFS2 superblock
1002 *
1003 * We grab a lock on the rindex inode to make sure that it doesn't
1004 * change whilst we are performing an operation. We keep this lock
1005 * for quite long periods of time compared to other locks. This
1006 * doesn't matter, since it is shared and it is very, very rarely
1007 * accessed in the exclusive mode (i.e. only when expanding the filesystem).
1008 *
1009 * This makes sure that we're using the latest copy of the resource index
1010 * special file, which might have been updated if someone expanded the
1011 * filesystem (via gfs2_grow utility), which adds new resource groups.
1012 *
1013 * Returns: 0 on succeess, error code otherwise
1014 */
1015
1016int gfs2_rindex_update(struct gfs2_sbd *sdp)
1017{
1018        struct gfs2_inode *ip = GFS2_I(sdp->sd_rindex);
1019        struct gfs2_glock *gl = ip->i_gl;
1020        struct gfs2_holder ri_gh;
1021        int error = 0;
1022        int unlock_required = 0;
1023
1024        /* Read new copy from disk if we don't have the latest */
1025        if (!sdp->sd_rindex_uptodate) {
1026                if (!gfs2_glock_is_locked_by_me(gl)) {
1027                        error = gfs2_glock_nq_init(gl, LM_ST_SHARED, 0, &ri_gh);
1028                        if (error)
1029                                return error;
1030                        unlock_required = 1;
1031                }
1032                if (!sdp->sd_rindex_uptodate)
1033                        error = gfs2_ri_update(ip);
1034                if (unlock_required)
1035                        gfs2_glock_dq_uninit(&ri_gh);
1036        }
1037
1038        return error;
1039}
1040
1041static void gfs2_rgrp_in(struct gfs2_rgrpd *rgd, const void *buf)
1042{
1043        const struct gfs2_rgrp *str = buf;
1044        u32 rg_flags;
1045
1046        rg_flags = be32_to_cpu(str->rg_flags);
1047        rg_flags &= ~GFS2_RDF_MASK;
1048        rgd->rd_flags &= GFS2_RDF_MASK;
1049        rgd->rd_flags |= rg_flags;
1050        rgd->rd_free = be32_to_cpu(str->rg_free);
1051        rgd->rd_dinodes = be32_to_cpu(str->rg_dinodes);
1052        rgd->rd_igeneration = be64_to_cpu(str->rg_igeneration);
1053}
1054
1055static void gfs2_rgrp_out(struct gfs2_rgrpd *rgd, void *buf)
1056{
1057        struct gfs2_rgrp *str = buf;
1058
1059        str->rg_flags = cpu_to_be32(rgd->rd_flags & ~GFS2_RDF_MASK);
1060        str->rg_free = cpu_to_be32(rgd->rd_free);
1061        str->rg_dinodes = cpu_to_be32(rgd->rd_dinodes);
1062        str->__pad = cpu_to_be32(0);
1063        str->rg_igeneration = cpu_to_be64(rgd->rd_igeneration);
1064        memset(&str->rg_reserved, 0, sizeof(str->rg_reserved));
1065}
1066
1067static int gfs2_rgrp_lvb_valid(struct gfs2_rgrpd *rgd)
1068{
1069        struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1070        struct gfs2_rgrp *str = (struct gfs2_rgrp *)rgd->rd_bits[0].bi_bh->b_data;
1071
1072        if (rgl->rl_flags != str->rg_flags || rgl->rl_free != str->rg_free ||
1073            rgl->rl_dinodes != str->rg_dinodes ||
1074            rgl->rl_igeneration != str->rg_igeneration)
1075                return 0;
1076        return 1;
1077}
1078
1079static void gfs2_rgrp_ondisk2lvb(struct gfs2_rgrp_lvb *rgl, const void *buf)
1080{
1081        const struct gfs2_rgrp *str = buf;
1082
1083        rgl->rl_magic = cpu_to_be32(GFS2_MAGIC);
1084        rgl->rl_flags = str->rg_flags;
1085        rgl->rl_free = str->rg_free;
1086        rgl->rl_dinodes = str->rg_dinodes;
1087        rgl->rl_igeneration = str->rg_igeneration;
1088        rgl->__pad = 0UL;
1089}
1090
1091static void update_rgrp_lvb_unlinked(struct gfs2_rgrpd *rgd, u32 change)
1092{
1093        struct gfs2_rgrp_lvb *rgl = rgd->rd_rgl;
1094        u32 unlinked = be32_to_cpu(rgl->rl_unlinked) + change;
1095        rgl->rl_unlinked = cpu_to_be32(unlinked);
1096}
1097
1098static u32 count_unlinked(struct gfs2_rgrpd *rgd)
1099{
1100        struct gfs2_bitmap *bi;
1101        const u32 length = rgd->rd_length;
1102        const u8 *buffer = NULL;
1103        u32 i, goal, count = 0;
1104
1105        for (i = 0, bi = rgd->rd_bits; i < length; i++, bi++) {
1106                goal = 0;
1107                buffer = bi->bi_bh->b_data + bi->bi_offset;
1108                WARN_ON(!buffer_uptodate(bi->bi_bh));
1109                while (goal < bi->bi_len * GFS2_NBBY) {
1110                        goal = gfs2_bitfit(buffer, bi->bi_len, goal,
1111                                           GFS2_BLKST_UNLINKED);
1112                        if (goal == BFITNOENT)
1113                                break;
1114                        count++;
1115                        goal++;
1116                }
1117        }
1118
1119        return count;
1120}
1121
1122
1123/**
1124 * gfs2_rgrp_bh_get - Read in a RG's header and bitmaps
1125 * @rgd: the struct gfs2_rgrpd describing the RG to read in
1126 *
1127 * Read in all of a Resource Group's header and bitmap blocks.
1128 * Caller must eventually call gfs2_rgrp_relse() to free the bitmaps.
1129 *
1130 * Returns: errno
1131 */
1132
1133static int gfs2_rgrp_bh_get(struct gfs2_rgrpd *rgd)
1134{
1135        struct gfs2_sbd *sdp = rgd->rd_sbd;
1136        struct gfs2_glock *gl = rgd->rd_gl;
1137        unsigned int length = rgd->rd_length;
1138        struct gfs2_bitmap *bi;
1139        unsigned int x, y;
1140        int error;
1141
1142        if (rgd->rd_bits[0].bi_bh != NULL)
1143                return 0;
1144
1145        for (x = 0; x < length; x++) {
1146                bi = rgd->rd_bits + x;
1147                error = gfs2_meta_read(gl, rgd->rd_addr + x, 0, 0, &bi->bi_bh);
1148                if (error)
1149                        goto fail;
1150        }
1151
1152        for (y = length; y--;) {
1153                bi = rgd->rd_bits + y;
1154                error = gfs2_meta_wait(sdp, bi->bi_bh);
1155                if (error)
1156                        goto fail;
1157                if (gfs2_metatype_check(sdp, bi->bi_bh, y ? GFS2_METATYPE_RB :
1158                                              GFS2_METATYPE_RG)) {
1159                        error = -EIO;
1160                        goto fail;
1161                }
1162        }
1163
1164        if (!(rgd->rd_flags & GFS2_RDF_UPTODATE)) {
1165                for (x = 0; x < length; x++)
1166                        clear_bit(GBF_FULL, &rgd->rd_bits[x].bi_flags);
1167                gfs2_rgrp_in(rgd, (rgd->rd_bits[0].bi_bh)->b_data);
1168                rgd->rd_flags |= (GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1169                rgd->rd_free_clone = rgd->rd_free;
1170                /* max out the rgrp allocation failure point */
1171                rgd->rd_extfail_pt = rgd->rd_free;
1172        }
1173        if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic) {
1174                rgd->rd_rgl->rl_unlinked = cpu_to_be32(count_unlinked(rgd));
1175                gfs2_rgrp_ondisk2lvb(rgd->rd_rgl,
1176                                     rgd->rd_bits[0].bi_bh->b_data);
1177        }
1178        else if (sdp->sd_args.ar_rgrplvb) {
1179                if (!gfs2_rgrp_lvb_valid(rgd)){
1180                        gfs2_consist_rgrpd(rgd);
1181                        error = -EIO;
1182                        goto fail;
1183                }
1184                if (rgd->rd_rgl->rl_unlinked == 0)
1185                        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1186        }
1187        return 0;
1188
1189fail:
1190        while (x--) {
1191                bi = rgd->rd_bits + x;
1192                brelse(bi->bi_bh);
1193                bi->bi_bh = NULL;
1194                gfs2_assert_warn(sdp, !bi->bi_clone);
1195        }
1196
1197        return error;
1198}
1199
1200static int update_rgrp_lvb(struct gfs2_rgrpd *rgd)
1201{
1202        u32 rl_flags;
1203
1204        if (rgd->rd_flags & GFS2_RDF_UPTODATE)
1205                return 0;
1206
1207        if (cpu_to_be32(GFS2_MAGIC) != rgd->rd_rgl->rl_magic)
1208                return gfs2_rgrp_bh_get(rgd);
1209
1210        rl_flags = be32_to_cpu(rgd->rd_rgl->rl_flags);
1211        rl_flags &= ~GFS2_RDF_MASK;
1212        rgd->rd_flags &= GFS2_RDF_MASK;
1213        rgd->rd_flags |= (rl_flags | GFS2_RDF_UPTODATE | GFS2_RDF_CHECK);
1214        if (rgd->rd_rgl->rl_unlinked == 0)
1215                rgd->rd_flags &= ~GFS2_RDF_CHECK;
1216        rgd->rd_free = be32_to_cpu(rgd->rd_rgl->rl_free);
1217        rgd->rd_free_clone = rgd->rd_free;
1218        rgd->rd_dinodes = be32_to_cpu(rgd->rd_rgl->rl_dinodes);
1219        rgd->rd_igeneration = be64_to_cpu(rgd->rd_rgl->rl_igeneration);
1220        return 0;
1221}
1222
1223int gfs2_rgrp_go_lock(struct gfs2_holder *gh)
1224{
1225        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1226        struct gfs2_sbd *sdp = rgd->rd_sbd;
1227
1228        if (gh->gh_flags & GL_SKIP && sdp->sd_args.ar_rgrplvb)
1229                return 0;
1230        return gfs2_rgrp_bh_get(rgd);
1231}
1232
1233/**
1234 * gfs2_rgrp_brelse - Release RG bitmaps read in with gfs2_rgrp_bh_get()
1235 * @rgd: The resource group
1236 *
1237 */
1238
1239void gfs2_rgrp_brelse(struct gfs2_rgrpd *rgd)
1240{
1241        int x, length = rgd->rd_length;
1242
1243        for (x = 0; x < length; x++) {
1244                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1245                if (bi->bi_bh) {
1246                        brelse(bi->bi_bh);
1247                        bi->bi_bh = NULL;
1248                }
1249        }
1250
1251}
1252
1253/**
1254 * gfs2_rgrp_go_unlock - Unlock a rgrp glock
1255 * @gh: The glock holder for the resource group
1256 *
1257 */
1258
1259void gfs2_rgrp_go_unlock(struct gfs2_holder *gh)
1260{
1261        struct gfs2_rgrpd *rgd = gh->gh_gl->gl_object;
1262        int demote_requested = test_bit(GLF_DEMOTE, &gh->gh_gl->gl_flags) |
1263                test_bit(GLF_PENDING_DEMOTE, &gh->gh_gl->gl_flags);
1264
1265        if (rgd && demote_requested)
1266                gfs2_rgrp_brelse(rgd);
1267}
1268
1269int gfs2_rgrp_send_discards(struct gfs2_sbd *sdp, u64 offset,
1270                             struct buffer_head *bh,
1271                             const struct gfs2_bitmap *bi, unsigned minlen, u64 *ptrimmed)
1272{
1273        struct super_block *sb = sdp->sd_vfs;
1274        u64 blk;
1275        sector_t start = 0;
1276        sector_t nr_blks = 0;
1277        int rv;
1278        unsigned int x;
1279        u32 trimmed = 0;
1280        u8 diff;
1281
1282        for (x = 0; x < bi->bi_len; x++) {
1283                const u8 *clone = bi->bi_clone ? bi->bi_clone : bi->bi_bh->b_data;
1284                clone += bi->bi_offset;
1285                clone += x;
1286                if (bh) {
1287                        const u8 *orig = bh->b_data + bi->bi_offset + x;
1288                        diff = ~(*orig | (*orig >> 1)) & (*clone | (*clone >> 1));
1289                } else {
1290                        diff = ~(*clone | (*clone >> 1));
1291                }
1292                diff &= 0x55;
1293                if (diff == 0)
1294                        continue;
1295                blk = offset + ((bi->bi_start + x) * GFS2_NBBY);
1296                while(diff) {
1297                        if (diff & 1) {
1298                                if (nr_blks == 0)
1299                                        goto start_new_extent;
1300                                if ((start + nr_blks) != blk) {
1301                                        if (nr_blks >= minlen) {
1302                                                rv = sb_issue_discard(sb,
1303                                                        start, nr_blks,
1304                                                        GFP_NOFS, 0);
1305                                                if (rv)
1306                                                        goto fail;
1307                                                trimmed += nr_blks;
1308                                        }
1309                                        nr_blks = 0;
1310start_new_extent:
1311                                        start = blk;
1312                                }
1313                                nr_blks++;
1314                        }
1315                        diff >>= 2;
1316                        blk++;
1317                }
1318        }
1319        if (nr_blks >= minlen) {
1320                rv = sb_issue_discard(sb, start, nr_blks, GFP_NOFS, 0);
1321                if (rv)
1322                        goto fail;
1323                trimmed += nr_blks;
1324        }
1325        if (ptrimmed)
1326                *ptrimmed = trimmed;
1327        return 0;
1328
1329fail:
1330        if (sdp->sd_args.ar_discard)
1331                fs_warn(sdp, "error %d on discard request, turning discards off for this filesystem", rv);
1332        sdp->sd_args.ar_discard = 0;
1333        return -EIO;
1334}
1335
1336/**
1337 * gfs2_fitrim - Generate discard requests for unused bits of the filesystem
1338 * @filp: Any file on the filesystem
1339 * @argp: Pointer to the arguments (also used to pass result)
1340 *
1341 * Returns: 0 on success, otherwise error code
1342 */
1343
1344int gfs2_fitrim(struct file *filp, void __user *argp)
1345{
1346        struct inode *inode = file_inode(filp);
1347        struct gfs2_sbd *sdp = GFS2_SB(inode);
1348        struct request_queue *q = bdev_get_queue(sdp->sd_vfs->s_bdev);
1349        struct buffer_head *bh;
1350        struct gfs2_rgrpd *rgd;
1351        struct gfs2_rgrpd *rgd_end;
1352        struct gfs2_holder gh;
1353        struct fstrim_range r;
1354        int ret = 0;
1355        u64 amt;
1356        u64 trimmed = 0;
1357        u64 start, end, minlen;
1358        unsigned int x;
1359        unsigned bs_shift = sdp->sd_sb.sb_bsize_shift;
1360
1361        if (!capable(CAP_SYS_ADMIN))
1362                return -EPERM;
1363
1364        if (!blk_queue_discard(q))
1365                return -EOPNOTSUPP;
1366
1367        if (copy_from_user(&r, argp, sizeof(r)))
1368                return -EFAULT;
1369
1370        ret = gfs2_rindex_update(sdp);
1371        if (ret)
1372                return ret;
1373
1374        start = r.start >> bs_shift;
1375        end = start + (r.len >> bs_shift);
1376        minlen = max_t(u64, r.minlen,
1377                       q->limits.discard_granularity) >> bs_shift;
1378
1379        if (end <= start || minlen > sdp->sd_max_rg_data)
1380                return -EINVAL;
1381
1382        rgd = gfs2_blk2rgrpd(sdp, start, 0);
1383        rgd_end = gfs2_blk2rgrpd(sdp, end, 0);
1384
1385        if ((gfs2_rgrpd_get_first(sdp) == gfs2_rgrpd_get_next(rgd_end))
1386            && (start > rgd_end->rd_data0 + rgd_end->rd_data))
1387                return -EINVAL; /* start is beyond the end of the fs */
1388
1389        while (1) {
1390
1391                ret = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_EXCLUSIVE, 0, &gh);
1392                if (ret)
1393                        goto out;
1394
1395                if (!(rgd->rd_flags & GFS2_RGF_TRIMMED)) {
1396                        /* Trim each bitmap in the rgrp */
1397                        for (x = 0; x < rgd->rd_length; x++) {
1398                                struct gfs2_bitmap *bi = rgd->rd_bits + x;
1399                                ret = gfs2_rgrp_send_discards(sdp,
1400                                                rgd->rd_data0, NULL, bi, minlen,
1401                                                &amt);
1402                                if (ret) {
1403                                        gfs2_glock_dq_uninit(&gh);
1404                                        goto out;
1405                                }
1406                                trimmed += amt;
1407                        }
1408
1409                        /* Mark rgrp as having been trimmed */
1410                        ret = gfs2_trans_begin(sdp, RES_RG_HDR, 0);
1411                        if (ret == 0) {
1412                                bh = rgd->rd_bits[0].bi_bh;
1413                                rgd->rd_flags |= GFS2_RGF_TRIMMED;
1414                                gfs2_trans_add_meta(rgd->rd_gl, bh);
1415                                gfs2_rgrp_out(rgd, bh->b_data);
1416                                gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, bh->b_data);
1417                                gfs2_trans_end(sdp);
1418                        }
1419                }
1420                gfs2_glock_dq_uninit(&gh);
1421
1422                if (rgd == rgd_end)
1423                        break;
1424
1425                rgd = gfs2_rgrpd_get_next(rgd);
1426        }
1427
1428out:
1429        r.len = trimmed << bs_shift;
1430        if (copy_to_user(argp, &r, sizeof(r)))
1431                return -EFAULT;
1432
1433        return ret;
1434}
1435
1436/**
1437 * rs_insert - insert a new multi-block reservation into the rgrp's rb_tree
1438 * @ip: the inode structure
1439 *
1440 */
1441static void rs_insert(struct gfs2_inode *ip)
1442{
1443        struct rb_node **newn, *parent = NULL;
1444        int rc;
1445        struct gfs2_blkreserv *rs = &ip->i_res;
1446        struct gfs2_rgrpd *rgd = rs->rs_rbm.rgd;
1447        u64 fsblock = gfs2_rbm_to_block(&rs->rs_rbm);
1448
1449        BUG_ON(gfs2_rs_active(rs));
1450
1451        spin_lock(&rgd->rd_rsspin);
1452        newn = &rgd->rd_rstree.rb_node;
1453        while (*newn) {
1454                struct gfs2_blkreserv *cur =
1455                        rb_entry(*newn, struct gfs2_blkreserv, rs_node);
1456
1457                parent = *newn;
1458                rc = rs_cmp(fsblock, rs->rs_free, cur);
1459                if (rc > 0)
1460                        newn = &((*newn)->rb_right);
1461                else if (rc < 0)
1462                        newn = &((*newn)->rb_left);
1463                else {
1464                        spin_unlock(&rgd->rd_rsspin);
1465                        WARN_ON(1);
1466                        return;
1467                }
1468        }
1469
1470        rb_link_node(&rs->rs_node, parent, newn);
1471        rb_insert_color(&rs->rs_node, &rgd->rd_rstree);
1472
1473        /* Do our rgrp accounting for the reservation */
1474        rgd->rd_reserved += rs->rs_free; /* blocks reserved */
1475        spin_unlock(&rgd->rd_rsspin);
1476        trace_gfs2_rs(rs, TRACE_RS_INSERT);
1477}
1478
1479/**
1480 * rg_mblk_search - find a group of multiple free blocks to form a reservation
1481 * @rgd: the resource group descriptor
1482 * @ip: pointer to the inode for which we're reserving blocks
1483 * @ap: the allocation parameters
1484 *
1485 */
1486
1487static void rg_mblk_search(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip,
1488                           const struct gfs2_alloc_parms *ap)
1489{
1490        struct gfs2_rbm rbm = { .rgd = rgd, };
1491        u64 goal;
1492        struct gfs2_blkreserv *rs = &ip->i_res;
1493        u32 extlen;
1494        u32 free_blocks = rgd->rd_free_clone - rgd->rd_reserved;
1495        int ret;
1496        struct inode *inode = &ip->i_inode;
1497
1498        if (S_ISDIR(inode->i_mode))
1499                extlen = 1;
1500        else {
1501                extlen = max_t(u32, atomic_read(&rs->rs_sizehint), ap->target);
1502                extlen = clamp(extlen, RGRP_RSRV_MINBLKS, free_blocks);
1503        }
1504        if ((rgd->rd_free_clone < rgd->rd_reserved) || (free_blocks < extlen))
1505                return;
1506
1507        /* Find bitmap block that contains bits for goal block */
1508        if (rgrp_contains_block(rgd, ip->i_goal))
1509                goal = ip->i_goal;
1510        else
1511                goal = rgd->rd_last_alloc + rgd->rd_data0;
1512
1513        if (WARN_ON(gfs2_rbm_from_block(&rbm, goal)))
1514                return;
1515
1516        ret = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, &extlen, ip, true);
1517        if (ret == 0) {
1518                rs->rs_rbm = rbm;
1519                rs->rs_free = extlen;
1520                rs->rs_inum = ip->i_no_addr;
1521                rs_insert(ip);
1522        } else {
1523                if (goal == rgd->rd_last_alloc + rgd->rd_data0)
1524                        rgd->rd_last_alloc = 0;
1525        }
1526}
1527
1528/**
1529 * gfs2_next_unreserved_block - Return next block that is not reserved
1530 * @rgd: The resource group
1531 * @block: The starting block
1532 * @length: The required length
1533 * @ip: Ignore any reservations for this inode
1534 *
1535 * If the block does not appear in any reservation, then return the
1536 * block number unchanged. If it does appear in the reservation, then
1537 * keep looking through the tree of reservations in order to find the
1538 * first block number which is not reserved.
1539 */
1540
1541static u64 gfs2_next_unreserved_block(struct gfs2_rgrpd *rgd, u64 block,
1542                                      u32 length,
1543                                      const struct gfs2_inode *ip)
1544{
1545        struct gfs2_blkreserv *rs;
1546        struct rb_node *n;
1547        int rc;
1548
1549        spin_lock(&rgd->rd_rsspin);
1550        n = rgd->rd_rstree.rb_node;
1551        while (n) {
1552                rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1553                rc = rs_cmp(block, length, rs);
1554                if (rc < 0)
1555                        n = n->rb_left;
1556                else if (rc > 0)
1557                        n = n->rb_right;
1558                else
1559                        break;
1560        }
1561
1562        if (n) {
1563                while ((rs_cmp(block, length, rs) == 0) && (&ip->i_res != rs)) {
1564                        block = gfs2_rbm_to_block(&rs->rs_rbm) + rs->rs_free;
1565                        n = n->rb_right;
1566                        if (n == NULL)
1567                                break;
1568                        rs = rb_entry(n, struct gfs2_blkreserv, rs_node);
1569                }
1570        }
1571
1572        spin_unlock(&rgd->rd_rsspin);
1573        return block;
1574}
1575
1576/**
1577 * gfs2_reservation_check_and_update - Check for reservations during block alloc
1578 * @rbm: The current position in the resource group
1579 * @ip: The inode for which we are searching for blocks
1580 * @minext: The minimum extent length
1581 * @maxext: A pointer to the maximum extent structure
1582 *
1583 * This checks the current position in the rgrp to see whether there is
1584 * a reservation covering this block. If not then this function is a
1585 * no-op. If there is, then the position is moved to the end of the
1586 * contiguous reservation(s) so that we are pointing at the first
1587 * non-reserved block.
1588 *
1589 * Returns: 0 if no reservation, 1 if @rbm has changed, otherwise an error
1590 */
1591
1592static int gfs2_reservation_check_and_update(struct gfs2_rbm *rbm,
1593                                             const struct gfs2_inode *ip,
1594                                             u32 minext,
1595                                             struct gfs2_extent *maxext)
1596{
1597        u64 block = gfs2_rbm_to_block(rbm);
1598        u32 extlen = 1;
1599        u64 nblock;
1600        int ret;
1601
1602        /*
1603         * If we have a minimum extent length, then skip over any extent
1604         * which is less than the min extent length in size.
1605         */
1606        if (minext) {
1607                extlen = gfs2_free_extlen(rbm, minext);
1608                if (extlen <= maxext->len)
1609                        goto fail;
1610        }
1611
1612        /*
1613         * Check the extent which has been found against the reservations
1614         * and skip if parts of it are already reserved
1615         */
1616        nblock = gfs2_next_unreserved_block(rbm->rgd, block, extlen, ip);
1617        if (nblock == block) {
1618                if (!minext || extlen >= minext)
1619                        return 0;
1620
1621                if (extlen > maxext->len) {
1622                        maxext->len = extlen;
1623                        maxext->rbm = *rbm;
1624                }
1625fail:
1626                nblock = block + extlen;
1627        }
1628        ret = gfs2_rbm_from_block(rbm, nblock);
1629        if (ret < 0)
1630                return ret;
1631        return 1;
1632}
1633
1634/**
1635 * gfs2_rbm_find - Look for blocks of a particular state
1636 * @rbm: Value/result starting position and final position
1637 * @state: The state which we want to find
1638 * @minext: Pointer to the requested extent length (NULL for a single block)
1639 *          This is updated to be the actual reservation size.
1640 * @ip: If set, check for reservations
1641 * @nowrap: Stop looking at the end of the rgrp, rather than wrapping
1642 *          around until we've reached the starting point.
1643 *
1644 * Side effects:
1645 * - If looking for free blocks, we set GBF_FULL on each bitmap which
1646 *   has no free blocks in it.
1647 * - If looking for free blocks, we set rd_extfail_pt on each rgrp which
1648 *   has come up short on a free block search.
1649 *
1650 * Returns: 0 on success, -ENOSPC if there is no block of the requested state
1651 */
1652
1653static int gfs2_rbm_find(struct gfs2_rbm *rbm, u8 state, u32 *minext,
1654                         const struct gfs2_inode *ip, bool nowrap)
1655{
1656        struct buffer_head *bh;
1657        int initial_bii;
1658        u32 initial_offset;
1659        int first_bii = rbm->bii;
1660        u32 first_offset = rbm->offset;
1661        u32 offset;
1662        u8 *buffer;
1663        int n = 0;
1664        int iters = rbm->rgd->rd_length;
1665        int ret;
1666        struct gfs2_bitmap *bi;
1667        struct gfs2_extent maxext = { .rbm.rgd = rbm->rgd, };
1668
1669        /* If we are not starting at the beginning of a bitmap, then we
1670         * need to add one to the bitmap count to ensure that we search
1671         * the starting bitmap twice.
1672         */
1673        if (rbm->offset != 0)
1674                iters++;
1675
1676        while(1) {
1677                bi = rbm_bi(rbm);
1678                if (test_bit(GBF_FULL, &bi->bi_flags) &&
1679                    (state == GFS2_BLKST_FREE))
1680                        goto next_bitmap;
1681
1682                bh = bi->bi_bh;
1683                buffer = bh->b_data + bi->bi_offset;
1684                WARN_ON(!buffer_uptodate(bh));
1685                if (state != GFS2_BLKST_UNLINKED && bi->bi_clone)
1686                        buffer = bi->bi_clone + bi->bi_offset;
1687                initial_offset = rbm->offset;
1688                offset = gfs2_bitfit(buffer, bi->bi_len, rbm->offset, state);
1689                if (offset == BFITNOENT)
1690                        goto bitmap_full;
1691                rbm->offset = offset;
1692                if (ip == NULL)
1693                        return 0;
1694
1695                initial_bii = rbm->bii;
1696                ret = gfs2_reservation_check_and_update(rbm, ip,
1697                                                        minext ? *minext : 0,
1698                                                        &maxext);
1699                if (ret == 0)
1700                        return 0;
1701                if (ret > 0) {
1702                        n += (rbm->bii - initial_bii);
1703                        goto next_iter;
1704                }
1705                if (ret == -E2BIG) {
1706                        rbm->bii = 0;
1707                        rbm->offset = 0;
1708                        n += (rbm->bii - initial_bii);
1709                        goto res_covered_end_of_rgrp;
1710                }
1711                return ret;
1712
1713bitmap_full:    /* Mark bitmap as full and fall through */
1714                if ((state == GFS2_BLKST_FREE) && initial_offset == 0)
1715                        set_bit(GBF_FULL, &bi->bi_flags);
1716
1717next_bitmap:    /* Find next bitmap in the rgrp */
1718                rbm->offset = 0;
1719                rbm->bii++;
1720                if (rbm->bii == rbm->rgd->rd_length)
1721                        rbm->bii = 0;
1722res_covered_end_of_rgrp:
1723                if ((rbm->bii == 0) && nowrap)
1724                        break;
1725                n++;
1726next_iter:
1727                if (n >= iters)
1728                        break;
1729        }
1730
1731        if (minext == NULL || state != GFS2_BLKST_FREE)
1732                return -ENOSPC;
1733
1734        /* If the extent was too small, and it's smaller than the smallest
1735           to have failed before, remember for future reference that it's
1736           useless to search this rgrp again for this amount or more. */
1737        if ((first_offset == 0) && (first_bii == 0) &&
1738            (*minext < rbm->rgd->rd_extfail_pt))
1739                rbm->rgd->rd_extfail_pt = *minext;
1740
1741        /* If the maximum extent we found is big enough to fulfill the
1742           minimum requirements, use it anyway. */
1743        if (maxext.len) {
1744                *rbm = maxext.rbm;
1745                *minext = maxext.len;
1746                return 0;
1747        }
1748
1749        return -ENOSPC;
1750}
1751
1752/**
1753 * try_rgrp_unlink - Look for any unlinked, allocated, but unused inodes
1754 * @rgd: The rgrp
1755 * @last_unlinked: block address of the last dinode we unlinked
1756 * @skip: block address we should explicitly not unlink
1757 *
1758 * Returns: 0 if no error
1759 *          The inode, if one has been found, in inode.
1760 */
1761
1762static void try_rgrp_unlink(struct gfs2_rgrpd *rgd, u64 *last_unlinked, u64 skip)
1763{
1764        u64 block;
1765        struct gfs2_sbd *sdp = rgd->rd_sbd;
1766        struct gfs2_glock *gl;
1767        struct gfs2_inode *ip;
1768        int error;
1769        int found = 0;
1770        struct gfs2_rbm rbm = { .rgd = rgd, .bii = 0, .offset = 0 };
1771
1772        while (1) {
1773                down_write(&sdp->sd_log_flush_lock);
1774                error = gfs2_rbm_find(&rbm, GFS2_BLKST_UNLINKED, NULL, NULL,
1775                                      true);
1776                up_write(&sdp->sd_log_flush_lock);
1777                if (error == -ENOSPC)
1778                        break;
1779                if (WARN_ON_ONCE(error))
1780                        break;
1781
1782                block = gfs2_rbm_to_block(&rbm);
1783                if (gfs2_rbm_from_block(&rbm, block + 1))
1784                        break;
1785                if (*last_unlinked != NO_BLOCK && block <= *last_unlinked)
1786                        continue;
1787                if (block == skip)
1788                        continue;
1789                *last_unlinked = block;
1790
1791                error = gfs2_glock_get(sdp, block, &gfs2_iopen_glops, CREATE, &gl);
1792                if (error)
1793                        continue;
1794
1795                /* If the inode is already in cache, we can ignore it here
1796                 * because the existing inode disposal code will deal with
1797                 * it when all refs have gone away. Accessing gl_object like
1798                 * this is not safe in general. Here it is ok because we do
1799                 * not dereference the pointer, and we only need an approx
1800                 * answer to whether it is NULL or not.
1801                 */
1802                ip = gl->gl_object;
1803
1804                if (ip || queue_work(gfs2_delete_workqueue, &gl->gl_delete) == 0)
1805                        gfs2_glock_put(gl);
1806                else
1807                        found++;
1808
1809                /* Limit reclaim to sensible number of tasks */
1810                if (found > NR_CPUS)
1811                        return;
1812        }
1813
1814        rgd->rd_flags &= ~GFS2_RDF_CHECK;
1815        return;
1816}
1817
1818/**
1819 * gfs2_rgrp_congested - Use stats to figure out whether an rgrp is congested
1820 * @rgd: The rgrp in question
1821 * @loops: An indication of how picky we can be (0=very, 1=less so)
1822 *
1823 * This function uses the recently added glock statistics in order to
1824 * figure out whether a parciular resource group is suffering from
1825 * contention from multiple nodes. This is done purely on the basis
1826 * of timings, since this is the only data we have to work with and
1827 * our aim here is to reject a resource group which is highly contended
1828 * but (very important) not to do this too often in order to ensure that
1829 * we do not land up introducing fragmentation by changing resource
1830 * groups when not actually required.
1831 *
1832 * The calculation is fairly simple, we want to know whether the SRTTB
1833 * (i.e. smoothed round trip time for blocking operations) to acquire
1834 * the lock for this rgrp's glock is significantly greater than the
1835 * time taken for resource groups on average. We introduce a margin in
1836 * the form of the variable @var which is computed as the sum of the two
1837 * respective variences, and multiplied by a factor depending on @loops
1838 * and whether we have a lot of data to base the decision on. This is
1839 * then tested against the square difference of the means in order to
1840 * decide whether the result is statistically significant or not.
1841 *
1842 * Returns: A boolean verdict on the congestion status
1843 */
1844
1845static bool gfs2_rgrp_congested(const struct gfs2_rgrpd *rgd, int loops)
1846{
1847        const struct gfs2_glock *gl = rgd->rd_gl;
1848        const struct gfs2_sbd *sdp = gl->gl_name.ln_sbd;
1849        struct gfs2_lkstats *st;
1850        u64 r_dcount, l_dcount;
1851        u64 l_srttb, a_srttb = 0;
1852        s64 srttb_diff;
1853        u64 sqr_diff;
1854        u64 var;
1855        int cpu, nonzero = 0;
1856
1857        preempt_disable();
1858        for_each_present_cpu(cpu) {
1859                st = &per_cpu_ptr(sdp->sd_lkstats, cpu)->lkstats[LM_TYPE_RGRP];
1860                if (st->stats[GFS2_LKS_SRTTB]) {
1861                        a_srttb += st->stats[GFS2_LKS_SRTTB];
1862                        nonzero++;
1863                }
1864        }
1865        st = &this_cpu_ptr(sdp->sd_lkstats)->lkstats[LM_TYPE_RGRP];
1866        if (nonzero)
1867                do_div(a_srttb, nonzero);
1868        r_dcount = st->stats[GFS2_LKS_DCOUNT];
1869        var = st->stats[GFS2_LKS_SRTTVARB] +
1870              gl->gl_stats.stats[GFS2_LKS_SRTTVARB];
1871        preempt_enable();
1872
1873        l_srttb = gl->gl_stats.stats[GFS2_LKS_SRTTB];
1874        l_dcount = gl->gl_stats.stats[GFS2_LKS_DCOUNT];
1875
1876        if ((l_dcount < 1) || (r_dcount < 1) || (a_srttb == 0))
1877                return false;
1878
1879        srttb_diff = a_srttb - l_srttb;
1880        sqr_diff = srttb_diff * srttb_diff;
1881
1882        var *= 2;
1883        if (l_dcount < 8 || r_dcount < 8)
1884                var *= 2;
1885        if (loops == 1)
1886                var *= 2;
1887
1888        return ((srttb_diff < 0) && (sqr_diff > var));
1889}
1890
1891/**
1892 * gfs2_rgrp_used_recently
1893 * @rs: The block reservation with the rgrp to test
1894 * @msecs: The time limit in milliseconds
1895 *
1896 * Returns: True if the rgrp glock has been used within the time limit
1897 */
1898static bool gfs2_rgrp_used_recently(const struct gfs2_blkreserv *rs,
1899                                    u64 msecs)
1900{
1901        u64 tdiff;
1902
1903        tdiff = ktime_to_ns(ktime_sub(ktime_get_real(),
1904                            rs->rs_rbm.rgd->rd_gl->gl_dstamp));
1905
1906        return tdiff > (msecs * 1000 * 1000);
1907}
1908
1909static u32 gfs2_orlov_skip(const struct gfs2_inode *ip)
1910{
1911        const struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1912        u32 skip;
1913
1914        get_random_bytes(&skip, sizeof(skip));
1915        return skip % sdp->sd_rgrps;
1916}
1917
1918static bool gfs2_select_rgrp(struct gfs2_rgrpd **pos, const struct gfs2_rgrpd *begin)
1919{
1920        struct gfs2_rgrpd *rgd = *pos;
1921        struct gfs2_sbd *sdp = rgd->rd_sbd;
1922
1923        rgd = gfs2_rgrpd_get_next(rgd);
1924        if (rgd == NULL)
1925                rgd = gfs2_rgrpd_get_first(sdp);
1926        *pos = rgd;
1927        if (rgd != begin) /* If we didn't wrap */
1928                return true;
1929        return false;
1930}
1931
1932/**
1933 * fast_to_acquire - determine if a resource group will be fast to acquire
1934 *
1935 * If this is one of our preferred rgrps, it should be quicker to acquire,
1936 * because we tried to set ourselves up as dlm lock master.
1937 */
1938static inline int fast_to_acquire(struct gfs2_rgrpd *rgd)
1939{
1940        struct gfs2_glock *gl = rgd->rd_gl;
1941
1942        if (gl->gl_state != LM_ST_UNLOCKED && list_empty(&gl->gl_holders) &&
1943            !test_bit(GLF_DEMOTE_IN_PROGRESS, &gl->gl_flags) &&
1944            !test_bit(GLF_DEMOTE, &gl->gl_flags))
1945                return 1;
1946        if (rgd->rd_flags & GFS2_RDF_PREFERRED)
1947                return 1;
1948        return 0;
1949}
1950
1951/**
1952 * gfs2_inplace_reserve - Reserve space in the filesystem
1953 * @ip: the inode to reserve space for
1954 * @ap: the allocation parameters
1955 *
1956 * We try our best to find an rgrp that has at least ap->target blocks
1957 * available. After a couple of passes (loops == 2), the prospects of finding
1958 * such an rgrp diminish. At this stage, we return the first rgrp that has
1959 * atleast ap->min_target blocks available. Either way, we set ap->allowed to
1960 * the number of blocks available in the chosen rgrp.
1961 *
1962 * Returns: 0 on success,
1963 *          -ENOMEM if a suitable rgrp can't be found
1964 *          errno otherwise
1965 */
1966
1967int gfs2_inplace_reserve(struct gfs2_inode *ip, struct gfs2_alloc_parms *ap)
1968{
1969        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
1970        struct gfs2_rgrpd *begin = NULL;
1971        struct gfs2_blkreserv *rs = &ip->i_res;
1972        int error = 0, rg_locked, flags = 0;
1973        u64 last_unlinked = NO_BLOCK;
1974        int loops = 0;
1975        u32 skip = 0;
1976
1977        if (sdp->sd_args.ar_rgrplvb)
1978                flags |= GL_SKIP;
1979        if (gfs2_assert_warn(sdp, ap->target))
1980                return -EINVAL;
1981        if (gfs2_rs_active(rs)) {
1982                begin = rs->rs_rbm.rgd;
1983        } else if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, ip->i_goal)) {
1984                rs->rs_rbm.rgd = begin = ip->i_rgd;
1985        } else {
1986                check_and_update_goal(ip);
1987                rs->rs_rbm.rgd = begin = gfs2_blk2rgrpd(sdp, ip->i_goal, 1);
1988        }
1989        if (S_ISDIR(ip->i_inode.i_mode) && (ap->aflags & GFS2_AF_ORLOV))
1990                skip = gfs2_orlov_skip(ip);
1991        if (rs->rs_rbm.rgd == NULL)
1992                return -EBADSLT;
1993
1994        while (loops < 3) {
1995                rg_locked = 1;
1996
1997                if (!gfs2_glock_is_locked_by_me(rs->rs_rbm.rgd->rd_gl)) {
1998                        rg_locked = 0;
1999                        if (skip && skip--)
2000                                goto next_rgrp;
2001                        if (!gfs2_rs_active(rs)) {
2002                                if (loops == 0 &&
2003                                    !fast_to_acquire(rs->rs_rbm.rgd))
2004                                        goto next_rgrp;
2005                                if ((loops < 2) &&
2006                                    gfs2_rgrp_used_recently(rs, 1000) &&
2007                                    gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2008                                        goto next_rgrp;
2009                        }
2010                        error = gfs2_glock_nq_init(rs->rs_rbm.rgd->rd_gl,
2011                                                   LM_ST_EXCLUSIVE, flags,
2012                                                   &rs->rs_rgd_gh);
2013                        if (unlikely(error))
2014                                return error;
2015                        if (!gfs2_rs_active(rs) && (loops < 2) &&
2016                            gfs2_rgrp_congested(rs->rs_rbm.rgd, loops))
2017                                goto skip_rgrp;
2018                        if (sdp->sd_args.ar_rgrplvb) {
2019                                error = update_rgrp_lvb(rs->rs_rbm.rgd);
2020                                if (unlikely(error)) {
2021                                        gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2022                                        return error;
2023                                }
2024                        }
2025                }
2026
2027                /* Skip unuseable resource groups */
2028                if ((rs->rs_rbm.rgd->rd_flags & (GFS2_RGF_NOALLOC |
2029                                                 GFS2_RDF_ERROR)) ||
2030                    (loops == 0 && ap->target > rs->rs_rbm.rgd->rd_extfail_pt))
2031                        goto skip_rgrp;
2032
2033                if (sdp->sd_args.ar_rgrplvb)
2034                        gfs2_rgrp_bh_get(rs->rs_rbm.rgd);
2035
2036                /* Get a reservation if we don't already have one */
2037                if (!gfs2_rs_active(rs))
2038                        rg_mblk_search(rs->rs_rbm.rgd, ip, ap);
2039
2040                /* Skip rgrps when we can't get a reservation on first pass */
2041                if (!gfs2_rs_active(rs) && (loops < 1))
2042                        goto check_rgrp;
2043
2044                /* If rgrp has enough free space, use it */
2045                if (rs->rs_rbm.rgd->rd_free_clone >= ap->target ||
2046                    (loops == 2 && ap->min_target &&
2047                     rs->rs_rbm.rgd->rd_free_clone >= ap->min_target)) {
2048                        ip->i_rgd = rs->rs_rbm.rgd;
2049                        ap->allowed = ip->i_rgd->rd_free_clone;
2050                        return 0;
2051                }
2052check_rgrp:
2053                /* Check for unlinked inodes which can be reclaimed */
2054                if (rs->rs_rbm.rgd->rd_flags & GFS2_RDF_CHECK)
2055                        try_rgrp_unlink(rs->rs_rbm.rgd, &last_unlinked,
2056                                        ip->i_no_addr);
2057skip_rgrp:
2058                /* Drop reservation, if we couldn't use reserved rgrp */
2059                if (gfs2_rs_active(rs))
2060                        gfs2_rs_deltree(rs);
2061
2062                /* Unlock rgrp if required */
2063                if (!rg_locked)
2064                        gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2065next_rgrp:
2066                /* Find the next rgrp, and continue looking */
2067                if (gfs2_select_rgrp(&rs->rs_rbm.rgd, begin))
2068                        continue;
2069                if (skip)
2070                        continue;
2071
2072                /* If we've scanned all the rgrps, but found no free blocks
2073                 * then this checks for some less likely conditions before
2074                 * trying again.
2075                 */
2076                loops++;
2077                /* Check that fs hasn't grown if writing to rindex */
2078                if (ip == GFS2_I(sdp->sd_rindex) && !sdp->sd_rindex_uptodate) {
2079                        error = gfs2_ri_update(ip);
2080                        if (error)
2081                                return error;
2082                }
2083                /* Flushing the log may release space */
2084                if (loops == 2)
2085                        gfs2_log_flush(sdp, NULL, NORMAL_FLUSH);
2086        }
2087
2088        return -ENOSPC;
2089}
2090
2091/**
2092 * gfs2_inplace_release - release an inplace reservation
2093 * @ip: the inode the reservation was taken out on
2094 *
2095 * Release a reservation made by gfs2_inplace_reserve().
2096 */
2097
2098void gfs2_inplace_release(struct gfs2_inode *ip)
2099{
2100        struct gfs2_blkreserv *rs = &ip->i_res;
2101
2102        if (gfs2_holder_initialized(&rs->rs_rgd_gh))
2103                gfs2_glock_dq_uninit(&rs->rs_rgd_gh);
2104}
2105
2106/**
2107 * gfs2_get_block_type - Check a block in a RG is of given type
2108 * @rgd: the resource group holding the block
2109 * @block: the block number
2110 *
2111 * Returns: The block type (GFS2_BLKST_*)
2112 */
2113
2114static unsigned char gfs2_get_block_type(struct gfs2_rgrpd *rgd, u64 block)
2115{
2116        struct gfs2_rbm rbm = { .rgd = rgd, };
2117        int ret;
2118
2119        ret = gfs2_rbm_from_block(&rbm, block);
2120        WARN_ON_ONCE(ret != 0);
2121
2122        return gfs2_testbit(&rbm);
2123}
2124
2125
2126/**
2127 * gfs2_alloc_extent - allocate an extent from a given bitmap
2128 * @rbm: the resource group information
2129 * @dinode: TRUE if the first block we allocate is for a dinode
2130 * @n: The extent length (value/result)
2131 *
2132 * Add the bitmap buffer to the transaction.
2133 * Set the found bits to @new_state to change block's allocation state.
2134 */
2135static void gfs2_alloc_extent(const struct gfs2_rbm *rbm, bool dinode,
2136                             unsigned int *n)
2137{
2138        struct gfs2_rbm pos = { .rgd = rbm->rgd, };
2139        const unsigned int elen = *n;
2140        u64 block;
2141        int ret;
2142
2143        *n = 1;
2144        block = gfs2_rbm_to_block(rbm);
2145        gfs2_trans_add_meta(rbm->rgd->rd_gl, rbm_bi(rbm)->bi_bh);
2146        gfs2_setbit(rbm, true, dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2147        block++;
2148        while (*n < elen) {
2149                ret = gfs2_rbm_from_block(&pos, block);
2150                if (ret || gfs2_testbit(&pos) != GFS2_BLKST_FREE)
2151                        break;
2152                gfs2_trans_add_meta(pos.rgd->rd_gl, rbm_bi(&pos)->bi_bh);
2153                gfs2_setbit(&pos, true, GFS2_BLKST_USED);
2154                (*n)++;
2155                block++;
2156        }
2157}
2158
2159/**
2160 * rgblk_free - Change alloc state of given block(s)
2161 * @sdp: the filesystem
2162 * @bstart: the start of a run of blocks to free
2163 * @blen: the length of the block run (all must lie within ONE RG!)
2164 * @new_state: GFS2_BLKST_XXX the after-allocation block state
2165 *
2166 * Returns:  Resource group containing the block(s)
2167 */
2168
2169static struct gfs2_rgrpd *rgblk_free(struct gfs2_sbd *sdp, u64 bstart,
2170                                     u32 blen, unsigned char new_state)
2171{
2172        struct gfs2_rbm rbm;
2173        struct gfs2_bitmap *bi, *bi_prev = NULL;
2174
2175        rbm.rgd = gfs2_blk2rgrpd(sdp, bstart, 1);
2176        if (!rbm.rgd) {
2177                if (gfs2_consist(sdp))
2178                        fs_err(sdp, "block = %llu\n", (unsigned long long)bstart);
2179                return NULL;
2180        }
2181
2182        gfs2_rbm_from_block(&rbm, bstart);
2183        while (blen--) {
2184                bi = rbm_bi(&rbm);
2185                if (bi != bi_prev) {
2186                        if (!bi->bi_clone) {
2187                                bi->bi_clone = kmalloc(bi->bi_bh->b_size,
2188                                                      GFP_NOFS | __GFP_NOFAIL);
2189                                memcpy(bi->bi_clone + bi->bi_offset,
2190                                       bi->bi_bh->b_data + bi->bi_offset,
2191                                       bi->bi_len);
2192                        }
2193                        gfs2_trans_add_meta(rbm.rgd->rd_gl, bi->bi_bh);
2194                        bi_prev = bi;
2195                }
2196                gfs2_setbit(&rbm, false, new_state);
2197                gfs2_rbm_incr(&rbm);
2198        }
2199
2200        return rbm.rgd;
2201}
2202
2203/**
2204 * gfs2_rgrp_dump - print out an rgrp
2205 * @seq: The iterator
2206 * @gl: The glock in question
2207 *
2208 */
2209
2210void gfs2_rgrp_dump(struct seq_file *seq, const struct gfs2_glock *gl)
2211{
2212        struct gfs2_rgrpd *rgd = gl->gl_object;
2213        struct gfs2_blkreserv *trs;
2214        const struct rb_node *n;
2215
2216        if (rgd == NULL)
2217                return;
2218        gfs2_print_dbg(seq, " R: n:%llu f:%02x b:%u/%u i:%u r:%u e:%u\n",
2219                       (unsigned long long)rgd->rd_addr, rgd->rd_flags,
2220                       rgd->rd_free, rgd->rd_free_clone, rgd->rd_dinodes,
2221                       rgd->rd_reserved, rgd->rd_extfail_pt);
2222        spin_lock(&rgd->rd_rsspin);
2223        for (n = rb_first(&rgd->rd_rstree); n; n = rb_next(&trs->rs_node)) {
2224                trs = rb_entry(n, struct gfs2_blkreserv, rs_node);
2225                dump_rs(seq, trs);
2226        }
2227        spin_unlock(&rgd->rd_rsspin);
2228}
2229
2230static void gfs2_rgrp_error(struct gfs2_rgrpd *rgd)
2231{
2232        struct gfs2_sbd *sdp = rgd->rd_sbd;
2233        fs_warn(sdp, "rgrp %llu has an error, marking it readonly until umount\n",
2234                (unsigned long long)rgd->rd_addr);
2235        fs_warn(sdp, "umount on all nodes and run fsck.gfs2 to fix the error\n");
2236        gfs2_rgrp_dump(NULL, rgd->rd_gl);
2237        rgd->rd_flags |= GFS2_RDF_ERROR;
2238}
2239
2240/**
2241 * gfs2_adjust_reservation - Adjust (or remove) a reservation after allocation
2242 * @ip: The inode we have just allocated blocks for
2243 * @rbm: The start of the allocated blocks
2244 * @len: The extent length
2245 *
2246 * Adjusts a reservation after an allocation has taken place. If the
2247 * reservation does not match the allocation, or if it is now empty
2248 * then it is removed.
2249 */
2250
2251static void gfs2_adjust_reservation(struct gfs2_inode *ip,
2252                                    const struct gfs2_rbm *rbm, unsigned len)
2253{
2254        struct gfs2_blkreserv *rs = &ip->i_res;
2255        struct gfs2_rgrpd *rgd = rbm->rgd;
2256        unsigned rlen;
2257        u64 block;
2258        int ret;
2259
2260        spin_lock(&rgd->rd_rsspin);
2261        if (gfs2_rs_active(rs)) {
2262                if (gfs2_rbm_eq(&rs->rs_rbm, rbm)) {
2263                        block = gfs2_rbm_to_block(rbm);
2264                        ret = gfs2_rbm_from_block(&rs->rs_rbm, block + len);
2265                        rlen = min(rs->rs_free, len);
2266                        rs->rs_free -= rlen;
2267                        rgd->rd_reserved -= rlen;
2268                        trace_gfs2_rs(rs, TRACE_RS_CLAIM);
2269                        if (rs->rs_free && !ret)
2270                                goto out;
2271                        /* We used up our block reservation, so we should
2272                           reserve more blocks next time. */
2273                        atomic_add(RGRP_RSRV_ADDBLKS, &rs->rs_sizehint);
2274                }
2275                __rs_deltree(rs);
2276        }
2277out:
2278        spin_unlock(&rgd->rd_rsspin);
2279}
2280
2281/**
2282 * gfs2_set_alloc_start - Set starting point for block allocation
2283 * @rbm: The rbm which will be set to the required location
2284 * @ip: The gfs2 inode
2285 * @dinode: Flag to say if allocation includes a new inode
2286 *
2287 * This sets the starting point from the reservation if one is active
2288 * otherwise it falls back to guessing a start point based on the
2289 * inode's goal block or the last allocation point in the rgrp.
2290 */
2291
2292static void gfs2_set_alloc_start(struct gfs2_rbm *rbm,
2293                                 const struct gfs2_inode *ip, bool dinode)
2294{
2295        u64 goal;
2296
2297        if (gfs2_rs_active(&ip->i_res)) {
2298                *rbm = ip->i_res.rs_rbm;
2299                return;
2300        }
2301
2302        if (!dinode && rgrp_contains_block(rbm->rgd, ip->i_goal))
2303                goal = ip->i_goal;
2304        else
2305                goal = rbm->rgd->rd_last_alloc + rbm->rgd->rd_data0;
2306
2307        gfs2_rbm_from_block(rbm, goal);
2308}
2309
2310/**
2311 * gfs2_alloc_blocks - Allocate one or more blocks of data and/or a dinode
2312 * @ip: the inode to allocate the block for
2313 * @bn: Used to return the starting block number
2314 * @nblocks: requested number of blocks/extent length (value/result)
2315 * @dinode: 1 if we're allocating a dinode block, else 0
2316 * @generation: the generation number of the inode
2317 *
2318 * Returns: 0 or error
2319 */
2320
2321int gfs2_alloc_blocks(struct gfs2_inode *ip, u64 *bn, unsigned int *nblocks,
2322                      bool dinode, u64 *generation)
2323{
2324        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2325        struct buffer_head *dibh;
2326        struct gfs2_rbm rbm = { .rgd = ip->i_rgd, };
2327        unsigned int ndata;
2328        u64 block; /* block, within the file system scope */
2329        int error;
2330
2331        gfs2_set_alloc_start(&rbm, ip, dinode);
2332        error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, ip, false);
2333
2334        if (error == -ENOSPC) {
2335                gfs2_set_alloc_start(&rbm, ip, dinode);
2336                error = gfs2_rbm_find(&rbm, GFS2_BLKST_FREE, NULL, NULL, false);
2337        }
2338
2339        /* Since all blocks are reserved in advance, this shouldn't happen */
2340        if (error) {
2341                fs_warn(sdp, "inum=%llu error=%d, nblocks=%u, full=%d fail_pt=%d\n",
2342                        (unsigned long long)ip->i_no_addr, error, *nblocks,
2343                        test_bit(GBF_FULL, &rbm.rgd->rd_bits->bi_flags),
2344                        rbm.rgd->rd_extfail_pt);
2345                goto rgrp_error;
2346        }
2347
2348        gfs2_alloc_extent(&rbm, dinode, nblocks);
2349        block = gfs2_rbm_to_block(&rbm);
2350        rbm.rgd->rd_last_alloc = block - rbm.rgd->rd_data0;
2351        if (gfs2_rs_active(&ip->i_res))
2352                gfs2_adjust_reservation(ip, &rbm, *nblocks);
2353        ndata = *nblocks;
2354        if (dinode)
2355                ndata--;
2356
2357        if (!dinode) {
2358                ip->i_goal = block + ndata - 1;
2359                error = gfs2_meta_inode_buffer(ip, &dibh);
2360                if (error == 0) {
2361                        struct gfs2_dinode *di =
2362                                (struct gfs2_dinode *)dibh->b_data;
2363                        gfs2_trans_add_meta(ip->i_gl, dibh);
2364                        di->di_goal_meta = di->di_goal_data =
2365                                cpu_to_be64(ip->i_goal);
2366                        brelse(dibh);
2367                }
2368        }
2369        if (rbm.rgd->rd_free < *nblocks) {
2370                pr_warn("nblocks=%u\n", *nblocks);
2371                goto rgrp_error;
2372        }
2373
2374        rbm.rgd->rd_free -= *nblocks;
2375        if (dinode) {
2376                rbm.rgd->rd_dinodes++;
2377                *generation = rbm.rgd->rd_igeneration++;
2378                if (*generation == 0)
2379                        *generation = rbm.rgd->rd_igeneration++;
2380        }
2381
2382        gfs2_trans_add_meta(rbm.rgd->rd_gl, rbm.rgd->rd_bits[0].bi_bh);
2383        gfs2_rgrp_out(rbm.rgd, rbm.rgd->rd_bits[0].bi_bh->b_data);
2384        gfs2_rgrp_ondisk2lvb(rbm.rgd->rd_rgl, rbm.rgd->rd_bits[0].bi_bh->b_data);
2385
2386        gfs2_statfs_change(sdp, 0, -(s64)*nblocks, dinode ? 1 : 0);
2387        if (dinode)
2388                gfs2_trans_add_unrevoke(sdp, block, *nblocks);
2389
2390        gfs2_quota_change(ip, *nblocks, ip->i_inode.i_uid, ip->i_inode.i_gid);
2391
2392        rbm.rgd->rd_free_clone -= *nblocks;
2393        trace_gfs2_block_alloc(ip, rbm.rgd, block, *nblocks,
2394                               dinode ? GFS2_BLKST_DINODE : GFS2_BLKST_USED);
2395        *bn = block;
2396        return 0;
2397
2398rgrp_error:
2399        gfs2_rgrp_error(rbm.rgd);
2400        return -EIO;
2401}
2402
2403/**
2404 * __gfs2_free_blocks - free a contiguous run of block(s)
2405 * @ip: the inode these blocks are being freed from
2406 * @bstart: first block of a run of contiguous blocks
2407 * @blen: the length of the block run
2408 * @meta: 1 if the blocks represent metadata
2409 *
2410 */
2411
2412void __gfs2_free_blocks(struct gfs2_inode *ip, u64 bstart, u32 blen, int meta)
2413{
2414        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2415        struct gfs2_rgrpd *rgd;
2416
2417        rgd = rgblk_free(sdp, bstart, blen, GFS2_BLKST_FREE);
2418        if (!rgd)
2419                return;
2420        trace_gfs2_block_alloc(ip, rgd, bstart, blen, GFS2_BLKST_FREE);
2421        rgd->rd_free += blen;
2422        rgd->rd_flags &= ~GFS2_RGF_TRIMMED;
2423        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2424        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2425        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2426
2427        /* Directories keep their data in the metadata address space */
2428        if (meta || ip->i_depth)
2429                gfs2_meta_wipe(ip, bstart, blen);
2430}
2431
2432/**
2433 * gfs2_free_meta - free a contiguous run of data block(s)
2434 * @ip: the inode these blocks are being freed from
2435 * @bstart: first block of a run of contiguous blocks
2436 * @blen: the length of the block run
2437 *
2438 */
2439
2440void gfs2_free_meta(struct gfs2_inode *ip, u64 bstart, u32 blen)
2441{
2442        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2443
2444        __gfs2_free_blocks(ip, bstart, blen, 1);
2445        gfs2_statfs_change(sdp, 0, +blen, 0);
2446        gfs2_quota_change(ip, -(s64)blen, ip->i_inode.i_uid, ip->i_inode.i_gid);
2447}
2448
2449void gfs2_unlink_di(struct inode *inode)
2450{
2451        struct gfs2_inode *ip = GFS2_I(inode);
2452        struct gfs2_sbd *sdp = GFS2_SB(inode);
2453        struct gfs2_rgrpd *rgd;
2454        u64 blkno = ip->i_no_addr;
2455
2456        rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_UNLINKED);
2457        if (!rgd)
2458                return;
2459        trace_gfs2_block_alloc(ip, rgd, blkno, 1, GFS2_BLKST_UNLINKED);
2460        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2461        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2462        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2463        update_rgrp_lvb_unlinked(rgd, 1);
2464}
2465
2466static void gfs2_free_uninit_di(struct gfs2_rgrpd *rgd, u64 blkno)
2467{
2468        struct gfs2_sbd *sdp = rgd->rd_sbd;
2469        struct gfs2_rgrpd *tmp_rgd;
2470
2471        tmp_rgd = rgblk_free(sdp, blkno, 1, GFS2_BLKST_FREE);
2472        if (!tmp_rgd)
2473                return;
2474        gfs2_assert_withdraw(sdp, rgd == tmp_rgd);
2475
2476        if (!rgd->rd_dinodes)
2477                gfs2_consist_rgrpd(rgd);
2478        rgd->rd_dinodes--;
2479        rgd->rd_free++;
2480
2481        gfs2_trans_add_meta(rgd->rd_gl, rgd->rd_bits[0].bi_bh);
2482        gfs2_rgrp_out(rgd, rgd->rd_bits[0].bi_bh->b_data);
2483        gfs2_rgrp_ondisk2lvb(rgd->rd_rgl, rgd->rd_bits[0].bi_bh->b_data);
2484        update_rgrp_lvb_unlinked(rgd, -1);
2485
2486        gfs2_statfs_change(sdp, 0, +1, -1);
2487}
2488
2489
2490void gfs2_free_di(struct gfs2_rgrpd *rgd, struct gfs2_inode *ip)
2491{
2492        gfs2_free_uninit_di(rgd, ip->i_no_addr);
2493        trace_gfs2_block_alloc(ip, rgd, ip->i_no_addr, 1, GFS2_BLKST_FREE);
2494        gfs2_quota_change(ip, -1, ip->i_inode.i_uid, ip->i_inode.i_gid);
2495        gfs2_meta_wipe(ip, ip->i_no_addr, 1);
2496}
2497
2498/**
2499 * gfs2_check_blk_type - Check the type of a block
2500 * @sdp: The superblock
2501 * @no_addr: The block number to check
2502 * @type: The block type we are looking for
2503 *
2504 * Returns: 0 if the block type matches the expected type
2505 *          -ESTALE if it doesn't match
2506 *          or -ve errno if something went wrong while checking
2507 */
2508
2509int gfs2_check_blk_type(struct gfs2_sbd *sdp, u64 no_addr, unsigned int type)
2510{
2511        struct gfs2_rgrpd *rgd;
2512        struct gfs2_holder rgd_gh;
2513        int error = -EINVAL;
2514
2515        rgd = gfs2_blk2rgrpd(sdp, no_addr, 1);
2516        if (!rgd)
2517                goto fail;
2518
2519        error = gfs2_glock_nq_init(rgd->rd_gl, LM_ST_SHARED, 0, &rgd_gh);
2520        if (error)
2521                goto fail;
2522
2523        if (gfs2_get_block_type(rgd, no_addr) != type)
2524                error = -ESTALE;
2525
2526        gfs2_glock_dq_uninit(&rgd_gh);
2527fail:
2528        return error;
2529}
2530
2531/**
2532 * gfs2_rlist_add - add a RG to a list of RGs
2533 * @ip: the inode
2534 * @rlist: the list of resource groups
2535 * @block: the block
2536 *
2537 * Figure out what RG a block belongs to and add that RG to the list
2538 *
2539 * FIXME: Don't use NOFAIL
2540 *
2541 */
2542
2543void gfs2_rlist_add(struct gfs2_inode *ip, struct gfs2_rgrp_list *rlist,
2544                    u64 block)
2545{
2546        struct gfs2_sbd *sdp = GFS2_SB(&ip->i_inode);
2547        struct gfs2_rgrpd *rgd;
2548        struct gfs2_rgrpd **tmp;
2549        unsigned int new_space;
2550        unsigned int x;
2551
2552        if (gfs2_assert_warn(sdp, !rlist->rl_ghs))
2553                return;
2554
2555        if (ip->i_rgd && rgrp_contains_block(ip->i_rgd, block))
2556                rgd = ip->i_rgd;
2557        else
2558                rgd = gfs2_blk2rgrpd(sdp, block, 1);
2559        if (!rgd) {
2560                fs_err(sdp, "rlist_add: no rgrp for block %llu\n", (unsigned long long)block);
2561                return;
2562        }
2563        ip->i_rgd = rgd;
2564
2565        for (x = 0; x < rlist->rl_rgrps; x++)
2566                if (rlist->rl_rgd[x] == rgd)
2567                        return;
2568
2569        if (rlist->rl_rgrps == rlist->rl_space) {
2570                new_space = rlist->rl_space + 10;
2571
2572                tmp = kcalloc(new_space, sizeof(struct gfs2_rgrpd *),
2573                              GFP_NOFS | __GFP_NOFAIL);
2574
2575                if (rlist->rl_rgd) {
2576                        memcpy(tmp, rlist->rl_rgd,
2577                               rlist->rl_space * sizeof(struct gfs2_rgrpd *));
2578                        kfree(rlist->rl_rgd);
2579                }
2580
2581                rlist->rl_space = new_space;
2582                rlist->rl_rgd = tmp;
2583        }
2584
2585        rlist->rl_rgd[rlist->rl_rgrps++] = rgd;
2586}
2587
2588/**
2589 * gfs2_rlist_alloc - all RGs have been added to the rlist, now allocate
2590 *      and initialize an array of glock holders for them
2591 * @rlist: the list of resource groups
2592 * @state: the lock state to acquire the RG lock in
2593 *
2594 * FIXME: Don't use NOFAIL
2595 *
2596 */
2597
2598void gfs2_rlist_alloc(struct gfs2_rgrp_list *rlist, unsigned int state)
2599{
2600        unsigned int x;
2601
2602        rlist->rl_ghs = kmalloc(rlist->rl_rgrps * sizeof(struct gfs2_holder),
2603                                GFP_NOFS | __GFP_NOFAIL);
2604        for (x = 0; x < rlist->rl_rgrps; x++)
2605                gfs2_holder_init(rlist->rl_rgd[x]->rd_gl,
2606                                state, 0,
2607                                &rlist->rl_ghs[x]);
2608}
2609
2610/**
2611 * gfs2_rlist_free - free a resource group list
2612 * @rlist: the list of resource groups
2613 *
2614 */
2615
2616void gfs2_rlist_free(struct gfs2_rgrp_list *rlist)
2617{
2618        unsigned int x;
2619
2620        kfree(rlist->rl_rgd);
2621
2622        if (rlist->rl_ghs) {
2623                for (x = 0; x < rlist->rl_rgrps; x++)
2624                        gfs2_holder_uninit(&rlist->rl_ghs[x]);
2625                kfree(rlist->rl_ghs);
2626                rlist->rl_ghs = NULL;
2627        }
2628}
2629
2630