linux/fs/jbd2/revoke.c
<<
>>
Prefs
   1/*
   2 * linux/fs/jbd2/revoke.c
   3 *
   4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
   5 *
   6 * Copyright 2000 Red Hat corp --- All Rights Reserved
   7 *
   8 * This file is part of the Linux kernel and is made available under
   9 * the terms of the GNU General Public License, version 2, or at your
  10 * option, any later version, incorporated herein by reference.
  11 *
  12 * Journal revoke routines for the generic filesystem journaling code;
  13 * part of the ext2fs journaling system.
  14 *
  15 * Revoke is the mechanism used to prevent old log records for deleted
  16 * metadata from being replayed on top of newer data using the same
  17 * blocks.  The revoke mechanism is used in two separate places:
  18 *
  19 * + Commit: during commit we write the entire list of the current
  20 *   transaction's revoked blocks to the journal
  21 *
  22 * + Recovery: during recovery we record the transaction ID of all
  23 *   revoked blocks.  If there are multiple revoke records in the log
  24 *   for a single block, only the last one counts, and if there is a log
  25 *   entry for a block beyond the last revoke, then that log entry still
  26 *   gets replayed.
  27 *
  28 * We can get interactions between revokes and new log data within a
  29 * single transaction:
  30 *
  31 * Block is revoked and then journaled:
  32 *   The desired end result is the journaling of the new block, so we
  33 *   cancel the revoke before the transaction commits.
  34 *
  35 * Block is journaled and then revoked:
  36 *   The revoke must take precedence over the write of the block, so we
  37 *   need either to cancel the journal entry or to write the revoke
  38 *   later in the log than the log block.  In this case, we choose the
  39 *   latter: journaling a block cancels any revoke record for that block
  40 *   in the current transaction, so any revoke for that block in the
  41 *   transaction must have happened after the block was journaled and so
  42 *   the revoke must take precedence.
  43 *
  44 * Block is revoked and then written as data:
  45 *   The data write is allowed to succeed, but the revoke is _not_
  46 *   cancelled.  We still need to prevent old log records from
  47 *   overwriting the new data.  We don't even need to clear the revoke
  48 *   bit here.
  49 *
  50 * We cache revoke status of a buffer in the current transaction in b_states
  51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
  52 * status of a buffer is valid and we can rely on the cached status.
  53 *
  54 * Revoke information on buffers is a tri-state value:
  55 *
  56 * RevokeValid clear:   no cached revoke status, need to look it up
  57 * RevokeValid set, Revoked clear:
  58 *                      buffer has not been revoked, and cancel_revoke
  59 *                      need do nothing.
  60 * RevokeValid set, Revoked set:
  61 *                      buffer has been revoked.
  62 *
  63 * Locking rules:
  64 * We keep two hash tables of revoke records. One hashtable belongs to the
  65 * running transaction (is pointed to by journal->j_revoke), the other one
  66 * belongs to the committing transaction. Accesses to the second hash table
  67 * happen only from the kjournald and no other thread touches this table.  Also
  68 * journal_switch_revoke_table() which switches which hashtable belongs to the
  69 * running and which to the committing transaction is called only from
  70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
  71 * to the committing transaction.
  72 *
  73 * All users operating on the hash table belonging to the running transaction
  74 * have a handle to the transaction. Therefore they are safe from kjournald
  75 * switching hash tables under them. For operations on the lists of entries in
  76 * the hash table j_revoke_lock is used.
  77 *
  78 * Finally, also replay code uses the hash tables but at this moment no one else
  79 * can touch them (filesystem isn't mounted yet) and hence no locking is
  80 * needed.
  81 */
  82
  83#ifndef __KERNEL__
  84#include "jfs_user.h"
  85#else
  86#include <linux/time.h>
  87#include <linux/fs.h>
  88#include <linux/jbd2.h>
  89#include <linux/errno.h>
  90#include <linux/slab.h>
  91#include <linux/list.h>
  92#include <linux/init.h>
  93#include <linux/bio.h>
  94#include <linux/log2.h>
  95#include <linux/hash.h>
  96#endif
  97
  98static struct kmem_cache *jbd2_revoke_record_cache;
  99static struct kmem_cache *jbd2_revoke_table_cache;
 100
 101/* Each revoke record represents one single revoked block.  During
 102   journal replay, this involves recording the transaction ID of the
 103   last transaction to revoke this block. */
 104
 105struct jbd2_revoke_record_s
 106{
 107        struct list_head  hash;
 108        tid_t             sequence;     /* Used for recovery only */
 109        unsigned long long        blocknr;
 110};
 111
 112
 113/* The revoke table is just a simple hash table of revoke records. */
 114struct jbd2_revoke_table_s
 115{
 116        /* It is conceivable that we might want a larger hash table
 117         * for recovery.  Must be a power of two. */
 118        int               hash_size;
 119        int               hash_shift;
 120        struct list_head *hash_table;
 121};
 122
 123
 124#ifdef __KERNEL__
 125static void write_one_revoke_record(transaction_t *,
 126                                    struct list_head *,
 127                                    struct buffer_head **, int *,
 128                                    struct jbd2_revoke_record_s *);
 129static void flush_descriptor(journal_t *, struct buffer_head *, int);
 130#endif
 131
 132/* Utility functions to maintain the revoke table */
 133
 134static inline int hash(journal_t *journal, unsigned long long block)
 135{
 136        return hash_64(block, journal->j_revoke->hash_shift);
 137}
 138
 139static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
 140                              tid_t seq)
 141{
 142        struct list_head *hash_list;
 143        struct jbd2_revoke_record_s *record;
 144        gfp_t gfp_mask = GFP_NOFS;
 145
 146        if (journal_oom_retry)
 147                gfp_mask |= __GFP_NOFAIL;
 148        record = kmem_cache_alloc(jbd2_revoke_record_cache, gfp_mask);
 149        if (!record)
 150                return -ENOMEM;
 151
 152        record->sequence = seq;
 153        record->blocknr = blocknr;
 154        hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
 155        spin_lock(&journal->j_revoke_lock);
 156        list_add(&record->hash, hash_list);
 157        spin_unlock(&journal->j_revoke_lock);
 158        return 0;
 159}
 160
 161/* Find a revoke record in the journal's hash table. */
 162
 163static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
 164                                                      unsigned long long blocknr)
 165{
 166        struct list_head *hash_list;
 167        struct jbd2_revoke_record_s *record;
 168
 169        hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
 170
 171        spin_lock(&journal->j_revoke_lock);
 172        record = (struct jbd2_revoke_record_s *) hash_list->next;
 173        while (&(record->hash) != hash_list) {
 174                if (record->blocknr == blocknr) {
 175                        spin_unlock(&journal->j_revoke_lock);
 176                        return record;
 177                }
 178                record = (struct jbd2_revoke_record_s *) record->hash.next;
 179        }
 180        spin_unlock(&journal->j_revoke_lock);
 181        return NULL;
 182}
 183
 184void jbd2_journal_destroy_revoke_caches(void)
 185{
 186        if (jbd2_revoke_record_cache) {
 187                kmem_cache_destroy(jbd2_revoke_record_cache);
 188                jbd2_revoke_record_cache = NULL;
 189        }
 190        if (jbd2_revoke_table_cache) {
 191                kmem_cache_destroy(jbd2_revoke_table_cache);
 192                jbd2_revoke_table_cache = NULL;
 193        }
 194}
 195
 196int __init jbd2_journal_init_revoke_caches(void)
 197{
 198        J_ASSERT(!jbd2_revoke_record_cache);
 199        J_ASSERT(!jbd2_revoke_table_cache);
 200
 201        jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
 202                                        SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
 203        if (!jbd2_revoke_record_cache)
 204                goto record_cache_failure;
 205
 206        jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
 207                                             SLAB_TEMPORARY);
 208        if (!jbd2_revoke_table_cache)
 209                goto table_cache_failure;
 210        return 0;
 211table_cache_failure:
 212        jbd2_journal_destroy_revoke_caches();
 213record_cache_failure:
 214                return -ENOMEM;
 215}
 216
 217static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
 218{
 219        int shift = 0;
 220        int tmp = hash_size;
 221        struct jbd2_revoke_table_s *table;
 222
 223        table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
 224        if (!table)
 225                goto out;
 226
 227        while((tmp >>= 1UL) != 0UL)
 228                shift++;
 229
 230        table->hash_size = hash_size;
 231        table->hash_shift = shift;
 232        table->hash_table =
 233                kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
 234        if (!table->hash_table) {
 235                kmem_cache_free(jbd2_revoke_table_cache, table);
 236                table = NULL;
 237                goto out;
 238        }
 239
 240        for (tmp = 0; tmp < hash_size; tmp++)
 241                INIT_LIST_HEAD(&table->hash_table[tmp]);
 242
 243out:
 244        return table;
 245}
 246
 247static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
 248{
 249        int i;
 250        struct list_head *hash_list;
 251
 252        for (i = 0; i < table->hash_size; i++) {
 253                hash_list = &table->hash_table[i];
 254                J_ASSERT(list_empty(hash_list));
 255        }
 256
 257        kfree(table->hash_table);
 258        kmem_cache_free(jbd2_revoke_table_cache, table);
 259}
 260
 261/* Initialise the revoke table for a given journal to a given size. */
 262int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
 263{
 264        J_ASSERT(journal->j_revoke_table[0] == NULL);
 265        J_ASSERT(is_power_of_2(hash_size));
 266
 267        journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
 268        if (!journal->j_revoke_table[0])
 269                goto fail0;
 270
 271        journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
 272        if (!journal->j_revoke_table[1])
 273                goto fail1;
 274
 275        journal->j_revoke = journal->j_revoke_table[1];
 276
 277        spin_lock_init(&journal->j_revoke_lock);
 278
 279        return 0;
 280
 281fail1:
 282        jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
 283fail0:
 284        return -ENOMEM;
 285}
 286
 287/* Destroy a journal's revoke table.  The table must already be empty! */
 288void jbd2_journal_destroy_revoke(journal_t *journal)
 289{
 290        journal->j_revoke = NULL;
 291        if (journal->j_revoke_table[0])
 292                jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
 293        if (journal->j_revoke_table[1])
 294                jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
 295}
 296
 297
 298#ifdef __KERNEL__
 299
 300/*
 301 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
 302 * prevents the block from being replayed during recovery if we take a
 303 * crash after this current transaction commits.  Any subsequent
 304 * metadata writes of the buffer in this transaction cancel the
 305 * revoke.
 306 *
 307 * Note that this call may block --- it is up to the caller to make
 308 * sure that there are no further calls to journal_write_metadata
 309 * before the revoke is complete.  In ext3, this implies calling the
 310 * revoke before clearing the block bitmap when we are deleting
 311 * metadata.
 312 *
 313 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
 314 * parameter, but does _not_ forget the buffer_head if the bh was only
 315 * found implicitly.
 316 *
 317 * bh_in may not be a journalled buffer - it may have come off
 318 * the hash tables without an attached journal_head.
 319 *
 320 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
 321 * by one.
 322 */
 323
 324int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
 325                   struct buffer_head *bh_in)
 326{
 327        struct buffer_head *bh = NULL;
 328        journal_t *journal;
 329        struct block_device *bdev;
 330        int err;
 331
 332        might_sleep();
 333        if (bh_in)
 334                BUFFER_TRACE(bh_in, "enter");
 335
 336        journal = handle->h_transaction->t_journal;
 337        if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
 338                J_ASSERT (!"Cannot set revoke feature!");
 339                return -EINVAL;
 340        }
 341
 342        bdev = journal->j_fs_dev;
 343        bh = bh_in;
 344
 345        if (!bh) {
 346                bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
 347                if (bh)
 348                        BUFFER_TRACE(bh, "found on hash");
 349        }
 350#ifdef JBD2_EXPENSIVE_CHECKING
 351        else {
 352                struct buffer_head *bh2;
 353
 354                /* If there is a different buffer_head lying around in
 355                 * memory anywhere... */
 356                bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
 357                if (bh2) {
 358                        /* ... and it has RevokeValid status... */
 359                        if (bh2 != bh && buffer_revokevalid(bh2))
 360                                /* ...then it better be revoked too,
 361                                 * since it's illegal to create a revoke
 362                                 * record against a buffer_head which is
 363                                 * not marked revoked --- that would
 364                                 * risk missing a subsequent revoke
 365                                 * cancel. */
 366                                J_ASSERT_BH(bh2, buffer_revoked(bh2));
 367                        put_bh(bh2);
 368                }
 369        }
 370#endif
 371
 372        /* We really ought not ever to revoke twice in a row without
 373           first having the revoke cancelled: it's illegal to free a
 374           block twice without allocating it in between! */
 375        if (bh) {
 376                if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
 377                                 "inconsistent data on disk")) {
 378                        if (!bh_in)
 379                                brelse(bh);
 380                        return -EIO;
 381                }
 382                set_buffer_revoked(bh);
 383                set_buffer_revokevalid(bh);
 384                if (bh_in) {
 385                        BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
 386                        jbd2_journal_forget(handle, bh_in);
 387                } else {
 388                        BUFFER_TRACE(bh, "call brelse");
 389                        __brelse(bh);
 390                }
 391        }
 392
 393        jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
 394        err = insert_revoke_hash(journal, blocknr,
 395                                handle->h_transaction->t_tid);
 396        BUFFER_TRACE(bh_in, "exit");
 397        return err;
 398}
 399
 400/*
 401 * Cancel an outstanding revoke.  For use only internally by the
 402 * journaling code (called from jbd2_journal_get_write_access).
 403 *
 404 * We trust buffer_revoked() on the buffer if the buffer is already
 405 * being journaled: if there is no revoke pending on the buffer, then we
 406 * don't do anything here.
 407 *
 408 * This would break if it were possible for a buffer to be revoked and
 409 * discarded, and then reallocated within the same transaction.  In such
 410 * a case we would have lost the revoked bit, but when we arrived here
 411 * the second time we would still have a pending revoke to cancel.  So,
 412 * do not trust the Revoked bit on buffers unless RevokeValid is also
 413 * set.
 414 */
 415int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
 416{
 417        struct jbd2_revoke_record_s *record;
 418        journal_t *journal = handle->h_transaction->t_journal;
 419        int need_cancel;
 420        int did_revoke = 0;     /* akpm: debug */
 421        struct buffer_head *bh = jh2bh(jh);
 422
 423        jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
 424
 425        /* Is the existing Revoke bit valid?  If so, we trust it, and
 426         * only perform the full cancel if the revoke bit is set.  If
 427         * not, we can't trust the revoke bit, and we need to do the
 428         * full search for a revoke record. */
 429        if (test_set_buffer_revokevalid(bh)) {
 430                need_cancel = test_clear_buffer_revoked(bh);
 431        } else {
 432                need_cancel = 1;
 433                clear_buffer_revoked(bh);
 434        }
 435
 436        if (need_cancel) {
 437                record = find_revoke_record(journal, bh->b_blocknr);
 438                if (record) {
 439                        jbd_debug(4, "cancelled existing revoke on "
 440                                  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
 441                        spin_lock(&journal->j_revoke_lock);
 442                        list_del(&record->hash);
 443                        spin_unlock(&journal->j_revoke_lock);
 444                        kmem_cache_free(jbd2_revoke_record_cache, record);
 445                        did_revoke = 1;
 446                }
 447        }
 448
 449#ifdef JBD2_EXPENSIVE_CHECKING
 450        /* There better not be one left behind by now! */
 451        record = find_revoke_record(journal, bh->b_blocknr);
 452        J_ASSERT_JH(jh, record == NULL);
 453#endif
 454
 455        /* Finally, have we just cleared revoke on an unhashed
 456         * buffer_head?  If so, we'd better make sure we clear the
 457         * revoked status on any hashed alias too, otherwise the revoke
 458         * state machine will get very upset later on. */
 459        if (need_cancel) {
 460                struct buffer_head *bh2;
 461                bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
 462                if (bh2) {
 463                        if (bh2 != bh)
 464                                clear_buffer_revoked(bh2);
 465                        __brelse(bh2);
 466                }
 467        }
 468        return did_revoke;
 469}
 470
 471/*
 472 * journal_clear_revoked_flag clears revoked flag of buffers in
 473 * revoke table to reflect there is no revoked buffers in the next
 474 * transaction which is going to be started.
 475 */
 476void jbd2_clear_buffer_revoked_flags(journal_t *journal)
 477{
 478        struct jbd2_revoke_table_s *revoke = journal->j_revoke;
 479        int i = 0;
 480
 481        for (i = 0; i < revoke->hash_size; i++) {
 482                struct list_head *hash_list;
 483                struct list_head *list_entry;
 484                hash_list = &revoke->hash_table[i];
 485
 486                list_for_each(list_entry, hash_list) {
 487                        struct jbd2_revoke_record_s *record;
 488                        struct buffer_head *bh;
 489                        record = (struct jbd2_revoke_record_s *)list_entry;
 490                        bh = __find_get_block(journal->j_fs_dev,
 491                                              record->blocknr,
 492                                              journal->j_blocksize);
 493                        if (bh) {
 494                                clear_buffer_revoked(bh);
 495                                __brelse(bh);
 496                        }
 497                }
 498        }
 499}
 500
 501/* journal_switch_revoke table select j_revoke for next transaction
 502 * we do not want to suspend any processing until all revokes are
 503 * written -bzzz
 504 */
 505void jbd2_journal_switch_revoke_table(journal_t *journal)
 506{
 507        int i;
 508
 509        if (journal->j_revoke == journal->j_revoke_table[0])
 510                journal->j_revoke = journal->j_revoke_table[1];
 511        else
 512                journal->j_revoke = journal->j_revoke_table[0];
 513
 514        for (i = 0; i < journal->j_revoke->hash_size; i++)
 515                INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
 516}
 517
 518/*
 519 * Write revoke records to the journal for all entries in the current
 520 * revoke hash, deleting the entries as we go.
 521 */
 522void jbd2_journal_write_revoke_records(transaction_t *transaction,
 523                                       struct list_head *log_bufs)
 524{
 525        journal_t *journal = transaction->t_journal;
 526        struct buffer_head *descriptor;
 527        struct jbd2_revoke_record_s *record;
 528        struct jbd2_revoke_table_s *revoke;
 529        struct list_head *hash_list;
 530        int i, offset, count;
 531
 532        descriptor = NULL;
 533        offset = 0;
 534        count = 0;
 535
 536        /* select revoke table for committing transaction */
 537        revoke = journal->j_revoke == journal->j_revoke_table[0] ?
 538                journal->j_revoke_table[1] : journal->j_revoke_table[0];
 539
 540        for (i = 0; i < revoke->hash_size; i++) {
 541                hash_list = &revoke->hash_table[i];
 542
 543                while (!list_empty(hash_list)) {
 544                        record = (struct jbd2_revoke_record_s *)
 545                                hash_list->next;
 546                        write_one_revoke_record(transaction, log_bufs,
 547                                                &descriptor, &offset, record);
 548                        count++;
 549                        list_del(&record->hash);
 550                        kmem_cache_free(jbd2_revoke_record_cache, record);
 551                }
 552        }
 553        if (descriptor)
 554                flush_descriptor(journal, descriptor, offset);
 555        jbd_debug(1, "Wrote %d revoke records\n", count);
 556}
 557
 558/*
 559 * Write out one revoke record.  We need to create a new descriptor
 560 * block if the old one is full or if we have not already created one.
 561 */
 562
 563static void write_one_revoke_record(transaction_t *transaction,
 564                                    struct list_head *log_bufs,
 565                                    struct buffer_head **descriptorp,
 566                                    int *offsetp,
 567                                    struct jbd2_revoke_record_s *record)
 568{
 569        journal_t *journal = transaction->t_journal;
 570        int csum_size = 0;
 571        struct buffer_head *descriptor;
 572        int sz, offset;
 573
 574        /* If we are already aborting, this all becomes a noop.  We
 575           still need to go round the loop in
 576           jbd2_journal_write_revoke_records in order to free all of the
 577           revoke records: only the IO to the journal is omitted. */
 578        if (is_journal_aborted(journal))
 579                return;
 580
 581        descriptor = *descriptorp;
 582        offset = *offsetp;
 583
 584        /* Do we need to leave space at the end for a checksum? */
 585        if (jbd2_journal_has_csum_v2or3(journal))
 586                csum_size = sizeof(struct jbd2_journal_block_tail);
 587
 588        if (jbd2_has_feature_64bit(journal))
 589                sz = 8;
 590        else
 591                sz = 4;
 592
 593        /* Make sure we have a descriptor with space left for the record */
 594        if (descriptor) {
 595                if (offset + sz > journal->j_blocksize - csum_size) {
 596                        flush_descriptor(journal, descriptor, offset);
 597                        descriptor = NULL;
 598                }
 599        }
 600
 601        if (!descriptor) {
 602                descriptor = jbd2_journal_get_descriptor_buffer(transaction,
 603                                                        JBD2_REVOKE_BLOCK);
 604                if (!descriptor)
 605                        return;
 606
 607                /* Record it so that we can wait for IO completion later */
 608                BUFFER_TRACE(descriptor, "file in log_bufs");
 609                jbd2_file_log_bh(log_bufs, descriptor);
 610
 611                offset = sizeof(jbd2_journal_revoke_header_t);
 612                *descriptorp = descriptor;
 613        }
 614
 615        if (jbd2_has_feature_64bit(journal))
 616                * ((__be64 *)(&descriptor->b_data[offset])) =
 617                        cpu_to_be64(record->blocknr);
 618        else
 619                * ((__be32 *)(&descriptor->b_data[offset])) =
 620                        cpu_to_be32(record->blocknr);
 621        offset += sz;
 622
 623        *offsetp = offset;
 624}
 625
 626/*
 627 * Flush a revoke descriptor out to the journal.  If we are aborting,
 628 * this is a noop; otherwise we are generating a buffer which needs to
 629 * be waited for during commit, so it has to go onto the appropriate
 630 * journal buffer list.
 631 */
 632
 633static void flush_descriptor(journal_t *journal,
 634                             struct buffer_head *descriptor,
 635                             int offset)
 636{
 637        jbd2_journal_revoke_header_t *header;
 638
 639        if (is_journal_aborted(journal)) {
 640                put_bh(descriptor);
 641                return;
 642        }
 643
 644        header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
 645        header->r_count = cpu_to_be32(offset);
 646        jbd2_descriptor_block_csum_set(journal, descriptor);
 647
 648        set_buffer_jwrite(descriptor);
 649        BUFFER_TRACE(descriptor, "write");
 650        set_buffer_dirty(descriptor);
 651        write_dirty_buffer(descriptor, WRITE_SYNC);
 652}
 653#endif
 654
 655/*
 656 * Revoke support for recovery.
 657 *
 658 * Recovery needs to be able to:
 659 *
 660 *  record all revoke records, including the tid of the latest instance
 661 *  of each revoke in the journal
 662 *
 663 *  check whether a given block in a given transaction should be replayed
 664 *  (ie. has not been revoked by a revoke record in that or a subsequent
 665 *  transaction)
 666 *
 667 *  empty the revoke table after recovery.
 668 */
 669
 670/*
 671 * First, setting revoke records.  We create a new revoke record for
 672 * every block ever revoked in the log as we scan it for recovery, and
 673 * we update the existing records if we find multiple revokes for a
 674 * single block.
 675 */
 676
 677int jbd2_journal_set_revoke(journal_t *journal,
 678                       unsigned long long blocknr,
 679                       tid_t sequence)
 680{
 681        struct jbd2_revoke_record_s *record;
 682
 683        record = find_revoke_record(journal, blocknr);
 684        if (record) {
 685                /* If we have multiple occurrences, only record the
 686                 * latest sequence number in the hashed record */
 687                if (tid_gt(sequence, record->sequence))
 688                        record->sequence = sequence;
 689                return 0;
 690        }
 691        return insert_revoke_hash(journal, blocknr, sequence);
 692}
 693
 694/*
 695 * Test revoke records.  For a given block referenced in the log, has
 696 * that block been revoked?  A revoke record with a given transaction
 697 * sequence number revokes all blocks in that transaction and earlier
 698 * ones, but later transactions still need replayed.
 699 */
 700
 701int jbd2_journal_test_revoke(journal_t *journal,
 702                        unsigned long long blocknr,
 703                        tid_t sequence)
 704{
 705        struct jbd2_revoke_record_s *record;
 706
 707        record = find_revoke_record(journal, blocknr);
 708        if (!record)
 709                return 0;
 710        if (tid_gt(sequence, record->sequence))
 711                return 0;
 712        return 1;
 713}
 714
 715/*
 716 * Finally, once recovery is over, we need to clear the revoke table so
 717 * that it can be reused by the running filesystem.
 718 */
 719
 720void jbd2_journal_clear_revoke(journal_t *journal)
 721{
 722        int i;
 723        struct list_head *hash_list;
 724        struct jbd2_revoke_record_s *record;
 725        struct jbd2_revoke_table_s *revoke;
 726
 727        revoke = journal->j_revoke;
 728
 729        for (i = 0; i < revoke->hash_size; i++) {
 730                hash_list = &revoke->hash_table[i];
 731                while (!list_empty(hash_list)) {
 732                        record = (struct jbd2_revoke_record_s*) hash_list->next;
 733                        list_del(&record->hash);
 734                        kmem_cache_free(jbd2_revoke_record_cache, record);
 735                }
 736        }
 737}
 738