linux/fs/kernfs/dir.c
<<
>>
Prefs
   1/*
   2 * fs/kernfs/dir.c - kernfs directory implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/sched.h>
  12#include <linux/fs.h>
  13#include <linux/namei.h>
  14#include <linux/idr.h>
  15#include <linux/slab.h>
  16#include <linux/security.h>
  17#include <linux/hash.h>
  18
  19#include "kernfs-internal.h"
  20
  21DEFINE_MUTEX(kernfs_mutex);
  22static DEFINE_SPINLOCK(kernfs_rename_lock);     /* kn->parent and ->name */
  23static char kernfs_pr_cont_buf[PATH_MAX];       /* protected by rename_lock */
  24
  25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
  26
  27static bool kernfs_active(struct kernfs_node *kn)
  28{
  29        lockdep_assert_held(&kernfs_mutex);
  30        return atomic_read(&kn->active) >= 0;
  31}
  32
  33static bool kernfs_lockdep(struct kernfs_node *kn)
  34{
  35#ifdef CONFIG_DEBUG_LOCK_ALLOC
  36        return kn->flags & KERNFS_LOCKDEP;
  37#else
  38        return false;
  39#endif
  40}
  41
  42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
  43{
  44        return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
  45}
  46
  47/* kernfs_node_depth - compute depth from @from to @to */
  48static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
  49{
  50        size_t depth = 0;
  51
  52        while (to->parent && to != from) {
  53                depth++;
  54                to = to->parent;
  55        }
  56        return depth;
  57}
  58
  59static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
  60                                                  struct kernfs_node *b)
  61{
  62        size_t da, db;
  63        struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
  64
  65        if (ra != rb)
  66                return NULL;
  67
  68        da = kernfs_depth(ra->kn, a);
  69        db = kernfs_depth(rb->kn, b);
  70
  71        while (da > db) {
  72                a = a->parent;
  73                da--;
  74        }
  75        while (db > da) {
  76                b = b->parent;
  77                db--;
  78        }
  79
  80        /* worst case b and a will be the same at root */
  81        while (b != a) {
  82                b = b->parent;
  83                a = a->parent;
  84        }
  85
  86        return a;
  87}
  88
  89/**
  90 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
  91 * where kn_from is treated as root of the path.
  92 * @kn_from: kernfs node which should be treated as root for the path
  93 * @kn_to: kernfs node to which path is needed
  94 * @buf: buffer to copy the path into
  95 * @buflen: size of @buf
  96 *
  97 * We need to handle couple of scenarios here:
  98 * [1] when @kn_from is an ancestor of @kn_to at some level
  99 * kn_from: /n1/n2/n3
 100 * kn_to:   /n1/n2/n3/n4/n5
 101 * result:  /n4/n5
 102 *
 103 * [2] when @kn_from is on a different hierarchy and we need to find common
 104 * ancestor between @kn_from and @kn_to.
 105 * kn_from: /n1/n2/n3/n4
 106 * kn_to:   /n1/n2/n5
 107 * result:  /../../n5
 108 * OR
 109 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
 110 * kn_to:   /n1/n2/n3         [depth=3]
 111 * result:  /../..
 112 *
 113 * return value: length of the string.  If greater than buflen,
 114 * then contents of buf are undefined.  On error, -1 is returned.
 115 */
 116static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
 117                                        struct kernfs_node *kn_from,
 118                                        char *buf, size_t buflen)
 119{
 120        struct kernfs_node *kn, *common;
 121        const char parent_str[] = "/..";
 122        size_t depth_from, depth_to, len = 0, nlen = 0;
 123        char *p;
 124        int i;
 125
 126        if (!kn_from)
 127                kn_from = kernfs_root(kn_to)->kn;
 128
 129        if (kn_from == kn_to)
 130                return strlcpy(buf, "/", buflen);
 131
 132        common = kernfs_common_ancestor(kn_from, kn_to);
 133        if (WARN_ON(!common))
 134                return -1;
 135
 136        depth_to = kernfs_depth(common, kn_to);
 137        depth_from = kernfs_depth(common, kn_from);
 138
 139        if (buf)
 140                buf[0] = '\0';
 141
 142        for (i = 0; i < depth_from; i++)
 143                len += strlcpy(buf + len, parent_str,
 144                               len < buflen ? buflen - len : 0);
 145
 146        /* Calculate how many bytes we need for the rest */
 147        for (kn = kn_to; kn != common; kn = kn->parent)
 148                nlen += strlen(kn->name) + 1;
 149
 150        if (len + nlen >= buflen)
 151                return len + nlen;
 152
 153        p = buf + len + nlen;
 154        *p = '\0';
 155        for (kn = kn_to; kn != common; kn = kn->parent) {
 156                size_t tmp = strlen(kn->name);
 157                p -= tmp;
 158                memcpy(p, kn->name, tmp);
 159                *(--p) = '/';
 160        }
 161
 162        return len + nlen;
 163}
 164
 165/**
 166 * kernfs_name - obtain the name of a given node
 167 * @kn: kernfs_node of interest
 168 * @buf: buffer to copy @kn's name into
 169 * @buflen: size of @buf
 170 *
 171 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
 172 * similar to strlcpy().  It returns the length of @kn's name and if @buf
 173 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
 174 *
 175 * This function can be called from any context.
 176 */
 177int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
 178{
 179        unsigned long flags;
 180        int ret;
 181
 182        spin_lock_irqsave(&kernfs_rename_lock, flags);
 183        ret = kernfs_name_locked(kn, buf, buflen);
 184        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 185        return ret;
 186}
 187
 188/**
 189 * kernfs_path_len - determine the length of the full path of a given node
 190 * @kn: kernfs_node of interest
 191 *
 192 * The returned length doesn't include the space for the terminating '\0'.
 193 */
 194size_t kernfs_path_len(struct kernfs_node *kn)
 195{
 196        size_t len = 0;
 197        unsigned long flags;
 198
 199        spin_lock_irqsave(&kernfs_rename_lock, flags);
 200
 201        do {
 202                len += strlen(kn->name) + 1;
 203                kn = kn->parent;
 204        } while (kn && kn->parent);
 205
 206        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 207
 208        return len;
 209}
 210
 211/**
 212 * kernfs_path_from_node - build path of node @to relative to @from.
 213 * @from: parent kernfs_node relative to which we need to build the path
 214 * @to: kernfs_node of interest
 215 * @buf: buffer to copy @to's path into
 216 * @buflen: size of @buf
 217 *
 218 * Builds @to's path relative to @from in @buf. @from and @to must
 219 * be on the same kernfs-root. If @from is not parent of @to, then a relative
 220 * path (which includes '..'s) as needed to reach from @from to @to is
 221 * returned.
 222 *
 223 * If @buf isn't long enough, the return value will be greater than @buflen
 224 * and @buf contents are undefined.
 225 */
 226int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
 227                          char *buf, size_t buflen)
 228{
 229        unsigned long flags;
 230        int ret;
 231
 232        spin_lock_irqsave(&kernfs_rename_lock, flags);
 233        ret = kernfs_path_from_node_locked(to, from, buf, buflen);
 234        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 235        return ret;
 236}
 237EXPORT_SYMBOL_GPL(kernfs_path_from_node);
 238
 239/**
 240 * kernfs_path - build full path of a given node
 241 * @kn: kernfs_node of interest
 242 * @buf: buffer to copy @kn's name into
 243 * @buflen: size of @buf
 244 *
 245 * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
 246 * path is built from the end of @buf so the returned pointer usually
 247 * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
 248 * and %NULL is returned.
 249 */
 250char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
 251{
 252        int ret;
 253
 254        ret = kernfs_path_from_node(kn, NULL, buf, buflen);
 255        if (ret < 0 || ret >= buflen)
 256                return NULL;
 257        return buf;
 258}
 259EXPORT_SYMBOL_GPL(kernfs_path);
 260
 261/**
 262 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
 263 * @kn: kernfs_node of interest
 264 *
 265 * This function can be called from any context.
 266 */
 267void pr_cont_kernfs_name(struct kernfs_node *kn)
 268{
 269        unsigned long flags;
 270
 271        spin_lock_irqsave(&kernfs_rename_lock, flags);
 272
 273        kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
 274        pr_cont("%s", kernfs_pr_cont_buf);
 275
 276        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 277}
 278
 279/**
 280 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
 281 * @kn: kernfs_node of interest
 282 *
 283 * This function can be called from any context.
 284 */
 285void pr_cont_kernfs_path(struct kernfs_node *kn)
 286{
 287        unsigned long flags;
 288        int sz;
 289
 290        spin_lock_irqsave(&kernfs_rename_lock, flags);
 291
 292        sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
 293                                          sizeof(kernfs_pr_cont_buf));
 294        if (sz < 0) {
 295                pr_cont("(error)");
 296                goto out;
 297        }
 298
 299        if (sz >= sizeof(kernfs_pr_cont_buf)) {
 300                pr_cont("(name too long)");
 301                goto out;
 302        }
 303
 304        pr_cont("%s", kernfs_pr_cont_buf);
 305
 306out:
 307        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 308}
 309
 310/**
 311 * kernfs_get_parent - determine the parent node and pin it
 312 * @kn: kernfs_node of interest
 313 *
 314 * Determines @kn's parent, pins and returns it.  This function can be
 315 * called from any context.
 316 */
 317struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
 318{
 319        struct kernfs_node *parent;
 320        unsigned long flags;
 321
 322        spin_lock_irqsave(&kernfs_rename_lock, flags);
 323        parent = kn->parent;
 324        kernfs_get(parent);
 325        spin_unlock_irqrestore(&kernfs_rename_lock, flags);
 326
 327        return parent;
 328}
 329
 330/**
 331 *      kernfs_name_hash
 332 *      @name: Null terminated string to hash
 333 *      @ns:   Namespace tag to hash
 334 *
 335 *      Returns 31 bit hash of ns + name (so it fits in an off_t )
 336 */
 337static unsigned int kernfs_name_hash(const char *name, const void *ns)
 338{
 339        unsigned long hash = init_name_hash(ns);
 340        unsigned int len = strlen(name);
 341        while (len--)
 342                hash = partial_name_hash(*name++, hash);
 343        hash = end_name_hash(hash);
 344        hash &= 0x7fffffffU;
 345        /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
 346        if (hash < 2)
 347                hash += 2;
 348        if (hash >= INT_MAX)
 349                hash = INT_MAX - 1;
 350        return hash;
 351}
 352
 353static int kernfs_name_compare(unsigned int hash, const char *name,
 354                               const void *ns, const struct kernfs_node *kn)
 355{
 356        if (hash < kn->hash)
 357                return -1;
 358        if (hash > kn->hash)
 359                return 1;
 360        if (ns < kn->ns)
 361                return -1;
 362        if (ns > kn->ns)
 363                return 1;
 364        return strcmp(name, kn->name);
 365}
 366
 367static int kernfs_sd_compare(const struct kernfs_node *left,
 368                             const struct kernfs_node *right)
 369{
 370        return kernfs_name_compare(left->hash, left->name, left->ns, right);
 371}
 372
 373/**
 374 *      kernfs_link_sibling - link kernfs_node into sibling rbtree
 375 *      @kn: kernfs_node of interest
 376 *
 377 *      Link @kn into its sibling rbtree which starts from
 378 *      @kn->parent->dir.children.
 379 *
 380 *      Locking:
 381 *      mutex_lock(kernfs_mutex)
 382 *
 383 *      RETURNS:
 384 *      0 on susccess -EEXIST on failure.
 385 */
 386static int kernfs_link_sibling(struct kernfs_node *kn)
 387{
 388        struct rb_node **node = &kn->parent->dir.children.rb_node;
 389        struct rb_node *parent = NULL;
 390
 391        while (*node) {
 392                struct kernfs_node *pos;
 393                int result;
 394
 395                pos = rb_to_kn(*node);
 396                parent = *node;
 397                result = kernfs_sd_compare(kn, pos);
 398                if (result < 0)
 399                        node = &pos->rb.rb_left;
 400                else if (result > 0)
 401                        node = &pos->rb.rb_right;
 402                else
 403                        return -EEXIST;
 404        }
 405
 406        /* add new node and rebalance the tree */
 407        rb_link_node(&kn->rb, parent, node);
 408        rb_insert_color(&kn->rb, &kn->parent->dir.children);
 409
 410        /* successfully added, account subdir number */
 411        if (kernfs_type(kn) == KERNFS_DIR)
 412                kn->parent->dir.subdirs++;
 413
 414        return 0;
 415}
 416
 417/**
 418 *      kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
 419 *      @kn: kernfs_node of interest
 420 *
 421 *      Try to unlink @kn from its sibling rbtree which starts from
 422 *      kn->parent->dir.children.  Returns %true if @kn was actually
 423 *      removed, %false if @kn wasn't on the rbtree.
 424 *
 425 *      Locking:
 426 *      mutex_lock(kernfs_mutex)
 427 */
 428static bool kernfs_unlink_sibling(struct kernfs_node *kn)
 429{
 430        if (RB_EMPTY_NODE(&kn->rb))
 431                return false;
 432
 433        if (kernfs_type(kn) == KERNFS_DIR)
 434                kn->parent->dir.subdirs--;
 435
 436        rb_erase(&kn->rb, &kn->parent->dir.children);
 437        RB_CLEAR_NODE(&kn->rb);
 438        return true;
 439}
 440
 441/**
 442 *      kernfs_get_active - get an active reference to kernfs_node
 443 *      @kn: kernfs_node to get an active reference to
 444 *
 445 *      Get an active reference of @kn.  This function is noop if @kn
 446 *      is NULL.
 447 *
 448 *      RETURNS:
 449 *      Pointer to @kn on success, NULL on failure.
 450 */
 451struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
 452{
 453        if (unlikely(!kn))
 454                return NULL;
 455
 456        if (!atomic_inc_unless_negative(&kn->active))
 457                return NULL;
 458
 459        if (kernfs_lockdep(kn))
 460                rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
 461        return kn;
 462}
 463
 464/**
 465 *      kernfs_put_active - put an active reference to kernfs_node
 466 *      @kn: kernfs_node to put an active reference to
 467 *
 468 *      Put an active reference to @kn.  This function is noop if @kn
 469 *      is NULL.
 470 */
 471void kernfs_put_active(struct kernfs_node *kn)
 472{
 473        struct kernfs_root *root = kernfs_root(kn);
 474        int v;
 475
 476        if (unlikely(!kn))
 477                return;
 478
 479        if (kernfs_lockdep(kn))
 480                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 481        v = atomic_dec_return(&kn->active);
 482        if (likely(v != KN_DEACTIVATED_BIAS))
 483                return;
 484
 485        wake_up_all(&root->deactivate_waitq);
 486}
 487
 488/**
 489 * kernfs_drain - drain kernfs_node
 490 * @kn: kernfs_node to drain
 491 *
 492 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
 493 * removers may invoke this function concurrently on @kn and all will
 494 * return after draining is complete.
 495 */
 496static void kernfs_drain(struct kernfs_node *kn)
 497        __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
 498{
 499        struct kernfs_root *root = kernfs_root(kn);
 500
 501        lockdep_assert_held(&kernfs_mutex);
 502        WARN_ON_ONCE(kernfs_active(kn));
 503
 504        mutex_unlock(&kernfs_mutex);
 505
 506        if (kernfs_lockdep(kn)) {
 507                rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
 508                if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
 509                        lock_contended(&kn->dep_map, _RET_IP_);
 510        }
 511
 512        /* but everyone should wait for draining */
 513        wait_event(root->deactivate_waitq,
 514                   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
 515
 516        if (kernfs_lockdep(kn)) {
 517                lock_acquired(&kn->dep_map, _RET_IP_);
 518                rwsem_release(&kn->dep_map, 1, _RET_IP_);
 519        }
 520
 521        kernfs_unmap_bin_file(kn);
 522
 523        mutex_lock(&kernfs_mutex);
 524}
 525
 526/**
 527 * kernfs_get - get a reference count on a kernfs_node
 528 * @kn: the target kernfs_node
 529 */
 530void kernfs_get(struct kernfs_node *kn)
 531{
 532        if (kn) {
 533                WARN_ON(!atomic_read(&kn->count));
 534                atomic_inc(&kn->count);
 535        }
 536}
 537EXPORT_SYMBOL_GPL(kernfs_get);
 538
 539/**
 540 * kernfs_put - put a reference count on a kernfs_node
 541 * @kn: the target kernfs_node
 542 *
 543 * Put a reference count of @kn and destroy it if it reached zero.
 544 */
 545void kernfs_put(struct kernfs_node *kn)
 546{
 547        struct kernfs_node *parent;
 548        struct kernfs_root *root;
 549
 550        if (!kn || !atomic_dec_and_test(&kn->count))
 551                return;
 552        root = kernfs_root(kn);
 553 repeat:
 554        /*
 555         * Moving/renaming is always done while holding reference.
 556         * kn->parent won't change beneath us.
 557         */
 558        parent = kn->parent;
 559
 560        WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
 561                  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
 562                  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
 563
 564        if (kernfs_type(kn) == KERNFS_LINK)
 565                kernfs_put(kn->symlink.target_kn);
 566
 567        kfree_const(kn->name);
 568
 569        if (kn->iattr) {
 570                if (kn->iattr->ia_secdata)
 571                        security_release_secctx(kn->iattr->ia_secdata,
 572                                                kn->iattr->ia_secdata_len);
 573                simple_xattrs_free(&kn->iattr->xattrs);
 574        }
 575        kfree(kn->iattr);
 576        ida_simple_remove(&root->ino_ida, kn->ino);
 577        kmem_cache_free(kernfs_node_cache, kn);
 578
 579        kn = parent;
 580        if (kn) {
 581                if (atomic_dec_and_test(&kn->count))
 582                        goto repeat;
 583        } else {
 584                /* just released the root kn, free @root too */
 585                ida_destroy(&root->ino_ida);
 586                kfree(root);
 587        }
 588}
 589EXPORT_SYMBOL_GPL(kernfs_put);
 590
 591static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
 592{
 593        struct kernfs_node *kn;
 594
 595        if (flags & LOOKUP_RCU)
 596                return -ECHILD;
 597
 598        /* Always perform fresh lookup for negatives */
 599        if (d_really_is_negative(dentry))
 600                goto out_bad_unlocked;
 601
 602        kn = dentry->d_fsdata;
 603        mutex_lock(&kernfs_mutex);
 604
 605        /* The kernfs node has been deactivated */
 606        if (!kernfs_active(kn))
 607                goto out_bad;
 608
 609        /* The kernfs node has been moved? */
 610        if (dentry->d_parent->d_fsdata != kn->parent)
 611                goto out_bad;
 612
 613        /* The kernfs node has been renamed */
 614        if (strcmp(dentry->d_name.name, kn->name) != 0)
 615                goto out_bad;
 616
 617        /* The kernfs node has been moved to a different namespace */
 618        if (kn->parent && kernfs_ns_enabled(kn->parent) &&
 619            kernfs_info(dentry->d_sb)->ns != kn->ns)
 620                goto out_bad;
 621
 622        mutex_unlock(&kernfs_mutex);
 623        return 1;
 624out_bad:
 625        mutex_unlock(&kernfs_mutex);
 626out_bad_unlocked:
 627        return 0;
 628}
 629
 630static void kernfs_dop_release(struct dentry *dentry)
 631{
 632        kernfs_put(dentry->d_fsdata);
 633}
 634
 635const struct dentry_operations kernfs_dops = {
 636        .d_revalidate   = kernfs_dop_revalidate,
 637        .d_release      = kernfs_dop_release,
 638};
 639
 640/**
 641 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
 642 * @dentry: the dentry in question
 643 *
 644 * Return the kernfs_node associated with @dentry.  If @dentry is not a
 645 * kernfs one, %NULL is returned.
 646 *
 647 * While the returned kernfs_node will stay accessible as long as @dentry
 648 * is accessible, the returned node can be in any state and the caller is
 649 * fully responsible for determining what's accessible.
 650 */
 651struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
 652{
 653        if (dentry->d_sb->s_op == &kernfs_sops)
 654                return dentry->d_fsdata;
 655        return NULL;
 656}
 657
 658static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
 659                                             const char *name, umode_t mode,
 660                                             unsigned flags)
 661{
 662        struct kernfs_node *kn;
 663        int ret;
 664
 665        name = kstrdup_const(name, GFP_KERNEL);
 666        if (!name)
 667                return NULL;
 668
 669        kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
 670        if (!kn)
 671                goto err_out1;
 672
 673        ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
 674        if (ret < 0)
 675                goto err_out2;
 676        kn->ino = ret;
 677
 678        atomic_set(&kn->count, 1);
 679        atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
 680        RB_CLEAR_NODE(&kn->rb);
 681
 682        kn->name = name;
 683        kn->mode = mode;
 684        kn->flags = flags;
 685
 686        return kn;
 687
 688 err_out2:
 689        kmem_cache_free(kernfs_node_cache, kn);
 690 err_out1:
 691        kfree_const(name);
 692        return NULL;
 693}
 694
 695struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
 696                                    const char *name, umode_t mode,
 697                                    unsigned flags)
 698{
 699        struct kernfs_node *kn;
 700
 701        kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
 702        if (kn) {
 703                kernfs_get(parent);
 704                kn->parent = parent;
 705        }
 706        return kn;
 707}
 708
 709/**
 710 *      kernfs_add_one - add kernfs_node to parent without warning
 711 *      @kn: kernfs_node to be added
 712 *
 713 *      The caller must already have initialized @kn->parent.  This
 714 *      function increments nlink of the parent's inode if @kn is a
 715 *      directory and link into the children list of the parent.
 716 *
 717 *      RETURNS:
 718 *      0 on success, -EEXIST if entry with the given name already
 719 *      exists.
 720 */
 721int kernfs_add_one(struct kernfs_node *kn)
 722{
 723        struct kernfs_node *parent = kn->parent;
 724        struct kernfs_iattrs *ps_iattr;
 725        bool has_ns;
 726        int ret;
 727
 728        mutex_lock(&kernfs_mutex);
 729
 730        ret = -EINVAL;
 731        has_ns = kernfs_ns_enabled(parent);
 732        if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 733                 has_ns ? "required" : "invalid", parent->name, kn->name))
 734                goto out_unlock;
 735
 736        if (kernfs_type(parent) != KERNFS_DIR)
 737                goto out_unlock;
 738
 739        ret = -ENOENT;
 740        if (parent->flags & KERNFS_EMPTY_DIR)
 741                goto out_unlock;
 742
 743        if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
 744                goto out_unlock;
 745
 746        kn->hash = kernfs_name_hash(kn->name, kn->ns);
 747
 748        ret = kernfs_link_sibling(kn);
 749        if (ret)
 750                goto out_unlock;
 751
 752        /* Update timestamps on the parent */
 753        ps_iattr = parent->iattr;
 754        if (ps_iattr) {
 755                struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
 756                ktime_get_real_ts(&ps_iattrs->ia_ctime);
 757                ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
 758        }
 759
 760        mutex_unlock(&kernfs_mutex);
 761
 762        /*
 763         * Activate the new node unless CREATE_DEACTIVATED is requested.
 764         * If not activated here, the kernfs user is responsible for
 765         * activating the node with kernfs_activate().  A node which hasn't
 766         * been activated is not visible to userland and its removal won't
 767         * trigger deactivation.
 768         */
 769        if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 770                kernfs_activate(kn);
 771        return 0;
 772
 773out_unlock:
 774        mutex_unlock(&kernfs_mutex);
 775        return ret;
 776}
 777
 778/**
 779 * kernfs_find_ns - find kernfs_node with the given name
 780 * @parent: kernfs_node to search under
 781 * @name: name to look for
 782 * @ns: the namespace tag to use
 783 *
 784 * Look for kernfs_node with name @name under @parent.  Returns pointer to
 785 * the found kernfs_node on success, %NULL on failure.
 786 */
 787static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
 788                                          const unsigned char *name,
 789                                          const void *ns)
 790{
 791        struct rb_node *node = parent->dir.children.rb_node;
 792        bool has_ns = kernfs_ns_enabled(parent);
 793        unsigned int hash;
 794
 795        lockdep_assert_held(&kernfs_mutex);
 796
 797        if (has_ns != (bool)ns) {
 798                WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
 799                     has_ns ? "required" : "invalid", parent->name, name);
 800                return NULL;
 801        }
 802
 803        hash = kernfs_name_hash(name, ns);
 804        while (node) {
 805                struct kernfs_node *kn;
 806                int result;
 807
 808                kn = rb_to_kn(node);
 809                result = kernfs_name_compare(hash, name, ns, kn);
 810                if (result < 0)
 811                        node = node->rb_left;
 812                else if (result > 0)
 813                        node = node->rb_right;
 814                else
 815                        return kn;
 816        }
 817        return NULL;
 818}
 819
 820static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
 821                                          const unsigned char *path,
 822                                          const void *ns)
 823{
 824        size_t len;
 825        char *p, *name;
 826
 827        lockdep_assert_held(&kernfs_mutex);
 828
 829        /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
 830        spin_lock_irq(&kernfs_rename_lock);
 831
 832        len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
 833
 834        if (len >= sizeof(kernfs_pr_cont_buf)) {
 835                spin_unlock_irq(&kernfs_rename_lock);
 836                return NULL;
 837        }
 838
 839        p = kernfs_pr_cont_buf;
 840
 841        while ((name = strsep(&p, "/")) && parent) {
 842                if (*name == '\0')
 843                        continue;
 844                parent = kernfs_find_ns(parent, name, ns);
 845        }
 846
 847        spin_unlock_irq(&kernfs_rename_lock);
 848
 849        return parent;
 850}
 851
 852/**
 853 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
 854 * @parent: kernfs_node to search under
 855 * @name: name to look for
 856 * @ns: the namespace tag to use
 857 *
 858 * Look for kernfs_node with name @name under @parent and get a reference
 859 * if found.  This function may sleep and returns pointer to the found
 860 * kernfs_node on success, %NULL on failure.
 861 */
 862struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
 863                                           const char *name, const void *ns)
 864{
 865        struct kernfs_node *kn;
 866
 867        mutex_lock(&kernfs_mutex);
 868        kn = kernfs_find_ns(parent, name, ns);
 869        kernfs_get(kn);
 870        mutex_unlock(&kernfs_mutex);
 871
 872        return kn;
 873}
 874EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
 875
 876/**
 877 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
 878 * @parent: kernfs_node to search under
 879 * @path: path to look for
 880 * @ns: the namespace tag to use
 881 *
 882 * Look for kernfs_node with path @path under @parent and get a reference
 883 * if found.  This function may sleep and returns pointer to the found
 884 * kernfs_node on success, %NULL on failure.
 885 */
 886struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
 887                                           const char *path, const void *ns)
 888{
 889        struct kernfs_node *kn;
 890
 891        mutex_lock(&kernfs_mutex);
 892        kn = kernfs_walk_ns(parent, path, ns);
 893        kernfs_get(kn);
 894        mutex_unlock(&kernfs_mutex);
 895
 896        return kn;
 897}
 898
 899/**
 900 * kernfs_create_root - create a new kernfs hierarchy
 901 * @scops: optional syscall operations for the hierarchy
 902 * @flags: KERNFS_ROOT_* flags
 903 * @priv: opaque data associated with the new directory
 904 *
 905 * Returns the root of the new hierarchy on success, ERR_PTR() value on
 906 * failure.
 907 */
 908struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
 909                                       unsigned int flags, void *priv)
 910{
 911        struct kernfs_root *root;
 912        struct kernfs_node *kn;
 913
 914        root = kzalloc(sizeof(*root), GFP_KERNEL);
 915        if (!root)
 916                return ERR_PTR(-ENOMEM);
 917
 918        ida_init(&root->ino_ida);
 919        INIT_LIST_HEAD(&root->supers);
 920
 921        kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
 922                               KERNFS_DIR);
 923        if (!kn) {
 924                ida_destroy(&root->ino_ida);
 925                kfree(root);
 926                return ERR_PTR(-ENOMEM);
 927        }
 928
 929        kn->priv = priv;
 930        kn->dir.root = root;
 931
 932        root->syscall_ops = scops;
 933        root->flags = flags;
 934        root->kn = kn;
 935        init_waitqueue_head(&root->deactivate_waitq);
 936
 937        if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
 938                kernfs_activate(kn);
 939
 940        return root;
 941}
 942
 943/**
 944 * kernfs_destroy_root - destroy a kernfs hierarchy
 945 * @root: root of the hierarchy to destroy
 946 *
 947 * Destroy the hierarchy anchored at @root by removing all existing
 948 * directories and destroying @root.
 949 */
 950void kernfs_destroy_root(struct kernfs_root *root)
 951{
 952        kernfs_remove(root->kn);        /* will also free @root */
 953}
 954
 955/**
 956 * kernfs_create_dir_ns - create a directory
 957 * @parent: parent in which to create a new directory
 958 * @name: name of the new directory
 959 * @mode: mode of the new directory
 960 * @priv: opaque data associated with the new directory
 961 * @ns: optional namespace tag of the directory
 962 *
 963 * Returns the created node on success, ERR_PTR() value on failure.
 964 */
 965struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
 966                                         const char *name, umode_t mode,
 967                                         void *priv, const void *ns)
 968{
 969        struct kernfs_node *kn;
 970        int rc;
 971
 972        /* allocate */
 973        kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
 974        if (!kn)
 975                return ERR_PTR(-ENOMEM);
 976
 977        kn->dir.root = parent->dir.root;
 978        kn->ns = ns;
 979        kn->priv = priv;
 980
 981        /* link in */
 982        rc = kernfs_add_one(kn);
 983        if (!rc)
 984                return kn;
 985
 986        kernfs_put(kn);
 987        return ERR_PTR(rc);
 988}
 989
 990/**
 991 * kernfs_create_empty_dir - create an always empty directory
 992 * @parent: parent in which to create a new directory
 993 * @name: name of the new directory
 994 *
 995 * Returns the created node on success, ERR_PTR() value on failure.
 996 */
 997struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
 998                                            const char *name)
 999{
1000        struct kernfs_node *kn;
1001        int rc;
1002
1003        /* allocate */
1004        kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
1005        if (!kn)
1006                return ERR_PTR(-ENOMEM);
1007
1008        kn->flags |= KERNFS_EMPTY_DIR;
1009        kn->dir.root = parent->dir.root;
1010        kn->ns = NULL;
1011        kn->priv = NULL;
1012
1013        /* link in */
1014        rc = kernfs_add_one(kn);
1015        if (!rc)
1016                return kn;
1017
1018        kernfs_put(kn);
1019        return ERR_PTR(rc);
1020}
1021
1022static struct dentry *kernfs_iop_lookup(struct inode *dir,
1023                                        struct dentry *dentry,
1024                                        unsigned int flags)
1025{
1026        struct dentry *ret;
1027        struct kernfs_node *parent = dentry->d_parent->d_fsdata;
1028        struct kernfs_node *kn;
1029        struct inode *inode;
1030        const void *ns = NULL;
1031
1032        mutex_lock(&kernfs_mutex);
1033
1034        if (kernfs_ns_enabled(parent))
1035                ns = kernfs_info(dir->i_sb)->ns;
1036
1037        kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1038
1039        /* no such entry */
1040        if (!kn || !kernfs_active(kn)) {
1041                ret = NULL;
1042                goto out_unlock;
1043        }
1044        kernfs_get(kn);
1045        dentry->d_fsdata = kn;
1046
1047        /* attach dentry and inode */
1048        inode = kernfs_get_inode(dir->i_sb, kn);
1049        if (!inode) {
1050                ret = ERR_PTR(-ENOMEM);
1051                goto out_unlock;
1052        }
1053
1054        /* instantiate and hash dentry */
1055        ret = d_splice_alias(inode, dentry);
1056 out_unlock:
1057        mutex_unlock(&kernfs_mutex);
1058        return ret;
1059}
1060
1061static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1062                            umode_t mode)
1063{
1064        struct kernfs_node *parent = dir->i_private;
1065        struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1066        int ret;
1067
1068        if (!scops || !scops->mkdir)
1069                return -EPERM;
1070
1071        if (!kernfs_get_active(parent))
1072                return -ENODEV;
1073
1074        ret = scops->mkdir(parent, dentry->d_name.name, mode);
1075
1076        kernfs_put_active(parent);
1077        return ret;
1078}
1079
1080static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1081{
1082        struct kernfs_node *kn  = dentry->d_fsdata;
1083        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1084        int ret;
1085
1086        if (!scops || !scops->rmdir)
1087                return -EPERM;
1088
1089        if (!kernfs_get_active(kn))
1090                return -ENODEV;
1091
1092        ret = scops->rmdir(kn);
1093
1094        kernfs_put_active(kn);
1095        return ret;
1096}
1097
1098static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1099                             struct inode *new_dir, struct dentry *new_dentry)
1100{
1101        struct kernfs_node *kn  = old_dentry->d_fsdata;
1102        struct kernfs_node *new_parent = new_dir->i_private;
1103        struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1104        int ret;
1105
1106        if (!scops || !scops->rename)
1107                return -EPERM;
1108
1109        if (!kernfs_get_active(kn))
1110                return -ENODEV;
1111
1112        if (!kernfs_get_active(new_parent)) {
1113                kernfs_put_active(kn);
1114                return -ENODEV;
1115        }
1116
1117        ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1118
1119        kernfs_put_active(new_parent);
1120        kernfs_put_active(kn);
1121        return ret;
1122}
1123
1124const struct inode_operations kernfs_dir_iops = {
1125        .lookup         = kernfs_iop_lookup,
1126        .permission     = kernfs_iop_permission,
1127        .setattr        = kernfs_iop_setattr,
1128        .getattr        = kernfs_iop_getattr,
1129        .setxattr       = kernfs_iop_setxattr,
1130        .removexattr    = kernfs_iop_removexattr,
1131        .getxattr       = kernfs_iop_getxattr,
1132        .listxattr      = kernfs_iop_listxattr,
1133
1134        .mkdir          = kernfs_iop_mkdir,
1135        .rmdir          = kernfs_iop_rmdir,
1136        .rename         = kernfs_iop_rename,
1137};
1138
1139static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1140{
1141        struct kernfs_node *last;
1142
1143        while (true) {
1144                struct rb_node *rbn;
1145
1146                last = pos;
1147
1148                if (kernfs_type(pos) != KERNFS_DIR)
1149                        break;
1150
1151                rbn = rb_first(&pos->dir.children);
1152                if (!rbn)
1153                        break;
1154
1155                pos = rb_to_kn(rbn);
1156        }
1157
1158        return last;
1159}
1160
1161/**
1162 * kernfs_next_descendant_post - find the next descendant for post-order walk
1163 * @pos: the current position (%NULL to initiate traversal)
1164 * @root: kernfs_node whose descendants to walk
1165 *
1166 * Find the next descendant to visit for post-order traversal of @root's
1167 * descendants.  @root is included in the iteration and the last node to be
1168 * visited.
1169 */
1170static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1171                                                       struct kernfs_node *root)
1172{
1173        struct rb_node *rbn;
1174
1175        lockdep_assert_held(&kernfs_mutex);
1176
1177        /* if first iteration, visit leftmost descendant which may be root */
1178        if (!pos)
1179                return kernfs_leftmost_descendant(root);
1180
1181        /* if we visited @root, we're done */
1182        if (pos == root)
1183                return NULL;
1184
1185        /* if there's an unvisited sibling, visit its leftmost descendant */
1186        rbn = rb_next(&pos->rb);
1187        if (rbn)
1188                return kernfs_leftmost_descendant(rb_to_kn(rbn));
1189
1190        /* no sibling left, visit parent */
1191        return pos->parent;
1192}
1193
1194/**
1195 * kernfs_activate - activate a node which started deactivated
1196 * @kn: kernfs_node whose subtree is to be activated
1197 *
1198 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1199 * needs to be explicitly activated.  A node which hasn't been activated
1200 * isn't visible to userland and deactivation is skipped during its
1201 * removal.  This is useful to construct atomic init sequences where
1202 * creation of multiple nodes should either succeed or fail atomically.
1203 *
1204 * The caller is responsible for ensuring that this function is not called
1205 * after kernfs_remove*() is invoked on @kn.
1206 */
1207void kernfs_activate(struct kernfs_node *kn)
1208{
1209        struct kernfs_node *pos;
1210
1211        mutex_lock(&kernfs_mutex);
1212
1213        pos = NULL;
1214        while ((pos = kernfs_next_descendant_post(pos, kn))) {
1215                if (!pos || (pos->flags & KERNFS_ACTIVATED))
1216                        continue;
1217
1218                WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1219                WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1220
1221                atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1222                pos->flags |= KERNFS_ACTIVATED;
1223        }
1224
1225        mutex_unlock(&kernfs_mutex);
1226}
1227
1228static void __kernfs_remove(struct kernfs_node *kn)
1229{
1230        struct kernfs_node *pos;
1231
1232        lockdep_assert_held(&kernfs_mutex);
1233
1234        /*
1235         * Short-circuit if non-root @kn has already finished removal.
1236         * This is for kernfs_remove_self() which plays with active ref
1237         * after removal.
1238         */
1239        if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1240                return;
1241
1242        pr_debug("kernfs %s: removing\n", kn->name);
1243
1244        /* prevent any new usage under @kn by deactivating all nodes */
1245        pos = NULL;
1246        while ((pos = kernfs_next_descendant_post(pos, kn)))
1247                if (kernfs_active(pos))
1248                        atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1249
1250        /* deactivate and unlink the subtree node-by-node */
1251        do {
1252                pos = kernfs_leftmost_descendant(kn);
1253
1254                /*
1255                 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1256                 * base ref could have been put by someone else by the time
1257                 * the function returns.  Make sure it doesn't go away
1258                 * underneath us.
1259                 */
1260                kernfs_get(pos);
1261
1262                /*
1263                 * Drain iff @kn was activated.  This avoids draining and
1264                 * its lockdep annotations for nodes which have never been
1265                 * activated and allows embedding kernfs_remove() in create
1266                 * error paths without worrying about draining.
1267                 */
1268                if (kn->flags & KERNFS_ACTIVATED)
1269                        kernfs_drain(pos);
1270                else
1271                        WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1272
1273                /*
1274                 * kernfs_unlink_sibling() succeeds once per node.  Use it
1275                 * to decide who's responsible for cleanups.
1276                 */
1277                if (!pos->parent || kernfs_unlink_sibling(pos)) {
1278                        struct kernfs_iattrs *ps_iattr =
1279                                pos->parent ? pos->parent->iattr : NULL;
1280
1281                        /* update timestamps on the parent */
1282                        if (ps_iattr) {
1283                                ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1284                                ps_iattr->ia_iattr.ia_mtime =
1285                                        ps_iattr->ia_iattr.ia_ctime;
1286                        }
1287
1288                        kernfs_put(pos);
1289                }
1290
1291                kernfs_put(pos);
1292        } while (pos != kn);
1293}
1294
1295/**
1296 * kernfs_remove - remove a kernfs_node recursively
1297 * @kn: the kernfs_node to remove
1298 *
1299 * Remove @kn along with all its subdirectories and files.
1300 */
1301void kernfs_remove(struct kernfs_node *kn)
1302{
1303        mutex_lock(&kernfs_mutex);
1304        __kernfs_remove(kn);
1305        mutex_unlock(&kernfs_mutex);
1306}
1307
1308/**
1309 * kernfs_break_active_protection - break out of active protection
1310 * @kn: the self kernfs_node
1311 *
1312 * The caller must be running off of a kernfs operation which is invoked
1313 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1314 * this function must also be matched with an invocation of
1315 * kernfs_unbreak_active_protection().
1316 *
1317 * This function releases the active reference of @kn the caller is
1318 * holding.  Once this function is called, @kn may be removed at any point
1319 * and the caller is solely responsible for ensuring that the objects it
1320 * dereferences are accessible.
1321 */
1322void kernfs_break_active_protection(struct kernfs_node *kn)
1323{
1324        /*
1325         * Take out ourself out of the active ref dependency chain.  If
1326         * we're called without an active ref, lockdep will complain.
1327         */
1328        kernfs_put_active(kn);
1329}
1330
1331/**
1332 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1333 * @kn: the self kernfs_node
1334 *
1335 * If kernfs_break_active_protection() was called, this function must be
1336 * invoked before finishing the kernfs operation.  Note that while this
1337 * function restores the active reference, it doesn't and can't actually
1338 * restore the active protection - @kn may already or be in the process of
1339 * being removed.  Once kernfs_break_active_protection() is invoked, that
1340 * protection is irreversibly gone for the kernfs operation instance.
1341 *
1342 * While this function may be called at any point after
1343 * kernfs_break_active_protection() is invoked, its most useful location
1344 * would be right before the enclosing kernfs operation returns.
1345 */
1346void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1347{
1348        /*
1349         * @kn->active could be in any state; however, the increment we do
1350         * here will be undone as soon as the enclosing kernfs operation
1351         * finishes and this temporary bump can't break anything.  If @kn
1352         * is alive, nothing changes.  If @kn is being deactivated, the
1353         * soon-to-follow put will either finish deactivation or restore
1354         * deactivated state.  If @kn is already removed, the temporary
1355         * bump is guaranteed to be gone before @kn is released.
1356         */
1357        atomic_inc(&kn->active);
1358        if (kernfs_lockdep(kn))
1359                rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1360}
1361
1362/**
1363 * kernfs_remove_self - remove a kernfs_node from its own method
1364 * @kn: the self kernfs_node to remove
1365 *
1366 * The caller must be running off of a kernfs operation which is invoked
1367 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1368 * implement a file operation which deletes itself.
1369 *
1370 * For example, the "delete" file for a sysfs device directory can be
1371 * implemented by invoking kernfs_remove_self() on the "delete" file
1372 * itself.  This function breaks the circular dependency of trying to
1373 * deactivate self while holding an active ref itself.  It isn't necessary
1374 * to modify the usual removal path to use kernfs_remove_self().  The
1375 * "delete" implementation can simply invoke kernfs_remove_self() on self
1376 * before proceeding with the usual removal path.  kernfs will ignore later
1377 * kernfs_remove() on self.
1378 *
1379 * kernfs_remove_self() can be called multiple times concurrently on the
1380 * same kernfs_node.  Only the first one actually performs removal and
1381 * returns %true.  All others will wait until the kernfs operation which
1382 * won self-removal finishes and return %false.  Note that the losers wait
1383 * for the completion of not only the winning kernfs_remove_self() but also
1384 * the whole kernfs_ops which won the arbitration.  This can be used to
1385 * guarantee, for example, all concurrent writes to a "delete" file to
1386 * finish only after the whole operation is complete.
1387 */
1388bool kernfs_remove_self(struct kernfs_node *kn)
1389{
1390        bool ret;
1391
1392        mutex_lock(&kernfs_mutex);
1393        kernfs_break_active_protection(kn);
1394
1395        /*
1396         * SUICIDAL is used to arbitrate among competing invocations.  Only
1397         * the first one will actually perform removal.  When the removal
1398         * is complete, SUICIDED is set and the active ref is restored
1399         * while holding kernfs_mutex.  The ones which lost arbitration
1400         * waits for SUICDED && drained which can happen only after the
1401         * enclosing kernfs operation which executed the winning instance
1402         * of kernfs_remove_self() finished.
1403         */
1404        if (!(kn->flags & KERNFS_SUICIDAL)) {
1405                kn->flags |= KERNFS_SUICIDAL;
1406                __kernfs_remove(kn);
1407                kn->flags |= KERNFS_SUICIDED;
1408                ret = true;
1409        } else {
1410                wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1411                DEFINE_WAIT(wait);
1412
1413                while (true) {
1414                        prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1415
1416                        if ((kn->flags & KERNFS_SUICIDED) &&
1417                            atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1418                                break;
1419
1420                        mutex_unlock(&kernfs_mutex);
1421                        schedule();
1422                        mutex_lock(&kernfs_mutex);
1423                }
1424                finish_wait(waitq, &wait);
1425                WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1426                ret = false;
1427        }
1428
1429        /*
1430         * This must be done while holding kernfs_mutex; otherwise, waiting
1431         * for SUICIDED && deactivated could finish prematurely.
1432         */
1433        kernfs_unbreak_active_protection(kn);
1434
1435        mutex_unlock(&kernfs_mutex);
1436        return ret;
1437}
1438
1439/**
1440 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1441 * @parent: parent of the target
1442 * @name: name of the kernfs_node to remove
1443 * @ns: namespace tag of the kernfs_node to remove
1444 *
1445 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1446 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1447 */
1448int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1449                             const void *ns)
1450{
1451        struct kernfs_node *kn;
1452
1453        if (!parent) {
1454                WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1455                        name);
1456                return -ENOENT;
1457        }
1458
1459        mutex_lock(&kernfs_mutex);
1460
1461        kn = kernfs_find_ns(parent, name, ns);
1462        if (kn)
1463                __kernfs_remove(kn);
1464
1465        mutex_unlock(&kernfs_mutex);
1466
1467        if (kn)
1468                return 0;
1469        else
1470                return -ENOENT;
1471}
1472
1473/**
1474 * kernfs_rename_ns - move and rename a kernfs_node
1475 * @kn: target node
1476 * @new_parent: new parent to put @sd under
1477 * @new_name: new name
1478 * @new_ns: new namespace tag
1479 */
1480int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1481                     const char *new_name, const void *new_ns)
1482{
1483        struct kernfs_node *old_parent;
1484        const char *old_name = NULL;
1485        int error;
1486
1487        /* can't move or rename root */
1488        if (!kn->parent)
1489                return -EINVAL;
1490
1491        mutex_lock(&kernfs_mutex);
1492
1493        error = -ENOENT;
1494        if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1495            (new_parent->flags & KERNFS_EMPTY_DIR))
1496                goto out;
1497
1498        error = 0;
1499        if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1500            (strcmp(kn->name, new_name) == 0))
1501                goto out;       /* nothing to rename */
1502
1503        error = -EEXIST;
1504        if (kernfs_find_ns(new_parent, new_name, new_ns))
1505                goto out;
1506
1507        /* rename kernfs_node */
1508        if (strcmp(kn->name, new_name) != 0) {
1509                error = -ENOMEM;
1510                new_name = kstrdup_const(new_name, GFP_KERNEL);
1511                if (!new_name)
1512                        goto out;
1513        } else {
1514                new_name = NULL;
1515        }
1516
1517        /*
1518         * Move to the appropriate place in the appropriate directories rbtree.
1519         */
1520        kernfs_unlink_sibling(kn);
1521        kernfs_get(new_parent);
1522
1523        /* rename_lock protects ->parent and ->name accessors */
1524        spin_lock_irq(&kernfs_rename_lock);
1525
1526        old_parent = kn->parent;
1527        kn->parent = new_parent;
1528
1529        kn->ns = new_ns;
1530        if (new_name) {
1531                old_name = kn->name;
1532                kn->name = new_name;
1533        }
1534
1535        spin_unlock_irq(&kernfs_rename_lock);
1536
1537        kn->hash = kernfs_name_hash(kn->name, kn->ns);
1538        kernfs_link_sibling(kn);
1539
1540        kernfs_put(old_parent);
1541        kfree_const(old_name);
1542
1543        error = 0;
1544 out:
1545        mutex_unlock(&kernfs_mutex);
1546        return error;
1547}
1548
1549/* Relationship between s_mode and the DT_xxx types */
1550static inline unsigned char dt_type(struct kernfs_node *kn)
1551{
1552        return (kn->mode >> 12) & 15;
1553}
1554
1555static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1556{
1557        kernfs_put(filp->private_data);
1558        return 0;
1559}
1560
1561static struct kernfs_node *kernfs_dir_pos(const void *ns,
1562        struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1563{
1564        if (pos) {
1565                int valid = kernfs_active(pos) &&
1566                        pos->parent == parent && hash == pos->hash;
1567                kernfs_put(pos);
1568                if (!valid)
1569                        pos = NULL;
1570        }
1571        if (!pos && (hash > 1) && (hash < INT_MAX)) {
1572                struct rb_node *node = parent->dir.children.rb_node;
1573                while (node) {
1574                        pos = rb_to_kn(node);
1575
1576                        if (hash < pos->hash)
1577                                node = node->rb_left;
1578                        else if (hash > pos->hash)
1579                                node = node->rb_right;
1580                        else
1581                                break;
1582                }
1583        }
1584        /* Skip over entries which are dying/dead or in the wrong namespace */
1585        while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1586                struct rb_node *node = rb_next(&pos->rb);
1587                if (!node)
1588                        pos = NULL;
1589                else
1590                        pos = rb_to_kn(node);
1591        }
1592        return pos;
1593}
1594
1595static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1596        struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1597{
1598        pos = kernfs_dir_pos(ns, parent, ino, pos);
1599        if (pos) {
1600                do {
1601                        struct rb_node *node = rb_next(&pos->rb);
1602                        if (!node)
1603                                pos = NULL;
1604                        else
1605                                pos = rb_to_kn(node);
1606                } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1607        }
1608        return pos;
1609}
1610
1611static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1612{
1613        struct dentry *dentry = file->f_path.dentry;
1614        struct kernfs_node *parent = dentry->d_fsdata;
1615        struct kernfs_node *pos = file->private_data;
1616        const void *ns = NULL;
1617
1618        if (!dir_emit_dots(file, ctx))
1619                return 0;
1620        mutex_lock(&kernfs_mutex);
1621
1622        if (kernfs_ns_enabled(parent))
1623                ns = kernfs_info(dentry->d_sb)->ns;
1624
1625        for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1626             pos;
1627             pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1628                const char *name = pos->name;
1629                unsigned int type = dt_type(pos);
1630                int len = strlen(name);
1631                ino_t ino = pos->ino;
1632
1633                ctx->pos = pos->hash;
1634                file->private_data = pos;
1635                kernfs_get(pos);
1636
1637                mutex_unlock(&kernfs_mutex);
1638                if (!dir_emit(ctx, name, len, ino, type))
1639                        return 0;
1640                mutex_lock(&kernfs_mutex);
1641        }
1642        mutex_unlock(&kernfs_mutex);
1643        file->private_data = NULL;
1644        ctx->pos = INT_MAX;
1645        return 0;
1646}
1647
1648const struct file_operations kernfs_dir_fops = {
1649        .read           = generic_read_dir,
1650        .iterate_shared = kernfs_fop_readdir,
1651        .release        = kernfs_dir_fop_release,
1652        .llseek         = generic_file_llseek,
1653};
1654