linux/fs/kernfs/mount.c
<<
>>
Prefs
   1/*
   2 * fs/kernfs/mount.c - kernfs mount implementation
   3 *
   4 * Copyright (c) 2001-3 Patrick Mochel
   5 * Copyright (c) 2007 SUSE Linux Products GmbH
   6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
   7 *
   8 * This file is released under the GPLv2.
   9 */
  10
  11#include <linux/fs.h>
  12#include <linux/mount.h>
  13#include <linux/init.h>
  14#include <linux/magic.h>
  15#include <linux/slab.h>
  16#include <linux/pagemap.h>
  17#include <linux/namei.h>
  18#include <linux/seq_file.h>
  19
  20#include "kernfs-internal.h"
  21
  22struct kmem_cache *kernfs_node_cache;
  23
  24static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
  25{
  26        struct kernfs_root *root = kernfs_info(sb)->root;
  27        struct kernfs_syscall_ops *scops = root->syscall_ops;
  28
  29        if (scops && scops->remount_fs)
  30                return scops->remount_fs(root, flags, data);
  31        return 0;
  32}
  33
  34static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
  35{
  36        struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
  37        struct kernfs_syscall_ops *scops = root->syscall_ops;
  38
  39        if (scops && scops->show_options)
  40                return scops->show_options(sf, root);
  41        return 0;
  42}
  43
  44static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
  45{
  46        struct kernfs_node *node = dentry->d_fsdata;
  47        struct kernfs_root *root = kernfs_root(node);
  48        struct kernfs_syscall_ops *scops = root->syscall_ops;
  49
  50        if (scops && scops->show_path)
  51                return scops->show_path(sf, node, root);
  52
  53        seq_dentry(sf, dentry, " \t\n\\");
  54        return 0;
  55}
  56
  57const struct super_operations kernfs_sops = {
  58        .statfs         = simple_statfs,
  59        .drop_inode     = generic_delete_inode,
  60        .evict_inode    = kernfs_evict_inode,
  61
  62        .remount_fs     = kernfs_sop_remount_fs,
  63        .show_options   = kernfs_sop_show_options,
  64        .show_path      = kernfs_sop_show_path,
  65};
  66
  67/**
  68 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
  69 * @sb: the super_block in question
  70 *
  71 * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
  72 * %NULL is returned.
  73 */
  74struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
  75{
  76        if (sb->s_op == &kernfs_sops)
  77                return kernfs_info(sb)->root;
  78        return NULL;
  79}
  80
  81/*
  82 * find the next ancestor in the path down to @child, where @parent was the
  83 * ancestor whose descendant we want to find.
  84 *
  85 * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
  86 * node.  If @parent is b, then we return the node for c.
  87 * Passing in d as @parent is not ok.
  88 */
  89static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
  90                                              struct kernfs_node *parent)
  91{
  92        if (child == parent) {
  93                pr_crit_once("BUG in find_next_ancestor: called with parent == child");
  94                return NULL;
  95        }
  96
  97        while (child->parent != parent) {
  98                if (!child->parent)
  99                        return NULL;
 100                child = child->parent;
 101        }
 102
 103        return child;
 104}
 105
 106/**
 107 * kernfs_node_dentry - get a dentry for the given kernfs_node
 108 * @kn: kernfs_node for which a dentry is needed
 109 * @sb: the kernfs super_block
 110 */
 111struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
 112                                  struct super_block *sb)
 113{
 114        struct dentry *dentry;
 115        struct kernfs_node *knparent = NULL;
 116
 117        BUG_ON(sb->s_op != &kernfs_sops);
 118
 119        dentry = dget(sb->s_root);
 120
 121        /* Check if this is the root kernfs_node */
 122        if (!kn->parent)
 123                return dentry;
 124
 125        knparent = find_next_ancestor(kn, NULL);
 126        if (WARN_ON(!knparent))
 127                return ERR_PTR(-EINVAL);
 128
 129        do {
 130                struct dentry *dtmp;
 131                struct kernfs_node *kntmp;
 132
 133                if (kn == knparent)
 134                        return dentry;
 135                kntmp = find_next_ancestor(kn, knparent);
 136                if (WARN_ON(!kntmp))
 137                        return ERR_PTR(-EINVAL);
 138                dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
 139                                               strlen(kntmp->name));
 140                dput(dentry);
 141                if (IS_ERR(dtmp))
 142                        return dtmp;
 143                knparent = kntmp;
 144                dentry = dtmp;
 145        } while (true);
 146}
 147
 148static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
 149{
 150        struct kernfs_super_info *info = kernfs_info(sb);
 151        struct inode *inode;
 152        struct dentry *root;
 153
 154        info->sb = sb;
 155        /* Userspace would break if executables or devices appear on sysfs */
 156        sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 157        sb->s_blocksize = PAGE_SIZE;
 158        sb->s_blocksize_bits = PAGE_SHIFT;
 159        sb->s_magic = magic;
 160        sb->s_op = &kernfs_sops;
 161        sb->s_time_gran = 1;
 162
 163        /* get root inode, initialize and unlock it */
 164        mutex_lock(&kernfs_mutex);
 165        inode = kernfs_get_inode(sb, info->root->kn);
 166        mutex_unlock(&kernfs_mutex);
 167        if (!inode) {
 168                pr_debug("kernfs: could not get root inode\n");
 169                return -ENOMEM;
 170        }
 171
 172        /* instantiate and link root dentry */
 173        root = d_make_root(inode);
 174        if (!root) {
 175                pr_debug("%s: could not get root dentry!\n", __func__);
 176                return -ENOMEM;
 177        }
 178        kernfs_get(info->root->kn);
 179        root->d_fsdata = info->root->kn;
 180        sb->s_root = root;
 181        sb->s_d_op = &kernfs_dops;
 182        return 0;
 183}
 184
 185static int kernfs_test_super(struct super_block *sb, void *data)
 186{
 187        struct kernfs_super_info *sb_info = kernfs_info(sb);
 188        struct kernfs_super_info *info = data;
 189
 190        return sb_info->root == info->root && sb_info->ns == info->ns;
 191}
 192
 193static int kernfs_set_super(struct super_block *sb, void *data)
 194{
 195        int error;
 196        error = set_anon_super(sb, data);
 197        if (!error)
 198                sb->s_fs_info = data;
 199        return error;
 200}
 201
 202/**
 203 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
 204 * @sb: super_block of interest
 205 *
 206 * Return the namespace tag associated with kernfs super_block @sb.
 207 */
 208const void *kernfs_super_ns(struct super_block *sb)
 209{
 210        struct kernfs_super_info *info = kernfs_info(sb);
 211
 212        return info->ns;
 213}
 214
 215/**
 216 * kernfs_mount_ns - kernfs mount helper
 217 * @fs_type: file_system_type of the fs being mounted
 218 * @flags: mount flags specified for the mount
 219 * @root: kernfs_root of the hierarchy being mounted
 220 * @magic: file system specific magic number
 221 * @new_sb_created: tell the caller if we allocated a new superblock
 222 * @ns: optional namespace tag of the mount
 223 *
 224 * This is to be called from each kernfs user's file_system_type->mount()
 225 * implementation, which should pass through the specified @fs_type and
 226 * @flags, and specify the hierarchy and namespace tag to mount via @root
 227 * and @ns, respectively.
 228 *
 229 * The return value can be passed to the vfs layer verbatim.
 230 */
 231struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
 232                                struct kernfs_root *root, unsigned long magic,
 233                                bool *new_sb_created, const void *ns)
 234{
 235        struct super_block *sb;
 236        struct kernfs_super_info *info;
 237        int error;
 238
 239        info = kzalloc(sizeof(*info), GFP_KERNEL);
 240        if (!info)
 241                return ERR_PTR(-ENOMEM);
 242
 243        info->root = root;
 244        info->ns = ns;
 245
 246        sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags,
 247                         &init_user_ns, info);
 248        if (IS_ERR(sb) || sb->s_fs_info != info)
 249                kfree(info);
 250        if (IS_ERR(sb))
 251                return ERR_CAST(sb);
 252
 253        if (new_sb_created)
 254                *new_sb_created = !sb->s_root;
 255
 256        if (!sb->s_root) {
 257                struct kernfs_super_info *info = kernfs_info(sb);
 258
 259                error = kernfs_fill_super(sb, magic);
 260                if (error) {
 261                        deactivate_locked_super(sb);
 262                        return ERR_PTR(error);
 263                }
 264                sb->s_flags |= MS_ACTIVE;
 265
 266                mutex_lock(&kernfs_mutex);
 267                list_add(&info->node, &root->supers);
 268                mutex_unlock(&kernfs_mutex);
 269        }
 270
 271        return dget(sb->s_root);
 272}
 273
 274/**
 275 * kernfs_kill_sb - kill_sb for kernfs
 276 * @sb: super_block being killed
 277 *
 278 * This can be used directly for file_system_type->kill_sb().  If a kernfs
 279 * user needs extra cleanup, it can implement its own kill_sb() and call
 280 * this function at the end.
 281 */
 282void kernfs_kill_sb(struct super_block *sb)
 283{
 284        struct kernfs_super_info *info = kernfs_info(sb);
 285        struct kernfs_node *root_kn = sb->s_root->d_fsdata;
 286
 287        mutex_lock(&kernfs_mutex);
 288        list_del(&info->node);
 289        mutex_unlock(&kernfs_mutex);
 290
 291        /*
 292         * Remove the superblock from fs_supers/s_instances
 293         * so we can't find it, before freeing kernfs_super_info.
 294         */
 295        kill_anon_super(sb);
 296        kfree(info);
 297        kernfs_put(root_kn);
 298}
 299
 300/**
 301 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
 302 * @kernfs_root: the kernfs_root in question
 303 * @ns: the namespace tag
 304 *
 305 * Pin the superblock so the superblock won't be destroyed in subsequent
 306 * operations.  This can be used to block ->kill_sb() which may be useful
 307 * for kernfs users which dynamically manage superblocks.
 308 *
 309 * Returns NULL if there's no superblock associated to this kernfs_root, or
 310 * -EINVAL if the superblock is being freed.
 311 */
 312struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
 313{
 314        struct kernfs_super_info *info;
 315        struct super_block *sb = NULL;
 316
 317        mutex_lock(&kernfs_mutex);
 318        list_for_each_entry(info, &root->supers, node) {
 319                if (info->ns == ns) {
 320                        sb = info->sb;
 321                        if (!atomic_inc_not_zero(&info->sb->s_active))
 322                                sb = ERR_PTR(-EINVAL);
 323                        break;
 324                }
 325        }
 326        mutex_unlock(&kernfs_mutex);
 327        return sb;
 328}
 329
 330void __init kernfs_init(void)
 331{
 332        kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
 333                                              sizeof(struct kernfs_node),
 334                                              0, SLAB_PANIC, NULL);
 335}
 336