linux/fs/xfs/xfs_inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include <linux/log2.h>
  19
  20#include "xfs.h"
  21#include "xfs_fs.h"
  22#include "xfs_shared.h"
  23#include "xfs_format.h"
  24#include "xfs_log_format.h"
  25#include "xfs_trans_resv.h"
  26#include "xfs_sb.h"
  27#include "xfs_mount.h"
  28#include "xfs_defer.h"
  29#include "xfs_inode.h"
  30#include "xfs_da_format.h"
  31#include "xfs_da_btree.h"
  32#include "xfs_dir2.h"
  33#include "xfs_attr_sf.h"
  34#include "xfs_attr.h"
  35#include "xfs_trans_space.h"
  36#include "xfs_trans.h"
  37#include "xfs_buf_item.h"
  38#include "xfs_inode_item.h"
  39#include "xfs_ialloc.h"
  40#include "xfs_bmap.h"
  41#include "xfs_bmap_util.h"
  42#include "xfs_error.h"
  43#include "xfs_quota.h"
  44#include "xfs_filestream.h"
  45#include "xfs_cksum.h"
  46#include "xfs_trace.h"
  47#include "xfs_icache.h"
  48#include "xfs_symlink.h"
  49#include "xfs_trans_priv.h"
  50#include "xfs_log.h"
  51#include "xfs_bmap_btree.h"
  52
  53kmem_zone_t *xfs_inode_zone;
  54
  55/*
  56 * Used in xfs_itruncate_extents().  This is the maximum number of extents
  57 * freed from a file in a single transaction.
  58 */
  59#define XFS_ITRUNC_MAX_EXTENTS  2
  60
  61STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
  62STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
  63STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
  64
  65/*
  66 * helper function to extract extent size hint from inode
  67 */
  68xfs_extlen_t
  69xfs_get_extsz_hint(
  70        struct xfs_inode        *ip)
  71{
  72        if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
  73                return ip->i_d.di_extsize;
  74        if (XFS_IS_REALTIME_INODE(ip))
  75                return ip->i_mount->m_sb.sb_rextsize;
  76        return 0;
  77}
  78
  79/*
  80 * These two are wrapper routines around the xfs_ilock() routine used to
  81 * centralize some grungy code.  They are used in places that wish to lock the
  82 * inode solely for reading the extents.  The reason these places can't just
  83 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
  84 * bringing in of the extents from disk for a file in b-tree format.  If the
  85 * inode is in b-tree format, then we need to lock the inode exclusively until
  86 * the extents are read in.  Locking it exclusively all the time would limit
  87 * our parallelism unnecessarily, though.  What we do instead is check to see
  88 * if the extents have been read in yet, and only lock the inode exclusively
  89 * if they have not.
  90 *
  91 * The functions return a value which should be given to the corresponding
  92 * xfs_iunlock() call.
  93 */
  94uint
  95xfs_ilock_data_map_shared(
  96        struct xfs_inode        *ip)
  97{
  98        uint                    lock_mode = XFS_ILOCK_SHARED;
  99
 100        if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
 101            (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
 102                lock_mode = XFS_ILOCK_EXCL;
 103        xfs_ilock(ip, lock_mode);
 104        return lock_mode;
 105}
 106
 107uint
 108xfs_ilock_attr_map_shared(
 109        struct xfs_inode        *ip)
 110{
 111        uint                    lock_mode = XFS_ILOCK_SHARED;
 112
 113        if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
 114            (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
 115                lock_mode = XFS_ILOCK_EXCL;
 116        xfs_ilock(ip, lock_mode);
 117        return lock_mode;
 118}
 119
 120/*
 121 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
 122 * the i_lock.  This routine allows various combinations of the locks to be
 123 * obtained.
 124 *
 125 * The 3 locks should always be ordered so that the IO lock is obtained first,
 126 * the mmap lock second and the ilock last in order to prevent deadlock.
 127 *
 128 * Basic locking order:
 129 *
 130 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
 131 *
 132 * mmap_sem locking order:
 133 *
 134 * i_iolock -> page lock -> mmap_sem
 135 * mmap_sem -> i_mmap_lock -> page_lock
 136 *
 137 * The difference in mmap_sem locking order mean that we cannot hold the
 138 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
 139 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
 140 * in get_user_pages() to map the user pages into the kernel address space for
 141 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
 142 * page faults already hold the mmap_sem.
 143 *
 144 * Hence to serialise fully against both syscall and mmap based IO, we need to
 145 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
 146 * taken in places where we need to invalidate the page cache in a race
 147 * free manner (e.g. truncate, hole punch and other extent manipulation
 148 * functions).
 149 */
 150void
 151xfs_ilock(
 152        xfs_inode_t             *ip,
 153        uint                    lock_flags)
 154{
 155        trace_xfs_ilock(ip, lock_flags, _RET_IP_);
 156
 157        /*
 158         * You can't set both SHARED and EXCL for the same lock,
 159         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 160         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 161         */
 162        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 163               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 164        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 165               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 166        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 167               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 168        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 169
 170        if (lock_flags & XFS_IOLOCK_EXCL)
 171                mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 172        else if (lock_flags & XFS_IOLOCK_SHARED)
 173                mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
 174
 175        if (lock_flags & XFS_MMAPLOCK_EXCL)
 176                mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 177        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 178                mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
 179
 180        if (lock_flags & XFS_ILOCK_EXCL)
 181                mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 182        else if (lock_flags & XFS_ILOCK_SHARED)
 183                mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
 184}
 185
 186/*
 187 * This is just like xfs_ilock(), except that the caller
 188 * is guaranteed not to sleep.  It returns 1 if it gets
 189 * the requested locks and 0 otherwise.  If the IO lock is
 190 * obtained but the inode lock cannot be, then the IO lock
 191 * is dropped before returning.
 192 *
 193 * ip -- the inode being locked
 194 * lock_flags -- this parameter indicates the inode's locks to be
 195 *       to be locked.  See the comment for xfs_ilock() for a list
 196 *       of valid values.
 197 */
 198int
 199xfs_ilock_nowait(
 200        xfs_inode_t             *ip,
 201        uint                    lock_flags)
 202{
 203        trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
 204
 205        /*
 206         * You can't set both SHARED and EXCL for the same lock,
 207         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 208         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 209         */
 210        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 211               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 212        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 213               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 214        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 215               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 216        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 217
 218        if (lock_flags & XFS_IOLOCK_EXCL) {
 219                if (!mrtryupdate(&ip->i_iolock))
 220                        goto out;
 221        } else if (lock_flags & XFS_IOLOCK_SHARED) {
 222                if (!mrtryaccess(&ip->i_iolock))
 223                        goto out;
 224        }
 225
 226        if (lock_flags & XFS_MMAPLOCK_EXCL) {
 227                if (!mrtryupdate(&ip->i_mmaplock))
 228                        goto out_undo_iolock;
 229        } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
 230                if (!mrtryaccess(&ip->i_mmaplock))
 231                        goto out_undo_iolock;
 232        }
 233
 234        if (lock_flags & XFS_ILOCK_EXCL) {
 235                if (!mrtryupdate(&ip->i_lock))
 236                        goto out_undo_mmaplock;
 237        } else if (lock_flags & XFS_ILOCK_SHARED) {
 238                if (!mrtryaccess(&ip->i_lock))
 239                        goto out_undo_mmaplock;
 240        }
 241        return 1;
 242
 243out_undo_mmaplock:
 244        if (lock_flags & XFS_MMAPLOCK_EXCL)
 245                mrunlock_excl(&ip->i_mmaplock);
 246        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 247                mrunlock_shared(&ip->i_mmaplock);
 248out_undo_iolock:
 249        if (lock_flags & XFS_IOLOCK_EXCL)
 250                mrunlock_excl(&ip->i_iolock);
 251        else if (lock_flags & XFS_IOLOCK_SHARED)
 252                mrunlock_shared(&ip->i_iolock);
 253out:
 254        return 0;
 255}
 256
 257/*
 258 * xfs_iunlock() is used to drop the inode locks acquired with
 259 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
 260 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
 261 * that we know which locks to drop.
 262 *
 263 * ip -- the inode being unlocked
 264 * lock_flags -- this parameter indicates the inode's locks to be
 265 *       to be unlocked.  See the comment for xfs_ilock() for a list
 266 *       of valid values for this parameter.
 267 *
 268 */
 269void
 270xfs_iunlock(
 271        xfs_inode_t             *ip,
 272        uint                    lock_flags)
 273{
 274        /*
 275         * You can't set both SHARED and EXCL for the same lock,
 276         * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
 277         * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
 278         */
 279        ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
 280               (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
 281        ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
 282               (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
 283        ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
 284               (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
 285        ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
 286        ASSERT(lock_flags != 0);
 287
 288        if (lock_flags & XFS_IOLOCK_EXCL)
 289                mrunlock_excl(&ip->i_iolock);
 290        else if (lock_flags & XFS_IOLOCK_SHARED)
 291                mrunlock_shared(&ip->i_iolock);
 292
 293        if (lock_flags & XFS_MMAPLOCK_EXCL)
 294                mrunlock_excl(&ip->i_mmaplock);
 295        else if (lock_flags & XFS_MMAPLOCK_SHARED)
 296                mrunlock_shared(&ip->i_mmaplock);
 297
 298        if (lock_flags & XFS_ILOCK_EXCL)
 299                mrunlock_excl(&ip->i_lock);
 300        else if (lock_flags & XFS_ILOCK_SHARED)
 301                mrunlock_shared(&ip->i_lock);
 302
 303        trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
 304}
 305
 306/*
 307 * give up write locks.  the i/o lock cannot be held nested
 308 * if it is being demoted.
 309 */
 310void
 311xfs_ilock_demote(
 312        xfs_inode_t             *ip,
 313        uint                    lock_flags)
 314{
 315        ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
 316        ASSERT((lock_flags &
 317                ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
 318
 319        if (lock_flags & XFS_ILOCK_EXCL)
 320                mrdemote(&ip->i_lock);
 321        if (lock_flags & XFS_MMAPLOCK_EXCL)
 322                mrdemote(&ip->i_mmaplock);
 323        if (lock_flags & XFS_IOLOCK_EXCL)
 324                mrdemote(&ip->i_iolock);
 325
 326        trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
 327}
 328
 329#if defined(DEBUG) || defined(XFS_WARN)
 330int
 331xfs_isilocked(
 332        xfs_inode_t             *ip,
 333        uint                    lock_flags)
 334{
 335        if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
 336                if (!(lock_flags & XFS_ILOCK_SHARED))
 337                        return !!ip->i_lock.mr_writer;
 338                return rwsem_is_locked(&ip->i_lock.mr_lock);
 339        }
 340
 341        if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
 342                if (!(lock_flags & XFS_MMAPLOCK_SHARED))
 343                        return !!ip->i_mmaplock.mr_writer;
 344                return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
 345        }
 346
 347        if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
 348                if (!(lock_flags & XFS_IOLOCK_SHARED))
 349                        return !!ip->i_iolock.mr_writer;
 350                return rwsem_is_locked(&ip->i_iolock.mr_lock);
 351        }
 352
 353        ASSERT(0);
 354        return 0;
 355}
 356#endif
 357
 358#ifdef DEBUG
 359int xfs_locked_n;
 360int xfs_small_retries;
 361int xfs_middle_retries;
 362int xfs_lots_retries;
 363int xfs_lock_delays;
 364#endif
 365
 366/*
 367 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
 368 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
 369 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
 370 * errors and warnings.
 371 */
 372#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
 373static bool
 374xfs_lockdep_subclass_ok(
 375        int subclass)
 376{
 377        return subclass < MAX_LOCKDEP_SUBCLASSES;
 378}
 379#else
 380#define xfs_lockdep_subclass_ok(subclass)       (true)
 381#endif
 382
 383/*
 384 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
 385 * value. This can be called for any type of inode lock combination, including
 386 * parent locking. Care must be taken to ensure we don't overrun the subclass
 387 * storage fields in the class mask we build.
 388 */
 389static inline int
 390xfs_lock_inumorder(int lock_mode, int subclass)
 391{
 392        int     class = 0;
 393
 394        ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
 395                              XFS_ILOCK_RTSUM)));
 396        ASSERT(xfs_lockdep_subclass_ok(subclass));
 397
 398        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 399                ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
 400                ASSERT(xfs_lockdep_subclass_ok(subclass +
 401                                                XFS_IOLOCK_PARENT_VAL));
 402                class += subclass << XFS_IOLOCK_SHIFT;
 403                if (lock_mode & XFS_IOLOCK_PARENT)
 404                        class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
 405        }
 406
 407        if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
 408                ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
 409                class += subclass << XFS_MMAPLOCK_SHIFT;
 410        }
 411
 412        if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
 413                ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
 414                class += subclass << XFS_ILOCK_SHIFT;
 415        }
 416
 417        return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
 418}
 419
 420/*
 421 * The following routine will lock n inodes in exclusive mode.  We assume the
 422 * caller calls us with the inodes in i_ino order.
 423 *
 424 * We need to detect deadlock where an inode that we lock is in the AIL and we
 425 * start waiting for another inode that is locked by a thread in a long running
 426 * transaction (such as truncate). This can result in deadlock since the long
 427 * running trans might need to wait for the inode we just locked in order to
 428 * push the tail and free space in the log.
 429 *
 430 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
 431 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 432 * lock more than one at a time, lockdep will report false positives saying we
 433 * have violated locking orders.
 434 */
 435static void
 436xfs_lock_inodes(
 437        xfs_inode_t     **ips,
 438        int             inodes,
 439        uint            lock_mode)
 440{
 441        int             attempts = 0, i, j, try_lock;
 442        xfs_log_item_t  *lp;
 443
 444        /*
 445         * Currently supports between 2 and 5 inodes with exclusive locking.  We
 446         * support an arbitrary depth of locking here, but absolute limits on
 447         * inodes depend on the the type of locking and the limits placed by
 448         * lockdep annotations in xfs_lock_inumorder.  These are all checked by
 449         * the asserts.
 450         */
 451        ASSERT(ips && inodes >= 2 && inodes <= 5);
 452        ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
 453                            XFS_ILOCK_EXCL));
 454        ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
 455                              XFS_ILOCK_SHARED)));
 456        ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
 457                inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
 458        ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
 459                inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
 460        ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
 461                inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
 462
 463        if (lock_mode & XFS_IOLOCK_EXCL) {
 464                ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
 465        } else if (lock_mode & XFS_MMAPLOCK_EXCL)
 466                ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
 467
 468        try_lock = 0;
 469        i = 0;
 470again:
 471        for (; i < inodes; i++) {
 472                ASSERT(ips[i]);
 473
 474                if (i && (ips[i] == ips[i - 1]))        /* Already locked */
 475                        continue;
 476
 477                /*
 478                 * If try_lock is not set yet, make sure all locked inodes are
 479                 * not in the AIL.  If any are, set try_lock to be used later.
 480                 */
 481                if (!try_lock) {
 482                        for (j = (i - 1); j >= 0 && !try_lock; j--) {
 483                                lp = (xfs_log_item_t *)ips[j]->i_itemp;
 484                                if (lp && (lp->li_flags & XFS_LI_IN_AIL))
 485                                        try_lock++;
 486                        }
 487                }
 488
 489                /*
 490                 * If any of the previous locks we have locked is in the AIL,
 491                 * we must TRY to get the second and subsequent locks. If
 492                 * we can't get any, we must release all we have
 493                 * and try again.
 494                 */
 495                if (!try_lock) {
 496                        xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
 497                        continue;
 498                }
 499
 500                /* try_lock means we have an inode locked that is in the AIL. */
 501                ASSERT(i != 0);
 502                if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
 503                        continue;
 504
 505                /*
 506                 * Unlock all previous guys and try again.  xfs_iunlock will try
 507                 * to push the tail if the inode is in the AIL.
 508                 */
 509                attempts++;
 510                for (j = i - 1; j >= 0; j--) {
 511                        /*
 512                         * Check to see if we've already unlocked this one.  Not
 513                         * the first one going back, and the inode ptr is the
 514                         * same.
 515                         */
 516                        if (j != (i - 1) && ips[j] == ips[j + 1])
 517                                continue;
 518
 519                        xfs_iunlock(ips[j], lock_mode);
 520                }
 521
 522                if ((attempts % 5) == 0) {
 523                        delay(1); /* Don't just spin the CPU */
 524#ifdef DEBUG
 525                        xfs_lock_delays++;
 526#endif
 527                }
 528                i = 0;
 529                try_lock = 0;
 530                goto again;
 531        }
 532
 533#ifdef DEBUG
 534        if (attempts) {
 535                if (attempts < 5) xfs_small_retries++;
 536                else if (attempts < 100) xfs_middle_retries++;
 537                else xfs_lots_retries++;
 538        } else {
 539                xfs_locked_n++;
 540        }
 541#endif
 542}
 543
 544/*
 545 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
 546 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
 547 * lock more than one at a time, lockdep will report false positives saying we
 548 * have violated locking orders.
 549 */
 550void
 551xfs_lock_two_inodes(
 552        xfs_inode_t             *ip0,
 553        xfs_inode_t             *ip1,
 554        uint                    lock_mode)
 555{
 556        xfs_inode_t             *temp;
 557        int                     attempts = 0;
 558        xfs_log_item_t          *lp;
 559
 560        if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
 561                ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
 562                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 563        } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
 564                ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
 565
 566        ASSERT(ip0->i_ino != ip1->i_ino);
 567
 568        if (ip0->i_ino > ip1->i_ino) {
 569                temp = ip0;
 570                ip0 = ip1;
 571                ip1 = temp;
 572        }
 573
 574 again:
 575        xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
 576
 577        /*
 578         * If the first lock we have locked is in the AIL, we must TRY to get
 579         * the second lock. If we can't get it, we must release the first one
 580         * and try again.
 581         */
 582        lp = (xfs_log_item_t *)ip0->i_itemp;
 583        if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
 584                if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
 585                        xfs_iunlock(ip0, lock_mode);
 586                        if ((++attempts % 5) == 0)
 587                                delay(1); /* Don't just spin the CPU */
 588                        goto again;
 589                }
 590        } else {
 591                xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
 592        }
 593}
 594
 595
 596void
 597__xfs_iflock(
 598        struct xfs_inode        *ip)
 599{
 600        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
 601        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
 602
 603        do {
 604                prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
 605                if (xfs_isiflocked(ip))
 606                        io_schedule();
 607        } while (!xfs_iflock_nowait(ip));
 608
 609        finish_wait(wq, &wait.wait);
 610}
 611
 612STATIC uint
 613_xfs_dic2xflags(
 614        __uint16_t              di_flags,
 615        uint64_t                di_flags2,
 616        bool                    has_attr)
 617{
 618        uint                    flags = 0;
 619
 620        if (di_flags & XFS_DIFLAG_ANY) {
 621                if (di_flags & XFS_DIFLAG_REALTIME)
 622                        flags |= FS_XFLAG_REALTIME;
 623                if (di_flags & XFS_DIFLAG_PREALLOC)
 624                        flags |= FS_XFLAG_PREALLOC;
 625                if (di_flags & XFS_DIFLAG_IMMUTABLE)
 626                        flags |= FS_XFLAG_IMMUTABLE;
 627                if (di_flags & XFS_DIFLAG_APPEND)
 628                        flags |= FS_XFLAG_APPEND;
 629                if (di_flags & XFS_DIFLAG_SYNC)
 630                        flags |= FS_XFLAG_SYNC;
 631                if (di_flags & XFS_DIFLAG_NOATIME)
 632                        flags |= FS_XFLAG_NOATIME;
 633                if (di_flags & XFS_DIFLAG_NODUMP)
 634                        flags |= FS_XFLAG_NODUMP;
 635                if (di_flags & XFS_DIFLAG_RTINHERIT)
 636                        flags |= FS_XFLAG_RTINHERIT;
 637                if (di_flags & XFS_DIFLAG_PROJINHERIT)
 638                        flags |= FS_XFLAG_PROJINHERIT;
 639                if (di_flags & XFS_DIFLAG_NOSYMLINKS)
 640                        flags |= FS_XFLAG_NOSYMLINKS;
 641                if (di_flags & XFS_DIFLAG_EXTSIZE)
 642                        flags |= FS_XFLAG_EXTSIZE;
 643                if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
 644                        flags |= FS_XFLAG_EXTSZINHERIT;
 645                if (di_flags & XFS_DIFLAG_NODEFRAG)
 646                        flags |= FS_XFLAG_NODEFRAG;
 647                if (di_flags & XFS_DIFLAG_FILESTREAM)
 648                        flags |= FS_XFLAG_FILESTREAM;
 649        }
 650
 651        if (di_flags2 & XFS_DIFLAG2_ANY) {
 652                if (di_flags2 & XFS_DIFLAG2_DAX)
 653                        flags |= FS_XFLAG_DAX;
 654        }
 655
 656        if (has_attr)
 657                flags |= FS_XFLAG_HASATTR;
 658
 659        return flags;
 660}
 661
 662uint
 663xfs_ip2xflags(
 664        struct xfs_inode        *ip)
 665{
 666        struct xfs_icdinode     *dic = &ip->i_d;
 667
 668        return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
 669}
 670
 671/*
 672 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
 673 * is allowed, otherwise it has to be an exact match. If a CI match is found,
 674 * ci_name->name will point to a the actual name (caller must free) or
 675 * will be set to NULL if an exact match is found.
 676 */
 677int
 678xfs_lookup(
 679        xfs_inode_t             *dp,
 680        struct xfs_name         *name,
 681        xfs_inode_t             **ipp,
 682        struct xfs_name         *ci_name)
 683{
 684        xfs_ino_t               inum;
 685        int                     error;
 686
 687        trace_xfs_lookup(dp, name);
 688
 689        if (XFS_FORCED_SHUTDOWN(dp->i_mount))
 690                return -EIO;
 691
 692        xfs_ilock(dp, XFS_IOLOCK_SHARED);
 693        error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
 694        if (error)
 695                goto out_unlock;
 696
 697        error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
 698        if (error)
 699                goto out_free_name;
 700
 701        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 702        return 0;
 703
 704out_free_name:
 705        if (ci_name)
 706                kmem_free(ci_name->name);
 707out_unlock:
 708        xfs_iunlock(dp, XFS_IOLOCK_SHARED);
 709        *ipp = NULL;
 710        return error;
 711}
 712
 713/*
 714 * Allocate an inode on disk and return a copy of its in-core version.
 715 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
 716 * appropriately within the inode.  The uid and gid for the inode are
 717 * set according to the contents of the given cred structure.
 718 *
 719 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
 720 * has a free inode available, call xfs_iget() to obtain the in-core
 721 * version of the allocated inode.  Finally, fill in the inode and
 722 * log its initial contents.  In this case, ialloc_context would be
 723 * set to NULL.
 724 *
 725 * If xfs_dialloc() does not have an available inode, it will replenish
 726 * its supply by doing an allocation. Since we can only do one
 727 * allocation within a transaction without deadlocks, we must commit
 728 * the current transaction before returning the inode itself.
 729 * In this case, therefore, we will set ialloc_context and return.
 730 * The caller should then commit the current transaction, start a new
 731 * transaction, and call xfs_ialloc() again to actually get the inode.
 732 *
 733 * To ensure that some other process does not grab the inode that
 734 * was allocated during the first call to xfs_ialloc(), this routine
 735 * also returns the [locked] bp pointing to the head of the freelist
 736 * as ialloc_context.  The caller should hold this buffer across
 737 * the commit and pass it back into this routine on the second call.
 738 *
 739 * If we are allocating quota inodes, we do not have a parent inode
 740 * to attach to or associate with (i.e. pip == NULL) because they
 741 * are not linked into the directory structure - they are attached
 742 * directly to the superblock - and so have no parent.
 743 */
 744static int
 745xfs_ialloc(
 746        xfs_trans_t     *tp,
 747        xfs_inode_t     *pip,
 748        umode_t         mode,
 749        xfs_nlink_t     nlink,
 750        xfs_dev_t       rdev,
 751        prid_t          prid,
 752        int             okalloc,
 753        xfs_buf_t       **ialloc_context,
 754        xfs_inode_t     **ipp)
 755{
 756        struct xfs_mount *mp = tp->t_mountp;
 757        xfs_ino_t       ino;
 758        xfs_inode_t     *ip;
 759        uint            flags;
 760        int             error;
 761        struct timespec tv;
 762        struct inode    *inode;
 763
 764        /*
 765         * Call the space management code to pick
 766         * the on-disk inode to be allocated.
 767         */
 768        error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
 769                            ialloc_context, &ino);
 770        if (error)
 771                return error;
 772        if (*ialloc_context || ino == NULLFSINO) {
 773                *ipp = NULL;
 774                return 0;
 775        }
 776        ASSERT(*ialloc_context == NULL);
 777
 778        /*
 779         * Get the in-core inode with the lock held exclusively.
 780         * This is because we're setting fields here we need
 781         * to prevent others from looking at until we're done.
 782         */
 783        error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
 784                         XFS_ILOCK_EXCL, &ip);
 785        if (error)
 786                return error;
 787        ASSERT(ip != NULL);
 788        inode = VFS_I(ip);
 789
 790        /*
 791         * We always convert v1 inodes to v2 now - we only support filesystems
 792         * with >= v2 inode capability, so there is no reason for ever leaving
 793         * an inode in v1 format.
 794         */
 795        if (ip->i_d.di_version == 1)
 796                ip->i_d.di_version = 2;
 797
 798        inode->i_mode = mode;
 799        set_nlink(inode, nlink);
 800        ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
 801        ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
 802        xfs_set_projid(ip, prid);
 803
 804        if (pip && XFS_INHERIT_GID(pip)) {
 805                ip->i_d.di_gid = pip->i_d.di_gid;
 806                if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
 807                        inode->i_mode |= S_ISGID;
 808        }
 809
 810        /*
 811         * If the group ID of the new file does not match the effective group
 812         * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
 813         * (and only if the irix_sgid_inherit compatibility variable is set).
 814         */
 815        if ((irix_sgid_inherit) &&
 816            (inode->i_mode & S_ISGID) &&
 817            (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
 818                inode->i_mode &= ~S_ISGID;
 819
 820        ip->i_d.di_size = 0;
 821        ip->i_d.di_nextents = 0;
 822        ASSERT(ip->i_d.di_nblocks == 0);
 823
 824        tv = current_fs_time(mp->m_super);
 825        inode->i_mtime = tv;
 826        inode->i_atime = tv;
 827        inode->i_ctime = tv;
 828
 829        ip->i_d.di_extsize = 0;
 830        ip->i_d.di_dmevmask = 0;
 831        ip->i_d.di_dmstate = 0;
 832        ip->i_d.di_flags = 0;
 833
 834        if (ip->i_d.di_version == 3) {
 835                inode->i_version = 1;
 836                ip->i_d.di_flags2 = 0;
 837                ip->i_d.di_crtime.t_sec = (__int32_t)tv.tv_sec;
 838                ip->i_d.di_crtime.t_nsec = (__int32_t)tv.tv_nsec;
 839        }
 840
 841
 842        flags = XFS_ILOG_CORE;
 843        switch (mode & S_IFMT) {
 844        case S_IFIFO:
 845        case S_IFCHR:
 846        case S_IFBLK:
 847        case S_IFSOCK:
 848                ip->i_d.di_format = XFS_DINODE_FMT_DEV;
 849                ip->i_df.if_u2.if_rdev = rdev;
 850                ip->i_df.if_flags = 0;
 851                flags |= XFS_ILOG_DEV;
 852                break;
 853        case S_IFREG:
 854        case S_IFDIR:
 855                if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
 856                        uint64_t        di_flags2 = 0;
 857                        uint            di_flags = 0;
 858
 859                        if (S_ISDIR(mode)) {
 860                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 861                                        di_flags |= XFS_DIFLAG_RTINHERIT;
 862                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 863                                        di_flags |= XFS_DIFLAG_EXTSZINHERIT;
 864                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 865                                }
 866                                if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
 867                                        di_flags |= XFS_DIFLAG_PROJINHERIT;
 868                        } else if (S_ISREG(mode)) {
 869                                if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
 870                                        di_flags |= XFS_DIFLAG_REALTIME;
 871                                if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
 872                                        di_flags |= XFS_DIFLAG_EXTSIZE;
 873                                        ip->i_d.di_extsize = pip->i_d.di_extsize;
 874                                }
 875                        }
 876                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
 877                            xfs_inherit_noatime)
 878                                di_flags |= XFS_DIFLAG_NOATIME;
 879                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
 880                            xfs_inherit_nodump)
 881                                di_flags |= XFS_DIFLAG_NODUMP;
 882                        if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
 883                            xfs_inherit_sync)
 884                                di_flags |= XFS_DIFLAG_SYNC;
 885                        if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
 886                            xfs_inherit_nosymlinks)
 887                                di_flags |= XFS_DIFLAG_NOSYMLINKS;
 888                        if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
 889                            xfs_inherit_nodefrag)
 890                                di_flags |= XFS_DIFLAG_NODEFRAG;
 891                        if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
 892                                di_flags |= XFS_DIFLAG_FILESTREAM;
 893                        if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
 894                                di_flags2 |= XFS_DIFLAG2_DAX;
 895
 896                        ip->i_d.di_flags |= di_flags;
 897                        ip->i_d.di_flags2 |= di_flags2;
 898                }
 899                /* FALLTHROUGH */
 900        case S_IFLNK:
 901                ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
 902                ip->i_df.if_flags = XFS_IFEXTENTS;
 903                ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
 904                ip->i_df.if_u1.if_extents = NULL;
 905                break;
 906        default:
 907                ASSERT(0);
 908        }
 909        /*
 910         * Attribute fork settings for new inode.
 911         */
 912        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
 913        ip->i_d.di_anextents = 0;
 914
 915        /*
 916         * Log the new values stuffed into the inode.
 917         */
 918        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 919        xfs_trans_log_inode(tp, ip, flags);
 920
 921        /* now that we have an i_mode we can setup the inode structure */
 922        xfs_setup_inode(ip);
 923
 924        *ipp = ip;
 925        return 0;
 926}
 927
 928/*
 929 * Allocates a new inode from disk and return a pointer to the
 930 * incore copy. This routine will internally commit the current
 931 * transaction and allocate a new one if the Space Manager needed
 932 * to do an allocation to replenish the inode free-list.
 933 *
 934 * This routine is designed to be called from xfs_create and
 935 * xfs_create_dir.
 936 *
 937 */
 938int
 939xfs_dir_ialloc(
 940        xfs_trans_t     **tpp,          /* input: current transaction;
 941                                           output: may be a new transaction. */
 942        xfs_inode_t     *dp,            /* directory within whose allocate
 943                                           the inode. */
 944        umode_t         mode,
 945        xfs_nlink_t     nlink,
 946        xfs_dev_t       rdev,
 947        prid_t          prid,           /* project id */
 948        int             okalloc,        /* ok to allocate new space */
 949        xfs_inode_t     **ipp,          /* pointer to inode; it will be
 950                                           locked. */
 951        int             *committed)
 952
 953{
 954        xfs_trans_t     *tp;
 955        xfs_inode_t     *ip;
 956        xfs_buf_t       *ialloc_context = NULL;
 957        int             code;
 958        void            *dqinfo;
 959        uint            tflags;
 960
 961        tp = *tpp;
 962        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
 963
 964        /*
 965         * xfs_ialloc will return a pointer to an incore inode if
 966         * the Space Manager has an available inode on the free
 967         * list. Otherwise, it will do an allocation and replenish
 968         * the freelist.  Since we can only do one allocation per
 969         * transaction without deadlocks, we will need to commit the
 970         * current transaction and start a new one.  We will then
 971         * need to call xfs_ialloc again to get the inode.
 972         *
 973         * If xfs_ialloc did an allocation to replenish the freelist,
 974         * it returns the bp containing the head of the freelist as
 975         * ialloc_context. We will hold a lock on it across the
 976         * transaction commit so that no other process can steal
 977         * the inode(s) that we've just allocated.
 978         */
 979        code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
 980                          &ialloc_context, &ip);
 981
 982        /*
 983         * Return an error if we were unable to allocate a new inode.
 984         * This should only happen if we run out of space on disk or
 985         * encounter a disk error.
 986         */
 987        if (code) {
 988                *ipp = NULL;
 989                return code;
 990        }
 991        if (!ialloc_context && !ip) {
 992                *ipp = NULL;
 993                return -ENOSPC;
 994        }
 995
 996        /*
 997         * If the AGI buffer is non-NULL, then we were unable to get an
 998         * inode in one operation.  We need to commit the current
 999         * transaction and call xfs_ialloc() again.  It is guaranteed
1000         * to succeed the second time.
1001         */
1002        if (ialloc_context) {
1003                /*
1004                 * Normally, xfs_trans_commit releases all the locks.
1005                 * We call bhold to hang on to the ialloc_context across
1006                 * the commit.  Holding this buffer prevents any other
1007                 * processes from doing any allocations in this
1008                 * allocation group.
1009                 */
1010                xfs_trans_bhold(tp, ialloc_context);
1011
1012                /*
1013                 * We want the quota changes to be associated with the next
1014                 * transaction, NOT this one. So, detach the dqinfo from this
1015                 * and attach it to the next transaction.
1016                 */
1017                dqinfo = NULL;
1018                tflags = 0;
1019                if (tp->t_dqinfo) {
1020                        dqinfo = (void *)tp->t_dqinfo;
1021                        tp->t_dqinfo = NULL;
1022                        tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1023                        tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1024                }
1025
1026                code = xfs_trans_roll(&tp, NULL);
1027                if (committed != NULL)
1028                        *committed = 1;
1029
1030                /*
1031                 * Re-attach the quota info that we detached from prev trx.
1032                 */
1033                if (dqinfo) {
1034                        tp->t_dqinfo = dqinfo;
1035                        tp->t_flags |= tflags;
1036                }
1037
1038                if (code) {
1039                        xfs_buf_relse(ialloc_context);
1040                        *tpp = tp;
1041                        *ipp = NULL;
1042                        return code;
1043                }
1044                xfs_trans_bjoin(tp, ialloc_context);
1045
1046                /*
1047                 * Call ialloc again. Since we've locked out all
1048                 * other allocations in this allocation group,
1049                 * this call should always succeed.
1050                 */
1051                code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1052                                  okalloc, &ialloc_context, &ip);
1053
1054                /*
1055                 * If we get an error at this point, return to the caller
1056                 * so that the current transaction can be aborted.
1057                 */
1058                if (code) {
1059                        *tpp = tp;
1060                        *ipp = NULL;
1061                        return code;
1062                }
1063                ASSERT(!ialloc_context && ip);
1064
1065        } else {
1066                if (committed != NULL)
1067                        *committed = 0;
1068        }
1069
1070        *ipp = ip;
1071        *tpp = tp;
1072
1073        return 0;
1074}
1075
1076/*
1077 * Decrement the link count on an inode & log the change.  If this causes the
1078 * link count to go to zero, move the inode to AGI unlinked list so that it can
1079 * be freed when the last active reference goes away via xfs_inactive().
1080 */
1081static int                      /* error */
1082xfs_droplink(
1083        xfs_trans_t *tp,
1084        xfs_inode_t *ip)
1085{
1086        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1087
1088        drop_nlink(VFS_I(ip));
1089        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1090
1091        if (VFS_I(ip)->i_nlink)
1092                return 0;
1093
1094        return xfs_iunlink(tp, ip);
1095}
1096
1097/*
1098 * Increment the link count on an inode & log the change.
1099 */
1100static int
1101xfs_bumplink(
1102        xfs_trans_t *tp,
1103        xfs_inode_t *ip)
1104{
1105        xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
1107        ASSERT(ip->i_d.di_version > 1);
1108        inc_nlink(VFS_I(ip));
1109        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1110        return 0;
1111}
1112
1113int
1114xfs_create(
1115        xfs_inode_t             *dp,
1116        struct xfs_name         *name,
1117        umode_t                 mode,
1118        xfs_dev_t               rdev,
1119        xfs_inode_t             **ipp)
1120{
1121        int                     is_dir = S_ISDIR(mode);
1122        struct xfs_mount        *mp = dp->i_mount;
1123        struct xfs_inode        *ip = NULL;
1124        struct xfs_trans        *tp = NULL;
1125        int                     error;
1126        struct xfs_defer_ops    dfops;
1127        xfs_fsblock_t           first_block;
1128        bool                    unlock_dp_on_error = false;
1129        prid_t                  prid;
1130        struct xfs_dquot        *udqp = NULL;
1131        struct xfs_dquot        *gdqp = NULL;
1132        struct xfs_dquot        *pdqp = NULL;
1133        struct xfs_trans_res    *tres;
1134        uint                    resblks;
1135
1136        trace_xfs_create(dp, name);
1137
1138        if (XFS_FORCED_SHUTDOWN(mp))
1139                return -EIO;
1140
1141        prid = xfs_get_initial_prid(dp);
1142
1143        /*
1144         * Make sure that we have allocated dquot(s) on disk.
1145         */
1146        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1147                                        xfs_kgid_to_gid(current_fsgid()), prid,
1148                                        XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1149                                        &udqp, &gdqp, &pdqp);
1150        if (error)
1151                return error;
1152
1153        if (is_dir) {
1154                rdev = 0;
1155                resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1156                tres = &M_RES(mp)->tr_mkdir;
1157        } else {
1158                resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1159                tres = &M_RES(mp)->tr_create;
1160        }
1161
1162        /*
1163         * Initially assume that the file does not exist and
1164         * reserve the resources for that case.  If that is not
1165         * the case we'll drop the one we have and get a more
1166         * appropriate transaction later.
1167         */
1168        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1169        if (error == -ENOSPC) {
1170                /* flush outstanding delalloc blocks and retry */
1171                xfs_flush_inodes(mp);
1172                error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1173        }
1174        if (error == -ENOSPC) {
1175                /* No space at all so try a "no-allocation" reservation */
1176                resblks = 0;
1177                error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1178        }
1179        if (error)
1180                goto out_release_inode;
1181
1182        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1183                      XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
1184        unlock_dp_on_error = true;
1185
1186        xfs_defer_init(&dfops, &first_block);
1187
1188        /*
1189         * Reserve disk quota and the inode.
1190         */
1191        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1192                                                pdqp, resblks, 1, 0);
1193        if (error)
1194                goto out_trans_cancel;
1195
1196        if (!resblks) {
1197                error = xfs_dir_canenter(tp, dp, name);
1198                if (error)
1199                        goto out_trans_cancel;
1200        }
1201
1202        /*
1203         * A newly created regular or special file just has one directory
1204         * entry pointing to them, but a directory also the "." entry
1205         * pointing to itself.
1206         */
1207        error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1208                               prid, resblks > 0, &ip, NULL);
1209        if (error)
1210                goto out_trans_cancel;
1211
1212        /*
1213         * Now we join the directory inode to the transaction.  We do not do it
1214         * earlier because xfs_dir_ialloc might commit the previous transaction
1215         * (and release all the locks).  An error from here on will result in
1216         * the transaction cancel unlocking dp so don't do it explicitly in the
1217         * error path.
1218         */
1219        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1220        unlock_dp_on_error = false;
1221
1222        error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1223                                        &first_block, &dfops, resblks ?
1224                                        resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1225        if (error) {
1226                ASSERT(error != -ENOSPC);
1227                goto out_trans_cancel;
1228        }
1229        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1230        xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1231
1232        if (is_dir) {
1233                error = xfs_dir_init(tp, ip, dp);
1234                if (error)
1235                        goto out_bmap_cancel;
1236
1237                error = xfs_bumplink(tp, dp);
1238                if (error)
1239                        goto out_bmap_cancel;
1240        }
1241
1242        /*
1243         * If this is a synchronous mount, make sure that the
1244         * create transaction goes to disk before returning to
1245         * the user.
1246         */
1247        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1248                xfs_trans_set_sync(tp);
1249
1250        /*
1251         * Attach the dquot(s) to the inodes and modify them incore.
1252         * These ids of the inode couldn't have changed since the new
1253         * inode has been locked ever since it was created.
1254         */
1255        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1256
1257        error = xfs_defer_finish(&tp, &dfops, NULL);
1258        if (error)
1259                goto out_bmap_cancel;
1260
1261        error = xfs_trans_commit(tp);
1262        if (error)
1263                goto out_release_inode;
1264
1265        xfs_qm_dqrele(udqp);
1266        xfs_qm_dqrele(gdqp);
1267        xfs_qm_dqrele(pdqp);
1268
1269        *ipp = ip;
1270        return 0;
1271
1272 out_bmap_cancel:
1273        xfs_defer_cancel(&dfops);
1274 out_trans_cancel:
1275        xfs_trans_cancel(tp);
1276 out_release_inode:
1277        /*
1278         * Wait until after the current transaction is aborted to finish the
1279         * setup of the inode and release the inode.  This prevents recursive
1280         * transactions and deadlocks from xfs_inactive.
1281         */
1282        if (ip) {
1283                xfs_finish_inode_setup(ip);
1284                IRELE(ip);
1285        }
1286
1287        xfs_qm_dqrele(udqp);
1288        xfs_qm_dqrele(gdqp);
1289        xfs_qm_dqrele(pdqp);
1290
1291        if (unlock_dp_on_error)
1292                xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1293        return error;
1294}
1295
1296int
1297xfs_create_tmpfile(
1298        struct xfs_inode        *dp,
1299        struct dentry           *dentry,
1300        umode_t                 mode,
1301        struct xfs_inode        **ipp)
1302{
1303        struct xfs_mount        *mp = dp->i_mount;
1304        struct xfs_inode        *ip = NULL;
1305        struct xfs_trans        *tp = NULL;
1306        int                     error;
1307        prid_t                  prid;
1308        struct xfs_dquot        *udqp = NULL;
1309        struct xfs_dquot        *gdqp = NULL;
1310        struct xfs_dquot        *pdqp = NULL;
1311        struct xfs_trans_res    *tres;
1312        uint                    resblks;
1313
1314        if (XFS_FORCED_SHUTDOWN(mp))
1315                return -EIO;
1316
1317        prid = xfs_get_initial_prid(dp);
1318
1319        /*
1320         * Make sure that we have allocated dquot(s) on disk.
1321         */
1322        error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1323                                xfs_kgid_to_gid(current_fsgid()), prid,
1324                                XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1325                                &udqp, &gdqp, &pdqp);
1326        if (error)
1327                return error;
1328
1329        resblks = XFS_IALLOC_SPACE_RES(mp);
1330        tres = &M_RES(mp)->tr_create_tmpfile;
1331
1332        error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
1333        if (error == -ENOSPC) {
1334                /* No space at all so try a "no-allocation" reservation */
1335                resblks = 0;
1336                error = xfs_trans_alloc(mp, tres, 0, 0, 0, &tp);
1337        }
1338        if (error)
1339                goto out_release_inode;
1340
1341        error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342                                                pdqp, resblks, 1, 0);
1343        if (error)
1344                goto out_trans_cancel;
1345
1346        error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1347                                prid, resblks > 0, &ip, NULL);
1348        if (error)
1349                goto out_trans_cancel;
1350
1351        if (mp->m_flags & XFS_MOUNT_WSYNC)
1352                xfs_trans_set_sync(tp);
1353
1354        /*
1355         * Attach the dquot(s) to the inodes and modify them incore.
1356         * These ids of the inode couldn't have changed since the new
1357         * inode has been locked ever since it was created.
1358         */
1359        xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1360
1361        error = xfs_iunlink(tp, ip);
1362        if (error)
1363                goto out_trans_cancel;
1364
1365        error = xfs_trans_commit(tp);
1366        if (error)
1367                goto out_release_inode;
1368
1369        xfs_qm_dqrele(udqp);
1370        xfs_qm_dqrele(gdqp);
1371        xfs_qm_dqrele(pdqp);
1372
1373        *ipp = ip;
1374        return 0;
1375
1376 out_trans_cancel:
1377        xfs_trans_cancel(tp);
1378 out_release_inode:
1379        /*
1380         * Wait until after the current transaction is aborted to finish the
1381         * setup of the inode and release the inode.  This prevents recursive
1382         * transactions and deadlocks from xfs_inactive.
1383         */
1384        if (ip) {
1385                xfs_finish_inode_setup(ip);
1386                IRELE(ip);
1387        }
1388
1389        xfs_qm_dqrele(udqp);
1390        xfs_qm_dqrele(gdqp);
1391        xfs_qm_dqrele(pdqp);
1392
1393        return error;
1394}
1395
1396int
1397xfs_link(
1398        xfs_inode_t             *tdp,
1399        xfs_inode_t             *sip,
1400        struct xfs_name         *target_name)
1401{
1402        xfs_mount_t             *mp = tdp->i_mount;
1403        xfs_trans_t             *tp;
1404        int                     error;
1405        struct xfs_defer_ops    dfops;
1406        xfs_fsblock_t           first_block;
1407        int                     resblks;
1408
1409        trace_xfs_link(tdp, target_name);
1410
1411        ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
1412
1413        if (XFS_FORCED_SHUTDOWN(mp))
1414                return -EIO;
1415
1416        error = xfs_qm_dqattach(sip, 0);
1417        if (error)
1418                goto std_return;
1419
1420        error = xfs_qm_dqattach(tdp, 0);
1421        if (error)
1422                goto std_return;
1423
1424        resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1425        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
1426        if (error == -ENOSPC) {
1427                resblks = 0;
1428                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
1429        }
1430        if (error)
1431                goto std_return;
1432
1433        xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
1434        xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1435
1436        xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1437        xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
1438
1439        /*
1440         * If we are using project inheritance, we only allow hard link
1441         * creation in our tree when the project IDs are the same; else
1442         * the tree quota mechanism could be circumvented.
1443         */
1444        if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1445                     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1446                error = -EXDEV;
1447                goto error_return;
1448        }
1449
1450        if (!resblks) {
1451                error = xfs_dir_canenter(tp, tdp, target_name);
1452                if (error)
1453                        goto error_return;
1454        }
1455
1456        xfs_defer_init(&dfops, &first_block);
1457
1458        /*
1459         * Handle initial link state of O_TMPFILE inode
1460         */
1461        if (VFS_I(sip)->i_nlink == 0) {
1462                error = xfs_iunlink_remove(tp, sip);
1463                if (error)
1464                        goto error_return;
1465        }
1466
1467        error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1468                                        &first_block, &dfops, resblks);
1469        if (error)
1470                goto error_return;
1471        xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1472        xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1473
1474        error = xfs_bumplink(tp, sip);
1475        if (error)
1476                goto error_return;
1477
1478        /*
1479         * If this is a synchronous mount, make sure that the
1480         * link transaction goes to disk before returning to
1481         * the user.
1482         */
1483        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1484                xfs_trans_set_sync(tp);
1485
1486        error = xfs_defer_finish(&tp, &dfops, NULL);
1487        if (error) {
1488                xfs_defer_cancel(&dfops);
1489                goto error_return;
1490        }
1491
1492        return xfs_trans_commit(tp);
1493
1494 error_return:
1495        xfs_trans_cancel(tp);
1496 std_return:
1497        return error;
1498}
1499
1500/*
1501 * Free up the underlying blocks past new_size.  The new size must be smaller
1502 * than the current size.  This routine can be used both for the attribute and
1503 * data fork, and does not modify the inode size, which is left to the caller.
1504 *
1505 * The transaction passed to this routine must have made a permanent log
1506 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1507 * given transaction and start new ones, so make sure everything involved in
1508 * the transaction is tidy before calling here.  Some transaction will be
1509 * returned to the caller to be committed.  The incoming transaction must
1510 * already include the inode, and both inode locks must be held exclusively.
1511 * The inode must also be "held" within the transaction.  On return the inode
1512 * will be "held" within the returned transaction.  This routine does NOT
1513 * require any disk space to be reserved for it within the transaction.
1514 *
1515 * If we get an error, we must return with the inode locked and linked into the
1516 * current transaction. This keeps things simple for the higher level code,
1517 * because it always knows that the inode is locked and held in the transaction
1518 * that returns to it whether errors occur or not.  We don't mark the inode
1519 * dirty on error so that transactions can be easily aborted if possible.
1520 */
1521int
1522xfs_itruncate_extents(
1523        struct xfs_trans        **tpp,
1524        struct xfs_inode        *ip,
1525        int                     whichfork,
1526        xfs_fsize_t             new_size)
1527{
1528        struct xfs_mount        *mp = ip->i_mount;
1529        struct xfs_trans        *tp = *tpp;
1530        struct xfs_defer_ops    dfops;
1531        xfs_fsblock_t           first_block;
1532        xfs_fileoff_t           first_unmap_block;
1533        xfs_fileoff_t           last_block;
1534        xfs_filblks_t           unmap_len;
1535        int                     error = 0;
1536        int                     done = 0;
1537
1538        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1539        ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1540               xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1541        ASSERT(new_size <= XFS_ISIZE(ip));
1542        ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1543        ASSERT(ip->i_itemp != NULL);
1544        ASSERT(ip->i_itemp->ili_lock_flags == 0);
1545        ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1546
1547        trace_xfs_itruncate_extents_start(ip, new_size);
1548
1549        /*
1550         * Since it is possible for space to become allocated beyond
1551         * the end of the file (in a crash where the space is allocated
1552         * but the inode size is not yet updated), simply remove any
1553         * blocks which show up between the new EOF and the maximum
1554         * possible file size.  If the first block to be removed is
1555         * beyond the maximum file size (ie it is the same as last_block),
1556         * then there is nothing to do.
1557         */
1558        first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1559        last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1560        if (first_unmap_block == last_block)
1561                return 0;
1562
1563        ASSERT(first_unmap_block < last_block);
1564        unmap_len = last_block - first_unmap_block + 1;
1565        while (!done) {
1566                xfs_defer_init(&dfops, &first_block);
1567                error = xfs_bunmapi(tp, ip,
1568                                    first_unmap_block, unmap_len,
1569                                    xfs_bmapi_aflag(whichfork),
1570                                    XFS_ITRUNC_MAX_EXTENTS,
1571                                    &first_block, &dfops,
1572                                    &done);
1573                if (error)
1574                        goto out_bmap_cancel;
1575
1576                /*
1577                 * Duplicate the transaction that has the permanent
1578                 * reservation and commit the old transaction.
1579                 */
1580                error = xfs_defer_finish(&tp, &dfops, ip);
1581                if (error)
1582                        goto out_bmap_cancel;
1583
1584                error = xfs_trans_roll(&tp, ip);
1585                if (error)
1586                        goto out;
1587        }
1588
1589        /*
1590         * Always re-log the inode so that our permanent transaction can keep
1591         * on rolling it forward in the log.
1592         */
1593        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1594
1595        trace_xfs_itruncate_extents_end(ip, new_size);
1596
1597out:
1598        *tpp = tp;
1599        return error;
1600out_bmap_cancel:
1601        /*
1602         * If the bunmapi call encounters an error, return to the caller where
1603         * the transaction can be properly aborted.  We just need to make sure
1604         * we're not holding any resources that we were not when we came in.
1605         */
1606        xfs_defer_cancel(&dfops);
1607        goto out;
1608}
1609
1610int
1611xfs_release(
1612        xfs_inode_t     *ip)
1613{
1614        xfs_mount_t     *mp = ip->i_mount;
1615        int             error;
1616
1617        if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
1618                return 0;
1619
1620        /* If this is a read-only mount, don't do this (would generate I/O) */
1621        if (mp->m_flags & XFS_MOUNT_RDONLY)
1622                return 0;
1623
1624        if (!XFS_FORCED_SHUTDOWN(mp)) {
1625                int truncated;
1626
1627                /*
1628                 * If we previously truncated this file and removed old data
1629                 * in the process, we want to initiate "early" writeout on
1630                 * the last close.  This is an attempt to combat the notorious
1631                 * NULL files problem which is particularly noticeable from a
1632                 * truncate down, buffered (re-)write (delalloc), followed by
1633                 * a crash.  What we are effectively doing here is
1634                 * significantly reducing the time window where we'd otherwise
1635                 * be exposed to that problem.
1636                 */
1637                truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1638                if (truncated) {
1639                        xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1640                        if (ip->i_delayed_blks > 0) {
1641                                error = filemap_flush(VFS_I(ip)->i_mapping);
1642                                if (error)
1643                                        return error;
1644                        }
1645                }
1646        }
1647
1648        if (VFS_I(ip)->i_nlink == 0)
1649                return 0;
1650
1651        if (xfs_can_free_eofblocks(ip, false)) {
1652
1653                /*
1654                 * If we can't get the iolock just skip truncating the blocks
1655                 * past EOF because we could deadlock with the mmap_sem
1656                 * otherwise.  We'll get another chance to drop them once the
1657                 * last reference to the inode is dropped, so we'll never leak
1658                 * blocks permanently.
1659                 *
1660                 * Further, check if the inode is being opened, written and
1661                 * closed frequently and we have delayed allocation blocks
1662                 * outstanding (e.g. streaming writes from the NFS server),
1663                 * truncating the blocks past EOF will cause fragmentation to
1664                 * occur.
1665                 *
1666                 * In this case don't do the truncation, either, but we have to
1667                 * be careful how we detect this case. Blocks beyond EOF show
1668                 * up as i_delayed_blks even when the inode is clean, so we
1669                 * need to truncate them away first before checking for a dirty
1670                 * release. Hence on the first dirty close we will still remove
1671                 * the speculative allocation, but after that we will leave it
1672                 * in place.
1673                 */
1674                if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1675                        return 0;
1676
1677                error = xfs_free_eofblocks(mp, ip, true);
1678                if (error && error != -EAGAIN)
1679                        return error;
1680
1681                /* delalloc blocks after truncation means it really is dirty */
1682                if (ip->i_delayed_blks)
1683                        xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1684        }
1685        return 0;
1686}
1687
1688/*
1689 * xfs_inactive_truncate
1690 *
1691 * Called to perform a truncate when an inode becomes unlinked.
1692 */
1693STATIC int
1694xfs_inactive_truncate(
1695        struct xfs_inode *ip)
1696{
1697        struct xfs_mount        *mp = ip->i_mount;
1698        struct xfs_trans        *tp;
1699        int                     error;
1700
1701        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
1702        if (error) {
1703                ASSERT(XFS_FORCED_SHUTDOWN(mp));
1704                return error;
1705        }
1706
1707        xfs_ilock(ip, XFS_ILOCK_EXCL);
1708        xfs_trans_ijoin(tp, ip, 0);
1709
1710        /*
1711         * Log the inode size first to prevent stale data exposure in the event
1712         * of a system crash before the truncate completes. See the related
1713         * comment in xfs_setattr_size() for details.
1714         */
1715        ip->i_d.di_size = 0;
1716        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1717
1718        error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1719        if (error)
1720                goto error_trans_cancel;
1721
1722        ASSERT(ip->i_d.di_nextents == 0);
1723
1724        error = xfs_trans_commit(tp);
1725        if (error)
1726                goto error_unlock;
1727
1728        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1729        return 0;
1730
1731error_trans_cancel:
1732        xfs_trans_cancel(tp);
1733error_unlock:
1734        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1735        return error;
1736}
1737
1738/*
1739 * xfs_inactive_ifree()
1740 *
1741 * Perform the inode free when an inode is unlinked.
1742 */
1743STATIC int
1744xfs_inactive_ifree(
1745        struct xfs_inode *ip)
1746{
1747        struct xfs_defer_ops    dfops;
1748        xfs_fsblock_t           first_block;
1749        struct xfs_mount        *mp = ip->i_mount;
1750        struct xfs_trans        *tp;
1751        int                     error;
1752
1753        /*
1754         * The ifree transaction might need to allocate blocks for record
1755         * insertion to the finobt. We don't want to fail here at ENOSPC, so
1756         * allow ifree to dip into the reserved block pool if necessary.
1757         *
1758         * Freeing large sets of inodes generally means freeing inode chunks,
1759         * directory and file data blocks, so this should be relatively safe.
1760         * Only under severe circumstances should it be possible to free enough
1761         * inodes to exhaust the reserve block pool via finobt expansion while
1762         * at the same time not creating free space in the filesystem.
1763         *
1764         * Send a warning if the reservation does happen to fail, as the inode
1765         * now remains allocated and sits on the unlinked list until the fs is
1766         * repaired.
1767         */
1768        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1769                        XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE, &tp);
1770        if (error) {
1771                if (error == -ENOSPC) {
1772                        xfs_warn_ratelimited(mp,
1773                        "Failed to remove inode(s) from unlinked list. "
1774                        "Please free space, unmount and run xfs_repair.");
1775                } else {
1776                        ASSERT(XFS_FORCED_SHUTDOWN(mp));
1777                }
1778                return error;
1779        }
1780
1781        xfs_ilock(ip, XFS_ILOCK_EXCL);
1782        xfs_trans_ijoin(tp, ip, 0);
1783
1784        xfs_defer_init(&dfops, &first_block);
1785        error = xfs_ifree(tp, ip, &dfops);
1786        if (error) {
1787                /*
1788                 * If we fail to free the inode, shut down.  The cancel
1789                 * might do that, we need to make sure.  Otherwise the
1790                 * inode might be lost for a long time or forever.
1791                 */
1792                if (!XFS_FORCED_SHUTDOWN(mp)) {
1793                        xfs_notice(mp, "%s: xfs_ifree returned error %d",
1794                                __func__, error);
1795                        xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1796                }
1797                xfs_trans_cancel(tp);
1798                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799                return error;
1800        }
1801
1802        /*
1803         * Credit the quota account(s). The inode is gone.
1804         */
1805        xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1806
1807        /*
1808         * Just ignore errors at this point.  There is nothing we can do except
1809         * to try to keep going. Make sure it's not a silent error.
1810         */
1811        error = xfs_defer_finish(&tp, &dfops, NULL);
1812        if (error) {
1813                xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
1814                        __func__, error);
1815                xfs_defer_cancel(&dfops);
1816        }
1817        error = xfs_trans_commit(tp);
1818        if (error)
1819                xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1820                        __func__, error);
1821
1822        xfs_iunlock(ip, XFS_ILOCK_EXCL);
1823        return 0;
1824}
1825
1826/*
1827 * xfs_inactive
1828 *
1829 * This is called when the vnode reference count for the vnode
1830 * goes to zero.  If the file has been unlinked, then it must
1831 * now be truncated.  Also, we clear all of the read-ahead state
1832 * kept for the inode here since the file is now closed.
1833 */
1834void
1835xfs_inactive(
1836        xfs_inode_t     *ip)
1837{
1838        struct xfs_mount        *mp;
1839        int                     error;
1840        int                     truncate = 0;
1841
1842        /*
1843         * If the inode is already free, then there can be nothing
1844         * to clean up here.
1845         */
1846        if (VFS_I(ip)->i_mode == 0) {
1847                ASSERT(ip->i_df.if_real_bytes == 0);
1848                ASSERT(ip->i_df.if_broot_bytes == 0);
1849                return;
1850        }
1851
1852        mp = ip->i_mount;
1853
1854        /* If this is a read-only mount, don't do this (would generate I/O) */
1855        if (mp->m_flags & XFS_MOUNT_RDONLY)
1856                return;
1857
1858        if (VFS_I(ip)->i_nlink != 0) {
1859                /*
1860                 * force is true because we are evicting an inode from the
1861                 * cache. Post-eof blocks must be freed, lest we end up with
1862                 * broken free space accounting.
1863                 */
1864                if (xfs_can_free_eofblocks(ip, true))
1865                        xfs_free_eofblocks(mp, ip, false);
1866
1867                return;
1868        }
1869
1870        if (S_ISREG(VFS_I(ip)->i_mode) &&
1871            (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1872             ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1873                truncate = 1;
1874
1875        error = xfs_qm_dqattach(ip, 0);
1876        if (error)
1877                return;
1878
1879        if (S_ISLNK(VFS_I(ip)->i_mode))
1880                error = xfs_inactive_symlink(ip);
1881        else if (truncate)
1882                error = xfs_inactive_truncate(ip);
1883        if (error)
1884                return;
1885
1886        /*
1887         * If there are attributes associated with the file then blow them away
1888         * now.  The code calls a routine that recursively deconstructs the
1889         * attribute fork. If also blows away the in-core attribute fork.
1890         */
1891        if (XFS_IFORK_Q(ip)) {
1892                error = xfs_attr_inactive(ip);
1893                if (error)
1894                        return;
1895        }
1896
1897        ASSERT(!ip->i_afp);
1898        ASSERT(ip->i_d.di_anextents == 0);
1899        ASSERT(ip->i_d.di_forkoff == 0);
1900
1901        /*
1902         * Free the inode.
1903         */
1904        error = xfs_inactive_ifree(ip);
1905        if (error)
1906                return;
1907
1908        /*
1909         * Release the dquots held by inode, if any.
1910         */
1911        xfs_qm_dqdetach(ip);
1912}
1913
1914/*
1915 * This is called when the inode's link count goes to 0 or we are creating a
1916 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1917 * set to true as the link count is dropped to zero by the VFS after we've
1918 * created the file successfully, so we have to add it to the unlinked list
1919 * while the link count is non-zero.
1920 *
1921 * We place the on-disk inode on a list in the AGI.  It will be pulled from this
1922 * list when the inode is freed.
1923 */
1924STATIC int
1925xfs_iunlink(
1926        struct xfs_trans *tp,
1927        struct xfs_inode *ip)
1928{
1929        xfs_mount_t     *mp = tp->t_mountp;
1930        xfs_agi_t       *agi;
1931        xfs_dinode_t    *dip;
1932        xfs_buf_t       *agibp;
1933        xfs_buf_t       *ibp;
1934        xfs_agino_t     agino;
1935        short           bucket_index;
1936        int             offset;
1937        int             error;
1938
1939        ASSERT(VFS_I(ip)->i_mode != 0);
1940
1941        /*
1942         * Get the agi buffer first.  It ensures lock ordering
1943         * on the list.
1944         */
1945        error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1946        if (error)
1947                return error;
1948        agi = XFS_BUF_TO_AGI(agibp);
1949
1950        /*
1951         * Get the index into the agi hash table for the
1952         * list this inode will go on.
1953         */
1954        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1955        ASSERT(agino != 0);
1956        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1957        ASSERT(agi->agi_unlinked[bucket_index]);
1958        ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1959
1960        if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1961                /*
1962                 * There is already another inode in the bucket we need
1963                 * to add ourselves to.  Add us at the front of the list.
1964                 * Here we put the head pointer into our next pointer,
1965                 * and then we fall through to point the head at us.
1966                 */
1967                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1968                                       0, 0);
1969                if (error)
1970                        return error;
1971
1972                ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1973                dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1974                offset = ip->i_imap.im_boffset +
1975                        offsetof(xfs_dinode_t, di_next_unlinked);
1976
1977                /* need to recalc the inode CRC if appropriate */
1978                xfs_dinode_calc_crc(mp, dip);
1979
1980                xfs_trans_inode_buf(tp, ibp);
1981                xfs_trans_log_buf(tp, ibp, offset,
1982                                  (offset + sizeof(xfs_agino_t) - 1));
1983                xfs_inobp_check(mp, ibp);
1984        }
1985
1986        /*
1987         * Point the bucket head pointer at the inode being inserted.
1988         */
1989        ASSERT(agino != 0);
1990        agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1991        offset = offsetof(xfs_agi_t, agi_unlinked) +
1992                (sizeof(xfs_agino_t) * bucket_index);
1993        xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1994        xfs_trans_log_buf(tp, agibp, offset,
1995                          (offset + sizeof(xfs_agino_t) - 1));
1996        return 0;
1997}
1998
1999/*
2000 * Pull the on-disk inode from the AGI unlinked list.
2001 */
2002STATIC int
2003xfs_iunlink_remove(
2004        xfs_trans_t     *tp,
2005        xfs_inode_t     *ip)
2006{
2007        xfs_ino_t       next_ino;
2008        xfs_mount_t     *mp;
2009        xfs_agi_t       *agi;
2010        xfs_dinode_t    *dip;
2011        xfs_buf_t       *agibp;
2012        xfs_buf_t       *ibp;
2013        xfs_agnumber_t  agno;
2014        xfs_agino_t     agino;
2015        xfs_agino_t     next_agino;
2016        xfs_buf_t       *last_ibp;
2017        xfs_dinode_t    *last_dip = NULL;
2018        short           bucket_index;
2019        int             offset, last_offset = 0;
2020        int             error;
2021
2022        mp = tp->t_mountp;
2023        agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2024
2025        /*
2026         * Get the agi buffer first.  It ensures lock ordering
2027         * on the list.
2028         */
2029        error = xfs_read_agi(mp, tp, agno, &agibp);
2030        if (error)
2031                return error;
2032
2033        agi = XFS_BUF_TO_AGI(agibp);
2034
2035        /*
2036         * Get the index into the agi hash table for the
2037         * list this inode will go on.
2038         */
2039        agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2040        ASSERT(agino != 0);
2041        bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2042        ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2043        ASSERT(agi->agi_unlinked[bucket_index]);
2044
2045        if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2046                /*
2047                 * We're at the head of the list.  Get the inode's on-disk
2048                 * buffer to see if there is anyone after us on the list.
2049                 * Only modify our next pointer if it is not already NULLAGINO.
2050                 * This saves us the overhead of dealing with the buffer when
2051                 * there is no need to change it.
2052                 */
2053                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2054                                       0, 0);
2055                if (error) {
2056                        xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2057                                __func__, error);
2058                        return error;
2059                }
2060                next_agino = be32_to_cpu(dip->di_next_unlinked);
2061                ASSERT(next_agino != 0);
2062                if (next_agino != NULLAGINO) {
2063                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2064                        offset = ip->i_imap.im_boffset +
2065                                offsetof(xfs_dinode_t, di_next_unlinked);
2066
2067                        /* need to recalc the inode CRC if appropriate */
2068                        xfs_dinode_calc_crc(mp, dip);
2069
2070                        xfs_trans_inode_buf(tp, ibp);
2071                        xfs_trans_log_buf(tp, ibp, offset,
2072                                          (offset + sizeof(xfs_agino_t) - 1));
2073                        xfs_inobp_check(mp, ibp);
2074                } else {
2075                        xfs_trans_brelse(tp, ibp);
2076                }
2077                /*
2078                 * Point the bucket head pointer at the next inode.
2079                 */
2080                ASSERT(next_agino != 0);
2081                ASSERT(next_agino != agino);
2082                agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2083                offset = offsetof(xfs_agi_t, agi_unlinked) +
2084                        (sizeof(xfs_agino_t) * bucket_index);
2085                xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2086                xfs_trans_log_buf(tp, agibp, offset,
2087                                  (offset + sizeof(xfs_agino_t) - 1));
2088        } else {
2089                /*
2090                 * We need to search the list for the inode being freed.
2091                 */
2092                next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2093                last_ibp = NULL;
2094                while (next_agino != agino) {
2095                        struct xfs_imap imap;
2096
2097                        if (last_ibp)
2098                                xfs_trans_brelse(tp, last_ibp);
2099
2100                        imap.im_blkno = 0;
2101                        next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2102
2103                        error = xfs_imap(mp, tp, next_ino, &imap, 0);
2104                        if (error) {
2105                                xfs_warn(mp,
2106        "%s: xfs_imap returned error %d.",
2107                                         __func__, error);
2108                                return error;
2109                        }
2110
2111                        error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2112                                               &last_ibp, 0, 0);
2113                        if (error) {
2114                                xfs_warn(mp,
2115        "%s: xfs_imap_to_bp returned error %d.",
2116                                        __func__, error);
2117                                return error;
2118                        }
2119
2120                        last_offset = imap.im_boffset;
2121                        next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2122                        ASSERT(next_agino != NULLAGINO);
2123                        ASSERT(next_agino != 0);
2124                }
2125
2126                /*
2127                 * Now last_ibp points to the buffer previous to us on the
2128                 * unlinked list.  Pull us from the list.
2129                 */
2130                error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2131                                       0, 0);
2132                if (error) {
2133                        xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2134                                __func__, error);
2135                        return error;
2136                }
2137                next_agino = be32_to_cpu(dip->di_next_unlinked);
2138                ASSERT(next_agino != 0);
2139                ASSERT(next_agino != agino);
2140                if (next_agino != NULLAGINO) {
2141                        dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2142                        offset = ip->i_imap.im_boffset +
2143                                offsetof(xfs_dinode_t, di_next_unlinked);
2144
2145                        /* need to recalc the inode CRC if appropriate */
2146                        xfs_dinode_calc_crc(mp, dip);
2147
2148                        xfs_trans_inode_buf(tp, ibp);
2149                        xfs_trans_log_buf(tp, ibp, offset,
2150                                          (offset + sizeof(xfs_agino_t) - 1));
2151                        xfs_inobp_check(mp, ibp);
2152                } else {
2153                        xfs_trans_brelse(tp, ibp);
2154                }
2155                /*
2156                 * Point the previous inode on the list to the next inode.
2157                 */
2158                last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2159                ASSERT(next_agino != 0);
2160                offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2161
2162                /* need to recalc the inode CRC if appropriate */
2163                xfs_dinode_calc_crc(mp, last_dip);
2164
2165                xfs_trans_inode_buf(tp, last_ibp);
2166                xfs_trans_log_buf(tp, last_ibp, offset,
2167                                  (offset + sizeof(xfs_agino_t) - 1));
2168                xfs_inobp_check(mp, last_ibp);
2169        }
2170        return 0;
2171}
2172
2173/*
2174 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2175 * inodes that are in memory - they all must be marked stale and attached to
2176 * the cluster buffer.
2177 */
2178STATIC int
2179xfs_ifree_cluster(
2180        xfs_inode_t             *free_ip,
2181        xfs_trans_t             *tp,
2182        struct xfs_icluster     *xic)
2183{
2184        xfs_mount_t             *mp = free_ip->i_mount;
2185        int                     blks_per_cluster;
2186        int                     inodes_per_cluster;
2187        int                     nbufs;
2188        int                     i, j;
2189        int                     ioffset;
2190        xfs_daddr_t             blkno;
2191        xfs_buf_t               *bp;
2192        xfs_inode_t             *ip;
2193        xfs_inode_log_item_t    *iip;
2194        xfs_log_item_t          *lip;
2195        struct xfs_perag        *pag;
2196        xfs_ino_t               inum;
2197
2198        inum = xic->first_ino;
2199        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2200        blks_per_cluster = xfs_icluster_size_fsb(mp);
2201        inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2202        nbufs = mp->m_ialloc_blks / blks_per_cluster;
2203
2204        for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2205                /*
2206                 * The allocation bitmap tells us which inodes of the chunk were
2207                 * physically allocated. Skip the cluster if an inode falls into
2208                 * a sparse region.
2209                 */
2210                ioffset = inum - xic->first_ino;
2211                if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2212                        ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
2213                        continue;
2214                }
2215
2216                blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2217                                         XFS_INO_TO_AGBNO(mp, inum));
2218
2219                /*
2220                 * We obtain and lock the backing buffer first in the process
2221                 * here, as we have to ensure that any dirty inode that we
2222                 * can't get the flush lock on is attached to the buffer.
2223                 * If we scan the in-memory inodes first, then buffer IO can
2224                 * complete before we get a lock on it, and hence we may fail
2225                 * to mark all the active inodes on the buffer stale.
2226                 */
2227                bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2228                                        mp->m_bsize * blks_per_cluster,
2229                                        XBF_UNMAPPED);
2230
2231                if (!bp)
2232                        return -ENOMEM;
2233
2234                /*
2235                 * This buffer may not have been correctly initialised as we
2236                 * didn't read it from disk. That's not important because we are
2237                 * only using to mark the buffer as stale in the log, and to
2238                 * attach stale cached inodes on it. That means it will never be
2239                 * dispatched for IO. If it is, we want to know about it, and we
2240                 * want it to fail. We can acheive this by adding a write
2241                 * verifier to the buffer.
2242                 */
2243                 bp->b_ops = &xfs_inode_buf_ops;
2244
2245                /*
2246                 * Walk the inodes already attached to the buffer and mark them
2247                 * stale. These will all have the flush locks held, so an
2248                 * in-memory inode walk can't lock them. By marking them all
2249                 * stale first, we will not attempt to lock them in the loop
2250                 * below as the XFS_ISTALE flag will be set.
2251                 */
2252                lip = bp->b_fspriv;
2253                while (lip) {
2254                        if (lip->li_type == XFS_LI_INODE) {
2255                                iip = (xfs_inode_log_item_t *)lip;
2256                                ASSERT(iip->ili_logged == 1);
2257                                lip->li_cb = xfs_istale_done;
2258                                xfs_trans_ail_copy_lsn(mp->m_ail,
2259                                                        &iip->ili_flush_lsn,
2260                                                        &iip->ili_item.li_lsn);
2261                                xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2262                        }
2263                        lip = lip->li_bio_list;
2264                }
2265
2266
2267                /*
2268                 * For each inode in memory attempt to add it to the inode
2269                 * buffer and set it up for being staled on buffer IO
2270                 * completion.  This is safe as we've locked out tail pushing
2271                 * and flushing by locking the buffer.
2272                 *
2273                 * We have already marked every inode that was part of a
2274                 * transaction stale above, which means there is no point in
2275                 * even trying to lock them.
2276                 */
2277                for (i = 0; i < inodes_per_cluster; i++) {
2278retry:
2279                        rcu_read_lock();
2280                        ip = radix_tree_lookup(&pag->pag_ici_root,
2281                                        XFS_INO_TO_AGINO(mp, (inum + i)));
2282
2283                        /* Inode not in memory, nothing to do */
2284                        if (!ip) {
2285                                rcu_read_unlock();
2286                                continue;
2287                        }
2288
2289                        /*
2290                         * because this is an RCU protected lookup, we could
2291                         * find a recently freed or even reallocated inode
2292                         * during the lookup. We need to check under the
2293                         * i_flags_lock for a valid inode here. Skip it if it
2294                         * is not valid, the wrong inode or stale.
2295                         */
2296                        spin_lock(&ip->i_flags_lock);
2297                        if (ip->i_ino != inum + i ||
2298                            __xfs_iflags_test(ip, XFS_ISTALE)) {
2299                                spin_unlock(&ip->i_flags_lock);
2300                                rcu_read_unlock();
2301                                continue;
2302                        }
2303                        spin_unlock(&ip->i_flags_lock);
2304
2305                        /*
2306                         * Don't try to lock/unlock the current inode, but we
2307                         * _cannot_ skip the other inodes that we did not find
2308                         * in the list attached to the buffer and are not
2309                         * already marked stale. If we can't lock it, back off
2310                         * and retry.
2311                         */
2312                        if (ip != free_ip &&
2313                            !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2314                                rcu_read_unlock();
2315                                delay(1);
2316                                goto retry;
2317                        }
2318                        rcu_read_unlock();
2319
2320                        xfs_iflock(ip);
2321                        xfs_iflags_set(ip, XFS_ISTALE);
2322
2323                        /*
2324                         * we don't need to attach clean inodes or those only
2325                         * with unlogged changes (which we throw away, anyway).
2326                         */
2327                        iip = ip->i_itemp;
2328                        if (!iip || xfs_inode_clean(ip)) {
2329                                ASSERT(ip != free_ip);
2330                                xfs_ifunlock(ip);
2331                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2332                                continue;
2333                        }
2334
2335                        iip->ili_last_fields = iip->ili_fields;
2336                        iip->ili_fields = 0;
2337                        iip->ili_fsync_fields = 0;
2338                        iip->ili_logged = 1;
2339                        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2340                                                &iip->ili_item.li_lsn);
2341
2342                        xfs_buf_attach_iodone(bp, xfs_istale_done,
2343                                                  &iip->ili_item);
2344
2345                        if (ip != free_ip)
2346                                xfs_iunlock(ip, XFS_ILOCK_EXCL);
2347                }
2348
2349                xfs_trans_stale_inode_buf(tp, bp);
2350                xfs_trans_binval(tp, bp);
2351        }
2352
2353        xfs_perag_put(pag);
2354        return 0;
2355}
2356
2357/*
2358 * This is called to return an inode to the inode free list.
2359 * The inode should already be truncated to 0 length and have
2360 * no pages associated with it.  This routine also assumes that
2361 * the inode is already a part of the transaction.
2362 *
2363 * The on-disk copy of the inode will have been added to the list
2364 * of unlinked inodes in the AGI. We need to remove the inode from
2365 * that list atomically with respect to freeing it here.
2366 */
2367int
2368xfs_ifree(
2369        xfs_trans_t     *tp,
2370        xfs_inode_t     *ip,
2371        struct xfs_defer_ops    *dfops)
2372{
2373        int                     error;
2374        struct xfs_icluster     xic = { 0 };
2375
2376        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2377        ASSERT(VFS_I(ip)->i_nlink == 0);
2378        ASSERT(ip->i_d.di_nextents == 0);
2379        ASSERT(ip->i_d.di_anextents == 0);
2380        ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
2381        ASSERT(ip->i_d.di_nblocks == 0);
2382
2383        /*
2384         * Pull the on-disk inode from the AGI unlinked list.
2385         */
2386        error = xfs_iunlink_remove(tp, ip);
2387        if (error)
2388                return error;
2389
2390        error = xfs_difree(tp, ip->i_ino, dfops, &xic);
2391        if (error)
2392                return error;
2393
2394        VFS_I(ip)->i_mode = 0;          /* mark incore inode as free */
2395        ip->i_d.di_flags = 0;
2396        ip->i_d.di_dmevmask = 0;
2397        ip->i_d.di_forkoff = 0;         /* mark the attr fork not in use */
2398        ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2399        ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2400        /*
2401         * Bump the generation count so no one will be confused
2402         * by reincarnations of this inode.
2403         */
2404        VFS_I(ip)->i_generation++;
2405        xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2406
2407        if (xic.deleted)
2408                error = xfs_ifree_cluster(ip, tp, &xic);
2409
2410        return error;
2411}
2412
2413/*
2414 * This is called to unpin an inode.  The caller must have the inode locked
2415 * in at least shared mode so that the buffer cannot be subsequently pinned
2416 * once someone is waiting for it to be unpinned.
2417 */
2418static void
2419xfs_iunpin(
2420        struct xfs_inode        *ip)
2421{
2422        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2423
2424        trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2425
2426        /* Give the log a push to start the unpinning I/O */
2427        xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2428
2429}
2430
2431static void
2432__xfs_iunpin_wait(
2433        struct xfs_inode        *ip)
2434{
2435        wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2436        DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2437
2438        xfs_iunpin(ip);
2439
2440        do {
2441                prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2442                if (xfs_ipincount(ip))
2443                        io_schedule();
2444        } while (xfs_ipincount(ip));
2445        finish_wait(wq, &wait.wait);
2446}
2447
2448void
2449xfs_iunpin_wait(
2450        struct xfs_inode        *ip)
2451{
2452        if (xfs_ipincount(ip))
2453                __xfs_iunpin_wait(ip);
2454}
2455
2456/*
2457 * Removing an inode from the namespace involves removing the directory entry
2458 * and dropping the link count on the inode. Removing the directory entry can
2459 * result in locking an AGF (directory blocks were freed) and removing a link
2460 * count can result in placing the inode on an unlinked list which results in
2461 * locking an AGI.
2462 *
2463 * The big problem here is that we have an ordering constraint on AGF and AGI
2464 * locking - inode allocation locks the AGI, then can allocate a new extent for
2465 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2466 * removes the inode from the unlinked list, requiring that we lock the AGI
2467 * first, and then freeing the inode can result in an inode chunk being freed
2468 * and hence freeing disk space requiring that we lock an AGF.
2469 *
2470 * Hence the ordering that is imposed by other parts of the code is AGI before
2471 * AGF. This means we cannot remove the directory entry before we drop the inode
2472 * reference count and put it on the unlinked list as this results in a lock
2473 * order of AGF then AGI, and this can deadlock against inode allocation and
2474 * freeing. Therefore we must drop the link counts before we remove the
2475 * directory entry.
2476 *
2477 * This is still safe from a transactional point of view - it is not until we
2478 * get to xfs_defer_finish() that we have the possibility of multiple
2479 * transactions in this operation. Hence as long as we remove the directory
2480 * entry and drop the link count in the first transaction of the remove
2481 * operation, there are no transactional constraints on the ordering here.
2482 */
2483int
2484xfs_remove(
2485        xfs_inode_t             *dp,
2486        struct xfs_name         *name,
2487        xfs_inode_t             *ip)
2488{
2489        xfs_mount_t             *mp = dp->i_mount;
2490        xfs_trans_t             *tp = NULL;
2491        int                     is_dir = S_ISDIR(VFS_I(ip)->i_mode);
2492        int                     error = 0;
2493        struct xfs_defer_ops    dfops;
2494        xfs_fsblock_t           first_block;
2495        uint                    resblks;
2496
2497        trace_xfs_remove(dp, name);
2498
2499        if (XFS_FORCED_SHUTDOWN(mp))
2500                return -EIO;
2501
2502        error = xfs_qm_dqattach(dp, 0);
2503        if (error)
2504                goto std_return;
2505
2506        error = xfs_qm_dqattach(ip, 0);
2507        if (error)
2508                goto std_return;
2509
2510        /*
2511         * We try to get the real space reservation first,
2512         * allowing for directory btree deletion(s) implying
2513         * possible bmap insert(s).  If we can't get the space
2514         * reservation then we use 0 instead, and avoid the bmap
2515         * btree insert(s) in the directory code by, if the bmap
2516         * insert tries to happen, instead trimming the LAST
2517         * block from the directory.
2518         */
2519        resblks = XFS_REMOVE_SPACE_RES(mp);
2520        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2521        if (error == -ENOSPC) {
2522                resblks = 0;
2523                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2524                                &tp);
2525        }
2526        if (error) {
2527                ASSERT(error != -ENOSPC);
2528                goto std_return;
2529        }
2530
2531        xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2532        xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2533
2534        xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2535        xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2536
2537        /*
2538         * If we're removing a directory perform some additional validation.
2539         */
2540        if (is_dir) {
2541                ASSERT(VFS_I(ip)->i_nlink >= 2);
2542                if (VFS_I(ip)->i_nlink != 2) {
2543                        error = -ENOTEMPTY;
2544                        goto out_trans_cancel;
2545                }
2546                if (!xfs_dir_isempty(ip)) {
2547                        error = -ENOTEMPTY;
2548                        goto out_trans_cancel;
2549                }
2550
2551                /* Drop the link from ip's "..".  */
2552                error = xfs_droplink(tp, dp);
2553                if (error)
2554                        goto out_trans_cancel;
2555
2556                /* Drop the "." link from ip to self.  */
2557                error = xfs_droplink(tp, ip);
2558                if (error)
2559                        goto out_trans_cancel;
2560        } else {
2561                /*
2562                 * When removing a non-directory we need to log the parent
2563                 * inode here.  For a directory this is done implicitly
2564                 * by the xfs_droplink call for the ".." entry.
2565                 */
2566                xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2567        }
2568        xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2569
2570        /* Drop the link from dp to ip. */
2571        error = xfs_droplink(tp, ip);
2572        if (error)
2573                goto out_trans_cancel;
2574
2575        xfs_defer_init(&dfops, &first_block);
2576        error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2577                                        &first_block, &dfops, resblks);
2578        if (error) {
2579                ASSERT(error != -ENOENT);
2580                goto out_bmap_cancel;
2581        }
2582
2583        /*
2584         * If this is a synchronous mount, make sure that the
2585         * remove transaction goes to disk before returning to
2586         * the user.
2587         */
2588        if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2589                xfs_trans_set_sync(tp);
2590
2591        error = xfs_defer_finish(&tp, &dfops, NULL);
2592        if (error)
2593                goto out_bmap_cancel;
2594
2595        error = xfs_trans_commit(tp);
2596        if (error)
2597                goto std_return;
2598
2599        if (is_dir && xfs_inode_is_filestream(ip))
2600                xfs_filestream_deassociate(ip);
2601
2602        return 0;
2603
2604 out_bmap_cancel:
2605        xfs_defer_cancel(&dfops);
2606 out_trans_cancel:
2607        xfs_trans_cancel(tp);
2608 std_return:
2609        return error;
2610}
2611
2612/*
2613 * Enter all inodes for a rename transaction into a sorted array.
2614 */
2615#define __XFS_SORT_INODES       5
2616STATIC void
2617xfs_sort_for_rename(
2618        struct xfs_inode        *dp1,   /* in: old (source) directory inode */
2619        struct xfs_inode        *dp2,   /* in: new (target) directory inode */
2620        struct xfs_inode        *ip1,   /* in: inode of old entry */
2621        struct xfs_inode        *ip2,   /* in: inode of new entry */
2622        struct xfs_inode        *wip,   /* in: whiteout inode */
2623        struct xfs_inode        **i_tab,/* out: sorted array of inodes */
2624        int                     *num_inodes)  /* in/out: inodes in array */
2625{
2626        int                     i, j;
2627
2628        ASSERT(*num_inodes == __XFS_SORT_INODES);
2629        memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2630
2631        /*
2632         * i_tab contains a list of pointers to inodes.  We initialize
2633         * the table here & we'll sort it.  We will then use it to
2634         * order the acquisition of the inode locks.
2635         *
2636         * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2637         */
2638        i = 0;
2639        i_tab[i++] = dp1;
2640        i_tab[i++] = dp2;
2641        i_tab[i++] = ip1;
2642        if (ip2)
2643                i_tab[i++] = ip2;
2644        if (wip)
2645                i_tab[i++] = wip;
2646        *num_inodes = i;
2647
2648        /*
2649         * Sort the elements via bubble sort.  (Remember, there are at
2650         * most 5 elements to sort, so this is adequate.)
2651         */
2652        for (i = 0; i < *num_inodes; i++) {
2653                for (j = 1; j < *num_inodes; j++) {
2654                        if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2655                                struct xfs_inode *temp = i_tab[j];
2656                                i_tab[j] = i_tab[j-1];
2657                                i_tab[j-1] = temp;
2658                        }
2659                }
2660        }
2661}
2662
2663static int
2664xfs_finish_rename(
2665        struct xfs_trans        *tp,
2666        struct xfs_defer_ops    *dfops)
2667{
2668        int                     error;
2669
2670        /*
2671         * If this is a synchronous mount, make sure that the rename transaction
2672         * goes to disk before returning to the user.
2673         */
2674        if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2675                xfs_trans_set_sync(tp);
2676
2677        error = xfs_defer_finish(&tp, dfops, NULL);
2678        if (error) {
2679                xfs_defer_cancel(dfops);
2680                xfs_trans_cancel(tp);
2681                return error;
2682        }
2683
2684        return xfs_trans_commit(tp);
2685}
2686
2687/*
2688 * xfs_cross_rename()
2689 *
2690 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2691 */
2692STATIC int
2693xfs_cross_rename(
2694        struct xfs_trans        *tp,
2695        struct xfs_inode        *dp1,
2696        struct xfs_name         *name1,
2697        struct xfs_inode        *ip1,
2698        struct xfs_inode        *dp2,
2699        struct xfs_name         *name2,
2700        struct xfs_inode        *ip2,
2701        struct xfs_defer_ops    *dfops,
2702        xfs_fsblock_t           *first_block,
2703        int                     spaceres)
2704{
2705        int             error = 0;
2706        int             ip1_flags = 0;
2707        int             ip2_flags = 0;
2708        int             dp2_flags = 0;
2709
2710        /* Swap inode number for dirent in first parent */
2711        error = xfs_dir_replace(tp, dp1, name1,
2712                                ip2->i_ino,
2713                                first_block, dfops, spaceres);
2714        if (error)
2715                goto out_trans_abort;
2716
2717        /* Swap inode number for dirent in second parent */
2718        error = xfs_dir_replace(tp, dp2, name2,
2719                                ip1->i_ino,
2720                                first_block, dfops, spaceres);
2721        if (error)
2722                goto out_trans_abort;
2723
2724        /*
2725         * If we're renaming one or more directories across different parents,
2726         * update the respective ".." entries (and link counts) to match the new
2727         * parents.
2728         */
2729        if (dp1 != dp2) {
2730                dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2731
2732                if (S_ISDIR(VFS_I(ip2)->i_mode)) {
2733                        error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2734                                                dp1->i_ino, first_block,
2735                                                dfops, spaceres);
2736                        if (error)
2737                                goto out_trans_abort;
2738
2739                        /* transfer ip2 ".." reference to dp1 */
2740                        if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
2741                                error = xfs_droplink(tp, dp2);
2742                                if (error)
2743                                        goto out_trans_abort;
2744                                error = xfs_bumplink(tp, dp1);
2745                                if (error)
2746                                        goto out_trans_abort;
2747                        }
2748
2749                        /*
2750                         * Although ip1 isn't changed here, userspace needs
2751                         * to be warned about the change, so that applications
2752                         * relying on it (like backup ones), will properly
2753                         * notify the change
2754                         */
2755                        ip1_flags |= XFS_ICHGTIME_CHG;
2756                        ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2757                }
2758
2759                if (S_ISDIR(VFS_I(ip1)->i_mode)) {
2760                        error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2761                                                dp2->i_ino, first_block,
2762                                                dfops, spaceres);
2763                        if (error)
2764                                goto out_trans_abort;
2765
2766                        /* transfer ip1 ".." reference to dp2 */
2767                        if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
2768                                error = xfs_droplink(tp, dp1);
2769                                if (error)
2770                                        goto out_trans_abort;
2771                                error = xfs_bumplink(tp, dp2);
2772                                if (error)
2773                                        goto out_trans_abort;
2774                        }
2775
2776                        /*
2777                         * Although ip2 isn't changed here, userspace needs
2778                         * to be warned about the change, so that applications
2779                         * relying on it (like backup ones), will properly
2780                         * notify the change
2781                         */
2782                        ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2783                        ip2_flags |= XFS_ICHGTIME_CHG;
2784                }
2785        }
2786
2787        if (ip1_flags) {
2788                xfs_trans_ichgtime(tp, ip1, ip1_flags);
2789                xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2790        }
2791        if (ip2_flags) {
2792                xfs_trans_ichgtime(tp, ip2, ip2_flags);
2793                xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2794        }
2795        if (dp2_flags) {
2796                xfs_trans_ichgtime(tp, dp2, dp2_flags);
2797                xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2798        }
2799        xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2800        xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2801        return xfs_finish_rename(tp, dfops);
2802
2803out_trans_abort:
2804        xfs_defer_cancel(dfops);
2805        xfs_trans_cancel(tp);
2806        return error;
2807}
2808
2809/*
2810 * xfs_rename_alloc_whiteout()
2811 *
2812 * Return a referenced, unlinked, unlocked inode that that can be used as a
2813 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2814 * crash between allocating the inode and linking it into the rename transaction
2815 * recovery will free the inode and we won't leak it.
2816 */
2817static int
2818xfs_rename_alloc_whiteout(
2819        struct xfs_inode        *dp,
2820        struct xfs_inode        **wip)
2821{
2822        struct xfs_inode        *tmpfile;
2823        int                     error;
2824
2825        error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2826        if (error)
2827                return error;
2828
2829        /*
2830         * Prepare the tmpfile inode as if it were created through the VFS.
2831         * Otherwise, the link increment paths will complain about nlink 0->1.
2832         * Drop the link count as done by d_tmpfile(), complete the inode setup
2833         * and flag it as linkable.
2834         */
2835        drop_nlink(VFS_I(tmpfile));
2836        xfs_setup_iops(tmpfile);
2837        xfs_finish_inode_setup(tmpfile);
2838        VFS_I(tmpfile)->i_state |= I_LINKABLE;
2839
2840        *wip = tmpfile;
2841        return 0;
2842}
2843
2844/*
2845 * xfs_rename
2846 */
2847int
2848xfs_rename(
2849        struct xfs_inode        *src_dp,
2850        struct xfs_name         *src_name,
2851        struct xfs_inode        *src_ip,
2852        struct xfs_inode        *target_dp,
2853        struct xfs_name         *target_name,
2854        struct xfs_inode        *target_ip,
2855        unsigned int            flags)
2856{
2857        struct xfs_mount        *mp = src_dp->i_mount;
2858        struct xfs_trans        *tp;
2859        struct xfs_defer_ops    dfops;
2860        xfs_fsblock_t           first_block;
2861        struct xfs_inode        *wip = NULL;            /* whiteout inode */
2862        struct xfs_inode        *inodes[__XFS_SORT_INODES];
2863        int                     num_inodes = __XFS_SORT_INODES;
2864        bool                    new_parent = (src_dp != target_dp);
2865        bool                    src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
2866        int                     spaceres;
2867        int                     error;
2868
2869        trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2870
2871        if ((flags & RENAME_EXCHANGE) && !target_ip)
2872                return -EINVAL;
2873
2874        /*
2875         * If we are doing a whiteout operation, allocate the whiteout inode
2876         * we will be placing at the target and ensure the type is set
2877         * appropriately.
2878         */
2879        if (flags & RENAME_WHITEOUT) {
2880                ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2881                error = xfs_rename_alloc_whiteout(target_dp, &wip);
2882                if (error)
2883                        return error;
2884
2885                /* setup target dirent info as whiteout */
2886                src_name->type = XFS_DIR3_FT_CHRDEV;
2887        }
2888
2889        xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2890                                inodes, &num_inodes);
2891
2892        spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2893        error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2894        if (error == -ENOSPC) {
2895                spaceres = 0;
2896                error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2897                                &tp);
2898        }
2899        if (error)
2900                goto out_release_wip;
2901
2902        /*
2903         * Attach the dquots to the inodes
2904         */
2905        error = xfs_qm_vop_rename_dqattach(inodes);
2906        if (error)
2907                goto out_trans_cancel;
2908
2909        /*
2910         * Lock all the participating inodes. Depending upon whether
2911         * the target_name exists in the target directory, and
2912         * whether the target directory is the same as the source
2913         * directory, we can lock from 2 to 4 inodes.
2914         */
2915        if (!new_parent)
2916                xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2917        else
2918                xfs_lock_two_inodes(src_dp, target_dp,
2919                                    XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2920
2921        xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2922
2923        /*
2924         * Join all the inodes to the transaction. From this point on,
2925         * we can rely on either trans_commit or trans_cancel to unlock
2926         * them.
2927         */
2928        xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2929        if (new_parent)
2930                xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
2931        xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2932        if (target_ip)
2933                xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2934        if (wip)
2935                xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2936
2937        /*
2938         * If we are using project inheritance, we only allow renames
2939         * into our tree when the project IDs are the same; else the
2940         * tree quota mechanism would be circumvented.
2941         */
2942        if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2943                     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2944                error = -EXDEV;
2945                goto out_trans_cancel;
2946        }
2947
2948        xfs_defer_init(&dfops, &first_block);
2949
2950        /* RENAME_EXCHANGE is unique from here on. */
2951        if (flags & RENAME_EXCHANGE)
2952                return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2953                                        target_dp, target_name, target_ip,
2954                                        &dfops, &first_block, spaceres);
2955
2956        /*
2957         * Set up the target.
2958         */
2959        if (target_ip == NULL) {
2960                /*
2961                 * If there's no space reservation, check the entry will
2962                 * fit before actually inserting it.
2963                 */
2964                if (!spaceres) {
2965                        error = xfs_dir_canenter(tp, target_dp, target_name);
2966                        if (error)
2967                                goto out_trans_cancel;
2968                }
2969                /*
2970                 * If target does not exist and the rename crosses
2971                 * directories, adjust the target directory link count
2972                 * to account for the ".." reference from the new entry.
2973                 */
2974                error = xfs_dir_createname(tp, target_dp, target_name,
2975                                                src_ip->i_ino, &first_block,
2976                                                &dfops, spaceres);
2977                if (error)
2978                        goto out_bmap_cancel;
2979
2980                xfs_trans_ichgtime(tp, target_dp,
2981                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2982
2983                if (new_parent && src_is_directory) {
2984                        error = xfs_bumplink(tp, target_dp);
2985                        if (error)
2986                                goto out_bmap_cancel;
2987                }
2988        } else { /* target_ip != NULL */
2989                /*
2990                 * If target exists and it's a directory, check that both
2991                 * target and source are directories and that target can be
2992                 * destroyed, or that neither is a directory.
2993                 */
2994                if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
2995                        /*
2996                         * Make sure target dir is empty.
2997                         */
2998                        if (!(xfs_dir_isempty(target_ip)) ||
2999                            (VFS_I(target_ip)->i_nlink > 2)) {
3000                                error = -EEXIST;
3001                                goto out_trans_cancel;
3002                        }
3003                }
3004
3005                /*
3006                 * Link the source inode under the target name.
3007                 * If the source inode is a directory and we are moving
3008                 * it across directories, its ".." entry will be
3009                 * inconsistent until we replace that down below.
3010                 *
3011                 * In case there is already an entry with the same
3012                 * name at the destination directory, remove it first.
3013                 */
3014                error = xfs_dir_replace(tp, target_dp, target_name,
3015                                        src_ip->i_ino,
3016                                        &first_block, &dfops, spaceres);
3017                if (error)
3018                        goto out_bmap_cancel;
3019
3020                xfs_trans_ichgtime(tp, target_dp,
3021                                        XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3022
3023                /*
3024                 * Decrement the link count on the target since the target
3025                 * dir no longer points to it.
3026                 */
3027                error = xfs_droplink(tp, target_ip);
3028                if (error)
3029                        goto out_bmap_cancel;
3030
3031                if (src_is_directory) {
3032                        /*
3033                         * Drop the link from the old "." entry.
3034                         */
3035                        error = xfs_droplink(tp, target_ip);
3036                        if (error)
3037                                goto out_bmap_cancel;
3038                }
3039        } /* target_ip != NULL */
3040
3041        /*
3042         * Remove the source.
3043         */
3044        if (new_parent && src_is_directory) {
3045                /*
3046                 * Rewrite the ".." entry to point to the new
3047                 * directory.
3048                 */
3049                error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3050                                        target_dp->i_ino,
3051                                        &first_block, &dfops, spaceres);
3052                ASSERT(error != -EEXIST);
3053                if (error)
3054                        goto out_bmap_cancel;
3055        }
3056
3057        /*
3058         * We always want to hit the ctime on the source inode.
3059         *
3060         * This isn't strictly required by the standards since the source
3061         * inode isn't really being changed, but old unix file systems did
3062         * it and some incremental backup programs won't work without it.
3063         */
3064        xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3065        xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3066
3067        /*
3068         * Adjust the link count on src_dp.  This is necessary when
3069         * renaming a directory, either within one parent when
3070         * the target existed, or across two parent directories.
3071         */
3072        if (src_is_directory && (new_parent || target_ip != NULL)) {
3073
3074                /*
3075                 * Decrement link count on src_directory since the
3076                 * entry that's moved no longer points to it.
3077                 */
3078                error = xfs_droplink(tp, src_dp);
3079                if (error)
3080                        goto out_bmap_cancel;
3081        }
3082
3083        /*
3084         * For whiteouts, we only need to update the source dirent with the
3085         * inode number of the whiteout inode rather than removing it
3086         * altogether.
3087         */
3088        if (wip) {
3089                error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3090                                        &first_block, &dfops, spaceres);
3091        } else
3092                error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3093                                           &first_block, &dfops, spaceres);
3094        if (error)
3095                goto out_bmap_cancel;
3096
3097        /*
3098         * For whiteouts, we need to bump the link count on the whiteout inode.
3099         * This means that failures all the way up to this point leave the inode
3100         * on the unlinked list and so cleanup is a simple matter of dropping
3101         * the remaining reference to it. If we fail here after bumping the link
3102         * count, we're shutting down the filesystem so we'll never see the
3103         * intermediate state on disk.
3104         */
3105        if (wip) {
3106                ASSERT(VFS_I(wip)->i_nlink == 0);
3107                error = xfs_bumplink(tp, wip);
3108                if (error)
3109                        goto out_bmap_cancel;
3110                error = xfs_iunlink_remove(tp, wip);
3111                if (error)
3112                        goto out_bmap_cancel;
3113                xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3114
3115                /*
3116                 * Now we have a real link, clear the "I'm a tmpfile" state
3117                 * flag from the inode so it doesn't accidentally get misused in
3118                 * future.
3119                 */
3120                VFS_I(wip)->i_state &= ~I_LINKABLE;
3121        }
3122
3123        xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3124        xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3125        if (new_parent)
3126                xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3127
3128        error = xfs_finish_rename(tp, &dfops);
3129        if (wip)
3130                IRELE(wip);
3131        return error;
3132
3133out_bmap_cancel:
3134        xfs_defer_cancel(&dfops);
3135out_trans_cancel:
3136        xfs_trans_cancel(tp);
3137out_release_wip:
3138        if (wip)
3139                IRELE(wip);
3140        return error;
3141}
3142
3143STATIC int
3144xfs_iflush_cluster(
3145        struct xfs_inode        *ip,
3146        struct xfs_buf          *bp)
3147{
3148        struct xfs_mount        *mp = ip->i_mount;
3149        struct xfs_perag        *pag;
3150        unsigned long           first_index, mask;
3151        unsigned long           inodes_per_cluster;
3152        int                     cilist_size;
3153        struct xfs_inode        **cilist;
3154        struct xfs_inode        *cip;
3155        int                     nr_found;
3156        int                     clcount = 0;
3157        int                     bufwasdelwri;
3158        int                     i;
3159
3160        pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3161
3162        inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3163        cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3164        cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3165        if (!cilist)
3166                goto out_put;
3167
3168        mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3169        first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3170        rcu_read_lock();
3171        /* really need a gang lookup range call here */
3172        nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
3173                                        first_index, inodes_per_cluster);
3174        if (nr_found == 0)
3175                goto out_free;
3176
3177        for (i = 0; i < nr_found; i++) {
3178                cip = cilist[i];
3179                if (cip == ip)
3180                        continue;
3181
3182                /*
3183                 * because this is an RCU protected lookup, we could find a
3184                 * recently freed or even reallocated inode during the lookup.
3185                 * We need to check under the i_flags_lock for a valid inode
3186                 * here. Skip it if it is not valid or the wrong inode.
3187                 */
3188                spin_lock(&cip->i_flags_lock);
3189                if (!cip->i_ino ||
3190                    __xfs_iflags_test(cip, XFS_ISTALE)) {
3191                        spin_unlock(&cip->i_flags_lock);
3192                        continue;
3193                }
3194
3195                /*
3196                 * Once we fall off the end of the cluster, no point checking
3197                 * any more inodes in the list because they will also all be
3198                 * outside the cluster.
3199                 */
3200                if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3201                        spin_unlock(&cip->i_flags_lock);
3202                        break;
3203                }
3204                spin_unlock(&cip->i_flags_lock);
3205
3206                /*
3207                 * Do an un-protected check to see if the inode is dirty and
3208                 * is a candidate for flushing.  These checks will be repeated
3209                 * later after the appropriate locks are acquired.
3210                 */
3211                if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
3212                        continue;
3213
3214                /*
3215                 * Try to get locks.  If any are unavailable or it is pinned,
3216                 * then this inode cannot be flushed and is skipped.
3217                 */
3218
3219                if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
3220                        continue;
3221                if (!xfs_iflock_nowait(cip)) {
3222                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3223                        continue;
3224                }
3225                if (xfs_ipincount(cip)) {
3226                        xfs_ifunlock(cip);
3227                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3228                        continue;
3229                }
3230
3231
3232                /*
3233                 * Check the inode number again, just to be certain we are not
3234                 * racing with freeing in xfs_reclaim_inode(). See the comments
3235                 * in that function for more information as to why the initial
3236                 * check is not sufficient.
3237                 */
3238                if (!cip->i_ino) {
3239                        xfs_ifunlock(cip);
3240                        xfs_iunlock(cip, XFS_ILOCK_SHARED);
3241                        continue;
3242                }
3243
3244                /*
3245                 * arriving here means that this inode can be flushed.  First
3246                 * re-check that it's dirty before flushing.
3247                 */
3248                if (!xfs_inode_clean(cip)) {
3249                        int     error;
3250                        error = xfs_iflush_int(cip, bp);
3251                        if (error) {
3252                                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3253                                goto cluster_corrupt_out;
3254                        }
3255                        clcount++;
3256                } else {
3257                        xfs_ifunlock(cip);
3258                }
3259                xfs_iunlock(cip, XFS_ILOCK_SHARED);
3260        }
3261
3262        if (clcount) {
3263                XFS_STATS_INC(mp, xs_icluster_flushcnt);
3264                XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3265        }
3266
3267out_free:
3268        rcu_read_unlock();
3269        kmem_free(cilist);
3270out_put:
3271        xfs_perag_put(pag);
3272        return 0;
3273
3274
3275cluster_corrupt_out:
3276        /*
3277         * Corruption detected in the clustering loop.  Invalidate the
3278         * inode buffer and shut down the filesystem.
3279         */
3280        rcu_read_unlock();
3281        /*
3282         * Clean up the buffer.  If it was delwri, just release it --
3283         * brelse can handle it with no problems.  If not, shut down the
3284         * filesystem before releasing the buffer.
3285         */
3286        bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3287        if (bufwasdelwri)
3288                xfs_buf_relse(bp);
3289
3290        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3291
3292        if (!bufwasdelwri) {
3293                /*
3294                 * Just like incore_relse: if we have b_iodone functions,
3295                 * mark the buffer as an error and call them.  Otherwise
3296                 * mark it as stale and brelse.
3297                 */
3298                if (bp->b_iodone) {
3299                        bp->b_flags &= ~XBF_DONE;
3300                        xfs_buf_stale(bp);
3301                        xfs_buf_ioerror(bp, -EIO);
3302                        xfs_buf_ioend(bp);
3303                } else {
3304                        xfs_buf_stale(bp);
3305                        xfs_buf_relse(bp);
3306                }
3307        }
3308
3309        /*
3310         * Unlocks the flush lock
3311         */
3312        xfs_iflush_abort(cip, false);
3313        kmem_free(cilist);
3314        xfs_perag_put(pag);
3315        return -EFSCORRUPTED;
3316}
3317
3318/*
3319 * Flush dirty inode metadata into the backing buffer.
3320 *
3321 * The caller must have the inode lock and the inode flush lock held.  The
3322 * inode lock will still be held upon return to the caller, and the inode
3323 * flush lock will be released after the inode has reached the disk.
3324 *
3325 * The caller must write out the buffer returned in *bpp and release it.
3326 */
3327int
3328xfs_iflush(
3329        struct xfs_inode        *ip,
3330        struct xfs_buf          **bpp)
3331{
3332        struct xfs_mount        *mp = ip->i_mount;
3333        struct xfs_buf          *bp = NULL;
3334        struct xfs_dinode       *dip;
3335        int                     error;
3336
3337        XFS_STATS_INC(mp, xs_iflush_count);
3338
3339        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3340        ASSERT(xfs_isiflocked(ip));
3341        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3342               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3343
3344        *bpp = NULL;
3345
3346        xfs_iunpin_wait(ip);
3347
3348        /*
3349         * For stale inodes we cannot rely on the backing buffer remaining
3350         * stale in cache for the remaining life of the stale inode and so
3351         * xfs_imap_to_bp() below may give us a buffer that no longer contains
3352         * inodes below. We have to check this after ensuring the inode is
3353         * unpinned so that it is safe to reclaim the stale inode after the
3354         * flush call.
3355         */
3356        if (xfs_iflags_test(ip, XFS_ISTALE)) {
3357                xfs_ifunlock(ip);
3358                return 0;
3359        }
3360
3361        /*
3362         * This may have been unpinned because the filesystem is shutting
3363         * down forcibly. If that's the case we must not write this inode
3364         * to disk, because the log record didn't make it to disk.
3365         *
3366         * We also have to remove the log item from the AIL in this case,
3367         * as we wait for an empty AIL as part of the unmount process.
3368         */
3369        if (XFS_FORCED_SHUTDOWN(mp)) {
3370                error = -EIO;
3371                goto abort_out;
3372        }
3373
3374        /*
3375         * Get the buffer containing the on-disk inode. We are doing a try-lock
3376         * operation here, so we may get  an EAGAIN error. In that case, we
3377         * simply want to return with the inode still dirty.
3378         *
3379         * If we get any other error, we effectively have a corruption situation
3380         * and we cannot flush the inode, so we treat it the same as failing
3381         * xfs_iflush_int().
3382         */
3383        error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3384                               0);
3385        if (error == -EAGAIN) {
3386                xfs_ifunlock(ip);
3387                return error;
3388        }
3389        if (error)
3390                goto corrupt_out;
3391
3392        /*
3393         * First flush out the inode that xfs_iflush was called with.
3394         */
3395        error = xfs_iflush_int(ip, bp);
3396        if (error)
3397                goto corrupt_out;
3398
3399        /*
3400         * If the buffer is pinned then push on the log now so we won't
3401         * get stuck waiting in the write for too long.
3402         */
3403        if (xfs_buf_ispinned(bp))
3404                xfs_log_force(mp, 0);
3405
3406        /*
3407         * inode clustering:
3408         * see if other inodes can be gathered into this write
3409         */
3410        error = xfs_iflush_cluster(ip, bp);
3411        if (error)
3412                goto cluster_corrupt_out;
3413
3414        *bpp = bp;
3415        return 0;
3416
3417corrupt_out:
3418        if (bp)
3419                xfs_buf_relse(bp);
3420        xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3421cluster_corrupt_out:
3422        error = -EFSCORRUPTED;
3423abort_out:
3424        /*
3425         * Unlocks the flush lock
3426         */
3427        xfs_iflush_abort(ip, false);
3428        return error;
3429}
3430
3431STATIC int
3432xfs_iflush_int(
3433        struct xfs_inode        *ip,
3434        struct xfs_buf          *bp)
3435{
3436        struct xfs_inode_log_item *iip = ip->i_itemp;
3437        struct xfs_dinode       *dip;
3438        struct xfs_mount        *mp = ip->i_mount;
3439
3440        ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3441        ASSERT(xfs_isiflocked(ip));
3442        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3443               ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3444        ASSERT(iip != NULL && iip->ili_fields != 0);
3445        ASSERT(ip->i_d.di_version > 1);
3446
3447        /* set *dip = inode's place in the buffer */
3448        dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
3449
3450        if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3451                               mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3452                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3453                        "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3454                        __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3455                goto corrupt_out;
3456        }
3457        if (S_ISREG(VFS_I(ip)->i_mode)) {
3458                if (XFS_TEST_ERROR(
3459                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3460                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3461                    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3462                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3463                                "%s: Bad regular inode %Lu, ptr 0x%p",
3464                                __func__, ip->i_ino, ip);
3465                        goto corrupt_out;
3466                }
3467        } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
3468                if (XFS_TEST_ERROR(
3469                    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3470                    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3471                    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3472                    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3473                        xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3474                                "%s: Bad directory inode %Lu, ptr 0x%p",
3475                                __func__, ip->i_ino, ip);
3476                        goto corrupt_out;
3477                }
3478        }
3479        if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3480                                ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3481                                XFS_RANDOM_IFLUSH_5)) {
3482                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3483                        "%s: detected corrupt incore inode %Lu, "
3484                        "total extents = %d, nblocks = %Ld, ptr 0x%p",
3485                        __func__, ip->i_ino,
3486                        ip->i_d.di_nextents + ip->i_d.di_anextents,
3487                        ip->i_d.di_nblocks, ip);
3488                goto corrupt_out;
3489        }
3490        if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3491                                mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3492                xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3493                        "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3494                        __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3495                goto corrupt_out;
3496        }
3497
3498        /*
3499         * Inode item log recovery for v2 inodes are dependent on the
3500         * di_flushiter count for correct sequencing. We bump the flush
3501         * iteration count so we can detect flushes which postdate a log record
3502         * during recovery. This is redundant as we now log every change and
3503         * hence this can't happen but we need to still do it to ensure
3504         * backwards compatibility with old kernels that predate logging all
3505         * inode changes.
3506         */
3507        if (ip->i_d.di_version < 3)
3508                ip->i_d.di_flushiter++;
3509
3510        /*
3511         * Copy the dirty parts of the inode into the on-disk inode.  We always
3512         * copy out the core of the inode, because if the inode is dirty at all
3513         * the core must be.
3514         */
3515        xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
3516
3517        /* Wrap, we never let the log put out DI_MAX_FLUSH */
3518        if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3519                ip->i_d.di_flushiter = 0;
3520
3521        xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3522        if (XFS_IFORK_Q(ip))
3523                xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3524        xfs_inobp_check(mp, bp);
3525
3526        /*
3527         * We've recorded everything logged in the inode, so we'd like to clear
3528         * the ili_fields bits so we don't log and flush things unnecessarily.
3529         * However, we can't stop logging all this information until the data
3530         * we've copied into the disk buffer is written to disk.  If we did we
3531         * might overwrite the copy of the inode in the log with all the data
3532         * after re-logging only part of it, and in the face of a crash we
3533         * wouldn't have all the data we need to recover.
3534         *
3535         * What we do is move the bits to the ili_last_fields field.  When
3536         * logging the inode, these bits are moved back to the ili_fields field.
3537         * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3538         * know that the information those bits represent is permanently on
3539         * disk.  As long as the flush completes before the inode is logged
3540         * again, then both ili_fields and ili_last_fields will be cleared.
3541         *
3542         * We can play with the ili_fields bits here, because the inode lock
3543         * must be held exclusively in order to set bits there and the flush
3544         * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3545         * done routine can tell whether or not to look in the AIL.  Also, store
3546         * the current LSN of the inode so that we can tell whether the item has
3547         * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3548         * need the AIL lock, because it is a 64 bit value that cannot be read
3549         * atomically.
3550         */
3551        iip->ili_last_fields = iip->ili_fields;
3552        iip->ili_fields = 0;
3553        iip->ili_fsync_fields = 0;
3554        iip->ili_logged = 1;
3555
3556        xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3557                                &iip->ili_item.li_lsn);
3558
3559        /*
3560         * Attach the function xfs_iflush_done to the inode's
3561         * buffer.  This will remove the inode from the AIL
3562         * and unlock the inode's flush lock when the inode is
3563         * completely written to disk.
3564         */
3565        xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3566
3567        /* generate the checksum. */
3568        xfs_dinode_calc_crc(mp, dip);
3569
3570        ASSERT(bp->b_fspriv != NULL);
3571        ASSERT(bp->b_iodone != NULL);
3572        return 0;
3573
3574corrupt_out:
3575        return -EFSCORRUPTED;
3576}
3577