linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <linux/page-flags-layout.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coalesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38enum {
  39        MIGRATE_UNMOVABLE,
  40        MIGRATE_MOVABLE,
  41        MIGRATE_RECLAIMABLE,
  42        MIGRATE_PCPTYPES,       /* the number of types on the pcp lists */
  43        MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
  44#ifdef CONFIG_CMA
  45        /*
  46         * MIGRATE_CMA migration type is designed to mimic the way
  47         * ZONE_MOVABLE works.  Only movable pages can be allocated
  48         * from MIGRATE_CMA pageblocks and page allocator never
  49         * implicitly change migration type of MIGRATE_CMA pageblock.
  50         *
  51         * The way to use it is to change migratetype of a range of
  52         * pageblocks to MIGRATE_CMA which can be done by
  53         * __free_pageblock_cma() function.  What is important though
  54         * is that a range of pageblocks must be aligned to
  55         * MAX_ORDER_NR_PAGES should biggest page be bigger then
  56         * a single pageblock.
  57         */
  58        MIGRATE_CMA,
  59#endif
  60#ifdef CONFIG_MEMORY_ISOLATION
  61        MIGRATE_ISOLATE,        /* can't allocate from here */
  62#endif
  63        MIGRATE_TYPES
  64};
  65
  66/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
  67extern char * const migratetype_names[MIGRATE_TYPES];
  68
  69#ifdef CONFIG_CMA
  70#  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
  71#  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
  72#else
  73#  define is_migrate_cma(migratetype) false
  74#  define is_migrate_cma_page(_page) false
  75#endif
  76
  77#define for_each_migratetype_order(order, type) \
  78        for (order = 0; order < MAX_ORDER; order++) \
  79                for (type = 0; type < MIGRATE_TYPES; type++)
  80
  81extern int page_group_by_mobility_disabled;
  82
  83#define NR_MIGRATETYPE_BITS (PB_migrate_end - PB_migrate + 1)
  84#define MIGRATETYPE_MASK ((1UL << NR_MIGRATETYPE_BITS) - 1)
  85
  86#define get_pageblock_migratetype(page)                                 \
  87        get_pfnblock_flags_mask(page, page_to_pfn(page),                \
  88                        PB_migrate_end, MIGRATETYPE_MASK)
  89
  90struct free_area {
  91        struct list_head        free_list[MIGRATE_TYPES];
  92        unsigned long           nr_free;
  93};
  94
  95struct pglist_data;
  96
  97/*
  98 * zone->lock and the zone lru_lock are two of the hottest locks in the kernel.
  99 * So add a wild amount of padding here to ensure that they fall into separate
 100 * cachelines.  There are very few zone structures in the machine, so space
 101 * consumption is not a concern here.
 102 */
 103#if defined(CONFIG_SMP)
 104struct zone_padding {
 105        char x[0];
 106} ____cacheline_internodealigned_in_smp;
 107#define ZONE_PADDING(name)      struct zone_padding name;
 108#else
 109#define ZONE_PADDING(name)
 110#endif
 111
 112enum zone_stat_item {
 113        /* First 128 byte cacheline (assuming 64 bit words) */
 114        NR_FREE_PAGES,
 115        NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
 116        NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
 117        NR_ZONE_ACTIVE_ANON,
 118        NR_ZONE_INACTIVE_FILE,
 119        NR_ZONE_ACTIVE_FILE,
 120        NR_ZONE_UNEVICTABLE,
 121        NR_ZONE_WRITE_PENDING,  /* Count of dirty, writeback and unstable pages */
 122        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
 123        NR_SLAB_RECLAIMABLE,
 124        NR_SLAB_UNRECLAIMABLE,
 125        NR_PAGETABLE,           /* used for pagetables */
 126        NR_KERNEL_STACK_KB,     /* measured in KiB */
 127        /* Second 128 byte cacheline */
 128        NR_BOUNCE,
 129#if IS_ENABLED(CONFIG_ZSMALLOC)
 130        NR_ZSPAGES,             /* allocated in zsmalloc */
 131#endif
 132#ifdef CONFIG_NUMA
 133        NUMA_HIT,               /* allocated in intended node */
 134        NUMA_MISS,              /* allocated in non intended node */
 135        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 136        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 137        NUMA_LOCAL,             /* allocation from local node */
 138        NUMA_OTHER,             /* allocation from other node */
 139#endif
 140        NR_FREE_CMA_PAGES,
 141        NR_VM_ZONE_STAT_ITEMS };
 142
 143enum node_stat_item {
 144        NR_LRU_BASE,
 145        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
 146        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
 147        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
 148        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
 149        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
 150        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 151        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 152        NR_PAGES_SCANNED,       /* pages scanned since last reclaim */
 153        WORKINGSET_REFAULT,
 154        WORKINGSET_ACTIVATE,
 155        WORKINGSET_NODERECLAIM,
 156        NR_ANON_MAPPED, /* Mapped anonymous pages */
 157        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
 158                           only modified from process context */
 159        NR_FILE_PAGES,
 160        NR_FILE_DIRTY,
 161        NR_WRITEBACK,
 162        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 163        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 164        NR_SHMEM_THPS,
 165        NR_SHMEM_PMDMAPPED,
 166        NR_ANON_THPS,
 167        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 168        NR_VMSCAN_WRITE,
 169        NR_VMSCAN_IMMEDIATE,    /* Prioritise for reclaim when writeback ends */
 170        NR_DIRTIED,             /* page dirtyings since bootup */
 171        NR_WRITTEN,             /* page writings since bootup */
 172        NR_VM_NODE_STAT_ITEMS
 173};
 174
 175/*
 176 * We do arithmetic on the LRU lists in various places in the code,
 177 * so it is important to keep the active lists LRU_ACTIVE higher in
 178 * the array than the corresponding inactive lists, and to keep
 179 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 180 *
 181 * This has to be kept in sync with the statistics in zone_stat_item
 182 * above and the descriptions in vmstat_text in mm/vmstat.c
 183 */
 184#define LRU_BASE 0
 185#define LRU_ACTIVE 1
 186#define LRU_FILE 2
 187
 188enum lru_list {
 189        LRU_INACTIVE_ANON = LRU_BASE,
 190        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 191        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 192        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 193        LRU_UNEVICTABLE,
 194        NR_LRU_LISTS
 195};
 196
 197#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
 198
 199#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
 200
 201static inline int is_file_lru(enum lru_list lru)
 202{
 203        return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
 204}
 205
 206static inline int is_active_lru(enum lru_list lru)
 207{
 208        return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
 209}
 210
 211struct zone_reclaim_stat {
 212        /*
 213         * The pageout code in vmscan.c keeps track of how many of the
 214         * mem/swap backed and file backed pages are referenced.
 215         * The higher the rotated/scanned ratio, the more valuable
 216         * that cache is.
 217         *
 218         * The anon LRU stats live in [0], file LRU stats in [1]
 219         */
 220        unsigned long           recent_rotated[2];
 221        unsigned long           recent_scanned[2];
 222};
 223
 224struct lruvec {
 225        struct list_head                lists[NR_LRU_LISTS];
 226        struct zone_reclaim_stat        reclaim_stat;
 227        /* Evictions & activations on the inactive file list */
 228        atomic_long_t                   inactive_age;
 229#ifdef CONFIG_MEMCG
 230        struct pglist_data *pgdat;
 231#endif
 232};
 233
 234/* Mask used at gathering information at once (see memcontrol.c) */
 235#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 236#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 237#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 238
 239/* Isolate clean file */
 240#define ISOLATE_CLEAN           ((__force isolate_mode_t)0x1)
 241/* Isolate unmapped file */
 242#define ISOLATE_UNMAPPED        ((__force isolate_mode_t)0x2)
 243/* Isolate for asynchronous migration */
 244#define ISOLATE_ASYNC_MIGRATE   ((__force isolate_mode_t)0x4)
 245/* Isolate unevictable pages */
 246#define ISOLATE_UNEVICTABLE     ((__force isolate_mode_t)0x8)
 247
 248/* LRU Isolation modes. */
 249typedef unsigned __bitwise__ isolate_mode_t;
 250
 251enum zone_watermarks {
 252        WMARK_MIN,
 253        WMARK_LOW,
 254        WMARK_HIGH,
 255        NR_WMARK
 256};
 257
 258#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 259#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 260#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 261
 262struct per_cpu_pages {
 263        int count;              /* number of pages in the list */
 264        int high;               /* high watermark, emptying needed */
 265        int batch;              /* chunk size for buddy add/remove */
 266
 267        /* Lists of pages, one per migrate type stored on the pcp-lists */
 268        struct list_head lists[MIGRATE_PCPTYPES];
 269};
 270
 271struct per_cpu_pageset {
 272        struct per_cpu_pages pcp;
 273#ifdef CONFIG_NUMA
 274        s8 expire;
 275#endif
 276#ifdef CONFIG_SMP
 277        s8 stat_threshold;
 278        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 279#endif
 280};
 281
 282struct per_cpu_nodestat {
 283        s8 stat_threshold;
 284        s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
 285};
 286
 287#endif /* !__GENERATING_BOUNDS.H */
 288
 289enum zone_type {
 290#ifdef CONFIG_ZONE_DMA
 291        /*
 292         * ZONE_DMA is used when there are devices that are not able
 293         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 294         * carve out the portion of memory that is needed for these devices.
 295         * The range is arch specific.
 296         *
 297         * Some examples
 298         *
 299         * Architecture         Limit
 300         * ---------------------------
 301         * parisc, ia64, sparc  <4G
 302         * s390                 <2G
 303         * arm                  Various
 304         * alpha                Unlimited or 0-16MB.
 305         *
 306         * i386, x86_64 and multiple other arches
 307         *                      <16M.
 308         */
 309        ZONE_DMA,
 310#endif
 311#ifdef CONFIG_ZONE_DMA32
 312        /*
 313         * x86_64 needs two ZONE_DMAs because it supports devices that are
 314         * only able to do DMA to the lower 16M but also 32 bit devices that
 315         * can only do DMA areas below 4G.
 316         */
 317        ZONE_DMA32,
 318#endif
 319        /*
 320         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 321         * performed on pages in ZONE_NORMAL if the DMA devices support
 322         * transfers to all addressable memory.
 323         */
 324        ZONE_NORMAL,
 325#ifdef CONFIG_HIGHMEM
 326        /*
 327         * A memory area that is only addressable by the kernel through
 328         * mapping portions into its own address space. This is for example
 329         * used by i386 to allow the kernel to address the memory beyond
 330         * 900MB. The kernel will set up special mappings (page
 331         * table entries on i386) for each page that the kernel needs to
 332         * access.
 333         */
 334        ZONE_HIGHMEM,
 335#endif
 336        ZONE_MOVABLE,
 337#ifdef CONFIG_ZONE_DEVICE
 338        ZONE_DEVICE,
 339#endif
 340        __MAX_NR_ZONES
 341
 342};
 343
 344#ifndef __GENERATING_BOUNDS_H
 345
 346struct zone {
 347        /* Read-mostly fields */
 348
 349        /* zone watermarks, access with *_wmark_pages(zone) macros */
 350        unsigned long watermark[NR_WMARK];
 351
 352        unsigned long nr_reserved_highatomic;
 353
 354        /*
 355         * We don't know if the memory that we're going to allocate will be
 356         * freeable or/and it will be released eventually, so to avoid totally
 357         * wasting several GB of ram we must reserve some of the lower zone
 358         * memory (otherwise we risk to run OOM on the lower zones despite
 359         * there being tons of freeable ram on the higher zones).  This array is
 360         * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
 361         * changes.
 362         */
 363        long lowmem_reserve[MAX_NR_ZONES];
 364
 365#ifdef CONFIG_NUMA
 366        int node;
 367#endif
 368        struct pglist_data      *zone_pgdat;
 369        struct per_cpu_pageset __percpu *pageset;
 370
 371#ifndef CONFIG_SPARSEMEM
 372        /*
 373         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 374         * In SPARSEMEM, this map is stored in struct mem_section
 375         */
 376        unsigned long           *pageblock_flags;
 377#endif /* CONFIG_SPARSEMEM */
 378
 379        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 380        unsigned long           zone_start_pfn;
 381
 382        /*
 383         * spanned_pages is the total pages spanned by the zone, including
 384         * holes, which is calculated as:
 385         *      spanned_pages = zone_end_pfn - zone_start_pfn;
 386         *
 387         * present_pages is physical pages existing within the zone, which
 388         * is calculated as:
 389         *      present_pages = spanned_pages - absent_pages(pages in holes);
 390         *
 391         * managed_pages is present pages managed by the buddy system, which
 392         * is calculated as (reserved_pages includes pages allocated by the
 393         * bootmem allocator):
 394         *      managed_pages = present_pages - reserved_pages;
 395         *
 396         * So present_pages may be used by memory hotplug or memory power
 397         * management logic to figure out unmanaged pages by checking
 398         * (present_pages - managed_pages). And managed_pages should be used
 399         * by page allocator and vm scanner to calculate all kinds of watermarks
 400         * and thresholds.
 401         *
 402         * Locking rules:
 403         *
 404         * zone_start_pfn and spanned_pages are protected by span_seqlock.
 405         * It is a seqlock because it has to be read outside of zone->lock,
 406         * and it is done in the main allocator path.  But, it is written
 407         * quite infrequently.
 408         *
 409         * The span_seq lock is declared along with zone->lock because it is
 410         * frequently read in proximity to zone->lock.  It's good to
 411         * give them a chance of being in the same cacheline.
 412         *
 413         * Write access to present_pages at runtime should be protected by
 414         * mem_hotplug_begin/end(). Any reader who can't tolerant drift of
 415         * present_pages should get_online_mems() to get a stable value.
 416         *
 417         * Read access to managed_pages should be safe because it's unsigned
 418         * long. Write access to zone->managed_pages and totalram_pages are
 419         * protected by managed_page_count_lock at runtime. Idealy only
 420         * adjust_managed_page_count() should be used instead of directly
 421         * touching zone->managed_pages and totalram_pages.
 422         */
 423        unsigned long           managed_pages;
 424        unsigned long           spanned_pages;
 425        unsigned long           present_pages;
 426
 427        const char              *name;
 428
 429#ifdef CONFIG_MEMORY_ISOLATION
 430        /*
 431         * Number of isolated pageblock. It is used to solve incorrect
 432         * freepage counting problem due to racy retrieving migratetype
 433         * of pageblock. Protected by zone->lock.
 434         */
 435        unsigned long           nr_isolate_pageblock;
 436#endif
 437
 438#ifdef CONFIG_MEMORY_HOTPLUG
 439        /* see spanned/present_pages for more description */
 440        seqlock_t               span_seqlock;
 441#endif
 442
 443        /*
 444         * wait_table           -- the array holding the hash table
 445         * wait_table_hash_nr_entries   -- the size of the hash table array
 446         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 447         *
 448         * The purpose of all these is to keep track of the people
 449         * waiting for a page to become available and make them
 450         * runnable again when possible. The trouble is that this
 451         * consumes a lot of space, especially when so few things
 452         * wait on pages at a given time. So instead of using
 453         * per-page waitqueues, we use a waitqueue hash table.
 454         *
 455         * The bucket discipline is to sleep on the same queue when
 456         * colliding and wake all in that wait queue when removing.
 457         * When something wakes, it must check to be sure its page is
 458         * truly available, a la thundering herd. The cost of a
 459         * collision is great, but given the expected load of the
 460         * table, they should be so rare as to be outweighed by the
 461         * benefits from the saved space.
 462         *
 463         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 464         * primary users of these fields, and in mm/page_alloc.c
 465         * free_area_init_core() performs the initialization of them.
 466         */
 467        wait_queue_head_t       *wait_table;
 468        unsigned long           wait_table_hash_nr_entries;
 469        unsigned long           wait_table_bits;
 470
 471        /* Write-intensive fields used from the page allocator */
 472        ZONE_PADDING(_pad1_)
 473
 474        /* free areas of different sizes */
 475        struct free_area        free_area[MAX_ORDER];
 476
 477        /* zone flags, see below */
 478        unsigned long           flags;
 479
 480        /* Primarily protects free_area */
 481        spinlock_t              lock;
 482
 483        /* Write-intensive fields used by compaction and vmstats. */
 484        ZONE_PADDING(_pad2_)
 485
 486        /*
 487         * When free pages are below this point, additional steps are taken
 488         * when reading the number of free pages to avoid per-cpu counter
 489         * drift allowing watermarks to be breached
 490         */
 491        unsigned long percpu_drift_mark;
 492
 493#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 494        /* pfn where compaction free scanner should start */
 495        unsigned long           compact_cached_free_pfn;
 496        /* pfn where async and sync compaction migration scanner should start */
 497        unsigned long           compact_cached_migrate_pfn[2];
 498#endif
 499
 500#ifdef CONFIG_COMPACTION
 501        /*
 502         * On compaction failure, 1<<compact_defer_shift compactions
 503         * are skipped before trying again. The number attempted since
 504         * last failure is tracked with compact_considered.
 505         */
 506        unsigned int            compact_considered;
 507        unsigned int            compact_defer_shift;
 508        int                     compact_order_failed;
 509#endif
 510
 511#if defined CONFIG_COMPACTION || defined CONFIG_CMA
 512        /* Set to true when the PG_migrate_skip bits should be cleared */
 513        bool                    compact_blockskip_flush;
 514#endif
 515
 516        bool                    contiguous;
 517
 518        ZONE_PADDING(_pad3_)
 519        /* Zone statistics */
 520        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 521} ____cacheline_internodealigned_in_smp;
 522
 523enum pgdat_flags {
 524        PGDAT_CONGESTED,                /* pgdat has many dirty pages backed by
 525                                         * a congested BDI
 526                                         */
 527        PGDAT_DIRTY,                    /* reclaim scanning has recently found
 528                                         * many dirty file pages at the tail
 529                                         * of the LRU.
 530                                         */
 531        PGDAT_WRITEBACK,                /* reclaim scanning has recently found
 532                                         * many pages under writeback
 533                                         */
 534        PGDAT_RECLAIM_LOCKED,           /* prevents concurrent reclaim */
 535};
 536
 537static inline unsigned long zone_end_pfn(const struct zone *zone)
 538{
 539        return zone->zone_start_pfn + zone->spanned_pages;
 540}
 541
 542static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
 543{
 544        return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
 545}
 546
 547static inline bool zone_is_initialized(struct zone *zone)
 548{
 549        return !!zone->wait_table;
 550}
 551
 552static inline bool zone_is_empty(struct zone *zone)
 553{
 554        return zone->spanned_pages == 0;
 555}
 556
 557/*
 558 * The "priority" of VM scanning is how much of the queues we will scan in one
 559 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 560 * queues ("queue_length >> 12") during an aging round.
 561 */
 562#define DEF_PRIORITY 12
 563
 564/* Maximum number of zones on a zonelist */
 565#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 566
 567enum {
 568        ZONELIST_FALLBACK,      /* zonelist with fallback */
 569#ifdef CONFIG_NUMA
 570        /*
 571         * The NUMA zonelists are doubled because we need zonelists that
 572         * restrict the allocations to a single node for __GFP_THISNODE.
 573         */
 574        ZONELIST_NOFALLBACK,    /* zonelist without fallback (__GFP_THISNODE) */
 575#endif
 576        MAX_ZONELISTS
 577};
 578
 579/*
 580 * This struct contains information about a zone in a zonelist. It is stored
 581 * here to avoid dereferences into large structures and lookups of tables
 582 */
 583struct zoneref {
 584        struct zone *zone;      /* Pointer to actual zone */
 585        int zone_idx;           /* zone_idx(zoneref->zone) */
 586};
 587
 588/*
 589 * One allocation request operates on a zonelist. A zonelist
 590 * is a list of zones, the first one is the 'goal' of the
 591 * allocation, the other zones are fallback zones, in decreasing
 592 * priority.
 593 *
 594 * To speed the reading of the zonelist, the zonerefs contain the zone index
 595 * of the entry being read. Helper functions to access information given
 596 * a struct zoneref are
 597 *
 598 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 599 * zonelist_zone_idx()  - Return the index of the zone for an entry
 600 * zonelist_node_idx()  - Return the index of the node for an entry
 601 */
 602struct zonelist {
 603        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 604};
 605
 606#ifndef CONFIG_DISCONTIGMEM
 607/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 608extern struct page *mem_map;
 609#endif
 610
 611/*
 612 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 613 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 614 * zone denotes.
 615 *
 616 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 617 * it's memory layout.
 618 *
 619 * Memory statistics and page replacement data structures are maintained on a
 620 * per-zone basis.
 621 */
 622struct bootmem_data;
 623typedef struct pglist_data {
 624        struct zone node_zones[MAX_NR_ZONES];
 625        struct zonelist node_zonelists[MAX_ZONELISTS];
 626        int nr_zones;
 627#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 628        struct page *node_mem_map;
 629#ifdef CONFIG_PAGE_EXTENSION
 630        struct page_ext *node_page_ext;
 631#endif
 632#endif
 633#ifndef CONFIG_NO_BOOTMEM
 634        struct bootmem_data *bdata;
 635#endif
 636#ifdef CONFIG_MEMORY_HOTPLUG
 637        /*
 638         * Must be held any time you expect node_start_pfn, node_present_pages
 639         * or node_spanned_pages stay constant.  Holding this will also
 640         * guarantee that any pfn_valid() stays that way.
 641         *
 642         * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
 643         * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG.
 644         *
 645         * Nests above zone->lock and zone->span_seqlock
 646         */
 647        spinlock_t node_size_lock;
 648#endif
 649        unsigned long node_start_pfn;
 650        unsigned long node_present_pages; /* total number of physical pages */
 651        unsigned long node_spanned_pages; /* total size of physical page
 652                                             range, including holes */
 653        int node_id;
 654        wait_queue_head_t kswapd_wait;
 655        wait_queue_head_t pfmemalloc_wait;
 656        struct task_struct *kswapd;     /* Protected by
 657                                           mem_hotplug_begin/end() */
 658        int kswapd_order;
 659        enum zone_type kswapd_classzone_idx;
 660
 661#ifdef CONFIG_COMPACTION
 662        int kcompactd_max_order;
 663        enum zone_type kcompactd_classzone_idx;
 664        wait_queue_head_t kcompactd_wait;
 665        struct task_struct *kcompactd;
 666#endif
 667#ifdef CONFIG_NUMA_BALANCING
 668        /* Lock serializing the migrate rate limiting window */
 669        spinlock_t numabalancing_migrate_lock;
 670
 671        /* Rate limiting time interval */
 672        unsigned long numabalancing_migrate_next_window;
 673
 674        /* Number of pages migrated during the rate limiting time interval */
 675        unsigned long numabalancing_migrate_nr_pages;
 676#endif
 677        /*
 678         * This is a per-node reserve of pages that are not available
 679         * to userspace allocations.
 680         */
 681        unsigned long           totalreserve_pages;
 682
 683#ifdef CONFIG_NUMA
 684        /*
 685         * zone reclaim becomes active if more unmapped pages exist.
 686         */
 687        unsigned long           min_unmapped_pages;
 688        unsigned long           min_slab_pages;
 689#endif /* CONFIG_NUMA */
 690
 691        /* Write-intensive fields used by page reclaim */
 692        ZONE_PADDING(_pad1_)
 693        spinlock_t              lru_lock;
 694
 695#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 696        /*
 697         * If memory initialisation on large machines is deferred then this
 698         * is the first PFN that needs to be initialised.
 699         */
 700        unsigned long first_deferred_pfn;
 701#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
 702
 703#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 704        spinlock_t split_queue_lock;
 705        struct list_head split_queue;
 706        unsigned long split_queue_len;
 707#endif
 708
 709        /* Fields commonly accessed by the page reclaim scanner */
 710        struct lruvec           lruvec;
 711
 712        /*
 713         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 714         * this node's LRU.  Maintained by the pageout code.
 715         */
 716        unsigned int inactive_ratio;
 717
 718        unsigned long           flags;
 719
 720        ZONE_PADDING(_pad2_)
 721
 722        /* Per-node vmstats */
 723        struct per_cpu_nodestat __percpu *per_cpu_nodestats;
 724        atomic_long_t           vm_stat[NR_VM_NODE_STAT_ITEMS];
 725} pg_data_t;
 726
 727#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 728#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 729#ifdef CONFIG_FLAT_NODE_MEM_MAP
 730#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 731#else
 732#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 733#endif
 734#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 735
 736#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 737#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
 738static inline spinlock_t *zone_lru_lock(struct zone *zone)
 739{
 740        return &zone->zone_pgdat->lru_lock;
 741}
 742
 743static inline struct lruvec *node_lruvec(struct pglist_data *pgdat)
 744{
 745        return &pgdat->lruvec;
 746}
 747
 748static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
 749{
 750        return pgdat->node_start_pfn + pgdat->node_spanned_pages;
 751}
 752
 753static inline bool pgdat_is_empty(pg_data_t *pgdat)
 754{
 755        return !pgdat->node_start_pfn && !pgdat->node_spanned_pages;
 756}
 757
 758static inline int zone_id(const struct zone *zone)
 759{
 760        struct pglist_data *pgdat = zone->zone_pgdat;
 761
 762        return zone - pgdat->node_zones;
 763}
 764
 765#ifdef CONFIG_ZONE_DEVICE
 766static inline bool is_dev_zone(const struct zone *zone)
 767{
 768        return zone_id(zone) == ZONE_DEVICE;
 769}
 770#else
 771static inline bool is_dev_zone(const struct zone *zone)
 772{
 773        return false;
 774}
 775#endif
 776
 777#include <linux/memory_hotplug.h>
 778
 779extern struct mutex zonelists_mutex;
 780void build_all_zonelists(pg_data_t *pgdat, struct zone *zone);
 781void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 782bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
 783                         int classzone_idx, unsigned int alloc_flags,
 784                         long free_pages);
 785bool zone_watermark_ok(struct zone *z, unsigned int order,
 786                unsigned long mark, int classzone_idx,
 787                unsigned int alloc_flags);
 788bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
 789                unsigned long mark, int classzone_idx);
 790enum memmap_context {
 791        MEMMAP_EARLY,
 792        MEMMAP_HOTPLUG,
 793};
 794extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 795                                     unsigned long size);
 796
 797extern void lruvec_init(struct lruvec *lruvec);
 798
 799static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
 800{
 801#ifdef CONFIG_MEMCG
 802        return lruvec->pgdat;
 803#else
 804        return container_of(lruvec, struct pglist_data, lruvec);
 805#endif
 806}
 807
 808extern unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru);
 809
 810#ifdef CONFIG_HAVE_MEMORY_PRESENT
 811void memory_present(int nid, unsigned long start, unsigned long end);
 812#else
 813static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 814#endif
 815
 816#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 817int local_memory_node(int node_id);
 818#else
 819static inline int local_memory_node(int node_id) { return node_id; };
 820#endif
 821
 822#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 823unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 824#endif
 825
 826/*
 827 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 828 */
 829#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 830
 831/*
 832 * Returns true if a zone has pages managed by the buddy allocator.
 833 * All the reclaim decisions have to use this function rather than
 834 * populated_zone(). If the whole zone is reserved then we can easily
 835 * end up with populated_zone() && !managed_zone().
 836 */
 837static inline bool managed_zone(struct zone *zone)
 838{
 839        return zone->managed_pages;
 840}
 841
 842/* Returns true if a zone has memory */
 843static inline bool populated_zone(struct zone *zone)
 844{
 845        return zone->present_pages;
 846}
 847
 848extern int movable_zone;
 849
 850#ifdef CONFIG_HIGHMEM
 851static inline int zone_movable_is_highmem(void)
 852{
 853#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 854        return movable_zone == ZONE_HIGHMEM;
 855#else
 856        return (ZONE_MOVABLE - 1) == ZONE_HIGHMEM;
 857#endif
 858}
 859#endif
 860
 861static inline int is_highmem_idx(enum zone_type idx)
 862{
 863#ifdef CONFIG_HIGHMEM
 864        return (idx == ZONE_HIGHMEM ||
 865                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 866#else
 867        return 0;
 868#endif
 869}
 870
 871/**
 872 * is_highmem - helper function to quickly check if a struct zone is a 
 873 *              highmem zone or not.  This is an attempt to keep references
 874 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 875 * @zone - pointer to struct zone variable
 876 */
 877static inline int is_highmem(struct zone *zone)
 878{
 879#ifdef CONFIG_HIGHMEM
 880        return is_highmem_idx(zone_idx(zone));
 881#else
 882        return 0;
 883#endif
 884}
 885
 886/* These two functions are used to setup the per zone pages min values */
 887struct ctl_table;
 888int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 889                                        void __user *, size_t *, loff_t *);
 890int watermark_scale_factor_sysctl_handler(struct ctl_table *, int,
 891                                        void __user *, size_t *, loff_t *);
 892extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 893int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 894                                        void __user *, size_t *, loff_t *);
 895int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 896                                        void __user *, size_t *, loff_t *);
 897int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 898                        void __user *, size_t *, loff_t *);
 899int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 900                        void __user *, size_t *, loff_t *);
 901
 902extern int numa_zonelist_order_handler(struct ctl_table *, int,
 903                        void __user *, size_t *, loff_t *);
 904extern char numa_zonelist_order[];
 905#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 906
 907#ifndef CONFIG_NEED_MULTIPLE_NODES
 908
 909extern struct pglist_data contig_page_data;
 910#define NODE_DATA(nid)          (&contig_page_data)
 911#define NODE_MEM_MAP(nid)       mem_map
 912
 913#else /* CONFIG_NEED_MULTIPLE_NODES */
 914
 915#include <asm/mmzone.h>
 916
 917#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 918
 919extern struct pglist_data *first_online_pgdat(void);
 920extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 921extern struct zone *next_zone(struct zone *zone);
 922
 923/**
 924 * for_each_online_pgdat - helper macro to iterate over all online nodes
 925 * @pgdat - pointer to a pg_data_t variable
 926 */
 927#define for_each_online_pgdat(pgdat)                    \
 928        for (pgdat = first_online_pgdat();              \
 929             pgdat;                                     \
 930             pgdat = next_online_pgdat(pgdat))
 931/**
 932 * for_each_zone - helper macro to iterate over all memory zones
 933 * @zone - pointer to struct zone variable
 934 *
 935 * The user only needs to declare the zone variable, for_each_zone
 936 * fills it in.
 937 */
 938#define for_each_zone(zone)                             \
 939        for (zone = (first_online_pgdat())->node_zones; \
 940             zone;                                      \
 941             zone = next_zone(zone))
 942
 943#define for_each_populated_zone(zone)                   \
 944        for (zone = (first_online_pgdat())->node_zones; \
 945             zone;                                      \
 946             zone = next_zone(zone))                    \
 947                if (!populated_zone(zone))              \
 948                        ; /* do nothing */              \
 949                else
 950
 951static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 952{
 953        return zoneref->zone;
 954}
 955
 956static inline int zonelist_zone_idx(struct zoneref *zoneref)
 957{
 958        return zoneref->zone_idx;
 959}
 960
 961static inline int zonelist_node_idx(struct zoneref *zoneref)
 962{
 963#ifdef CONFIG_NUMA
 964        /* zone_to_nid not available in this context */
 965        return zoneref->zone->node;
 966#else
 967        return 0;
 968#endif /* CONFIG_NUMA */
 969}
 970
 971struct zoneref *__next_zones_zonelist(struct zoneref *z,
 972                                        enum zone_type highest_zoneidx,
 973                                        nodemask_t *nodes);
 974
 975/**
 976 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 977 * @z - The cursor used as a starting point for the search
 978 * @highest_zoneidx - The zone index of the highest zone to return
 979 * @nodes - An optional nodemask to filter the zonelist with
 980 *
 981 * This function returns the next zone at or below a given zone index that is
 982 * within the allowed nodemask using a cursor as the starting point for the
 983 * search. The zoneref returned is a cursor that represents the current zone
 984 * being examined. It should be advanced by one before calling
 985 * next_zones_zonelist again.
 986 */
 987static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
 988                                        enum zone_type highest_zoneidx,
 989                                        nodemask_t *nodes)
 990{
 991        if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
 992                return z;
 993        return __next_zones_zonelist(z, highest_zoneidx, nodes);
 994}
 995
 996/**
 997 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 998 * @zonelist - The zonelist to search for a suitable zone
 999 * @highest_zoneidx - The zone index of the highest zone to return
1000 * @nodes - An optional nodemask to filter the zonelist with
1001 * @zone - The first suitable zone found is returned via this parameter
1002 *
1003 * This function returns the first zone at or below a given zone index that is
1004 * within the allowed nodemask. The zoneref returned is a cursor that can be
1005 * used to iterate the zonelist with next_zones_zonelist by advancing it by
1006 * one before calling.
1007 */
1008static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1009                                        enum zone_type highest_zoneidx,
1010                                        nodemask_t *nodes)
1011{
1012        return next_zones_zonelist(zonelist->_zonerefs,
1013                                                        highest_zoneidx, nodes);
1014}
1015
1016/**
1017 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1018 * @zone - The current zone in the iterator
1019 * @z - The current pointer within zonelist->zones being iterated
1020 * @zlist - The zonelist being iterated
1021 * @highidx - The zone index of the highest zone to return
1022 * @nodemask - Nodemask allowed by the allocator
1023 *
1024 * This iterator iterates though all zones at or below a given zone index and
1025 * within a given nodemask
1026 */
1027#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1028        for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);       \
1029                zone;                                                   \
1030                z = next_zones_zonelist(++z, highidx, nodemask),        \
1031                        zone = zonelist_zone(z))
1032
1033#define for_next_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1034        for (zone = z->zone;    \
1035                zone;                                                   \
1036                z = next_zones_zonelist(++z, highidx, nodemask),        \
1037                        zone = zonelist_zone(z))
1038
1039
1040/**
1041 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1042 * @zone - The current zone in the iterator
1043 * @z - The current pointer within zonelist->zones being iterated
1044 * @zlist - The zonelist being iterated
1045 * @highidx - The zone index of the highest zone to return
1046 *
1047 * This iterator iterates though all zones at or below a given zone index.
1048 */
1049#define for_each_zone_zonelist(zone, z, zlist, highidx) \
1050        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1051
1052#ifdef CONFIG_SPARSEMEM
1053#include <asm/sparsemem.h>
1054#endif
1055
1056#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
1057        !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1058static inline unsigned long early_pfn_to_nid(unsigned long pfn)
1059{
1060        return 0;
1061}
1062#endif
1063
1064#ifdef CONFIG_FLATMEM
1065#define pfn_to_nid(pfn)         (0)
1066#endif
1067
1068#ifdef CONFIG_SPARSEMEM
1069
1070/*
1071 * SECTION_SHIFT                #bits space required to store a section #
1072 *
1073 * PA_SECTION_SHIFT             physical address to/from section number
1074 * PFN_SECTION_SHIFT            pfn to/from section number
1075 */
1076#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
1077#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
1078
1079#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
1080
1081#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1082#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
1083
1084#define SECTION_BLOCKFLAGS_BITS \
1085        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1086
1087#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
1088#error Allocator MAX_ORDER exceeds SECTION_SIZE
1089#endif
1090
1091#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
1092#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
1093
1094#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1095#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
1096
1097struct page;
1098struct page_ext;
1099struct mem_section {
1100        /*
1101         * This is, logically, a pointer to an array of struct
1102         * pages.  However, it is stored with some other magic.
1103         * (see sparse.c::sparse_init_one_section())
1104         *
1105         * Additionally during early boot we encode node id of
1106         * the location of the section here to guide allocation.
1107         * (see sparse.c::memory_present())
1108         *
1109         * Making it a UL at least makes someone do a cast
1110         * before using it wrong.
1111         */
1112        unsigned long section_mem_map;
1113
1114        /* See declaration of similar field in struct zone */
1115        unsigned long *pageblock_flags;
1116#ifdef CONFIG_PAGE_EXTENSION
1117        /*
1118         * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1119         * section. (see page_ext.h about this.)
1120         */
1121        struct page_ext *page_ext;
1122        unsigned long pad;
1123#endif
1124        /*
1125         * WARNING: mem_section must be a power-of-2 in size for the
1126         * calculation and use of SECTION_ROOT_MASK to make sense.
1127         */
1128};
1129
1130#ifdef CONFIG_SPARSEMEM_EXTREME
1131#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1132#else
1133#define SECTIONS_PER_ROOT       1
1134#endif
1135
1136#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1137#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1138#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1139
1140#ifdef CONFIG_SPARSEMEM_EXTREME
1141extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1142#else
1143extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1144#endif
1145
1146static inline struct mem_section *__nr_to_section(unsigned long nr)
1147{
1148        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1149                return NULL;
1150        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1151}
1152extern int __section_nr(struct mem_section* ms);
1153extern unsigned long usemap_size(void);
1154
1155/*
1156 * We use the lower bits of the mem_map pointer to store
1157 * a little bit of information.  There should be at least
1158 * 3 bits here due to 32-bit alignment.
1159 */
1160#define SECTION_MARKED_PRESENT  (1UL<<0)
1161#define SECTION_HAS_MEM_MAP     (1UL<<1)
1162#define SECTION_MAP_LAST_BIT    (1UL<<2)
1163#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1164#define SECTION_NID_SHIFT       2
1165
1166static inline struct page *__section_mem_map_addr(struct mem_section *section)
1167{
1168        unsigned long map = section->section_mem_map;
1169        map &= SECTION_MAP_MASK;
1170        return (struct page *)map;
1171}
1172
1173static inline int present_section(struct mem_section *section)
1174{
1175        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1176}
1177
1178static inline int present_section_nr(unsigned long nr)
1179{
1180        return present_section(__nr_to_section(nr));
1181}
1182
1183static inline int valid_section(struct mem_section *section)
1184{
1185        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1186}
1187
1188static inline int valid_section_nr(unsigned long nr)
1189{
1190        return valid_section(__nr_to_section(nr));
1191}
1192
1193static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1194{
1195        return __nr_to_section(pfn_to_section_nr(pfn));
1196}
1197
1198#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1199static inline int pfn_valid(unsigned long pfn)
1200{
1201        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1202                return 0;
1203        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1204}
1205#endif
1206
1207static inline int pfn_present(unsigned long pfn)
1208{
1209        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1210                return 0;
1211        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1212}
1213
1214/*
1215 * These are _only_ used during initialisation, therefore they
1216 * can use __initdata ...  They could have names to indicate
1217 * this restriction.
1218 */
1219#ifdef CONFIG_NUMA
1220#define pfn_to_nid(pfn)                                                 \
1221({                                                                      \
1222        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1223        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1224})
1225#else
1226#define pfn_to_nid(pfn)         (0)
1227#endif
1228
1229#define early_pfn_valid(pfn)    pfn_valid(pfn)
1230void sparse_init(void);
1231#else
1232#define sparse_init()   do {} while (0)
1233#define sparse_index_init(_sec, _nid)  do {} while (0)
1234#endif /* CONFIG_SPARSEMEM */
1235
1236/*
1237 * During memory init memblocks map pfns to nids. The search is expensive and
1238 * this caches recent lookups. The implementation of __early_pfn_to_nid
1239 * may treat start/end as pfns or sections.
1240 */
1241struct mminit_pfnnid_cache {
1242        unsigned long last_start;
1243        unsigned long last_end;
1244        int last_nid;
1245};
1246
1247#ifndef early_pfn_valid
1248#define early_pfn_valid(pfn)    (1)
1249#endif
1250
1251void memory_present(int nid, unsigned long start, unsigned long end);
1252unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1253
1254/*
1255 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1256 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1257 * pfn_valid_within() should be used in this case; we optimise this away
1258 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1259 */
1260#ifdef CONFIG_HOLES_IN_ZONE
1261#define pfn_valid_within(pfn) pfn_valid(pfn)
1262#else
1263#define pfn_valid_within(pfn) (1)
1264#endif
1265
1266#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1267/*
1268 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1269 * associated with it or not. In FLATMEM, it is expected that holes always
1270 * have valid memmap as long as there is valid PFNs either side of the hole.
1271 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1272 * entire section.
1273 *
1274 * However, an ARM, and maybe other embedded architectures in the future
1275 * free memmap backing holes to save memory on the assumption the memmap is
1276 * never used. The page_zone linkages are then broken even though pfn_valid()
1277 * returns true. A walker of the full memmap must then do this additional
1278 * check to ensure the memmap they are looking at is sane by making sure
1279 * the zone and PFN linkages are still valid. This is expensive, but walkers
1280 * of the full memmap are extremely rare.
1281 */
1282bool memmap_valid_within(unsigned long pfn,
1283                                        struct page *page, struct zone *zone);
1284#else
1285static inline bool memmap_valid_within(unsigned long pfn,
1286                                        struct page *page, struct zone *zone)
1287{
1288        return true;
1289}
1290#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1291
1292#endif /* !__GENERATING_BOUNDS.H */
1293#endif /* !__ASSEMBLY__ */
1294#endif /* _LINUX_MMZONE_H */
1295